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ABSTRACT 

Relativistic Fermion in Periodic Square Potential* 

B. Banerjee, N. K. Glendenning, and V. Soni 

Nuclear Science Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California 94720 

An analytic solution for a Dirac particle in a one dimensional periodic square potential is 

obtained. The solution goes over in the non-relativistic limit to the famous Kronig-Penney one, 

and exhibits similar band structure of the energy spectrum. 

*This work was supported by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of 
High Energy and Nuclear Physics of the U. S. Department of Energy under Contract DE-AC03-76SF00098. 
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The motion of non-relativistic electrons in a periodic one-dimensional square well poten-

tial was solved long ago by Kronig and Penney, as a model of electrons in a crystal [1]. Their 

solution explicitly exhibits a band structure in the spectrum. There are also several physical sys-

terns where relativistic particles feel a periodic potential. The electrons in neutron stars are rela-

tivistic and if the neutrons of the dense core form a solid lattice, as has been conjectured, they 

would experience a periodic potential. 

The particular interest that we have in this problem arises from recent interest in soliton 

models of the nucleon as representing a non-perturbative solution to Q.C.D .. We have studied 

a model of dense nuclear matter in which the nucleons are represented by quarks that are 

tightly bound to a topological configuration of meson fields (soliton). The solitons are arranged 

in a crystaline lattice. In this case the relativistic quarks experience the periodic field of the 

topological meson configurations. We have posed the question whether matter, described in this 

way might exhibit a phase transition in which, as in metals, the quarks become liberated from 

the solitons in which they are normally bound [2]. 

It is therefor of some interest to solve the relativistic analogue of the Kronig-Penney 

model. 

The Dirac equation, in one space dimension can be written, 

(1) 

where 

( 0 -i) (0 1) 
a = u2 = i 0 ' {j = u, = 1 0 (2) 

The resulting linear coupled equations for u and v can be rewritten in terms of one of these, say 

u, which satisfies (units are h = c = 1), 

u" + uU' = [ (m + Uf - E2 ] u (3) 

For a periodic square potential, U, a discontinuity is produced in the derivative of the solution. 

For 
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{ ov U(x) == 
I xI ,;;;; a 

a< I xI ,;;;; a +.b 
(4) 

we have 

U' = - V [ ~(x + a) - ~(x - a)] (5) 

and hence 

u"- uv[ ~(x +a)- ~(x- a)] 

= [ (~ + U)2 - E2 ]u (6) 

Integrate this about a small neighbourhood of each discontinuity to find the discontinuity in 

derivative of the solution, 

Now define 

u'( -a + 77) - u'( -a - 77) = Vu( -a) 

u'(a + 77) - u'(a - 77) = - Vu(a) 

Q2 = (m + V)2 - E2 ' K2 = E2 - m2 > 0 

In each of the three regions the solution has the form, 

u1 = AeQx + Be-Qx , -(a+ b),;;;;x<-a 

U3 == ceOx + De-Qx ' a<x,;;;;a + b 

(7) 

(8) 

(9) 

The Block theorem [3] can be used to relate the wave function at points separated by an integer 

number of cell lengths, 

which solve to give 

1/;( -a - b) = 1/;(a + b) exp( 2i(a + b)k) 

1/;'( -a- b) = 1/;'(a + b)exp( 2i(a + b)k) (10) 

C/ A = e-2(a+b)(Q+iK), D/B = e2<a+bXQ-iK) (11) 

The continuity of the function, and the specific discontinuity of the derivative derived above 

yield in particular 

.._, 
( 

lJ, 

\ 

v 
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u,( -a - 17) = u2( -a + 17) 

u;( -a - 17) + Vu1( -a + 17) = u2( -a + 17) 

u3(a + 17) = u2(a - TJ) 

u)(a + 17) + Vu3(a + 17) = u2(a - TJ) 
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(12) 

in which the limit 11 - 0 can now be taken. Taking into account (11), these four equations 

determine all the constants in the solution provided the determinant of the coefficients of the 

unknowns vanishes 

1 1 1 -1 
Q+V -(Q- V) -iK iK 

(13) 0= e -2Qbe -2ik(a+b) e20be-2ik(a+b) -e2iKa -e-2iKa 
Q + V)e-20be-2ik(a+b) -(Q _ V)e20be-2ik(a+b) -iKe2iKa iKe-2iKa 

After some manipulation, this yields 

Q2 _ K2 + y2 

2
QK sinh2Qb sin 2Ka +cosh 2Qb cos 2Ka = cos2k(a +b) (14) 

This provides the eigenvalues, E, in terms of the crystal momentum, k. The band structure 

arises because the left side cannot equal the right except over continuous ranges of energies that 

are separated by gaps. This is similar to the Kronig - Penney result but differs explicitly in the 

appearance of V on the left side, and implicitly in the relativistic relations (8). This result 

embraces the entire range of energies and reduces in the non-relativistic limit to the result of 

Kronig-Penney. 

In Fig 1 we illustrate in a particular example chosen so that the particle is relativistic near 

and above the top of the potential, how the levels of the isolated potentials develop into bands, 

which merge for sufficiently close spacing of the wells. The band structure persists into the posi-

tive energy spectrum above the top of the potential, with the gaps tending toward zero with 

increasing energy. 
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Figure Captions 

Fig. 1. Energy levels and band structure in a one dimensional periodic potential, for a Dirac 

particle, are shown as a function of separation between the attractive regions. At large 

separation the levels are degenerate and in the limit coincide with those of the iso

lated potential of width 2a. In units h = c = 1, the mass and potential height are 

taken equal to 5 fm· 1 so that the particle is relativistic and at above the potential. 
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