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ABSTRACT 

We present another mechanism to generate the baryon asym­

metry of the universe within supersymmetric inflationary cos­

mologies. The gravitational coupling of the inflaton to the heavy 

fields in the theory is used to generate the baryon excess. We 

find that in models with an inflaton field and some heavy fields, 

there is generation of baryon number due to the transfer of en­

ergy from the inflaton to the heavy sector. We study this general 

mechanism for two simple models-one in which the inflaton does 

not break supersymmetry and one for which it does. We find that 

we can get the observed value of baryon to entropy ratio in these 

models. The thermal constraint [stabilization of the inflaton in 

the plateau region at high temperatures] is violated in both these 

models. We discuss the possibility of the introduction of direct 

couplings to satisfy this constraint. 
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The new inflationary universe scenario provides an elegant solution to 

many cosmological problems of the hot big-bang model [1]. Supersymmetry 

on the other hand has been used to solve many serious problems in :·~arti­

cle physics in a beautiful way [2]. In fact, inflationary scenarios employing 

local supersymmetry seem to be very attractive for providing "natural" so­

lutions to many cosmological conundrums [3]. The success of these models 

is somewhat marred by one potentially serious problem - a low reheating 

temperature after the exit from the inflationary era. A low reheating tem­

perature is undesirable because it is a potential blow to one of the ,most 

important achievements of the application of Grand Unified Theories to cos­

mology - the generation of baryon-antibaryon asymmetry from symmetric 

initial conditions [4]. This is so because in the standard scenario, in order to 

generate a baryon asymmetry after the de-Sitter expansion has diluted any 

primordial asymmetry, one needs to reheat the universe to at least a temper­

ature of 0(109 - 1010GeV) [5]. It could be argued that the standard out of 

equilibrium decay of the color-triplet Higgs is not the mechanism responsible 

for the generation of the asymmetry, but alternative mechanisms: decay of 

coherent Higgs field oscillations which are very far from equilibrium [6], low 

temperature baryon generation scenarios [7] etc. could be operative. While 

this may be reasonable, it still seems fruitful to us to investigate alternate 

origins for baryon number generation , since this feature is potentially the 

most restrictive on model building. 

In this paper, we will investigate the possibility of generating a satis­

factory baryon excess within the framework of locally supersymmetric infla­

tionary models. More specifically, we will use the hidden sector models [8], 

since they seem to be the most attractive phenomenologically. ("no-scale " 

models [9] will not be considered here.) 

These models have a very weakly coupled scalar field, the inflaton which 

is responsible for the de-Sitter expansion and the subsequent reheating; The 

very weak interactions of the inflaton imply the reheating temperature is low 

because the lifetime is large and there is a significant redshifting of energy 

[5,10,12]. This causes problems for baryosynthesis. 

We investigate the possibility of remedying this situation by using other 

heavy fields in the theory (eg. the adjoint Higgs in SU(5)). Due to the 

gravitational couplings between these heavy fields and the hidden sector, 
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energy is transferred from the inflaton to these fields. Since these fields have 

gauge interactions and hence a short lifetime, their decays occur before any 

significant redshifting has taken place, giving rise to a· significant baryon 

excess. 

After establishing a general framework in Section I, we investigate two 

representative models in Section II and III. Supersymmetry is unbroken in 

the first model, which is simpler to analyse while in the second model it is 

broken. We compute the baryon to entropy ratio in both these models and 

show that with reasonable values of various model-dependent parameters we 

obtain a satisfactory baryon excess. Both the models, in spite of giving a 

satisfactory cosmology, do not however, satisfy the thermal constraint. We 

find that even with the incorporation of heavy fields, the situation does not 

change. Finally, we comment on the finite temperature corrections and the 

use of direct couplings between the heavy fields and the inflation in solving 

the thermal constraint and its effect on our results. 

1. GENERAL FRAMEWORK: 

Consider a set of scalar fields </>; in a locally supersymmetric theory with 

a superpotential W(</>;). Then the corresponding scalar potential is given by 

(assuming a flat Kiihler metric)[ll] 

V(if>;) = exp ( ~ l</>;1 2 /M2
) [~ ID~;W(</>;)12 - ~2 IW(</>;)1 2

] (1) 

where D~;W(if>;) is the Kahler covariant derivative 

D~;W(</>;) = aw + if>iW(if>;) 
8</>; M2 

(2) 

and M = * ~ 2.4 x 1018 GeV is the reduced Planck Mass. 

We consider the superpotential W to be a function of two fields if> and E. 

if> is the field which causes inflation, the inflaton and E is some heavy field 

in the theory. Throughout we assume that if> is a gauge singlet while E can 

have non-trivial transformation properties under the gauge group. We will 

for our purposes take E to be the adjoint Higgs of SU(5) but most of the 

results will be independent of this choice. 

-'· r·. 
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As a first step, we assume that the superpotential W(if>, E) be written as 

the sum of two superpotentials f(if>) and g(E). This implies that the two 

fields only interact gravitationally (we will comment on the effect of direct 

coupling later). Then, 

W(if>,E) = f(if>) + g(E) {3) 

Next we demand that at the true minimum, </>o, E0 , the cosmological 

constant is zero and supersymmetry is unbroken. It is easy to show that 

these conditions imply 

8!, =0 
8</> ~0 

8g I =0 f(if>o) + g(Eo) = BE Eo 

(4a) 

(4b) 

The most general gauge invariant and renormalizable superpotential for E is 

given by 

bt 2 b2 3 
g(E) = 2TrE + 3TrE + b0 (5) 

where the constants bo,bt,b2 will be fixed by condition (4b). It is convenient 

to work with dimensionless variables x and y defined as 

x=if>/M y:=E/M (6) 

Then 

b M 2 ~M3 

g(y) = -1-Tr y2 + --Tr y3 + bo 
2 3 

(7) 

Furthermore, we want the true minimum in the E direction to break SU(5) 

-+ SU(3) x SU(2) x U(l) which implies that 
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Yo=~=!l 

2 

2 

0 

0 

2 I (8) 
-3 

-3 

where~ is a scale characteristic of E (typically MauT)· Now the condition 

g(yo) = 0 implies 

15bl~2 - 10b2~3 + bo = 0 (9a) 

and 

:g I = O(with the constraint Try = O) 
Yab v=vo 

implies 

bo = -5~3 (9b) 

bl = ~b2 (9c) 

With the choice b2 = 1, we have 

~M2 M3. 
g(y) = -2-Tr(y2) + 3Tr(y3)- 5~3 (9d) 

For our case 

W(x,y) = f(x) + g(y) 

and 

e"'
2

+v• [(aw )2 (aw )2 
2] V(x,y)= M 2 a;-+xW + Bya

6
+Ya&W -3W (10) 

assuming x and y to be real. 
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From this expression, it is straightforward but tedious to compute the 

derivatives of the potential in the two directions. We only display ~~ since 

the others are messy and not particularly illuminating 

av 2e"'2 +v• 
ax = 2xV + --xf2 [(I'+ xW)(f" + W + xf') 

+ W f'Tr y2 +, ~M2 f'Tr y2 (11) 

+ M 3 f'Tr y3 - 3W f'J 

where primes denote lz. Using these expressions, one can determine what 

the value of the E field is when t/J = 0 i.e. at the beginning of inflation. 

In the Appendix we show that it is impossible to simultaneously satisfy 

~~. = ~:~ = ~: = 0, V > 0 and V - 0(#-'4 ) at t/J = 0 if the E field is sitting 
at its true mimimum i.e. in the 3-2-1 phase. Since all the above conditions 

are necessary for a successful inflationary model, the E field must start its 

evolution away from the true minimum. If the E field is at its true minimum 

when t/J = 0 then it will be less likely that E oscillations will be generated as 

t/J evolves from t/J = 0 to t/J = t/Jo. 

We now estimate the baryon to entropy ratio in two representative mod­

els. 

l .. ; 
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2. Model I 

The superpotential for the inflaton field is [12] 

f(x) = p,2 M(x- 1)2 x=if>/M (12) 

where the scale p, is fixed at (lo-s - w-4 )M by demanding that the model 

gives the correct order of magnitude of density fluctuations which lead to 

galaxy formation. [12,13] 

This superpotential leads to an absolute minimum at x = 1 with zero 

cosmological constant and unbroken supersymmetry. 

The evolution equations for x and y can be solved numerically and the 

energy stored in the E field can be determined. However, this is not particu­

larly illuminating. We find that a more physically transparent strategy is to 

solve the evolution equations analytically using various physically reasonable 

approximations. This is the approach we chose in the following analysis. 

There are two natural scales in this model: the scale p, associated with 

the inflation sector (~ - O(lo-s - w-4)) and the scale D. associated with 

the E sector which has a typical value - w-2 M [18]. Thus a reasonable 

parameter to use is p,f D.. We will throughout keep only the lowest order 

terms in p, /D.. 

At if> = 0, we need to determine the value of the E field. Assuming that 

the value at if> = 0 is a small perturbation from the true minimum, we write 

D. 
y= M 

2 + ap,fD. 

2 + ap,ft::. 

2 + ap,fD. 

-3- ~ap,jt::. 

Using the derivatives ~~ we can solve for a to get 

5 !!:..._ _ w-s 
a= 21M 

7 
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(13) 

-3- ~ap,fD. 

which confirms our expectations of keeping only the lowest order terms in 

p,fD.. 

Next we need to trace the evolution of the if> and E system in the if> - E 

plane as if> evolves from if>= 0 to if>= ¢>0 = M. Once again we need to solve 

the evolution equations numerically, but we can simplify matters. Since the 

position of < y > at if> = 0 is not very different from that at if> = </>o, it is 

reasonable to assume that the evolution of if> is unaltered. 

With these assumptions, we now obtain the position of the E field at the 

end of inflation. The inflationary epoch is characterized by a slow rollover 

in the if> direction and in terms of the potential this implies,[5] 

V"(¢>) :5 ~2!V(<P)I (14a) 

V' (if>) :5 '{; IV (if>) I (14b) 

For the potential we consider, the first equation breaks down first at a 

value 

x.- 0.2425 (15) 

Using this value of x., we once again solve ~~ to get the value of E at 

this point (to lowest order in p,f D.). Assuming the form of y to be as in (13) 

we get 

D. 
M 

2+ 1.15L 
liM 

2+ 1.15L liM 

y(x = x.) = 

2+ 1.15~ 
-3 -1.725~ 

-3 -1.725~ 
(16) 

The evolution of the if> and E fields is governed by the evolution equations 

which are [6] 

8 
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where 

~' 
' =-· 

1 av 
x + 3H :i: + f .,:i: = - Mz ax 

1 av 
Yab + 3H Yab + r uYab = - M2 8Yab 

2 1 1·2 1·2 
H = 3M2[V(t/>,E) + 24> + 2E + p"~J 

(17) 

(18) 

Here r., and r u are the decay rates of the t/> and E fields respectively and 

p'! is the energy density in radiation. The equation for y can be rewritten as 

an equation for a using (13) 

1 av 
a + 3H a + r ua = - p,M ay (19) 

We can get a sensible approximation scheme for these quantitites by compar­

ing the order of magnitude. Since the 4> field has only gravitational couplings, 

its decay rate is 

m~ 
rf ~ M2 

On the other hand, E is a gauge nonsinglet and its decay rate is 

fr. ~ amr. ~ a..1.(assuming mr. ~ ..1.) 

where a is the GUT gauge coupling constant. 

(20) 

(21) 

At the origin in the 4> direction, the value of the Hubble parameter H is 

~ ~· Assuming mf ~ ~ [12] and and a~ fa [13], we obtain 

rf << 3H << a..1. 

Furthermore, the time taken for slow rollover, t., is given by [12] 

M 1 
t.~2>>fii 

JL 

9 

(22) 

(23) 

6.....-
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The physical picture which emerges from this is as follows: at t = 0, the 

4> field is at its origin while the E field is displaced from its true minimum 

at a value given by (13). From t = 0 to t = t., the 4> field evolves slowly 

from 4> = 0 to 4> = t/>., giving rise to the de-Sitter expansion of the scale 

factor. Since this time is much longer than the lifetime of the E' s, all the 

primordial E' s decay and the density of the decay products is exponentially 

diluted. However, at t = t. , E is not at its true minimum but is displaced 

to a value given by (16). 
.~:;..:;.. 

Taking into account the inequalities given by (22), we can approxizgately 

solve the evolution equations for 4> and E. These equations give us essentially 

the same result as if the E field was moving in a pure quadratic potential 

around the true minimum. Thus for our purposes, we take the motion in the 

E direction to be governed by 

1 
V = 2M2m~(y- Yo)2 

= !M2..1.2a2!: 
2 ..1. 

(24) 

At time t = t., the value of E is given by (16) and the total energy in the 

E direction is at least 

pE(t = t.) ~ ..1.2_!!_ 
M2 (25) 

The field is oscillating in a pure quadratic potential with a frequency 

given by its mass. Since this frequency is comparable to the decay rate of E, 

this energy rapidly goes into decay products before redshifting decreases it 

significantly. On the other hand, the 4> field has a very long lifetime and it 

continues to oscillate near 4> = t/>o for a long time, with its energy redshifting 

significantly before decay into radiation. So we need to study the evolution 

of the energies associated with the 4> and E directions from time t == t. to 

t = tf = r;1 and compute the ratio ~ at t = tf. 

To study the evolution, note that the energy associated with the oscil­

lations in the 4> direction is O(p,4 ) and that in the E oscillations is O(p,4 !~ ). 
Since ..1. ~ w-2 M, we can safely ignore the contribution of PE to the evolu­

tion of the scale factors. 

We assume that the dominant mechanism for the production of baryon .. 
10 



asymmetry is the decay of color triplet Higgs which is produced in the decay 

of E. This will give us a lower limit on the magnitude of~-

Let nH be the number density of the Higgs triple.ts of mass mH produced 

by the decay of the E' s. Then the energy density PH is given by, since the 

Higgs' are non relativistic, 

nH = PH/mH (26) 

Further let a fraction f of the E energy before decay go into the triplets 

and for simplicity the rest into photons. Then 

PH= IPE (27) 

and the reheat temperature is 

[ 
30 ] 1/4 

T~ = - 2-(1 - f)PE 
7r g. 

(28) 

where g. is the effective relativistic degrees of freedom. 

The potential in the 4> direction is given by 

V = e"
2 

p.4 [x6
- 4x6 + 1x4

- 4x3
- x2 + 1] (29) 

and near x-= xo by 

V = p.4e"
2
[4(x- x0)

2 + 12(x- xo)3 + · · ·] 

Thus near x = x0 , the dominant term is the quadratic term and the 

expansion is matter dominated [10]. The energies at t = t. and t = t~ are 

related by 

R(t = t~) 
PH(t = t~) = PH(t = t.) [ R(t = t.) ] 

-s 
(30) 

where R is the cosmic scale factor. But 

11 
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R(t~) [ 3 2/3 
R(t.) = 1+2Ht=t.(t~-t.)] (31) 

where H 1=1• is the Hubble parameter at t = t •. 
From (22), (23) we obtain 

R(t ) ( 3 )
213 

R(t:) ~ 1 + 2H,=t.fi
1 (32) 

Also from (18) and th~ fact that p~(t.) ~ p.4 we get 

4 p.8 
PH(t~) = 3PH(t.) M8 (33) 

Using (33) and PE(t.) ~ !~p.4 we obtain the number density of the triplets 

at the time of 4> decay as 

I 12 
~ -· -A2!!:___ nH(t~) = PH/mH mH M10 (34) 

Assuming that fB is the baryon excess produced per triplet decay we 

obtain the number density of excess baryons as 

n
. fB/ 1112 
B~ --A2_,.._ 

mH M10 
(35) 

From Ref. 12, we know the reheat temperature for this model, 

TRH ~ JMr~ ~ p.3fM2 (36) 

Note that this is the final reheat temperature, produced by the decay of the 

inflaton. There might be some intermediate reheating associated with the 

decay of other particles, for eg. T~~ associated with the decay of E' s. This 

produces a negligible amount of entropy because the small amount of energy 

gets redshifted significantly between t. and t~. Thus the baryon to entropy 

ratio at t = t~ is given by 

nB 45 £B/ A 2p.3 

S ~ 21r2g. mH M 4 
(37) 
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Using eq. 37, we can estimate the numerical value of~ and compare 

it to the observed value of- w-10• There are however, ambiguities in the 

values of the parameters entering eq. 37. The values of -J!i and f; can be 

fixed, as already indicated at 10-3 - w-• and w-2 respectively [12, 14]. g. 

can be assumed to be 0{2 x 102
) at these scales. fB, f and mH are more 

uncertain and model dependent. 

It is known [15], that in supersymmetric models, apart from the usual 

dimension 6 operators responsible for proton decay, there can also exist di­

mension 5 operators which could give a disastrously small proton lifetime. 

If these operators are present, we have a· lower bound on the mass of the 

superpartners of the triplets given by [16]. 

mk. ;:::: 1016GeV. {38) 

However, one can invoke certain symmetries, for example a Peccei Quinn 

symmetry or a discrete symmetry, which _forbid proton decay by dimension 

5 operators. In these cases the limit is much smaller. For example Ref. 

17 shows that it is possible to reconcile a low mass Higgs triplet with the 

experimental bounds on proton lifetime. The lower bound is considerably 

reduced to 

mH;:::: 2.85.x 1010GeV {39) 

The value of fB, or the net· baryon number produced by the decay of a 

particle-:-antiparticle pair is also very model dependent. At tree level, fB = 
0 and fB =/= 0 comes from loop diagrams. For supersymmetric guts, no 

"surprising" cancellations occur at one loop level and so fB ::; O{a/411")[18]. 

The quantity f is to be determined by looking at the decay modes of the 

E' s. The E' s can decay into anything lighter-triplet, doublet Higgs, gluons 

etc. A value of 1/10 is not an unreasonable value for this parameter. Using 

fB- 10-3 [17], we obtain from {37). 

nB s- w-1ow<-9-12J~ 
fflH 

{40) 

If we use mH - 10+1°GeV and J.L - 10-3M, we obtain a value of ~ 

which almost agrees with that observed. However, if the higher bound on 

13 
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mH is taken from models where dimension 5 operators are not suppressed 

by some symmetry, then this mechanism gives us a much smaller value of ~ 

in disagreement with observations. 
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3. MODEL II: 

Having computed nB/S for this simple model with no supersymmetry 

breaking, we go on to consider a model with supersymmetry breaking in the 

inflaton sector. 

Consider the inflaton superpotential [19], 

1 
f(x) = p.2 M[,B + f + x + ,Bx2

-
12

.Bx'J (41) 

where .B = -~vf2- ~f + 0(£2). The minimum is supersymmetry breaking 

and is at 

X= v'2+ c~fr/2 (42) 

~~;~he gx:avitino mass is 

2~ ms/2 = -y 3v'2e~ 2 fS/2 
9 M 

(43) 

In this model, supersymmetry breaking is associated with a non-zero 

value of f. However, for the first part of our analysis we will assume f = 0 

since this does not change our conclusions. We start with a superpotential 

[ 
3 x 3 2 x'] 

f(x) = v'2P.2 
M -8 + vf2 - 8x + 32 (44) 

Coupling the E field to 4> and carrying out the same analysis as for model 

I, we obtain the value of E at the end of inflation. The slow rollover or the 

inflationary epoch ends at a time t = .t. when the inequalities in eq. 14 are 

no longer satisfied. It turns out that the second inequality breaks first when 

the 4> field is at 4>. given by [19], 

4>. ~ ·71M 

Using this value of ¢., we solve ~~ = 0 to obtain 

,.,-- -· \ 
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(45) 

2+·41L l!>.M 

2+·41L t:.M 

ll 
y(x = x.) = M 

2+·42L l!>.M 

-3-·62L 
l!>.M 

-3-·62L 
l!>.M 

(46) 

Once again, as for Model I, we use these initial conditions to approxi­

mately solve the evolution equations for E and ¢. Not surprisingly, we find 

again that the motion in the E direction is governed by a pure quadratic 

potential. At time t., the E field sits away from its true minimum and has 

energy PE ~ p.4 tt~ which rapidly goes into its decay products. In computing 

~. we need to trace the evolution of p~ and P'E from t. to t~. It is in this 

part that the difference from Model I comes in. 

Recall that for Model I, the potential was predominantly quadratic in 

the 4> direction and hence the universe expanded like a matter dominated 

one. In Model II however, there are two stages of expansion (once again 

p~ >> PE and the evolution is governed by p~). From time t. to a time 

t = t, ~ 6 X 10-2£_1,, the t/>4 term dominates and the universe expands like 

radiation dominated [19]. 

Thus for t. $ t $ t, 

R(t) 
R(te) = [1 + 2Ht=te(t- te)jl/2 (47) 

From time t, to t~ =: r;1
, the dominant term is quadratic and expansion is 

matter dominated. 

t, $ t $ t~ 

R(t) [ 3 ]2/S 
R(t,) = 1 + 2Ht=e,(t- t,) 

(48) 

Now following the same steps as in Model I with the same notation, we 

find that 
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_ fBPH(t~) _ fBI l::..2JL t1/2r2 
nB - fflH - fflH M1/2 t ~ (49) 

Since the energy density in E is much smaller than that in </>' s, one can 

easily check that the reheating temperature is the same as obtained in Ref. 

19. 

JLsfS/4 
TRH ~ M2 

Using eq. (49), (50) and r ~ ~ ~ ~ e;;:• [19] we obtain 

nB ~ fBI JL3f1/4f::..2 

S g. M 4mH 

(50) 

(51) 

From Ref. 19, we have p.fm ~ 10-3 - 10-4 and f ~ 10-7±1·5. From the 

discussion for Model I, we know that the values of the other parameters are 

model-dependent. Taking g.~ 2102, ~ ~ 10-2, mH ~ 1010GeV, fB ~ 10-3 

and I ~ 10-1 we obtain 

nB s ~ 10-1110(-1.5-2) (52) 

which is similar to that obtained in Model I apart from a factor of e114 • In 

fact the reheating temperature in this model is smaller by e314 compared to 

Model I, and so one expects a larger ~· This is not true however, because 

the inflaton field has a longer lifetime in Model II. Hence the energy in the 

triplets is redshifted more and the enhancement due to a lower reheating 

temperature is more than cancelled to give us ~ in (52). 

The two models we have considered, suffer from the same disease; they 

both violate the requirement that at high temperatures, a sufficient amount 

of energy is stored in the scalar field </> to give enough inflation - the thermal 

constraint. In other words, inflaton must start its evolution far away from 

its global minimum, slowly roll down and eventually settle in its global min­

imum. This is not surprising however, because of a general result given in 

Ref. 20. In a hidden sector with a single field and a flat Kiihler metric, the 

temperature corrections do not stabilize the field at the origin. 
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The solution to this problem suggested in Ref. 12 and Ref. 19 is to 

allow for direct couplings between </> and another field 1/J. For our case, 

we have until now, only considered the situation with the GUT sector and 

the inflaton sector are separate i.e. only coupled gravitationally. If direct 

couplings between the two sectors are allowed, the situation in the two models 

is somewhat different. 

In Model I, the inflaton sector does not break supersymmetry and hence 

direct coupling of</> and E, will not have aily danger of changing the breaking 

scale. In Model II however, the inflaton sector is also responsible for the 

breaking of supersymmetry (with f =1- 0). In this case we need to be careful 

because there is a danger that the supersymmetry breaking scale will be 

pushed up to fflGUT since the E' s now couple directly to the </>. 

Thus in both cases we see that if we include direct coupling of 4> and 

E, then the thermal constraint can be satisfied. Furthermore, it is possible 

that with direct couplings, the value of ~ will improve because more energy 

can be transferred now from the inflaton to the E. However, with the direct 

couplings, the analysis becomes very complicated. This is because firstly, 

one has to be careful that gauge radiative corrections do not spoil the nice 

features of the inflationary potential. Secondly, both the fields are now re­

sponsible for inflation and reheating [for an exception see Ref. 21]. We do 

not carry out this analysis since it is beyond the scope of the present work. 

To conclude, we have studied a mechanism for the generation of baryon 

asymmetry which involves the use of the couplings of heavy fields with the 

hidden sector. This mechanism seems to be a very general one since in 

any model with an inflationary sector and a GUT sector which has heavy 

fields, there will exist the possibility of the transfer of energy from the in­

flaton to the heavy fields. We have obtained the value of ~ in the case 

of two inflaton superpotentials (one with and one without supersymmetry 

breaking). The numerical value of~ h.owever is seen to be dependent upon 

parameters which are model dependent. We saw that if we use the bound 

on .mn from supersymmetric GUTs where some symmetry prohibits dimen­

sions 5 operators for baryon decay, then we obtain a value of ~ which is 

almost in agreement with the observations. In both models we saw that the 

thermal constraint is violated unless one includes direct couplings betw~~n 
the inflaton and the E fields. We conclude then that there exists anotlier 

18 



possible mechanism for baryon number generation within the framework of 

supersymmetric inflationary cosmologies. 
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APPENDIX 

In this appendix we show that under very general conditions it is impos­

sible for the E field to sit at its absolute minimum when ¢> = 0. The notation 

is that of the text. Let f(x) and g(y) be the superpotentials in the 2 sectors. 

Let 

/(z) = p.2M/t(z) (A1) 

g(y) = ~39t(Y) (A2) 

where ft(z) and g1(y) are dimensionless. Further assume that there is no 

direct coupling between the 2 fields. Then 

W(z,y) = /(z) + g(y) (A3) 

Now we impose the following conditions: at z = z0 , y = y0 (the true 

minimum) we must have unbroken supersymmetry and zero cosmological 

constant. This implies 

!t(zo) = ft(zo) = 0 (A4) 

9t(Yo) = g~(Yo) = 0 (AS) 

Assume that when z = 0 , y = y0 i.e. the field y starts off at its absolute 

minimum. Then demanding that the potential be flat means 

av o2V - av = 0 at X = 0' y =Yo oz = (}z2- oy 
These conditions imply 

(A6) 

p.4M2 {1~[/f + (y~- 2)/t]} = 0 (A7) 

p.4M 2 {tf(y~- 2) + ,~ + tur + YU'~ + (y~ -1)/dn = o (AS) 

20 
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.J '~ 

p,
4
M

2
y0 [t~ + (y~- 2)f: + ftg~ 1-'~~] = 0 (A9) 

Futhermore at x = 0, Y = Yo 

4 y• 

( ) J.' e 0 
[ 12 ( 2 ) 2] V 0, Yo = M 2 f + Yo - 3 ft (A10) 

Using (A9) givesus 

ell~ [ 2 11 !::. 
3 

] V(O,y0 ) = J.£
4 

M 2 - ft - ftgt p,2M 

2 [ A 3 ] p,4ello II "-' 

= - M 2 h h + 9t p,2 M 

(All) 

But g~(Yo) - oe~:) since Yo- 0(~) for the example in text which is quite 

general. Then (All) immediately tells us that 

V(O,y~)- O(t:.2m 2
). 

This is unacceptable because we know that the potential at c/> = 0 must scale 

like p,4 with p, - 0(10-4 ) to give us the correct density fluctuations! If the 

field E at c/> = 0 sits at its absolute minimum then the scale p, drops out of 

the potential. 

•. Thus we assume that the field E starts at some other value at cf> = 0, i.e. 

we solve for ~: = 0 at c/> = 0 as in the text. 
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