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SOLITON MATTER AS A MODEL OF DENSE NUCLEAR MATTER* 

N. K. Glendertnirtg and B. Banerjee
1 

Nuclear Science Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, CA 94720 

We employ the hybrid soliton model ofthe nucleon consisting of a topolog­
ical meson field and deeply bound quarks to investigate the behavior of the 
quarks in soliton matter as a function of density. To organize the calculation, we 
place the solitons on a spatial lattice. The model suggests the transition of 
matter from a color insulator to a color conductor above a critical density of a 
few times normal nuclear density. There is no latent heat associated with the 
transition. 

I. INTRODUCTION 

There has been a great deal of interest, in the 
last several years, in a remarkable notion that was 
advanced by Skyrme more than twenty years ago, 
that nucleons are soliton solutions of a non-linear 
field theory in which the only fields present are 
mesonic. 1 He established the existence of a soliton 
solution to a simple meson field theory, with 
which he constructed an anomalous conserved 
current, and conjectured that it represents the 
baryon current. His ideas were advanced long 
before QCD became a candidate as the theory of 
strong interactions. Curiously, They have received 
their justification and reinterpretation through 
developments in QCD. The generalization from 
SU(3) to SU(N) gauge theory by 't Hooft2 and Wit~ 
ten3 established the equivalence of QCD to an 
effective meson field theory. Balachandran et a/.,4 

using the method of Goldston and Wilczek, 5 

demonstrated that the topological meson confi­
guration polarizes a quark field coupled to it so as 
to induce the same baryon charge, and Witten6 

showed that the Skyrme soliton has spin 1/2. 

Although the correspondence of QCD to an 
effective meson field theory is established in the 
above quoted work, the effective fields and their 
lagrangian have not been derived. It is remarkable 
then that the properties of the Skyrme soliton, a 
solution to a very simple lagrangian having only 
four meson fields, the scalar sigma and the triplet 
of pions, have a close resemblance to the nucleon. 

These properties include the magnetic moment, 
charge radius, g-factors/ and a large number of 
resonance states, 8 that agree with experiment at the 
30% level. Impressive progress is being made also 
in the degree of agreement of the soliton-soliton 
interaction in its various spin-isospin components 
with the N-N interaction.9 It is conjectured that as 
additional fields are appropriately coupled, the 
agreement in all these nucleon properties and reso­
nances will improve. 10 In any case the 30% level is 
a.Iready very interesting, in as much as it might 
have turned out that the soliton had little or no 
resemblance whatever to the nucleon. 

What we find particularly appealing in these 
developments is that, having a lagrangian that 
describes the internal structure of the nucleon (sol­
iton), one can investigate interesting questions 
concerning how the internal structure of free 
nucleons change when they are assembled to form 
nuclei or dense matter, and how the properties of 
matter reflect these internal changes. Several of 
the more interesting questions concern possible 
changes in quark behavior in free and bound 
nucleons, as suggested by the anomalous muon 
scattering on nuclei as compared to nucleons 
(EMC effect), 11 and the onset of deconfinement in 
dense matter. Of course we will not believe 
literally the predictions of the theory. It is in the 
large N-limit that the coupling of the meson fields 
become small and the mean field approximation is 
assured to be accurate. We live in a three color 

*This work was supported by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and 
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world and we know of no criteria by which we 
may judge how far from the limit we are, aside 
from the empirical success at the 30% level. In 
any case we do not expect that our model of 
matter as consisting of solitons, will rival the lat­
tice gauge calculations for quantitative predictions 
of phase transitions. However, when a physical 
theory is very complex, as is the theory of strong 
interactions, it is always useful to have a model 
with which to form at least qualitative pictures of 
how the theory works. The model may suggest 
ways of probing nature that the exact theory, 
solved on large computers may not do. In this 
paper we will report on the start that we have 
made on such a program. 12 It is far from finished 
and there remain serious problems to be over­
come. However the picture of color conductivity 
that emerges seems in itself to be a novel and 
interesting one. 

II. REVIEW OF THE SKYRMION 

Before introducing our model of matter, we 
will recall some of the salient features of soliton 
models of the nucleon. Briefly, a soliton is a solu­
tion to a non-linear theory whose energy density 
has a finite spatial extent, and which is stable in 
the sense that if several soliton solutions are con­
structed in different regions of space and allowed 
to come into proximity so that they interact, after 
they have moved apart they are restored to their 
original form. It was Skyrme who first suggested 
that baryons might be understood as soliton solu­
tions of a field theory having only mesons as the 
fields. 1 How do baryons emerge from such a 
theory? We shall be content here to merely exhi­
bit the conserved anomalous integer quantum 
number, which Skyrme conjectured to be the 
baryon number and which Witten recently con­
firmed. 3 Skyrme studied a theory based on a 
scalar and triplet of pseudoscalar pi mesons. 
Construct the two by two matrix, 

U=-t (u(x)+iT·r(x)) , u2 +11'2 =f; , (1) 
7r 

and from this define, 

L"=U
1a"u , (2) 

Skyrme constructed the lagrangian, 

.7=-; tr[ L"U ]+ ~ tr[ L",L. T , (3) 

The first term is an unfamiliar way of writing the 

kinetic term for scalar and pion fields. It turns 
out that there are no stable finite size soliton solu­
tions for a theory possessing only the first term, 
and the second term was added to provide stabil­
ity against collapse of the solution. We want to 
draw attention to the fact that it is of fourth order 
in derivatives of the fields, and that a sixth order 
term or higher would also stabilize the solution. 
This term plays no other essential role. In partic­
ular the quantum number is unaffected by it. 

To show that there is a soliton solution, one 
makes the very peculiar ansatz that a solution of 
the form, 

Uo=ei.-·itl{rl=cosO(r)+iT·r sinO(r) , (4) 

exists. That is, that the isospin components of 
the pion field point in the radial direction, 

u=f ... cosO(r) , r=rf ... sinO(r) . (5) 

For that reason the solution is called the 
hedgehog. That it is a solution can be shown 
easily by calculating the canonical form of the 
energy from the lagrangian, substituting the ansatz 
for the fields, and minimizing. This yields an 
equation for the chiral angle, O(r), which has a 
solution that smoothly connects the boundary 
values 

0(0)=0 , O(oo)=n1r . (6) 

The energy is finite and can then be seen to be 
localized in the vicinity of the origin where O(r) is 
non-vanishing. 

What is very interesting, is that in addition 
to the Noether currents that correspond to the 
invariances of the lagrangian, the theory possess 
an anomalous current, 

B" = -
1
-2 fp.afJ-y tr [uL13U] , (7) 

2411' 

where fp.afJ-y is the antisymmetric tensor in all 
indices. By construction this quantity is diver­
genceless, independent ·of the equations of 
motion, 

a"B"=O , (8) 

and the charge, corresponding to the ansatz [Eq. 
(5)] is 

B~ J d3rBo(r)~! [o(r)- ~ s;n28(r) I ~n, (9) 

This soliton therefore has a conserved quantity 
which is integer and which Skyrme conjectured to 
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be the baryon number. It is topological in nature, 
and in the case of the hegehog soliton [Eq. (4)] is 
also sometimes referred ·to as the winding 
number. This terminology can be understood by 
noting that Eq. (4) maps ordinary 3-space onto a 
unit 3-sphere in the 4 dimensional space 
(a,7rr~r21r3). The origin is mapped onto the pole on 
the a-axis, and all points at infinity either also 
onto this pole or the other, depending on the 
integer n in the boundary condition [Eq. (6)]. The 
magnitude of n determines how many times the 
surface of the sphere is traversed when r goes 
from 0 to oo. 

Our purpose in reviewing this material is to 
introduce the conserved topological charge, which 
is associated with the SU(2) character of the 
theory, and will carry over to modifications of the 
theory which leave this character intact. The 
Skyrmion as such is not interesting to us for the 
purpose set out. in the beginning, because it has 
no quarks, and we want to see how the quarks 
begin to leak out of the baryons as the density of 
matter is increased. This is perhaps relevant both 
to the deconfinement phase transition as well as 
to anomalous lepton scattering from nuclei (EMC 
effect). Therefore, we would like to have a soliton 
with quarks that are confined, but not through the 
artificial mechanism of an impervious bag. In the 
absence of a known soliton solution possessing 
true confinement, we opt for a model in which 
the quarks are deeply bound in a topological soli­
ton field. The hybrid soliton model fills this 
requirement. 13•

14 

III. SOLITON WITH QUARKS 

The hybrid soliton, 13•14 like the Skyrmion, is. 
based on the chiral sigma model, 15 but now 
including the fermion sector, which here are 
quarks. In the limit of large scalar meson mass, 
the lagrangian is, 

2' =.!. {a aa"a+ a r. a"r} 
2 " " 

+J(x){i-y"a"_:_g[a(x)+hsr·r(x)] }~(x) . 

(10) 

This consists of the first term of Eq. (3) and in 
addition the lagrangian of the quarks, which are 
Yukawa coupled to the scalar and pion fields. 

3 

The quarks have a constituent mass of m = gf,.. 
What Kahana et a/., 13 and Birse and Banerjee14 

showed is that there is a solution in which the 
quarks are deeply bound to the topological soliton 
field of the mesons. For a certain range of the 
coupling constant, g, this state has lower energy 
than the spatially uniform field solution. In this 
range of coupling, the soliton has the nucleon 
mass (Fig. 1 ). 

The soliton carries its conserved topological 
charge. Kahana and Ripka 16 showed that the 
baryon charge on the soliton when the Dirac sea 

·and the valence o- orbital are filled is equal to 
the topological charge. Indeed, according to 
Balachandran et a/.,4 the spatial distribution of 
baryon and topological charge should be identical. 
The topological meson configuration polarizes the 
vacuum in a very precise way. 

For the hedgehog configuration [Eq. (5)], the 
meson field equations reduce to one non-linear 
differential equation for the chiral angle O(r), 

(r20')' -sin 20 

(11) 

This is coupled to the Dirac equation for the 
quark spinors, 

{i-y"a"-m [ cosO(r)+i 'YsT · i sin O(r)] }~(x)=O 
(12) 

or, using the expressions for the Dirac matrices in 
terms of the Pauli matrices, 

[
m cosO -ia· V+im sinO r·i] (:,,uL) 
-iu· V-im sinO r· i -m cosO '~' 

=E[~~) (13) 

where ~u and h are the upper and lower com­
ponents of the Dirac spinor. There is a zero 
"spin" solution (t=O,(s+t)2=0), having the form, 

~(r)= [iu~~~(r)) lv > , (14) 

where i v > is a spinor eigenstate of the sum of 
spin and isospin, having eigenvalue zero, 



4 

(s+t) 1 v >=0 . (15) 

That such a peculiar combination comes in, fol­
lows from the coupling of the quarks to the 
hedgehog meson field in which the isospin com­
ponents point in the radial direction. The dif­
ferential equations for the F and G are, 

- F' + m F sin 8 = ( E + m cos 8)G 

G'+ [; +m sinO )G=(E-m cos8)F (16) 

We normalize the solutions so that 
00 

J (F2 +G2)r2dr=(gf'lr)- 3 • 
0 ' 

(17) 

We call the state [Eq. (14)] a positive parity state 
after the transformation of the large component. 
The state of opposite parity satisfies equations 
like Eq. (16) but with m - -m. This can be 
understood by noting that 

~ = '¥51/1= [iu~~(r)) lv > , (18) 

which according to the parity operator, 

P='Yo P(r- -r) , (19) 

has opposite parity to Eq. (14). Inserting 'Y? into 
the Dirac equation and comQ?.uting one of the 'Y5 
to the left, it is found that 1/; satisfies the same 
equation as 1/; except that the sign of m is 
changed. 

The eigenstates satisfying Eq. ( 15) are triply 
(color) degenerate. This can be seen as follows. 
Because of Eq. ( 15), I v > has eigenvalue 
(s+t)2 =0. Therefore, 

!v >= 

1 (I I I I I I I I ) - ,s -> t -->- 'S --> t ->. Vl '2 '' 2 I• 2 1 '2 

(20) 

Thus I v > is a combination of u and d quarks. 
We can assign color to wave functions like Eq. 
(20) in 9 ways; the first component can have any 
color, and so can the second. Choose any three of 
these. One then finds that any of the remaining 
such wave functions has either an u or d quark of 
a color already appearing in one of the first three. 
So only three such spin-isospin functions can be 
assigned to a level [Eq. (12)]. We may therefore 
introduce color by assigning both components of 

Eq. (20) the same color, and the states are there­
fore I v,c > with c = r,b,g. 

The solutions for the free soliton in this 
model have been discussed previously. 13• 1 ~ There 
are several quark levels that are bound by the sol­
iton field in the energy interval between +m and 
-m. One of these, a o-level, is pulled down from 
+m, by interaction with the meson fields, and for 
a very extended soliton, migrates to -m. When 
this level and all below it are occupied, and the 
boundary conditions applied to the chiral angle 
requiring it to differ by 1r in the interval between r 
= 0 and r = oo, the resulting soliton has baryon 
number unity. 16 In this theory, it represents the 
nucleon. Its mass is given by, 

M=3E+ !~ m
2 J dr{rl [ ~~ r +2 sin

2
8} , 

(21) 

where E is the energy of the o- quark orbital, and 
the integral is the field energy of the mesons. At 
the stationary points of M, the field equations are 
satisfied. (Of course, to derive the field equations 
in this way, we must express the Dirac eigenvalue 
in Eq. (21) in terms of 8 and the functions F and 
G.) 

In this work, we solve the coupled equations 
[Eqs. (11, 16)] variationally, by parameterizing the 
chiral angle. We note from M and the boundary 
conditions on 8, that 8 should smoothly join its 
boundary values, with most of the change occur­
ring at small r. Therefore we represent 8 by four 
parameters, the radius R at which it becomes 
equal to 1r, and three other parameters, a, b, c, 
that measure its deviation from a straight line 
joining the points (0,0) and (R,1r) at equally 
spaced intervals between r = 0 and R. The chiral 
angle is then represented by a cubic spline passing 
through these points. For a given such set of 
parameters, the Dirac equation is integrated under 
the eigenvalue condition that it decay exponen­
tially at large r, and that it is everywhere finite. 
The minimum value of M is sought, at which 
point the field equations are satisfied. The same 
method can be used for the solution of the soliton 
in matter, except that the boundary conditions on 
the Dirac equation are different, as discussed 
below. 

There is only one parameter in the theory, 
the value g of the coupling constant between 
quarks and the meson fields, since we take the 

• 
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experimental value for f.,. = 94 MeV. The com­
puted soliton mass as a function of g is shown in 
Fig. 1. Throughout the remainder of the calcula­
tions, we fix g = 5.96 to yield a soliton mass of 
940 MeV. The Chiral angle as a function of 
radius for the free soliton, is shown in Fig. 2. The 
pion and sigma fields, and the large and small 
components of the quark valence orbital o- are 
shown in Fig. 3. 

IV. CRYSTAL APPROXIMATION 
TO MATTER 

Now we wish to assemble a large number of 
such solitons to form dense matter. Our problem 
is very different from the usual nuclear many­
body problem. There the nucleons are regarded 
as point particles having no internal structure. In 
some cases an internal quantum number is associ­
ated with the baryons to account for the appear­
ance in dense matter of isobars and hyperons. 
However no dynamics is associated with this 
degree of freedom. In reality, the nucleons do 
have an internal structure, the quarks and gluons, 
and their state of motion will be polarized by 
neigbouring nucleons when the density of matter 
is' sufficiently high. In general therefore there is a 
sublevel to the one that is customarily treated in 
nuclear physics, and that level is the focus of our 
interest. However the general state of such a sys­
tem must be extremely complicated to describe. 
It is a many-body problem in which the quarks 
within the individual solitons are moving in 
interaction with each other through the meson 
fields, while the solitons are moving about under 
the influence of the interaction of their consti­
tuent quarks with those of neighbouring solitons. 
It is possible that, at sufficiently high density, the 
solitons would arrange themselves into a crystal­
line lattice, because of the repulsion at short 
range. This would simplify the problem. In any 
case, we shall study this particular configuration . 
If the physical system does not arrange itself thus, 
we shall assume that the internal structure of the 
solitons (nucleons) that emerges under this 
assumption may describe the average, or typical, 
structure of nucleons in matter of the correspond­
ing density. 

Since the quarks are deeply bound in the 
soliton, by of the order of their constituent mass, 
they are relativistic. We have therefore a rela­
tivistic solid state problem. 

5 

As an initial orientation on what to expect, 
we solved the Dirac equation in one dimension 
for a particle in a periodic square potential. 17 

This is a problem that had been solved long ago 
for the Schroedinger equation by Kronig and Pen­
ney.18 The analytic solution for the eigenvalue 
spectrum is given by, 

Q2-K2+V2 
. 2QK sinh 2Qb sin 2Ka 

+cosh2Qb cos2Ka=cos2k(a+b) , (22a) 

where, 

Q2=(m+V)2-e2 ' K2=e2-m2 ' (22b) 

and k is the so-called crystal momentum. In the 
non-relativistic limit, this reduces to the formula 
of Kronig and Penney. The allowed values of the 
particle energy are those for which the left side 
does not exceed in absolute value, unity, so that 
the spectrum has the well known band structure. 
A typical· spectrum as a function of the spacing 
between the attractive regions is shown in Fig. 4. 
The parameters of the problem are chosen so that 
the fermions become relativistic toward the top of 
the well. As in the non-relativistic case, the levels 
of the isolated wells, spread out into bands with 
each well contributing a level to the band. For 
close spacing, the bands tend to touch. The band 
structure persists into the positive energy spec­
trum above the top of the potential, with the gaps 
tending toward zero as the energy increases. 

A. Wigner-Seitz approximation 

We turn now to the solution of the problem 
at hand, the spectrum of quarks in three dimen­
sional soliton crystal matter. The hedgehog 
meson configurations are centered at lattice points 
thus generating a periodic field in which the 
quarks move. From solid state physics we know 
that the solution of the Hamiltonian for a 
periodic system must obey Bloch's theorem. 
Therefore the quark spinor must be of the form, 

~k(r)=eik·ruk(r) , (23) 

where k is called the crystal momentum and uk(r) 
is a periodic spinor function having the period of 
the lattice. That is to say, the solutions are plane 
waves with a periodic modulation. 

To solve Eq. ( 16) on the lattice we employ 
the Wigner-Seitz approximation. Thus the actual 
problem is replaced by a spherically symmetric 
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one which is solved for k = 0. This is the ground 
state of the band. The translational in variance by 
multiples of the unit cell also places a condition 
on the chiral angle. So that there be unit topolog­
ical charge centered at each cell site, it must 
satisfy 

0(0)=0 , O(R)=1r (24) 

The boundary condition for the Dirac spinor 
can be derived as follows. We note first that the 
Dirac gamma matrices in the three-current, J;-yl/;, 
connect upper and lower components of the Dirac 
spinor. For the ground state, we require that this 
current vanish, implying that one or the other 
component of the spinor should vanish on the cell 
boundary. We note also that upper and lower 
components have opposite parity. It is clear that 
to obtain a solution that is periodic in its relation 
to adjacent cells, the odd component must vanish 
at the cell boundary. There is no additional free­
dom, nor is any needed. The other component 
will take on the value dictated by the differential 

· equations. For the spin zero case, [Eq. (14)], the 
odd component is G and we therefore require that 
G(R) = 0. According to the coupledEqs. (16) this 
then yields 

G(R)=O -F'(R)=O (25) 

The large component therefore satisfies the same 
condition as is required of the Schroedinger wave 
function in the non-relativistic theory. At the ori­
gin, it is evident from Eq. ( 16) that G(O) = 0. 
This in turn requires that F'(O) = 0. Therefore the 
boundary conditions 

G(O)=G(R)=O . (26) 

ensure that the Bloch theorem is satisfied, i.e. that 
both F and G are periodic. 

B. Existence of a topological crystal solution 

For the free soliton, with quark wave func­
tions that decay exponentially at large r, Kahana, 
Ripka and Soni 12 showed that the non-linear 
equation for the chiral angle [Eq. (ll)] admits of a 
solution that satisfies boundary conditions at the 
origin and infinity that correspond to integer 
topological charge [Eq. (9)]. Here we demonstrate 
for the crystal boundary conditions, that this is 
still so. The demonstration is necessarily more 
complicated. In the vicinity of the Wigner-Seitz 
boundary, r = R, we may approximate F by a 
polynomial and select the dominant term at R. 

For the present instance of zero spin quark orbi­
tal, we even have, from Eq. ( 16), that F(R) = con­
stant. Hence, defining for convenience, 

¢(r)=O(r)-11" , (27) 

the equation for the chiral angle near R, takes the 
form 

(28) 

where c is a constant whose value can be read 
from Eq. (11). Expand the solution in a power 
series, 

(29) 
n=-oo 

and find the relation between coefficients, 

(n2+n-2)an=can-2 . (30) 

The coefficient of an vanishes for n = 1 or n = -2. 
This implies that a- 1 and a-4 vanish, and that a1 
and a-2 are arbitrary. That is to say, the series 
breaks up into two pieces and ¢ is given by the 
sum of two series, the coefficients of one of them 
being proportional to a1 and the other to a-2. 
Hence, if the series converge, the function ¢ near 
r = R contains two arbitrary constants. The ratio 
of a1 to a-2 can be chosen to make¢ vanish at R, 
i.e., O(R)=1r. The value of the remaining constant 
can then be used to aim in an inward integration 
"shooting" method to find the solution for which 
0(0) = 0. 

C. Band width 

The Wigner-Seitz approximation allows us 
to calculate the eigenvalue of the ground state of 
each band (k = 0). Denote such an eigenvalue for 
a particular band by ~0 . We need to estimate the 
band width and we approximate the spinor of cry­
stal momentum, k, by, 

1/lk(r)=eik-ruo(r) . (31) 

In the Schroedinger theory the energy of such a 
level is calculated as the expectation of the hamil­
tonian. However the Dirac hamiltonian is linear 
in momentum and we have therefore to calculate 
the expectation of the square of the Dirac hamil­
tonian. This yields as an estimate of the energy 
of the level with crystal momentum, k, 

(32) 
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Now consider a cubic crystal of N solitons 
along each direction, i.e. a cube of matter of 
dimensions L = 2RN. The allowed values of the 
component of crystal momentum in any of the 
three directions is 

N1r 1r L= 2R . (33) . .. ' 

Therefore our estimate of the band width for a 
cell radius R, is, 

.:l= (f6+(1r/2R)2) 1/2 -I fO I (34) 

For the valence levels, and those above it, the 
Wigner-Seitz approximation locates the bottom of 
the band. However for the levels belonging to the 
sea, it locates the top of the band, just as the sea 
eigenvalues in the free case are- v'm2+k2. 

An alternative approximation to the band 
width, that is valid for large separation of the soli­
tons, is obtained by imposing the boundary condi­
tion, 

F(R)=O , (J5) 

instead of Eq. (26). This corresponds to making · 
_the large component an odd function with respect 
to lattice sites, rather than an even one. 

D. General spin 

The form of the spinor having zero "spin," 
and the coupled equations for the two radial func­
tions that appear in it were written above. Here 
we wish to write the equations for a general value 
of the "spin." It is evident that the eigenstates in 
the present problem are eigenstates, not of the 
total angular momentum, but of the total angular 
momentum plus the isospin. This is so because 
of the hedgehog configuration of the meson fields, 
in which the isospin is correlated with the radial 
direction. The solutions to the Dirac equation in 
this case are eigenfunctions of, 

A=t+(s+t) , (36) 

which we can call the grand spin or simply 
"spin." We introduce the eigenfunctions of "spin," 

~}x= I t,(s,t)K ;X > , (37) 

and for convenience we introduce the notation, 

1 1 > = J1 {.o , 12 > = Jl £.1 , 

! 3 > = Ji£+1,1 ' = 14 > :r£-1,1 .. (38)' 
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Then the matrix elements of u· \l and i·T can be 
written in the space of these functions, 19 

0 
0 -aD ~D-tl 

~ -I (39) 
-~Do 

~ _; =~] 
-~ 0 0 
-a 0 0 

where, 

[ ) 

1/2 

a~ ~x:\ 
and 

D2=~+ X+2 
dr r 

[ ) 

1/2 

' ~= 2X~l 

d X-1 D-t=----dr r 

(40) 

(41a) 

(41 b) 

The upper and lower components of the Dirac 
spinor for general "spin" are written, 

..PO= ft{r) 11 > +f£(r) 12 > 

(42) 

The parity of these components is opposite, and 
the parity of the Dirac function is customarily 
characterized by that of its upper component. 
Substituting this Dirac spinor into Eq. (13), and 
using the above matrix elements, we find the cou­
pled radial equations, 

a(D2 + m sin 8)g1- ~(D-t + m sin 8)g2 

= -(f-m cos8)f1 

a(D0 - m sin 8)f1 +~(Do+ m sin 8)f2 

(43) 

They can be put into a more convenient form by 
defining two new combinations for the upper 
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components, 

F~=a f~+{3 f£ 

F£={3 f~-a f£ (44) 

Then the radial equations become, 

[_Q_-~- m sinO )F~-(~+m cosO)gt 
dr r 2A+ l 

= 2a{3m sin 0 F2 

[ 
d A+ 2 m sin 0 ) . 
dr +-r-+ lA+l g 1 +(~-m cosO)Ft 

= 2a{3m sin 0 g2 (45a) 

[ 
d A+ I m sin 0 ) · 
dr +-r-+ lA+ 1 F2+(E+m cosO)g2 

=2a{3m sinO F1 

[ 
d A- 1 m sin 0 ) . ----- g2-(~-m cosO)F2 dr r 2A+ 1 

= 2a{3m sin 0 gt . (45b) 

We notice that as the chiral angle 
approaches its boundary values at both ends of 
the range of r, the right hand sides vanish, and the 
equations decouple to two pairs of coupled equa­
tions. Since the solution of this eigenvalue prob­
lem is very difficult, we will take advantage of 
this to solve the decoupled pairs, and then diago­
nalize in this basis, the hamiltonian containing 
the coupling terms that appear on the right sides 
of Eqs. (45). Notice that the four coupled equa­
tions [Eqs. (45)] can be written in matrix form as, 

[
H H') [tft)='(tft) 
H' H tf2 E tf2 

(46) 

where, 

_ [F2[{3' 1 >-a'2 >]) 
tf2- i g2'4 > (47) 

while the decoupled pairs, with the right sides of 
Eqs. (45) set to zero, can be written as, 

[ ~ ~) [ ::) = [ ~ ~) [ ::) 
(48) 

where H is the two by two matrix, [Eq. (13)], and 
the coupling matrix in Eq. ( 46) is, 

H'~ [ _ ~ ~ }m d sinO(r) . (49) 

For small r, where O(r)-0, the four func­
tions are, to lowest order in r, according to Eqs. 
(44) and (45), given by, 

Ft-+ ~ , gt- (m-E)/(2A+3)~+t , 

F2 - ({3-a)/({3+a)~ , 

(50) 

For the soliton in the Wigner-Seitz cell, we 
integrate the equations outward, and iterate on E 
to find that value that yields the boundary value, 
g(R) = 0. Then the elements of the coupling 
rp.atrix [Eq. (50)], are computed with the normal­
ized functions [Eq. (48)], 

V=(4>tl H'l4>2)=2a{3m J <Ftg2-gtF2)sinO r2dr. 

(51) 

The eigenvalues of Eq. (46), approximated by 
diagonalizing on the basis [Eq. (48)], are therefore 
the roots of, 

<~t-E)(E2-E)- V2=0 . (52) 

The boundary conditions corresponding to the 
crystal have been stated earlier. Here we can 
restate them in the form, 

g(R)=O, if A=even 

f(R)=O, if A=odd 

V. NUMERICAL RESULTS 
FOR SOLITON CRYSTAL 

(53) 

For a discrete set of lattice spacings, we find 
the solution to the coupled Dirac and meson field 
equations, subject to the crystal boundary condi­
tions described in section IV A. The three param­
eters defining the chiral angle, and which minim­
ize the M [Eq. (21)] are shown in Fig. 5 as a func­
tion of the Wigner-Seitz cell radius R. For that 

\) 



.. 

... 

range of R, for which these parameters are posi­
tive, the chiral angle has a decreasing slope as a 
function of R. However for small crystal spacing, 
it is an increasing function. The meson fields, 
and components of the Dirac spinor are shown in 
Figs. 6 and 7 for two cell radii, and illustrate the 
boundary conditions required by the periodicity 
of the crystal and the requirement that the current 
vanish on the cell surface. One can see by com­
paring the quark wave functions of the free soli­
ton, with those in successively denser matter, that 
the quark distribution becomes more concen­
trated near the cell surfaces, Fig 8. 

. The quark levels as a function of cell radius 
are shown in Fig. 9, for those orbitals that are 
bound at energies between +m and -m. The 
valence orbital, o- and all below it are fully occu­
pied, the degeneracy of the levels being 3(2X+ 1). 
For large R, the eigenvalues approach those of the 
free soliton. In the crystal, each soliton contri­
butes to a band of levels, and since each level that 
is occupied in the free soliton is full, the band of 
levels that they spread into in the crystal, are also 
full. In this figure we show just the fundamental 
levels, those with k = 0. They are either the top­
most or bottom-most levels of a band, depending 
on whether or not the level in question is the 
valence or higher level, or whether it belongs to 
the Dirac sea. The band width can be estimated 
from Eq. (34) or Eq. (35), and of course is narrow 
for large crystal spacing, becoming large for close 
spacing. Therefore, for moderate to large spacing, 
no bands intersect, and matter is an insulator. 
However as the crystal spacing is made smaller a 
first crossing of the valence level and the lowest 
level of the first unoccupied band will occur, as 
shown in Fig. 10. This occurs for a cell radius of 
about 0.65 fm, or intersoliton distance of 1.3 fm. 
At that density (0.45 fm- 3), the quarks are free to 
migrate throughout the crystal, as electrons in a 
metal. 

In this model we interpret the intersection 
of an occupied band with an empty one as the 
onset of color conductivity of matter. At higher 
densities than the critical one, matter becomes 
increasingly a color conductor. This is a some­
what different picture of quark liberation in dense 
matter, than usually envisioned, in which the 
nucleons dissolve into a homogeneous quark 
matter. In the present model, the basic nucleon 
structure remains; only the quarks rather than 
being confined to the individual solitons 
(nucleons) become free to migrate throughout the 
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matter· and would do so under the influence of an 
extern~! color field. We believe that this picture 
is more general than the present assumption of a 
crystal ·structure, on account of the conserved 
topological quantum number carried by the 
meson fields. 

The transition in phase between color insu­
lator and color conductor is a second order one, 
in this model. There is no latent heat associated 
with the transition since it corresponds to the 
onset of a degeneracy between filled and empty 
quark orbitals. Instead, at each crossing of an 
occupied with an unoccupied band, the energy 
denstiy, as a function of soliton (nucleon) density, 
will have a discontinuity in slope. 

VI. SUMMARY 

We employed a soliton model of the 
nucleon to study the quark behavior in dense 
matter. To render tractable the many-body prob­
lem of interacting nuCleons with a quark substruc­
ture, we assumed that dense matter can be 
approximated as a crystal. In this picture, the 
quark levels of the isolated solitons disperse into 
bands as the density increases. At a critical den­
sity of about three times nuclear density, matter 
under goes a transition from color insulator to 
color conductor, due to the intersection of occu­
pied and empty quark bands which broaden with 
increasing density. There is no discontinuity in 
the energy density at this transition point, though 
there is a discontinuity of the slope of the energy 
as a function of density. 

ACKNOWLEDGEMENTS 

The authors thank R. Vinh Mau for a help­
ful introduction to soliton physics. One of us 
(B.B.) wishes to acknowledge the warm hospitality 
of the Nuclear Theory Group of the Lawrence 
Berkeley Laboratory. He also thanks Professor 
H.J. Mang for the hospitality of the Physik­
Department de Technischen Universitiit 
Miinchen. This work was supported by the Direc­
tor, Office of Energy Research, Division of 
Nuclear Physics of the Office of High Energy and 
Nuclear Physics, of the U.S. Department of 
Energy under Contract DE-AC03-76SF00098. 



10 

I T. H. R. Skyrme, Proc. Roy. Soc. A260 127 
(1961). 

2 G. t'Hooft, Nucl. Phys. B72 461 (1974); B75 
461 (1974). 

3 E. Witten, Nucl. Phys. B160 57 (1979). 
4 A. P. Balanchandran, V. P. Nair, S. G. Rajeev, 

and A. Stern, Phys. Rev. Lett. 49 1124 (1984); 
Phys. Rev. D27 1153 (1983). 

5 J. Goldstone and F. Wilczek, Phys. Rev. Lett. 
47 986 (1981). 

6 E. Witten, Nucl. Phys. B223 422, 433 (1983). 
7 G. S. Adkins, C. R. Nappi, and E. Witten, Nucl. 

Phys. B228 552 (1983); M. Rho, A. S. Gol­
dhaber, and G. E. Brown, Phys Rev. Lett. 51 
747 (1983). 

8 M. D. Mattis and M. Karliner, Phys. Rev. D 31 
2833 (1985). 

9 A. Jackson, A.D. Jackson, and V. Pasquier, 
Nucl. Phys. A432 567 (1985); R. Vinh Mau, M. 
Lacombe, B. Loiseau, W. Cottingham, and P. 
Lis boa, Phys. Lett. B 15 0 259 (1985). · 

10 E. Witten in Solitons in Nucleus and Elemen­
tary Particle Physics, edited by A. Chodos, E. 
Hadjimichad, and C. Tze (World Scientific, 
Singapore, 1984). 

11 J. J. Aubert eta!., Phys. Lett. 123B 275 (1983). 
12 B. Banerjee, N. K. Glendenning, and V. Soni, 

Phys. Lett. 155B 213 (1985). 
13 s. K. Kah~na, G. Ripka, and V. Soni, Nucl. 

Phys. A415 351 (1984). 
14 M. C. Birse and M. K. Banerjee, Phys. Lett. 

136B 284 ( 1984). 
15 M. Gell-Mann and M. Levy, Nuov. Cim. 6 705 

(1960). 
16 s. Kahana and G. Ripka, Nucl. Phys. A429 462 

(1984). 
17 B. Banerjee, N. K. Glendenning, and V. Soni, 

LBL preprint. 
18 R. de L. Kronig and W. G. Penney, Proc. Roy. 

Soc. Al30 499 (1931). 
19 P. J. Mulders, Phys. Rev. D 30 1073 (1974). 

FIGURE CAPTIONS 

FIG. 1. Soliton mass as a function of coupling 
constant g for f,. = 94 MeV. 

FIG. 2. Chiral angle as a function of radius for 
the free soliton. 

FIG. 3. Dirac spinor components F and G and 
meson fields u and tr, for free soliton of mass 940 
MeV. 

FIG. 4. Band structure in a periodic square 
potential for relativistic fermions. 

FIG. 5. Parameters of the chiral angle as a func­
tion of Wigner-Seitz cell radius R, for solitons in 
a crystal. 

FIG. 6. Dirac spinor components F and G, and 
meson fields in crystal of cell radius R = 1 fm. 

FIG. 7. Dirac spinor components F and G, and 
meson fields in crystal of cell radius R = 0.5 fm. 

FIG. 8. Probability distribution of quarks in cry­
stal of several spacings. 

FIG. 9. Quark levels as a function of cell radius, 
corresponding to k = 0. These are the fundamen­
tal levels of the bands of which they are the top 
(for sea quarks) or bottom of the band. 

Fig. 10. Bands are shown for several of the levels 
of Fig. 9 as a function of lattice spacing (2R). 
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