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Nonlinear, nondissipative ponderomotive theory is developed in relation to 

recent experimental results showing that externally imposed RF fields can 

stabilize an axisymmetric mirror plasma. First, we reexamine the ponderomo-

tive force problem, emphasizing self-consistency of the interaction between 

the plasma and high-frequency field, by using an averaged action principle for 

the antenna-plasma system, in a mixed Eulerian and Lagrangian representation. 

The averaged action principle yields self-consistent plasma and· electromag-

netic field dynamics on the oscillation-center time scale, and determines the 

condition for static plasma equilibrium to occur. This condition is expressed 

as a balance among plasma and magnetic pressure forces, including interchange, 

ponderomotive, and magnetization forces. Next, we study the spectral 

stability of such static equilibria in the low-frequency (MHO) approximation, 

by developing a AW principle which is modified to incorporate the various 

ponderomotive contributions, including particle effects, magnetization effects 

due to the RF field, and self-consistent adjustments of the RF field due to 
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displacements of the plasma away from equilibrium. The ponderomotive 

potential energy functional is related to the antenna inductance and antenna 

current amplitude. Finally, we develop the noncanonical Hamiltonian 

formulation for the system's dynamics. This formulation, entirely in terms of 

Eulerian fields, ~nables us to construct nonlinearl~ conserved functionals at 

any level of the several approximations we treat. Using these functionals, 

criteria are given for linearized Lyapunov stability in the two cases of 

multifluid and MHO equilibria. For MHO equilibria, the stability conditions 

determined this way are related to those found from the modified 6W method. 

INTRODUCTION.· 

Recent experiments performed in the U.S. and Japan [1,2] have focused on 

the confinement properties of plasma in axisymmetric mirrors. These 

experiments show that an electromagnetic field emitted in the radio frequency 

(RF) range, can be used effectively in some situations to stabilize the flute 

instability, which would otherwise disrupt the plasma equilibrium in the 

axisymmetric mirror. 

Axisymmetric mirrors are attractive fusion reactors because of the 

geometric simplicity of the machines, and because of their potentially good 

transport properties. Indeed, in axisymmetric static as well·as time-varying 

RF fields, the total (kinetic plus magnetic) angular momentum of each particle 

is conserved, in the absence of collisions. This conservation law implies 

that the particles stay within a gyroradius of an axisymmetric, time-varying 

magnetic flux surface. The transport will thus be due exclusively to 

collisional processes, and be small at high temperature. 
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A series of experiments have been performed recently on the Phaedrus 

tandem mirror· at the University of Wisconsin [1] in an axisymmetric 

configuration. To address the physics issues better, the mirror was operated 

with two R.F. antennas. The first emitted waves, at a frequency slightly 

below the ion gyrofrequency, which were absorbed in the plasma to provide the 

necessary heating. The waves emitted by the second antenna had a frequency 

somewhat above the ion gyrofrequency. It was observed that the fields emitted 

by this antenna have a stabilizing effect on the m=l, flute-like fluctuations 

of the plasma, and also that there was no appreciable resistive loading of the 

antenna. These experiments tberefore suggest that RF fields can stabilize the 

flute instability, and that this stabilization- is not related to dissipative 

mechanisms. 

The low-frequency response due to nonlinear, nondissipative interaction 

between particles and high frequency fields is describable via ponderomotive 

theory, which is thus a likely candidate for the theoretical interpretation of 

the experiments [4]: the radial ponderomotive forces acting on the particles 

cause them to drift in the azimuthal direction; if these drifts balance the 

drifts due to the destabilizing interchange forces (e.g. unfavorable average 

curvature drifts, or unfavorable gravitational drifts), then the charge 

separation associated with the flute instabi 1 ity is reversed, and the plasma 

is stabilized by ponderomotive effects. 
' 

The aim of the present paper is to reexamine the ponderomotive force 

problem, with emphasis on the self-consistent treatment of the plasma and of 

the high-frequency field. One motivation is that, in the cold fluid limit, 

the expression for the ponderomotive force shows an apparent singularity at 

the ion gyrofrequency, an unphysical result, since the ponderomotive force is 

associated with radiation pressure. In fact, we shall show that such singular 
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behavior does not occur: the plasma reacts back on the electromagnetic field, 

and shields its resonant component. Note that this particular effect is 

distinct from the one due to the finite transit time of the particles in the 

RF field [5]. or due to the thermal distribution of the particles [6]. The 

shielding of the left-polarized (ion gyration sense) compon~nt of the RF field 

is just one aspect of the interdependency between the plasma dynamics and the 

wave dynamics. This interdependency appears strikingly in the form of the 

equations: the dielectric tensor that governs the propagation and the 

polarization of the waves determines at the same time the various ponderomo­

tive effects (forces and magnetization). The need for a rigorous self­

consistent analysis arises also in the study. of the plasma stability in the 

presence of the high-frequency field. When the plasma position is perturbed, 

for instance during the instability, the dielectric properties of the medium 

in which the waves propagate are modified, and, consequently, the fields and 

ponderomotive forces are perturbed as well. Those changes in turn create 

additional forces (possibly destabilizing) affecting the dynamics of the 

plasma, and therefore its stability. Indeed, for the m=l flute instability in 

axisymmetric mirrors, the contribution of the perturbed fields can be just as 

important as the more co.nventional ponderomotive terms [7,8]. One can show 

that the self-consistent response of the RF field is related to, and 

generalizes,. the quasi-mode coupling of fluid theories [9,10]. 

In part I, we adopt a Lagrangian formulation. The starting point of the 

analysis is the .classical action principle for the system composed of the 

plasma, the-electromagnetic fields, and the imposed current circulating in the 

antenna. This formulation has the advantages of being global and compact, and 

easily subject to approximations. We use a separation of time scales for the 

evolution of the dynamical variables. There is, first, a slow component which 
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varies on the time scale of the flute instability and which is, therefore, of 

direct interest. Second, there is a fast component which varies on the time 

scale of th~ fields emitted by the antenna, typically of the order of the ion 

gyroperiod. The particle motion can therefore be separated into the 11 slow 11 

motion of its oscillation-center, and into a rapid oscillation [7,11]. 

Likewise, the electromagnetic field can be separated into the slowly varying 

background field (which includes here the flute perturbation), and into the 

high frequency field (the 11 wave field 11
) with slowly varying amplitude. When 

the action is averaged over the fast time scale, there appears explicitly a 

term which is quadratic in the high-frequency field amplitude, and which 

generates by variation all of the various ponderomotive effects. ,The 

variation of the averaged action provides the coupled equations for each of 

the 11 slow 11 variables, as follows: a) for the RF field amplitude, there is a 

wave equation, driven by the imposed antenna current; b) for each oscillation 

center (ions and electrons), there is a modified Newton-Lorentz equation of 

evolution, which includes the respective ponderomotive forces; c) and for the 

background field, there is the set of Maxwell's equations whose sources 

include the oscillation center currents and a magnetization current term, due 

to the fast oscillations of the particles in the wave field. 

Besides the algebraic simplicity of the derivation, the action method 

insures self-consistency and greatly clarifies the relations among 

ponderomotive forces, magnetization and RF wave polarization ·[11.5]. 

Moreover, the conservation laws for energy and momentum are automatically 

satisfied, being traceable, via Noether•s theorem, to the symmetries of the 

averaged action. 

Our method has been developed at this stage· to describe nondissipative 

systems only. Thus we shall restrict the present work to a regime where 
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resonances, collisions, etc., are negligible (for instance, when the RF 

frequency is in the range of, but still greater than, the ion gyrofrequency). 

This restriction limits the results available via the present approach 

(although some information about dissipation can already be gained by using 

the Kramers-Kronig relations). It also stimulates research to extend the 

method to the dissipative regime. Fortunately the experiments mentioned at 

the beginning of this introduction indicate that some effects are essentially 

nondissipative, and thus vindicates the approach. 

For simplicity, we shall limit the analysis to ponderomotive effects in 

cold plasma. In fact, we shall argue that the plasma we consider is "cold" in 

its high-frequency response, and at the same time "warm" (i.e., with finite 

pressure) in its low-frequency behavior. We .shall derive expressions for the 

ponderomotive terms and show the absence of singularity at the ion 

gyrofrequency. Furthermore, it will turn out that electron ponderomotive 

terms and magnetization terms will be just as important as the usually 

considered ion ponderomotive forces. 

To study the stability of the system, it is convenient to work in the mag­

netohydrodynamic (MHO) approximation at low frequency, and tc develcp a modi­

fied flW variational principle [7]. This is possible, since the linearized 

equations for the (flute) perturbation are self-adjoint, as a consequence of 

the absence of dissipation in the system. Note that the self-adjointness holds 

even though the system is energetically open, since it has imposed external 

antenna current. In addition to the usual MHO terms in the 6W variational 

principle, three distinct ponderomotive contributions will be included: a) 

The first contribution is produced by the equilibrium ponderomotive forces. 

It is the mechanism invoked in the heuristic argument mentioned at the beginn­

ing of this paper (i.e. the ponderomotive drifts oppose the interchange 
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drifts); b) The second contribution involves the magnetization of the plasma 

due to the RF field, and is proportional to the gradient of the equilibrium 

magnetic field; c) The third contribution is due to the self-consistent varia­

tion of the ponderomotive forces in response to the plasma displacements, for 

instance during instability. This contribution is due primarily to the per­

turbation of the high frequency field, which depends also on boundary condi­

tions. 

The ponderomotive energy is a functional of the plasma parameters 

(densities, etc.), and of the magnetic field. Its value has a clear physical 

interpretation: it is the free energy that can be extracted from the high­

frequency antenna current, and as such is reiated to the antenna impedance. 

This interpretation is valuable theoretically, because it helps to derive 

ponderomotive forces and determine their influence on equilibrium and 

stability for practical plasma configurations [12]. Experimentally it is 

especially valuable, because antenna impedance and currents are easily 

measurable quantities, and because it shows that the correlation of their 

variations with the plasma displacements provides direct information on 

ponderomotive forces. 

In part II of this article, we present the Hamiltonian formulation of the 

problem, which illuminates the physics of the system from a somewhat different 

angle. In particular, it introduces in a natural way a family of constraints 

(the Casimir functionals) that are satisfied by the fields during the time 

evolution. Equilibrium states and their stability conditions can be obtained 

by demanding that the total energy be a conditional extremum, subject to the 

constraints. In other words, via the Hamiltonian formulation it is possible 

to construct a Lyapunov functional, whose stationary points are equi 1 ibrium 

states. Such an equilibrium is stable if the associated Lyapunov functional 

is extremum at that point [13,14]. 
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The field Hamiltonian and the noncanonical Poisson bracket are derived, 

both for the multifluid and the MHO plasma models, and are similar to previous 

results but now include the ponderomotive energy. The Lyapunov functional is 

chosen as a combination of the Hamiltonian with the Casimirs of the Poisson 

~ bracket. We shall note the relation between the second variation of this 

Lyapunov functional and the 6W energy. principle. The Lyapunov stability 

method can in principle go beyond linear criteria, and give information about 

nonlinear stability. Research along these lines is under way. 

We have published some of these results in letter form [7,8]. The present 

paper generalizes the earlier results and provides a more detailed discussion 

of the method. 

PART I: LAGRANGIAN FORMULATION 

A. Plasma Model and System Action 

Consider a system composed of charged particles, of charge q and mass m 

(the species label will be always implied, and only rarely written 

explicitly), confined in a static magnetic field, and surrounded by a 

perfectly conducting vessel. This system may be considered as a model of a 

mirror machine, for instance. 

In the Lagrangian picture of the system that we shall adopt, one keeps 

track of each particle and follows its evolving trajectory [11,15]. For this, 

the particles are labeled in some fixed but arbitrary reference state 0 by the 

point z0
e 0, which includes species label. The evolution of the particles is 

determined by the field r(z0 ,t), which maps the reference state to the actual 

configuration at time t. 
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In order to treat the electromagnetic field self-consistently, we consider 

it also as a component of the sys-tem. It is determined by the electromagnetic 

potentials A(!,t) and ~(!,t), viewed as independent field variables. The 

system is not isolated though, because it is coupled to the "outside world" by 

the imposed antenna current density ia(!,t), by the static magnetic field, and 

by a species-dependent "gravitational" potential 'IJ(!). The potential "' is 

introduced here for convenience to provide a simple way to create interchange 

forces, and to mock up the unfavorable magnetic field curvature in 

two-dimensional geometry. Note also that taking the antenna current to be 

independent of the plasma state presupposes that the RF generator which drives 

the antenna has "infinite" impedance. This restriction can be removed, and 

does have consequences for stability [12], but will be maintained here for 

simplicity. 

The total Lagrangian action s for the dynamics of this system is the sum 

of the actions of the particles SP and of the electromagnetic fields Sem The 

i•A coupling between these two components is determined by the plasma 

currents. Thus we get 

s = s + s p em ( 1) 

with 

Sp = Jdt JdN[l m lr(z0,t)l2 + g r(z0,t)•A(r(z0,t),t) 
2 c 

- 'IJ(r(z0,t)) - q ~<r<z0 ,t),t)] (2) 

and 

Sem = JdxJdt [-1 IV"'(x,t) + l L A(x,t) 12 - L IVxA(x,t) 12 
811' "' - c at - - 811' - -

+ l ia(!,t)•A(!,t)] . 
c_ 

( 3) 

We use the following conventions: ! denotes a set of coordinates for the two-

or three-dimensional Euclidian space; dN is a measure on the reference state 0 
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which represents the number of particles contained in a small element of 0 in 

the neighborhood of the point' z0
; thus the integral JdN represents a 

continuous sum over the particles. We will consider the plasma as a 

continuous medium, and adopt therefore a Vlasov picture, in which no 

discretization effects or "collisions" are present. Note that in the particle 

action, the electromagnetic fields are evaluated at the particle position, 
0 i.e., at!= r<z ,t). 

The electromagnetic fields are defined via the potentials which can be 

chosen, without restriction, to satisfy the radiation gauge condition ell = 0. 

Thus we have 

1 a 
= - c at A<!, t) · (4) 

The variation of the action with respect to the displacement field 
0 r< z • t), and with respect to the potential field A<!, t). leads. as is well 

known, to the Newton-Lorentz equations of motion for the particles, and to the 

Maxwell equations for the electromagnetic field, driven in this case by the 

plasma currents as well as by the antenna current. 

B. Separation of time scales and averaging of the action 

The separation of the time scales of the flute instability (the "slow" 
-1 1 time scale, y ) and of RF fields (the "fast" time scale, w- , usually of 

the order of the ion gyroperiod) is in general an excellent approximation, 

(they are typically several orders of magnitude apart [1 ,2]) and may be 

exploited to get useful approximations of the exact formulation given by Eqns. 

(1) to (3). The high-frequency antenna current, Re{ia(!)- exp(-i w t)} is 

imposed and drives a high-frequency field in the plasma. One can therefore 

write the electromagnetic field as a superposition of: first, a background 
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field As<!,t}, evolving on the slow time scale; and second, a fast 11 Wave 11 

field ~(!, t} = Re £Aw(!,t} exp(-i(a)t}}. The complex amplitude Aw(!,t) 

evolves on the slow time scale (and creates the 11 side bands 11 of 11 quasimode 

coupling 11 theories [9,10]}. 

Similarly, the motion of a particle is a superposition of a 11 Slow 11 motion, 

the motion of its oscillation center foc(z0 ,t), and of a 11 fast 11 oscillation 

driven by the RF wave, !f(z0 ,t} = Re (fw(z0 ,t} exp(-i(a)t}}. There is the 

poss!ibility that some of the particles may be resonant with the RF wave, when 

, ((a) :- k
11
v

11
} or ((a) - Sl;} approaches y. For such particles, the strict 

separation into 11 slow 11 'and 11 fast 11 time scales is not possible, and the method 

described below does not apply as such. We shall avoid this problem by 

requiring that the regime of operation excludes any significant resonant 

oeffect [6], 

~The. goal of the oscillation center theory can be summarized as follows: it 

is- to perform a change of variables from the original fields [.r.(z0 ,t}, 8.{,!,t}] 

to ne.w fields (foc(z0 ,t}, fw(Z0 ,t}, As(!,t}, 8w(_!,t)], and to derive the 

dynamical equations for the new variables, which evolve on the slow time scale 

only. Thus, we decompose the various fields in the action (2,3} into sums of 

slow and fast components [16], and expand to second order in the (small) 

,,oscilla.ting quantities. For instance, 

r(zO,t) = roc(zO,t) + Re((fw- ;(a) rw> exp(-i(a)t}}, 

and 
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where the field As and its derivatives are evaluated at!= foe• i.e. at the 

oscillation center position. Such expansions are valid when the amplitude of 

oscillation of a particle is small compared with typical scale lengths of the 

slow and the fast fields. This is usually well satisfied (for nonresonant 

particles), by a factor of order Bf/Bs. 

The next step is an "average" of the action over the fast time scale [17]. 

When the fast and slow time scales are sufficiently separated, the time-

integral of oscillating quantities vanishes, so that Jdt as(t) bf(t) ~ 0, 

and Jdt af(t) bf(t) ~ 1/2 Re{Jdt aw*(t) bw(t) }, where as and af designate 

any slow and fast variables, aw the amplitude, and the asterisk denotes 

complex conjugation. 

After averaging, the approximate action takes the form: 

s = s + s + s d' p em p ( 5) 

where SP and S have the same form (2)-(3) as before, but now the variables em 
that figure in them are the oscillation-center, or slow variables. The new 

term in the action, Spd' the "ponderomotive" action, is quadratic in the wave 

amplitude, and is 

Spd = t Re JdtJdN {t m IIw - iwrwl2 - t Iw rw:VV~(Ioc) 

+ ~ [l Ioc • rCrw: VVAs<roc> + Ioc • <rC • VAs> · c 2 

+ <tC + iwfC) • <&w<roc> + Iw • v As<Ioc))]} 

+ l Re JdtJdx {-c1 ~ • 8w + la&w- iw&wl2/a~c2 
2 at 

- IY x &wl 2 /a~}. 
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The action S (5,6) will generate all the needed equations, and Spd will 

generate all the ponderomotive effects as well as the wave equation. Further 

inessential approximations can be made in order to simplify the expression for 

Spd· The time evolution of the field amplitude, aAw/at, is small compared to 

(I)Aw by a factor y/fl> << 1 and can be neglected, and the "gravitational 11 

field contribution (VV'l'} will also be assumed negligible. As for the terms 

involving the oscillation center velocities, it is not possible to neglect 

them in general. There is nevertheless a useful particular case for which the 

expression of the action simplifies considerably: in the cold plasma 

approximation, the oscillation center velocities are small, as is the time 

evolution of the amplitudes r : 
-w 

and 

dr /dt << (I) r , -oc -w 

Under these conditions, the ponderomotive action (6) becomes 

1 1 2 2 Q. * * 
Spd = 2 Re JdtJdN {2m ll> lfwl + c ill>(fw • Aw + fw • VAs • fw) 

(7) 

(B) 

For simplicity, we shall adopt here the cold plasma approximation (7). 

The action (5) must now be considered as a functional of the following 

independent fields (which are all slowly varying): (a) the oscillation center 

displacement field foc(z0 ,t); (b) the oscillation amplitude fw(Z
0 ,t); (c) the 

background field As(~.t); and (d) the wave amplitude Aw<~.t). 

- 14 -



Note that slow and fast variables can be considered independent, because 

of the separation of the time scales. (Fourier transformation of the fields 

in time shows that they parametrize disjoint parts of the fields.) 

The evolution equations for these various fields are readily obtained by 

variation of the action (5). In particular, variation with respect to 
0 fw(Z ,t) leads to the familiar equation for the small vibrations of a charged 

particle in a wave field: 

- iwmfw = q (~ - fwX( VXAs) ]/c (9) 

This equation can be solved for fw• which can then be substituted into the 

ponderomotive action to yield Spd = - Jdt V, where the ponderomotive energy 

V, quadratic in the wave amplitude, is 

1 2 * 1 2 V = - ~ Jdx AW • £ • Aw + ~11' I dx IV x Awl lli'1f C7 = I U'lr 

- k Re Jdx ~ • Aw • ( 1 0) 

The quantity £. that appears in the ponderomotive energy is the cold plasma 

dielectric tensor[l8]. It is a hermitian operator, since we have consistently 

avoided resonances and dissipation. 

Now, the variation of the action (5) with respect to the wave amplitude ~ 

yields the wave equation: 

V X ( V X 8w) - ~2 £ • 8w = 411'C ia CZ= ( 11) 

Note that the relation between of the wave equation (11) and the ponderomotive 

energy (10) makes it clear that the validity of equation (10) extends beyond 

the cold plasma fluid model: it is in some sense the definition of the 

dielectric tensor. 
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C. Ponderomotive forces and magnetization 

The dynamical equations for oscillation centers and the equations for the 

slow fields are obtained by variation of the action with respect to foc(z0 ,t) 

and with respect to As<~.t). respectively. Note that the ponderomotive action 

Spd is a functional of those fields, through the dielectric tensor. For 

instance, in the cold plasma limit, £ is a function of particle densities 

n0c(~.t). and of magnetic field ~(~.t) [18], which are themselves functiona1s 

of Lac and As: 
0 

n
0
c (~.t) = I dN 6(~- foc(z ,t)) 

8 (x,t) = v x A (x,t) . -s - -s -

Therefore, using the chain rule for functional derivatives yields 

6Spd = - Jdt Idx (!Y__ 6n0 c + 6V • 6~s) 
6noc &~s 

= Jdt Idx JdN !Y__ 6foc • V &(~ - foe) 
&noc 

- Jdt Jdx 6V • v x &As • 
&8 --S 

which becomes, after integration by parts, 

&Spd = - JdtfdN 6foc • Jdx &(~ - foe) v(!Y__) 
&noc 

- Jdxfdt &~s • (V X &V ) 
68s 

( 12) 

(13a) 

(13b) 

Since the variation of the total action vanishes for all variations of the 

asci llation center trajectory &r
0
c. we find the Newton-Lorentz equation for 

oscillation centers: 

m Ioc = q(~s + l foe x ~s) - v~ + E<foc) • 
c 

with E(~) = -v =-&V.:....,-..,... 
&n(~) 
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The oscillation center Eq. {14) includes the ponderomotive force E. which 

derives from a potential 6V/6n: the ponderomotive potential of a particle 

(of each species). More explicitly, the functional derivative of Vis 

6V/6n{!) 1 2 * a~{noc•~s> =-- ~ A {X) • 
16~ c2 ~ - an0 c 

( 15) 

Similarly, the variation of the total action vanishes for all variations 

of the slow vector potential 6As· The resulting Maxwell equation for the 

slow fields, 

1 a 4~ 
v x ~ - c at ts = c < ~c + ~) < 16 > 

shows that there are two distinct current contributions: the first is the 

oscillation-center current, J , due to the mean motion of the particles, -oc 

J = I dN q r &{x- r ), -oc -oc - -oc 

and the second is a magnetization current ~ = c v x M· 

( 17) 

The magnetization M of the plasma has its origin in the rapid oscillation 

of a particle, which causes it to describe an elliptic trajectory' around its 

oscilation center; it is given by 

1 ~2 * a~ 6V/&Bs(X) = - - &J (!) • -~- • &J(x) 
- - 16~ c2 a~s {!) - ( 1 B) 

These equations and their derivation exhibit clearly the origin of the 

various ponderomotive terms (15) and {18), and their fundamental relations to 

the high-frequency wave equation {11). 

In Appendix A, we generalize the present situation to allow a dependence 

of V {i.e., of the dielectric tensor) on the oscillation center velocity and 

background electric field. One thus gets additional terms: a Lorentz-like 

force {A.4) in the equation of motion {14), and a polarization current (A.S) 

in the Maxwell equation {16). 
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The oscillation center equations are potentially useful for interpreting 

results of particle simulations. Ultimately, they should be used to perform 

not particle, but oscillation center simulations, for which it would not be 

necessary to follow the evolution on the fast time scale. We expect that such 

a method would allow substantial economy in computation time. 

D. Multifluid equations in RF field 

In the cold plasma approximation, the plasma dynamics can be described by 

a complete set of fluid equations. The independent variables are the oscilla-

tion-center densities and currents (12, 17), and either the oscillation-center 

flux densities, g , or the fluid velocities, u· : oc -oc 
0 • 0 

9oc<~.t) = I dN 6(~-roc<z ,t}) Iac<z ,t} , 

and 

From Eq. (14) and (16), one derives the complete set,of fluid equations: 
an - + V • n = 0 at . ~ ' 

m ag + m V•(u g) = q (n ~ + l g x ~) -n v~ - n v 6V 
at - c 6n 

l a~ + v x ~ = o , 
c at 

v x ~ -1 a~= 41f <.Joe+ .J.M), 
c at c 

(19) 

(20) 

(21a) 

(21b) 

(21c) 

(21d) 

where the oscillation-center current J is expressed as qg (summed over -oc 
species), and where we have omitted the "oc" and "s" subscript~. 

Equations (21), together with the expression of the functional derivatives 

6V/M and 6V/6~ (15,18}, and the wave equation (11}, form a closed system, 

which can be used to study equilibrium and stability of the plasma in an 

antenna-induced RF fie 1 d. Note that the dependence of the equations on the 

independent va ri ab 1 es n and ~ is rather camp 1 i cated, because the die 1 ectri c 
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tensor, and therefore also the RF field, are functionals of n and .!!· This 

interdependence of the RF field and the plasma state is a consequence of the 

self-consistent treatment of the equations, and, as we shall see shortly, is 

essential for the study of equilibria and their stability properties. 

From Eq. (2lb}, it appears that the ponderomotive force per unit volume 

acting on particles of a species is given by - nv(~V/~n}, in a form apparently 

distinct from the one obtained from fluid theories [10,19]. It has been shown 

[20], however, that the two forms are in fact equivalent, and that the 

discrepancy is due to a rather subtle difference' in the definitions of force 

density. A generalization of Eq. (2lb} may be found in Appendix A. 

E. Comparison of ponderomotive contributions 

The different ponderomotive terms can be evaluated from formulas (15} and 

(18}. In order to keep the expressions as simple as possible, and to gain 

some information on the relative magnitude of these terms, we use a simplified 

form of the plasma dielectric tensor, valid for frequencies in the 

neighborhood of the ion gyrofrequency (w - O(Qi}}: the electron mass is 

neglected (a good approximation if kll - kl. - Qi/vA << wpe/c and if jail = 

0}, as well as the displacement current (assuming vA<<c). Under these 

approximations, the parallel component of the electric · field vanishes 

("parallel" and "perpendicular" will always refer to the direction of· the slow 

magnetic field), and the perpendicular dielectric tensor reduces to [18] 

with 

2 
s = - (&)pi 

w2 - Q? 
1 
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and 

(23) 

In these expressions, the electron and ion densities appear implicitly in 

w~e and w~;, respectively, 

signed gyrofrequencies Q e 

and the background magnetic field appears in the 

The ion and electron ponderomotive 

potentials and the magnetization are expressed in terms of the derivatives of 

Sand D with respect toni, ne and B, respectively (15,18). As functions of 

the circularly right and left polarized components of the RF amplitude, A+ and 

A_, the ion and electron ponderomotive energy densities and the magnetization 

energy density are expressible as 

where we have also used at this point the quasineutrality equation 
2 2 

wpe1Qe + wpi /Qi :: 0. In the form (24,25) the different effects can be easily 

compared: they all have the same order of magnitude, and must therefore a 11 

be retained. This conclusion extends even to the case when the wave frequency 

approaches the ion gyrofrequency, because the component A then becomes very 
+ -

small. From the solution of the perpendicular wave equation, 

[V X ( V X Aw) h - w2 f..L • &J = 41f h.L 
c2 - c 

(26) 

we see that A+ vanishes with (w - Q;), which shows that the plasma shields 

itself against right circularly polarized waves. This characteristic of the 

fields has the important consequence that (at least when the field gradients 
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remain finite) the ponderomotive terms have no singularity at the ion gyro­

frequency, despite the apparent poles of Eq. (24) [7]. Instead, rather un­

expectedly, the ion ponderomotive force is dominated by the component of the 

field polarized in the opposite direction, A. Mor~ generally, as we shall 

see next, the absence of singularity is a consequence of the local conserva-

tion of total momentum, which includes both the particle and field momenta. 

F. Momentum conservation 

Momentum conservation follows from the translational symmetries of the 

system [11]. For this problem, one statement of local momentum balance is 

obtained by summing the force densities act1ng at a given point ~ on the 

plasma, and- relating it to the high-frequency field intensity. Perform the 

sum over species of the momentum equations (21b) and eliminate }:qg = .J.
0
c by 

(21d); the force density obtained, which is explicitly dependent on the 

ponderomotive energy, is 

f.(~) :: - n v 6 V - l J.M x !! 
6n c 

= _ V[n 6V + B • 6V] + v • (B 6V) 
6n - 6!! - 6!! 

+ Vn 6V + VB • &V 
&n - &!! 

= __: V ( n 6 V + B • 6 V + _1_ w2 A'!:. 
6n - 6!! 16~ c2 ~ 

. ~ • 8w) 

+ V • (B 6V) + _1_ w
2 2 Re (V ~ • £ • 8w) 

- 6!! 16~ c2 

(27) 

The right hand side of this equation can be modified. by use of the wave 

equation (11), so that E can also be written as 
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f.(_~.) = - V( n & V + B • & V + _1_ f/.)2 ~ • ~ • Aw + _1_ ~ • ~) 
&n - &~ 16~ c2 16~ 

+ V • (B &V) 
- &~ 

1 * 2 * + 8~ v • Re[~ ~ + ;
2 

~ • Aw Awl 

- L Re (~ x ~ - V·~ Aw> • 
2c 

(28) 

In vacuum, this expression reduces to the divergence of the Maxwell stress 

tensor. The integration of Eq. (28) over the plasma volume yields the 

equality of the total ponderomotive force acting on the plasma, with the force 

acting on the boundary (the first and second terms of the RHS of Eq. (28)) and 

on the antenna (the last term of Eq. (28)). 

G. Magnetohydrodynamic equations 

We shall illustrate the use of the preceding formalism in the problem of 

ponderomotive stabilization of the flute instability in a mirror. The flute 

instability is well represented by the one-fluid magnetohydrodynamic equiva­

lent of the equations (21), and is essentially a quasineutral perturbation of 

the plasma (in contrast to the RF field). The equations differ from the usual 

set of MHO equations by the additional ponderomotive force density in the 

momentum equation and by the magnetization M in Ampere's law. Thus we have 
an 
at + v • (n_y_) = 0 29a) 

a~ = V X (y X ~) (29b) 
at 

mn(A- u + u • vy) = -v • f + l i x ~ - nvw - n v &V , (29c) 
at - - - c &n 

4~ i = v X (~ - 4~ M> (29d) 
c 
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.. 

where f. is defined below. Note that the ponderomotive force in (29) must be 

the sum of the ion and electron ponderomotive forces: the fluctuation being 

quasineutral, a local change of ion density is accompanied by an equal change 

of electron density, and the change in ponderomotive energy involves their 

sum. More formally, if 6n = 6n. = 6n e 1 ' 
one has 

6V = 6ne 6V/6ne + 6ni 6V/6ni = 6n (6V/6ne + &V/&ni). 

For generality, we have introduced into Eq. (29) a (possibly anisotropic) 

pressure tensor f.. It is important for mirror devices, because it affects 

the equilibrium magnetic profile, and also because thermal energy is after all. 

the source of free energy that drives the flute instability in mirrors. 

Formally, such thermal effects are incorporated into the theory, by adding to 

the action (1) an additional term Sth equal to 

sth =- JdxJdt U(n,B), (30) 

where U{n,B) is the internal energy density of the plasma (the specific 

entropy is assumed conserved by adiabaticity). The consequences of this 

thermal action Sth on the equations are easily drawn, and we shall omit the 

derivations here. One finds that the pressure tensor is 

e = l(n :~ + ~ • :~ - U) - ~ :~ , 

and that the dielectric tensor is the warm-fluid plasma dielectric (as for 

instance in [21]). 

Consi~er a tandem mirror with an elongated central cell. When the mode of 

interest is the flute instability, a two-dimensional model is justified for 

the equilibrium, as well as for the perturbed state of the plasma. The 

interchange forces due to the average curvature of the background magnetic 

field are modeled by a "gravitational" potential t(!). The magnetic field is 
A 

straight, and oriented in the ~ (or "parallel") direction, along which the 

system is translationally symmetric. The antenna currents are in the 
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perpendicular plane and emit RF waves with finite k
11

• The pressure is assumed 

isotropic, and is related to the internal energy of the plasma per unit volume 

U(n), by the thermodynamic relation p = n dU/dn - U, the derivative being 

taken at constant entropy. 

With these assumptions, the static equilibrium equation which follows from 

(29) reduces to 

V (p + B2) + n V(v + &V) + B V(&V) = 0 
a~ &n . &B 

(31) 

Equation (31) expresses the balance, at equilibrium, of the plasma and 

magnetic pressure forces with the interchange, ponderomotive, ,and magnetiza-

tion forces. 

For spectral stability analysis, the MHO equations are linearized around 

equilibrium, with a mode evolving in time as exp(yt). It can be seen that, 

expressed in term of the plasma displacement ~(~,t), the equations can be 

given a self-adjoint form. This is a consequence of the dissipationless 

nature of the physical mechanisms involved, and of the fact that the 

interactions with the external world can be reduced to the existence of a free 

energy source V. As a result, the equations can be expressed variationally, 

as in ordinary MHO. There are now some additional terms of ponderomotive 

origin. In Appendix C, we derive the t1W variational principle for the growth 

rate y: 

where 

y2 =max [-llW/N], 
~(~) 

6W : 6WMHO + t1Wp + llWM + llWA, 

and the quantity 

(32) 

( 33) 

N = Jdx m n 1~1 2 (34) 

is a measure of plasma inertia. We define 
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- l • vn l · v~] { 35) 

which has the form of the usual AW for two-dimensional MHO 

{yH is the specific heat ratio, yH p = n dp/dn = n2 d2U/dn2). Also, the 

quantities AWP, AWM' and AWA are three distinct RF contributions. The 

first RF contribution, 

AW = - Idx p l • vn l • V &V, 
&n 

{36) 

has its origin in the equilibrium ponderomotive drifts of the particles, and 

corresponds to the mechanism invoked in the introduction of this paper {the 

balance of ponderomotive drifts and of interchange drifts.) The second RF 

contribution, 

l • VB 'C: • V &V 
.:.. &B • {37) 

involves the magnetization of the plasma due to the RF field: the energy of 

the magnetized medium, the plasma, changes as it is displaced in the quasi­

static magnetic field gradient. The last RF contribution in the variational 

principle 

2 AWA =II dx dx• v • (n l) V1
• {n 1 l 1

) & V/&n&n 1 

+II dx dx• v. {B l) V1
• {B 1 l 1

) &2V/&B&B 1 {38) 

differs from the preceding two. Its expression involves the second functional 

derivatives of the ponderomotive energy V, considered as functional of the 

plasma density nand the slow field B {The notations n•,v•, etc. in {38) are 

short for n{! 1
), a/a!•. etc.) Because the first derivatives {15,18) involve 
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the wave field Aw<~.t}, which is a solution of the wave Eq. (11) and is there­

fore itself a functional of n(~'} and 8(~'), the second derivatives of V are 

two-point terms depending on ~ and ~·. In terms of the hermitian Green's 

tensor§(~.~') of the wave equation (11}, one has 

cSn cSn' 
= - _1_ ,.,2 ~ 

l61r c2 

a2~ 
• -- • &J cS(~ - ~·) 

an2 

2 2 a£ 
- _1_ (!!L) A* • 

81r c2 -w an 
• § • • A' -w 

and similar expressions for the other derivatives. 

(39) 

The term l1WA takes into account the self-consistent modification of the 

RF field due to infinitesimal displacements of the plasma away from its 

equilibrium position, which cause a perturbation of the ponderomotive forces. 

In practice, the calculation of l1WA does not necessarily require the 

knowledge of the Green's tensor §(~.~'). Typically, as is usual with 

variational principles, one can get a good approximation of the maximum growth 

rate with a limited set of allowable displacement fields S.(~). chosen to 

represent the most rapid instabi 1 ities, for instance the flute modes or the 

ballooning modes. It is then sufficient to evaluate the perturbation of the 

field Aw<~.t) (taking into account the boundary conditions) for each of these 

allowable degrees of freedom, a much easier task. A detailed evaluation of 

the various terms for the flute mode shows that the term l1WA is as large as 

the other ponderomotive contributions, and plays therefore a significant role 

in the stabilization. Those calculations will appear in a sub~equent paper. 

H. Axisymmetric geometry 

To illustrate the above formalism, we specialize it to an axisymmetric 

system (including ia>· Furthermore, we use the cold-plasma perpendicular 
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dielectric tensor (22,23). This approximation is justified for a "moderately 

cold 11 plasma, i.e., in the following regime: the plasma is cold at high 

frequency: 

taneously warm at low frequency. Therefore, we do not exclude finite pressure 

in the low-frequency MHO equations, and preserve plasma diamagnetism (finite 

p) and interchange forces (driving flute modes). The radial component of the 

wave equation leads to 

Ar(r) = i D(S- N~)-l A8(r) (40) 

which can then be eliminated from equations (10),(15), and (18) to give, in 

equilibrium, 

l 2 2 d l 2 
V = 1611' Jdx (K IA8(r) I + l<dr + r> A8(r) I } 

l --
2c 

6V ( ) - __ l __ lA 12 !_ (K2) 
6n r - 1611' e an 

6V ( ) - __ l __ lA 12 !_ (K2) 
68 r - 1611' e as 

and 

where 

2 
K2 (n,B) = - w 

- c2 
(S - N~) - 0

2 

S - N~ 

(41) 

( 42) 

(43) 

(44) 

(K is the attenuation wave number), and Nil= k
11
c/w. From Eq. (23) one obtains 
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2 w2 K {n,B) = 
c2 

[w~i + Qi{w- Qi) N~] [Qi{w + Qi) N~ - w~i] 

[wpi + N~ (w2 - Q~)] g~ 
{45) 

It is therefore apparent that, for finite k
11

, there is no singularity in 

the ponderomotive potentials {42) at the ion gyrofrequency. It is only for w 

< Qi that a singularity can occur, when the denominator of Eq. {45) vanishes, 

i.e. when the wave undergoes an Alfven-ion-cyclotron {AIC) resonance: 

{46) 

Then the field A
6 

becomes singular, and dissipative effects play an essential 

role. 

The discussion above applies, strictly speaking, to the cold plasma limit 

only. For a warm plasma, at the ion gyrofrequency, the situation is somewhat 

complicated by ion thermal spread, the existence of Bernstein waves, and the 

possibility Of dissipation. It remains true nevertheless that most of the 

conclusions extrapolate to this case; in particular there is no sudden 

reversal of the global ponderomotive effects across the boundary w = Q., and 
l 

the A component of the field is dominant. This conclusion calls into 

question the interpretations of the experimental observation [1] that the 

stability of the plasma depends extremely sensitively on the frequency, in the 

neighborhood of gi. We argue that ponderomotive effects are not directly 

related to this transition. We conjecture that dissipative effects and 

heating due to AIC resonance for w < gi may be responsible for the 

observation. 

I. Ponderomotive Energy Functional V 

The ponderomotive energy V {10) is a functional of the plasma densities, 

n{~). of the slow magnetic field, B{~). and of the wave amplitude, Bw<~>-
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More precisely, for fixed n and B fields, it is quadratic in the field A . -w 
Since the particular· solution Bw<~> obeys the wave equation (11), and 

extremizes V for n and B fixed, it is a general property of such quadratic 

expressions that the value of V evaluated at A is equal to the opposite of 
-w 

its quadratic term, or in other words to half of its linear term. Therefore, 

after substitution of the solution A (function of ~ and t, functional of -w 
n(~ 1 ) and ~(~ 1 )), V is a functional of n and B only, and is (see also [22]) 

V = - ~c Jdx Re[i: • Aw1 (47) 

Note that this integral must be evaluated at the antenna only, where ia is 

different from zero. In fact, the ponderomotiye energy V is simply related to 

the antenna impedance Z(~) and to the antenna current amplitude I , by a 
* V = - {1/4) la·L·Ia, (48) 

where the inductance L is defined as L :: Im Z(~)/~. For a multiple antenna 

system, L must be interpreted as the symmetric inductance matrix, and Ia as 

the current array. The ponderomotive energy V is the RF contribution to the 

free energy of the system, the currents being maintained constant. The 

ponderomotive effects are the forces that act on the plasma, considered as a 

dielectric [23,24]. This interpretation allows an unequivocal experimental 

determination of the ponderomotive effects: the correlation of the variation 

of antenna impedance and current with the (generalized) displacement of the 

plasma leads to a direct evaluation of the corresponding (generalized) 

ponderomotive force. 
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PART II: HAMILTONIAN FORMULATION 

We develop here the Hamiltonian formulation of the antenna-plasma system 

dynamics. This point of view complements the Lagrangian formulation, because 

it is formulated entirely in terms of Eulerian fields. It also allows the 

systematic construction of Lyapunov functionals, with which it is possible, in 

principle, to study the nonlinear stabilfty of equilibrium states of the 

system. 

A. Hamiltonian and Poisson Bracket 

The derivation of the Hamiltonian and of the (noncanonical} Poisson 

bracket follows the usual procedure [25,26], starting from the action (5}, 

considered as a functional of the low frequency fields only, Ioc(z0 ,t} and 

As<~.t}, the wave amplitude 8w being the solution of (11}. The procedure is 

summarized as follows. First, one determines the fields and 

canonically conjugate to r.
0

c and ~; the Poisson bracket has its canonical 

form when it is expressed in terms of these variables. Second, the 

Hamiltonian is introduced via the Legendre transform of the Lagrangian, as a 

functional of 
'o Lac ( z , t} • 

0 
l!ac ( z , t}, and ITs(!. t}. Next, the 

Hamiltonian is expressed as a functional of the Eulerian fields n(x,t}, 

.!H!,t}, 9.(!,t}, and ~(~,t} (we shall omit their oc and s suffixes}, each 

defined in terms of the canonical fields. Finally, the canonical Poisson 

bracket is mapped into a noncanonical Poisson bracket expressed in terms of 

the Eulerian fields. 

By definition, the canonical momenta are functional derivatives of the 

action: 

l!ac (zO,t) = 6S 
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and 

ITs(!. t) = &S 
&(a~s) 

at 

(49) 

The functional derivatives with respect to particle fields are defined 

here with respect to the measure dN: if F[r] is a functional of the particle 

field r(z0 ,t), its derivative &F/&r is such that the differential &F is 

&F = I dN dt <!~> • &r (50) 

as a linear functional of the differential &r. Consistently, the unit 

distribution &(z0 ,z
01

) is such that for all functions G(z0
) defined on the 

Lagrangian reference space, one has 

(51) 

For a cold fluid, the dielectric tensor is a function of oscillation 

center densities and fluxes n and ~ , and also of the background low frequency 

magnetic and electric fields ~ and £. These fields are functionals of 

Loc(z0 ,t) and As<!.t). from (12,11,19). One finds therefore the conjugate 

momenta: 

(52) 

To find the Hamiltonian as a functional of the canonical variables, it is 

necessary to invert the equations (52), and obtain the velocity field r ' the -oc 

flux~. and the electric field£= (-1/c) a.A/at, as functionals of Loc(z0
,t), 

0 
~c(z ,t), As(!,t) and fis(!,t). This operation can be done perturbatively to 

second order in the high-frequency field amplitude, consistently with the 
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ordering we have made for the derivation of the ponderomotive action {5). As 

the simplest case, the dependence of the dielectric tensor on ~and ~will be 

neglected {see Appendix A). The terms omitted due to this simplification do 

not play a significant role unless the ambipolar electric field is large and 

the plasma is rotating at high velocity. The particle and field momenta 

therefore reduce to 

{53) 

0 0 . 
The fields foc{z ,t), R.oc{z ,t), As<!.t), and fis{!,t), being canonically 

conjugate to each other, their Poisson brackets have the canonical form: 

o o• o o• 
{foc{z ), foc<z )} = ! &{z , z ) 

{54) 

The Hamiltonian is the Legendre transform of the Lagrangian L {S = Jdt L): 

(55) 

The value of H is the total energy, including the free energy due to the high-

frequency field V given in {10): 

+ Jdx U{n,B) 

+ __ l Jdx {--1 laAsl
2 

+ IV x A 121 + V 
s~ c2 at s 

(56) 

As long as the fluid limit is valid, i.e., as long as all the particles at 

a given point {!,t) have in common a unique velocity, one finds that the 

Hamiltonian {56) can also be expressed entirely in terms of the Eulerian 

fields n{!,t), ~{!,t), ~{!,t) and ~(!,t) [27]: 
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1 2 
H = Idx [2m n l~(x)l + n(~)•(~) + U(n,B)] 

1 2 2 
+ B'll' I d X [ I£. ( ~) I + I !H ~) I ] + . v (57) 

Now, it is possible to calculate the Poisson- bracket of any two of these 

Eulerian fields: use their definitions (12,19,20,53) in terms of the canonical 

fields, the canonical relations (54), and elementary properties of the Poisson 

bracket (bilinearity, antisymmetry, and the derivative property: {F,G} = 

I dN ~F/~zi {zi' G}). 

The derivation follows the one in [25], and one obtains: 

1 
{n(~), g(~')} =- m n(~ 1 ) V~(~- ~ 1 ) 

{g(~), £.(~')} = 411'; n(~) ~(~- ~·> I 

{~(~), £_(~ 1 )} =- 411'C V ~(~- ~ 1 ) X£ ,, (59) 

the other combinations being equal to zero. Remarkably, the Poisson bracket 

of any two of the Eulerian fields can be expressed entirely in terms of 

themselves. This closure property is ultimately a consequence of the symmetry 

of the system under permutation of particles of the same species: the 

evolution of the Eulerian fields, does not depend on the past history, i.e. 

the individual particle trajectories. Expressed in those variables, the 

Poisson bracket has lost its canonical form, and is even degenerate as will be 

emphasized later. 
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The Poisson bracket. (59) is identical to the one for a multifluid plasma 

in absence of high-frequency fields [28,29], except that it is written now in 

terms of oscillation-center densities. The ponderomotive terms are included 

solely in the Hamiltonian (57), a consequence of the approximation (53). 

Since the Hamiltonian (57) is a functional of the Eulerian fields only, 

the evolution of any functional F of n(~,t), J!(~,t), 9.(~,t) and £.(~,t), is 

given by dF/dt = {F, H}, and can be determined from the expressions (59), and 

the derivative property of the Poisson bracket. Any reference to the 

Lagrangian fields now becomes unnecessary. In particular, for F in the set 

{n, J!, 9., £.}, one recovers the fluid equations (21). 

B. lyapunov Stability Analysis 

The knowledge of the Hamiltonian and of the Poisson bracket makes it 

possible to apply Arnold's method of stability analysis [13,14], which is one 

of the most important practical outcomes of the Hamiltonian formulation. 

There is a simple and systematic way to construct Lyapunov functionals that 

are useful for deriving linear or nonlinear stability criteria, for nonstatic 

as well as static equilibria. The Lyapunov functional which is constructed 

here is a conserved quantity with respect to the nonlinear dynamics of the 

system (it is time independent under motion by (21).) In addition, it is 

stationary at the equilibrium state in functional space (its first variation 

evaluated at the equilibrium state, vanishes for any variation of the 

fields.) Therefore, if the equilibrium point turns out to be a local and 

strict minimum (or maximum) for the Lyapunov functional, one is guaranteed 

that the evolution of the perturbed equilibrium state will remain confined 

near that equilibrium in a certain norm, i.e. that the system is Lyapunov 

stable. (There are· a few delicate points in this argument for infinite­

dimensional systems such as this one [14].) 
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The construction of· the Lyapunov functional involves a special class of 

functionals C (the Casimir functionals), which are characteristic of the 

degenerate Poisson bracket but are independent of the Hamiltonian. By 

definition, their Poisson bracket with any other functional F of the fields 

(here the Eulerian fields) vanishes: (C, F} = 0. 

The Casimirs are quantities preserved by the evolution, whatever the 

Hamiltonian may be. They correspond to symmetries of the system, such as 

continuous transformations of the Lagrangian fields which do not affect the 

Eulerian fields (e.g., relabeling of the particles). One may also view the 

Casimirs as constraints on the dynamics, since they remain equal to their 

initial value. 

Consider the functional He, constructed as the sum of the Hamiltonian H 

and of the various Casimirs, represented symbolically by C: He = H + C. It 

follows from the definition of a Casimir that this functional He can also be 

used as the Hamiltonian and that it generates exactly the same time evolution 

as H. In particular, H is a constant of motion. From the derivative property c 

of the Poisson bracket, if He has a critical state in the functional space 

(where its differential vanishes), then this state is an equilibrium (i.e., 

does not evolve in time). Indeed, at the critical state cSHC/M = 0, cSHC/cSB 

= 0, etc., so that any functional F is stationary: 

dF/dt = (F, H} = (F, HC} = Jdx [(F, n} cSHC/cSn + (F, B} cSHC/cSB + ] = 0. 

In summary, He satisfies the first requirements for the Lyapunov 

functional: its differential vanishes at the equilibrium state, and it is 

conserved in time during the evolution. The final requirement for Lyapunov 

stability is that the Lyapunov functional be definite in sign. The properties 

of He close to the equilibrium will determine the stability conditions: as 
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discussed earlier, if He is locally convex, then the system will not be able 

to depart by more than a finite distance from its equilibrium point, as 

measured by a certain norm determined by Hc.[l3]. One can show [14] that the 

second variation of He evaluated at the equilibrium state is the Hamiltonian 

for the linearized dynamics. In particular, linear stability criteria follow 

from the conditions on· the equilibrium for ~ 2Hc to be positive (or negative) 

definite. In this case ~ 2 Hc can be used as a norm for linearized stability. 

Casimir functionals for the Poisson bracket (59) are the same as for the 

multifluid plasma [30]. If we restrict the present discussion to the two-

dimensional case, a first family is given by c
1

, which is, for each species: 

( 60) c1 = Jdx n(!) t(Z) 

where Z :: (w + Q)/n, w "' _ £.•VX.!! is the fluid vorticity, Q = qB/mc is the 

gyrofrequency, and where t is an arbitrary function of its argument Z. These 

Casimir functionals generate displacements of the oscillation centers in 

Lagrangian phase space: 

~r = {r c 1 = - l - 1- d
2
t _z x vz 

- -' 1 m n(!) dz2 

These particle displacements in the original phase space are along surfaces of 

constant Z, and exhibit one non-trivial symmetry of the system: the Eulerian 

fields (densities, etc.) are unaffected by such a "microscopic" transformation. 

A second family of Casimirs is given by 

1 c2 = - 4~ Jdx ~(!) [Y·~- 4~qn(!)] (61) 

where ~ is an arbitrary function of !, and where a sum- over species is 

implied. These functionals only generate gauge transformations of the 
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electromagnetic potential, by adding a time-independent gradient to the vector 

potential 8_: 

68_ = (8_, C2} = - c Vcp 

6!: = (r:, C2} = Q 

6!! = (!!, C2} = Q 

Using the functional He built from the Hamiltonian H (57) and the easimirs 

e1 and e2, we find equilibrium equations by looking for critical states of 

He. The first variation of He is 

dt 
+ n 6Z dZ + 6M • mnM 

1 au 6V 1 
+ 6s [4~ s + as + 6Sl + 4~ 6£ • [£ + Vcp]} ( 62) 

where 
A 

n 6Z = ~ Z 6n + (Q/S) 6S + ~ • \1 X 6Q. ( 63) 

The condition that 6He vanishes, for all variations 6n, 6S, 6M and 6£, 

translates into a set of equilibrium equations: 

1 2 au 6V dt 
2m IMI + ~ + an + 6n + t(Z) - z dZ + qcp = 0 

~ au 6V dt 
4~ + as + 6S + (Q/S) dZ = 0 • 

dt 
m n M = ~ x v <dz>· (64) 

and 

£ = - Vcp, 

where the functional derivatives of V are given by (15,1S), and where the wave 

amplitude A is the solution of equation (11). 
-w 
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Derivation of the linearized stability criteria requires knowledge of the 

second variation of He with respect to the Eulerian fields, which is readily 

obtained: 

+ 2 &n &B ~ + (&B)2 (a2u + __ 1 )] + 2 &2v 
an as as2 4~ 

The second variation of V is 

1 2 _1_ (,)2 * . 2 
- 16~ I dx IV x &~I - 16~ c2 I dx ~ • & ~ • ~ 

where &Aw is the solution of the linearized wave equation, 

V X (V X &~) 

and 

a£ 
&E: = -= = an 

(,)2 
&-wA = - &E: • A .•• c2 = .. 

a£ 
&n + --=. &B. 

as 

{65) 

(66) 

(67) 

The equilibrium state is linearly stable if &
2Hc is a positive definite 

quantity. All the terms, such as d2t/dZ2, can be derived directly from the 

equilibrium Eq. (64). Only the term &2v presents some difficulty, because, 

as can be seen from (66), it couples field perturbations at different points! 

and !' (it involves &Aw). It is nevertheless possible to find sufficient 

stability criteria, by replacing &
2v by a ·lower bound. In Appendix C, we 

derive such a bound: 

1 2 * 2 - - !!L Idx Aw • & ~ • Aw , 
16~ c2 
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where ~ is given by Eq. {C.7) (it is possibly infinite, in which case this max 
method does not work.) Using this inequality in Eq. (65), and collecting 

terms, one finds 

t 
M(!) &n(x) 
&,!!(X) &,!!(X) 

&2H 
c ~ Jdx &B(!) Q(!) &B(!) 

&H!> &~(!) 

where Q(!) is a matrix of terms which depend only on the equilibrium (64). We 

therefore conclude that if the equilibrium is such that Q(!) is a positive 

definite matrix at every point!. then this equilibrium is linearly stable. 

c. Two-dimensional magnetohydrodynamic plasma model 

A similar analysis can be achieved with the two-dimensional magneto-

hydrodynamic plasma model, which has the advantage of -being simpler than the 

multifluid model, and leads to more manageable expressions. In addition, it 

is possible to make the connection between the llW '(33) and the stability 

criteria provided by the Casimir method. 

For the single fluid model, the Eulerian fields that parametrize the phase 

space are the plasma density n(!), the plasma fluid velocity !!(!), perpendi­

cular to the unit vector i. and the axial magnetic field ~(!) = B(!) i. 
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Within the same approximations as before, the Hamiltonian is the functional 

H =I dx rt m n lg(~)l 2 
+ n(~) w(~) + U(n, B)] 

1 2 
+ 8~ IdxiBI + v ( 68) 

whose value is interpreted as the total free energy of the system, including 

the ponderomotive energy V, and the plasma internal energy U. 

The MHO Poisson bracket is [31]: 

{ n ( ~) ' .9. (~I ) } l a = a~ [n(~) ~(~- ~~)] m 

{g_(~) • .9.(~1)} l a 
.9.(~) 

1 a = - ~(X - X I) -ffi.9.(~1) - ~(x- X1) m a~ - - a~ - - (69) 

{8(~) • .9.(~1)} = l a 
~(~-~I)] m a~ [B(~) 

The evolution of a functional F is given by dF/dt = {F, H}, and in particular 

one finds the MHO equations 

an + v • (n g) = 0 at 

as - + v • (8 g) = 0 at ., 

m n (~ + g • y g) = - v<~!> - B v <!~ + :~) - n V(w + !~ + :~) (70) 

Pursuing the discussion as before, we determine the family of Casimir 

functionals that is associated with the Poisson bracket [32]: 

C = I dx n t(Y) (71) 

where t is an arbitrary function of its argument Y = 8/n. The existence of 

those Casimirs is related to the fact that for such a two-dimensional ideal 

flow, the ratio 8/n is purely convected, as the magnetic flux is "frozen" to 

the fluid. 
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The Lyapunov functional is He = H + e and admits critical points in 

functional space when 

dt 1 au &V 
+ n 6Y dY + &~ • m n ~ + &B(4~ B + aB + &B] = 0 

for all variations of the fields,taking into account 

n &Y = &B - Y 6n. (72) 

The resulting equilibrium equations are 

~=Q. 

au 6V dt 
"' + an + 6n + t(Y) - Y dY = 0 

and 

(73) 

The linear stability criterion is provided as before by the requirement 

that the second variation of He be positive definite. One finds in the 

present case 

+ Jdx {(&n)2 a2U + 2 &n &B a2U + (&B)2 (a2u + !_]J + 2 &2v. (74) 
an2 anaB ae2 4~ 

The first and third terms of (74) are positive. For stability, it is 

sufficient that the sum of the second and fourth terms are positive definite . 

They can be evaluated using 

n d2t = ~ (- vn • v("' +au+ &V) _ vB • v(!L +au+ &V)] 
dY2 IVYI2 . an &n 4~ aB &B 
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which follows from the equilibrium Eq. {13), and the expression (66) (or a 

lower bound, as shown in Appendix C) for &2v. 

Relation to AW 

One must note that with such stability criteria, the more constraints 

imposed on the field evolution, the stronger will be the stability condi­

tions. This is because the second variation of the Lyapunov functional is 

more easily positive definite when the number of degrees of freedom of the 

field variations &n, &8, etc. is more limited. To illustrates this remark, 

take into account the fact that the variations of &n and &B are not indepen-

dent, but are related each to the small plasma displacement ~(!,t) from the 

equilibrium position. The plasma and the magnetic flux are both convected 

and, to first order in ~' the variations of density and magnetic field are 

&n = - V•(n~) and &B = - V•(B~) , while the perturbation of the velocity 

field is &.!! = a~/at. After substitution of these expressions, &2
Hc becomes 

a quadratic functional of the displacement field ~- The term d
2
t/dY

2 
can be 

evaluated, by noting that the equilibrium equations (73) imply 

~ • VY d2t = - ~ • v (!L + aU + &V) 
dY2 4~ as &B 

and 

from which the term of (74) becomes 

d
2

t 2 s au &V 
I dx n dY2 I~ • VYI = - I dx ~ • VB ~ • v < 4~ + as + &B) 

au &V - I dx ~ • v n ~ • v (w + - + -) an &n 
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The ponderomotive contributions in this term are. precisely 6WM and llWP 

introduced earlier{36),{37). Similarly~ for these variations of n and B, one 

finds that the second variation of the ponderomotive energy is 2 &
2v = 6WA' 

where 6WA was given in {38). 

Putting all together: 

2 &
2

Hc = Jdx mn I :~1 2 
+ 6W(~J 

The condition 2 
that & He be positive definite 

{75) 

is now a necessary and 

sufficient stability condition, which is precisely the same stability 

condition as produced by the 6W variational principle: 6W >0 {33). 
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CONCLUSIONS 

We have presented a theoretical framework for the the study of 

ponderomotive forces in magnetized plasma and their effect on stability. The 

oscillation center theory is derived from a mixed Lagrangian and Eulerian 

representation of the action of the original system, including the 

electromagnetic fields and the antenna, when averaged over the fast time scale 

determined by the oscillations of the RF field. 

Such a global description ensures the self-consistency of the interactions 

between plasma, low-frequency fields, and high-frequency fields, and thus 

implies the conservation of energy and momentum in the absence of 

dissipation. We have determined that despite apparent singularities appearing 

in the expressions of the ponderomotive effects at the ion gyrofrequency, 

self-consistency ensures that their contribution remains finite, not only 

because of thermal dispersion [6], but also because of the back reaction of 

the plasma that polarizes the fields. The mixed representation of the average 

action leads by Hamilton principle to the set of equations obeyed by the 

oscillation centers, which includes ·ponderomotive forces, as well as the 

equations obeyed by the low-frequency fields, the latter of which include 

magnetization currents due to the RF fields. The stability of plasma 

equilibria can be studied by using a 6W variational principle, which 

contains, in addition to the MHO terms, three ponderomotive contributions, due 

respectively to ponderomotive forces, magnetization, and self-consistant 

modifications of the RF field due to plasma perturbations. The total 

ponderomotive energy is the free energy of the system due to the 

high-frequency field, and is as such related to the antenna inductance. 

The equations are also given a Hamiltonian form. For the multifluid 

plasma model as well as for the magnetohydrodynamic plasma models, the 
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evolution of the Eulerian fields (densities, momentum densities, electo­

magnetic fields, etc.), js given by a Hamiltonian functional (the ~otal free 

energy of the system) and a noncanonical Poisson bracket. The Poisson 

brackets being degenerate, there are Casimir functionals, which are used with 

"' the Hamiltonian to construct Lyapunov functionals for the nonlinear system. 

The critical points of the Lyapunov functionals are equilibria of the plasma 

in the presence of RF field, and the conditions on these equilibria for 

convexity of the associated Lyapunov functional will ensure nonlinear 

stability .. 

This formalism is suitable for applications. It has been used in 

particular to study the RF stabilization of the flute modes in mirrors. For 

instance, it has been shown [12] that high kll RF fields are stabilizing, a 

conclusion that has implications for antenna design for optimal 

stabilization. These results, along with the evaluation of intensity 

threshold, etc., will appear in a future publication. The formalism lends 

itself easily to generalizations. Work is in progress to determine the 

influence of the RF generator impedance on stability, because of the feedback 

effect that it produces. We investigate also the limitations on RF intensity 

due to parametric instabilities. The Lyapunov functional may lead to useful 

results on nonlinear stability of flute modes, and on the possib.le existence 

of bifurcation points for the equilibria. Finally, a complete study of 

ponderomotive effects requires the coupling of an antenna computational code 

with a stability code. 

We note furthermore that the equations of motion derived here for the 

slowly varying fields and fluid variables should provide substantial 

computational economy on the simulation of plasma dynamics in interaction with 

a high-frequency R.F. field, in comparison to a straight simulation including 

the high-frequency components. 
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APPENDIX A 

Velocity-dependent ponderomotive force, and polarization current 

We genera 1 i ze here the function a 1 dependence of the ponderomot i ve energy 

V, to include dependence on oscillation-center flux ~c(~,t), Eq. (19), and on 

slow electric field ~(~.t). The effects of these terms are an additional 

ponderomotive force on guiding centers, and a polarization current density. 

The expression for &Spd' Eq. (13 a), will have two additional terms: 

- Jdt Jdx (!Y__ • &RQc + &V • &~s>• (A.l) 
&.9.oc &~s 

where 

&.9.oc = JdN &toe &(~ - roc) - v • JdN &roc toe &(~ - roc) 

and 

&Es = - l L &As - c at -

Integration by parts leads to the additional terms in &Spd (13b): 

- Jdt JdN &roc • Jdx &(~-roc> {- L &V + Yoc X (V X &V )} 
at &.9.oc &.9.oc 

- Jdt Jdx &As • l L &V 
c at &~s 

with Yoc given by (20). 

(A.2) 

(A.3) 

As a consequence, the Newton equation for oscillation centers (14) is 

modified by an additional force 

Eg(x,t) = - L &V + Yoc x (V x !Y__) 
- at &.9.oc(~,t) &.9.oc 

(A.4) 

This force has the same structure as the Lorentz force, &V/&g_ (a 

"ponderomotive momentum") playing the role of the electromagnetic vector 

potential. 
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Maxwell equation (16) is modified by an additional polarization current 

density: 

.J..p(~. t) = l .L -=-&V=---­
c at &~s(~.t) 

The fluid equations (21) also change, accordingly. 
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APPENDIX 8 

Construction of AW 

We outline here the derivation of AW (Eq. 33), in the two-dimensional 

case. 

Let us first introduce the total potential energy of the system V*, the 

sum of the magnetic, internal, gravitational and ponderomotive energies: 

v* = Jdx (8
2 

+ u + n~) + v . 
811' 

The momentum equation (29) can therefore be rewritten as 

a 6V* 6V* 
mn <at Y. + y_ • Vy_) = - nv 'if\ - 8 v 68 , 

and the static equilibrium equation (31) becomes 

n V 6V* + 8 V 6V* = 0 
6n &8 

(8.1) 

(8.2) 

(8.3) 

Assuming a perturbation of the plasma given by the displacement field it~.> 

exp(yt), one has[= y ~.where the tilde designates.perturbed quantities. 

From the continuity equation and the Ohm's law (29), one finds n = - V • (ln) 

and 8 =- v • (18). The linearized Eq. (8.2) gives 
2 ~ 6V* ~ 6V* 

mn y l = - n v &n - 8 v 68 

- n v <!~*> - 8 v <!~*). (8.4) 

Multiplication by -land integration over space leads to 

- y2 Imn 111 2 dx = AW , 

where 

AW = - Jdx [V • (ns_) l • V !~* + V • (81) l • V !~*] 

+ Idx [n l • v <!~*> + 8 l • v <!~*)]. (8.5) 

- 49 -



Making use of the equilibrium Eq. (8.3) and of one integration by parts, one 

finds 

6W = - Jdx [s • vn s • v !~* + s • y8 s • v !~*] 

~ 

- Jdx [V•(ns) (6V*) + V•(8s)(6V*)] (8.6) 
6n 68 

Explicitely, from (8.1), the functional derivatives of V* are, assuming U 

depending on n only, 

6V* dU 6V -=-+v+-
6n dn 6n 

6V* 1 6V 
68 = 411' B + 68 ' 

and their perturbations are 

~ 

* (6V ) 
68 

- v • (n s) d2u 
dn2 

- Jdx• v•·cn• S 1
) 

- Jdx• v•·(8 1 S 1
) 

= - v • (8s> _1 
411' 

- Jdx• v•·(n•s•) 

- Jdx• v•·(8•s•> 

(8.7) 

62v 
6n(!) 6n(! 1

) 

62v 
cSn(!) 68(! 1

) 

62v 
68(!) 6n(! 1

) 

62v 
68(!) 68(! 1

) 

(8.8) 

With these expressions, 6W (8.6) can readily be cast on the form (33 to 38). 

It is easy to show from (8.6) that the variational principle· (32) restitutes 

the linearized equations (8.4). 
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APPENDIX C 
2 Lower bound for 6 V 

The expression of 62V is given by Eq. (66). We derive here a lower bound 

for ~ 2 v, which has simpler form, and is useful for the formulation of 

sufficient stability criteria. 

It is convenient at this point to introduce the eigenvalues 1/l.. and the 
n 

eigenvectors ~(!) of the wave equation operator (the left-hand side of Eq. 

67}. They satisfy 

v X ( v X ~} - ,..,
2 

£ • ~ = L ~ 
c2 = l..n 

(c. 1} 

Since the wave operator is Hermitian, the values l..n are real, possibly 

infinite, and the set of eigenvectors is complete and may be chosen 

orthonormal. In terms of this base, Eq. (67} may be solved, to give 

where 

The second variation of V (66) becomes 

~2v = - __ 1 __ I l..nl~sn1 2 
. 1611' n 

1 2 * 2 - - ~ Jdx Aw • ~ ~ • Aw • 
1611' c2 

Defining the maximum value of l..n, 

l..max :::max l..n, 
n 

we find 
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(C.S) 



that is 

- _1_ (t)2 Jdx ~ • 62~ • Aw 
1611' c2 

(C.6) 

The right hand side of Eq. (C.6) is a lower bound, which couples fluctuations 

evaluated at the same point. Note finally that because (C.l) is hermitian, 

~ obeys a variational principle: max 

~ax = max Jdx I!!(~) 12 (C.7) 
2 2 * {!!(~)} Jdx [IV x !!I - (t)

2
!! • ~ • !!] 

c 

Of course, ~ may possibly be infinite, when (t) is an eigenfrequency of the max 
equilibrium system. On the other hand, if the eigenvalues of the dielectric 

tensor ~ are everywhere sma 11 er than a negative constant, then ~max exists 

and is finite. 

As a particular example appropriate for MHO stability, take for £ the 
= 

perpendicular cold plasma dielectric tensor (22,32), choose (t) > Qi, fix k
11

, 

and consider an axisymmetric geometry (Eqs. 40 to 45). Equation (C.7) becomes: 

~ax = max Ir dr la(r) 12 (C.B) 

{a(r)} Jr dr{l(g_ + l) a(r)l2 + K2(r)la(r)I2J 
dr r 

and shows that ~max exists, is finite and positive, if 

positive everywhere, i.e., if kll is large enough so that 

at any radius. 
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