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Abstract 

The one-loop effective scalar lagrangian is given in an explicitly field 

redefinition invariant forni for a general model with derivative scalar 

self-couplings and scalar couplings to spin 1/2 fermions. Applications 

are given for the non-linear a-model and the leading N (N =number of 

chiral multiplets) contribution to the quadratically divergent terms in 

no-scale supergravity models of the type that may arise from compact

ification of superstring theories. The formalism is easily generalized to 

the case of background gauge fields. 
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1 Introduction 

Effective field theories with non-derivative couplings are playing an increasingly 

prominent role in elementary particle phenomenology, particularly in the context of 

N = 1 supergravity, where the starting point is the effective tree lagrangian [1,2] for 

N = 1 supergravity coupled to N = 1 supersymmetric matter. Phenomenological 

analyses [3,4] have generally been performed by using this lagrangian to define an 

effective renormalizable theory near the Planck scale ~~:- 1 • One takes the limit 11:-+ 0 

after appropriate shifts of those fields that acquire vacuum expectation values (vevs) 

of order or greater than the Planck mass mp = ~~:- 1 = (81rGN)-1f 2 = 2.4 x 1018 GeV. 

The usual renormalization group methods are then used to study [4] the theory at 

lower energies. This procedure is sufficient as long as loop corrections to the tree 

potential play no signficiant role near the Planck scale. 

An obvious counter-example is the one-loop effective potential at finite tempera

tures near the Planck scale, T ~ mp, that may play an essential role in determining 

the initial conditions for a suitable inflationary scenario. It has been shown [5] 

that the scalar loop contribution to the effective potential in a theory with non

derivative couplings is obtained from the second covariant derivative of the tree 

potential, where here covariance means with respect to general transformations 

among scalar fields, as will be seen explicitly in Section 2. This result, first applied 

to the study of finite temperature potentials [5], was subsequently [6] used to de

termine the one-loop effective zero-temperature potential in "no-scale" models [7] 

of N = 1 supergravity. As these models have the feature that some vevs are left 

unspecified at tree level, radiative corrections near the Planck scale can again be 

important. Indeed it was shown [6] that, in the absence of nonperturbative effects, 

one loop corrections leave the vacuum unchanged in a class of models obtained [8] 

from compactification of the zero-slope limit of 10-dimensional superstring theories. 

On the other hand, for the effective tree potential obtained [9] in the presence of 

conjectured non-perturbative effects that determine two otherwise undetermined 

vevs at tree level, one finds [6,10] that at one loop an additional vev is determined, 

fixing the gravitino mass within a few orders of magnitude of the Planck mass. 

The purpose of this paper is to extend the methods of Ref. 5 to the full one

loop effective scalar lagrangian including derivative terms. Here we discuss only 

contributions from scalar and spin-1/2 fermion loops. A full calculation of the one

- loop effective lagrangian for N = 1 supergravity requires, of course, the inclusion 
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of higher spin loops. In Section 2 we give the scalar loop contribution. This is a 

generalization to the case of non-derivative couplings of previous derivations [11,12] 

of the effective one-loop scalar lagrangian in renormalizable models. In Section 3 

we apply this result to the non-linear u-model and give the explicit result including 

terms with two derivatives. The covariant multi-loop expansion for the non-linear 

u-model [13], or for more general models posessing a non-linear symmetry [14], 

has been studied previously. The main difference here is that we include a non

trivial potential (a chiral symmetry breaking "u-term") and show that the result 

obtained from the non-linear model is reproduced by an appropriate limit of the 

linear u-model. 

An additional difference is that we display the effective one-loop lagrangian as 

an integral over four-momentum of a function of the momentum and of covariant 

functions of the fields and of their covariant derivatives. In the context of theo

ries with derivative scalar couplings , "covariance" is meant with respect to general 

transformations among the scalar fields. As discussed in Section 4, the methods pre

sented here are equally applicable to scalar and spin-1/2 fermion loop contributions 

to the effective lagrangian for higher spin fields, in which case "covariance" is meant 

with respect to gauge transformations. In addition to assuring an invariant (un

der field redefinition and/or gauge transformations) result, this explicitly invariant 

formalism considerably simplifies application to the case of a specific theory. 

In Section 4 we give the spin-1/2 fermion-loop contribution to the effective scalar 

lagrangian in a general model where derivative couplings arise through multiplica

tion of the canonical fermion kinetic energy by a matrix-valued function Z(4>) of 

the scalar fields. The immediate purpose of presenting this result is to show that 

this contribution contains no quadratic divergences, since for a general simply su

persymmetric supergravity theory with N chiral multiplets, only spin-1/2 fermions 

and scalars contribute to the leading N radiative corrections that we discuss in Sec

tion 5. As an aside we point out in Section 4 that the explicitly invariant formalism 

developed here is readily adapted to the evaluation of the fermion (or scalar) loop 

contribution to effective lagrangians for higher spin fields and evaluate the QED 

,8-function as an example. 

Section 6 summarizes the results. 
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2 The Scalar Loop Contribution 

In theories with no derivative couplings, the scalar lagrangian can be written in 

the form 

1 .c = -a,.¢>;a1Atf>;- V(4>) 
2 

(2.1) 

where t/>;( i = 1, ... , N) are N real scalar fields. In this case the one-loop correction 

to the effective scalar lagrangian is given by 

1 
!l..C = i In det112 fl. - 1 = i- Tr In fl. - 1 

2 
(2.2) 

where fl. is the scalar propagator in the presence of a background scalar field, and 

can be obtained as the second scalar functional derivative of the action [15]: 

S = J dx.C, 

.. ::~ 
62 .. s. 

(fl. -
1
(x,y))'' = 6t/>;(x)64>;(Y) 

Here we consider a more general scalar lagrangian of the form 

1 .. .c = -Z''(4>)apt{>;a1Atf>;- V(tf>). 
2 

(2.3) 

(2.4) 

(2.5) 

In this case, the one-loop correction to the effective scalar lagrangian is modified 

according to [16,5]: 

!l..C = ilndet112z-1det 112fl.-1 = ~Trln(Z-1 !1-1 ), 
2 

(2.6) 

where in this case the inverse scalar propagator .:1 is obtained as the second covariant 

scalar derivative [13,14,5] of the action: 

(a-1 (z,y));; = IY(y)D;(x)S, (2.7) 

where in (2. 7) the covariant functional derivative D is related to the ordinary func

tional dervative 6 according to: 
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t 

-; _ oS[cfo] 
D (x)S[cfo] = ocfo;(x), 

D;(x)Si[cfo] = oSi[cfo]_ rii(cfo(x))S1[cfo] 
- ocfo;(x) 1 ' 

-; _ os;[cfol il 
D S;[cfo] = ocfo;(x) + f; (cfo(x))S,[cP], 

etc. (2.8) 

where the Christoffel symbol rfi: is defined in terms of the scalar metric zii: 

rfi: = r~i = Z;-;,trmi:i' (2.9) 

. . 1 azmi azmi azii 
f""1 = -(--+---). 

2 acfo; atP; acfom 
(2.10) 

(throughout upper and lower indices i,j ... , indicate, respectively, contravariant(.,~.) 

and covariant (ocfo;) quantities under scalar field redefinitions.) 

To evaluate the inverse propagator (2.7), we first take the functional derivative 

of the action to obtain: 

-D;(x)S[cfo] = zii:(cfo(x))[a:o:' + r{m(cfo(x))a"cfo;(x)]a"cfom(x) + acfo~(x) V(cfo(x)) 

:= Z;1(cfo(x))d,.(x)ta"cfot(x) + D;V(cfo(x)) (2.11) 

where D; is the ordinary covariant derivative: 

. a 
D'V(cfo) = atP; V(cfo), 

D;V;(cfo) =a~; Vi- r;i(cfo)V1(cfo), 

. a 1 
D'V;(cfo) = acfo; V;(cfo) + fj (cfo)Vi(cfo), 

etc., (2.12) 

and we have introduced the matrix-valued covariant 4-derivative: 
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.. 

d,.(x);' = a~"'lo;- + r{ma,.cfo;. (2.13) 

We then obtain, after some algebra, the following expression for the inverse propa

gator (2.7): 

-1 ;; _ · ; _ o2S[cfo] _ ;; oS[cfo] 
~ (x,y) - D'(y)D (x)S[cfo]- r_.. 1 •. \u /_\ rl (cfo(y))ocfol(x) 

= -Z;P(x){Ut(x) + (d(x)2)! + R;(x)}o(x- y) 

= ~-l(y,x);; (2.14) 

where it is to be understood that Z(x) and U(x) depend on x only through cfo(x), 
and 

ui = z-.1n;Div p pt (2.15) 

is the scalar mass matrix [5] as a function of the background field cfo. The matrix 

R(x) in (2.14) is defined as 

R;(x) = a,.cfo,(x)a"cfoq(x)R;qi (x), (2.16) 

where R;qi(x) = R;qi(cfo(x)) is the curvature tensor: 

R'qi = -Rriq = ~r'q + rlirrq _ ~rir _ rqlrir = z-1Rirqi 
P P acfo; P P I atPq P P I - pi 

(2.17) 

and vanishes identically if the scalar metric zii can be expressed as 

.. axaaxa. 
Z'' = acfo; acfo; (2.18) 

The condition (2.18) simply means that the kinetic energy term in the lagrangian 

(2.5) can be reduced to canonical form by a suitable field redefinition cP;--+ Xa(cfo): 

a,.cfo;a"cfo;Z;; = a,.xaa"Xa· (2.19) 

Returning to the general case R =/= 0, the quantity we wish to evaluate is Tr In A 

where (see Eq. (2.6)) 

6 



A[ (x, y) = -Z;i1(x)d - 1(x, y)A:i 

= -{(d(x) 2
){ + U/(x) + R[(x)}6(x- y). (2.20) 

We introduce the notation 

-y,.(x){ = r~1 [<t>(x)Ja,.<Pt(x) (2.21) 

and express the matrix-valued covariant 4-derivative as: 

d,.(x) = a~z) + -y,.(x). (2.22) 

Introducing a further matrix-valued function of the scalar fields: 

H(x) = U(x) + R(x), (2.23) 

we follow Ref. 11 and express A, Eq. (2.20), in terms of its Fourier transform: 

-A(x,y) ={[a,+ -y(x)]2 + H(x)}6(x- y) 

= {[a., - -y(y)J2 + H(y)}6(y- x) 

I 
~P -i""{[. ( ia )]2 H( ia )} ;,., = (27r)4 e sp,. - -y,. - ap + - ap e . 

Inserting this expression into Eqs. (2.6), (2.20) gives [11] 

I I 
d4p 

TrlnA = d_4x (27r)4 Trln 

{- [ip,. - -y,. (X - i :p)] 

2 

- H ( x - i :p) } 

= -2i I d_4x.C~~1(x). 

(2.24) 

(2.25) 

The matrix-valued, functions -y,. and H may be expanded [11] as a Taylor series in 

-jp, e.g.: 
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'C J 

- - . a - 00 (-i)n an 
H = H(x- •-a ) -I: - 1-[a,., ... a,.nH(x)J-a -a 

p n=O n. p,., ... P,.n 

= e-;a •. ~p H(x)e;e.·-f.. (2.26) 

Then following, for example, the methods of Ref. 11, the effective one-loop la

grangian .C~~/ can be constructed as a function of the scalar fields and their deriva

tives. 

However, it is possible to simplify calculations and cast the result in manifestly 

covariant form by using the identity: 

I d_4x I d_4pTrg(i:P.a,)F(p,x-i:P)g-1(i:P,a,) =I d_4x I d_4pF(p,x-i:P) 

(2.27) 

where F and g are matrix-valued functions of their arguments with 

g(O,O) = 1. (2.28) 

The identity (2.27) holds because in the expansion of g-1 around vanishing ar

guments the derivatives (which unless otherwise specified operate on everything 

to their right) give no contribution. Similarly, since by integration by parts the 

derivatives in the expansion of g can be made to operate to left, they again give no 

contribution. It follows from the identity (2.27) that 

I d_4x I d_4pTr1nA(p,x- i :p) =I d_4x I d_4pTr1nB(p,x- i :p) 

where 

Let us now choose 

B = g(i :P.a,)Ag-1 (i :P.a,). 

g = e-i(B.+'Y(z))·/p eiB.·/p = e-id(z)·/p ei8,·/p 

8 
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which is not precisely of the form g(ijap, a.,) since there is an explicit x-dependence 

through "Y(x). However, it is easy to see that the identities (2.27) and (2.29) still 

hold with this choice. We use the further identities: 

and 

ei/;·B•ip e-i/;·Bs -·ip - a(z) 
" - " " 

g')',.(x _ i :p)g-1 = e-id(z)·/;')',.(x)eid(z)·-1,; 

to write 

[. ( . a )J -1 -id· a (. ) id·-f. . .- a gap,.- "Y,. x- a-a g = e a. ap,.- d,. e , = ap,. + aG.,,.-a 
P Pv 

where we have introduced the covariant matrix-valued Lorentz tensor 

G,..,(x){ := [d,.(x),d.,(x)]{ = (a,.')'.,(x)- a.,"Y,.(x) + ["Y,.(x),"Yv(x)]){ 

(2.32) 

(2.33) 

(2.34) 

= a,.<l>l(x)a.,<f>,R{'1[</>(x)], (2.35) 

and the last term in (2.34) is obtained by expanding the exponentials to give 

00 n+1 a" 
G.,,.= L(-i)" (n + 2)! (D,., ... D,.nG.,,.(x)) ap,., •.. ap,.n' 

n=O 
(2.36) 

where 

D,. := a,.</>;D;, (2.37) 

with the covariant derivative D; defined in Eq. (2.12), is the general covariant 4-

derivative understood as operating on an arbitrary tensor-valued function of the 

scalar fields. In the particular case of a matrix-valued function of the type G{: 

D,.G:= [d,.,G]. (2.38) 

Finally we introduce 
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<: e 

c 

ii = e-id·/;H(x)eid·/; = gHg-1 

oo ( -i)" a" = L - 1-(D,., ... D,.,.H(x))-a -a 
n=O n. p,., ... P,.n 

where H has been defined in Eq. (2.26). 

Collecting the above results, we obtain from Eqs. (2.29-30): 

B(p,x- i :P) =- (ip,. + iG.,,.a:J 2 - ii 

and the one-loop effective lagrangian is given from (2.25) as: 

<1> _ i I d"p [ - a 2 • ] l.11 - 2 (21r)4 Trln (p,. +G.,,. ap) - H . 

(2.39) 

(2.40) 

(2.41) 

The result (2.41) may be expanded, using methods similar to those of Ref. 11, to 

arbitrary order in the scalar derivatives. It is manifestly invariant under general 

transformations among the scalar fields as it depends only on the covariant functions 

G,..,, U [Eq. (2.15)] and R [Eq. (2.16)]. In the case of zero "curvature" [Eqs. (2.18-

19)] 

G,..,=R=O, H=U (2.42) 

the result is precisely that of Ref. 11 with 4-derivatives of the mass matrix U re

placed by covariant 4-derivatives; in this case all derivative couplings in the one-loop 

contribution (2.41) to the effective lagrangian are finite. As mentioned above this 

simply reflects the fact that one is using a non-linear formulation of a renormalizable 

(if U has dimension :::; 4) scalar field theory. 

To evaluate the integral (2.41), we introduce a renormalization scale p. and 

regularize the integral by making two subtractions: 

e~~~ __. e."(o) + e."(211?) - 2e.11(p.2 ) = eR.,, (2.43) 

where 

" ( 2) - i I d4p 2 
"--•11 p. = 2 (21r)4 Tr ln(B - p. ), (2.44) 
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so that: 

i r1 I d4p [ 1 1 ] 
£Reg = 2~-'2 fo d>. (27r)4 B- ).1-'2 - B- (1 + >.)1-'2 

- _.!_ •. d d>. --. • 1 1 ( 1 )
2 

d4
p 

- 2"' fa 111 B- >."'2 - '11-'2 (21r)4 
(2.45) 

One reason for this procedure is that we do not wish to lose the quadratically diver

gent contributions, since in many applications the cut-off 1-'2 is physically meaning

ful; applying dimensional regularization to the once-subtracted integral as in Ref. 

11 would eliminate these terms. Using the prescription (2.43) rather than simply 

cutting off the integral at I p 12= 1-'2 has the advantage that decoupling is explic

itly satisfied in the sense that (as will be seen below) contributions from massive 

internal particles (U ~ 1-'2) vanish up to scalar field independent terms. This will 

be particularly important in our discussion of the u-model. Finally, as expressed in 

the last term in (2.45) the integral over d4p is at most logarithmically divergent. It 

can be evaluated, for example, using dimensional regularization; then the remaining 

divergence in 1/ f is field independent, as are finite corrections to replacements of 

the form 

1 2 
P,.Pv ---+ 49,.vP (2.46) 

that we will use below. (Note that in supersymmetric theories all the field-independent 

terms that we will drop vanish in the sup_ertrace.) 

In the applications given below we will consider only terms up to second order 

in derivatives of the scalar fields. In this case the term in G,.v in Eq. (2.41) will not 

contribute, as can be seen by writing: 

1 1 1 a 1 s 
---.A + A P"Gv,. A + o(a ) 
-p2 + H -p2 + H apv -p2 + H 

(2.47) 
-B + >.1-'2 

since 

- 1 
G,.v = 2G,.v + O(as) (2.48) 

and G,.v is already of second order in derivatives. The second term in (2.47) vanishes 

upon symmetric integration when inserted in, e.g., Eq. (2.45), since 

11 

v 

a 1 -~ 
apv -p2 + H - ( -p2 + H)2 · 

(2.49) 

The resulting integral is therefore very similar to the case previously considered· 

for a renormalizable theory, Eqs. (2.42), the only difference being that U is here 

a matrix, and the integral cannot be completely performed without specifying U 

since [U, a,.U] f. 0 in general. For 1-'2 ~ U one obtains in this case (after a Wick 

rotation in the Po plane): 

r,R(R•norm) = --1
-Tr {21-'2Uln2 + (.!.U2 + .!.a2U) ln(2U/I-'2)- ~u2 } 

., 2(47r)2 2 6 4 

1la1 I d
4
p -- !-'2d>. --Tr 

2 0 (27r)4 

[ 
p2 . 1 ] 

(P2 + u + >."'2)• a,.u (P2 + u + >."'2 ) a"u + o( a•). (2.50) 

Note that, aside from the coefficients of In 1-'2 , the numerical coefficients in (2.50) 

are specific to our regularization prescription, Eqs. (2.43-45). In the case of a single 

scalar field, the remaining integral in (2.50) can be evaluated, giving a finite result, 

in agreement (up to a total derivative) with Ref. 11, for the second order derivative 

term. 

To generalize the result (2.50) to the case of nonderivative couplings we need 

only make the replacements 

U ---+H=U+R 

a,.u ---+ D,.H. (2.51) 

However, since R [Eq. (2.16)] is second order in derivatives, we need only retain 

the terms linear in R in those terms of (2.50) that contain no explicit derivatives. 

We use: 

Tr F(H) = Tr F(U) + Tr RF'(U) + O(R2
) (2.52) 

where F is an arbitrary function of H, to obtain 
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~ 

1 { 1 1 3 } .CReg =- 2(4·
11
-)2 Tr 2J'2(U + R) In 2 + (2U2 + RU + 6D 2U) In(2U f J'2)- 4u2

- U R 

-! r 2d>..f d
4

p Tr [ P
2 

D U 1 D"U] 
2 Jo J' (21r) 4 (p2 + U + >.1'2)4 " (p2 + U + AJ'2) 

+ o(a4
) + o(U/1'2). (2.53) 

Note that the only quadratically divergent derivative term is proportional to the 

"curvature" R; R = 0 for a renormalizable theory. 

3 The Non Linear u-model 

In this section the above result will be applied to the non linear a-model defined 

by the tree Lagrangian 

1 .. 
.Cu = 2a,.1r;a"1r;Z''- V(1r), i = 1, 

with the potential 

V(1r) = c../F2 - 1r2 =: -uF2 

and the scalar metric ( 11"; = 1r;) 

zi; 

11";11"; 
z.-:1 = o;; - F2 . ., 

N 

The curvature R is determined from the definitions (2.16-17) and (2.9-10) as: 

.Rf = ; 2 (o!a,.1r,.a"1r,zld- a,.1r"a"1r;Z;") 

and the scalar mass matrix is 

Uf = Z;// D" dV = uof 

13 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

•: • 

where u is the negative of the potential, Eq. (3.2). Since U is proportional to the 

unit matrix, the last term in (2.53) can be integrated immediately. Using, from 

(3.4), 

1 .. 
Tr R = -(N- 1)a 1r·a"1r·Z'' 

F2 " • ' 
(3.6} 

and 

n,.u = a,.u + [-y,., u] = a,.u (3.7) 

we obtain the effective one loop Lagrangian 

1 { [ 1 1 1 a ua"u] .C'R., =- 2(
4

11") 2 N 2J'2uln2+ 2u
2 ln(2u/e32J'2)- 12~ 

N-1 ·· 2 2} +--p-a"1r;a"1r;Z''[2J' ln2 + u ln(2u/eJ' )] 

+ O(a4
) + O(uf 1'2) +total derivatives. (3.8) 

As expected, the quadratically divergent derivative term is chiral invariant, while 

soft symmetry breaking u f. 0 generates a logarthmically divergent derivative cou

pling at one loop. 

As a check of the formalism developed in Section 2, we show that the result 

(3.8) can be obtained as an appropriately taken limit of the linear a-model. We 

start from the Lagrangian 

.c = ia,.tJ>;a"4i - ca- ~(4>2 - F 2
}

2 

i = (0, · · ·, N), 1/>o =a, tPi>O = 11";. (3.9) 

In the limit g -+ oo, the field a is fixed at its ground state value 

a2 = F2 _ 11"2, (3.10) 

such that the coefficient of g vanishes; substituting (3.10} into the Lagrangian (3.9}, 

one obtains the non-linear model of Eqs. (3.1-3). One expects that for finite but 

large g, specifically gt/>2 ~ 1'2 , the linear model should mimic the non-linear model 
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for the effective theory at scales ¢>2 :;;;,p,2. We show here that this is indeed the case 

for the one-loop effective Lagrangian when the limit of large g is suitably defined. 

Consider first the case of a constant background field: < a,..¢>; >= 0. Then the 

effective Lagrangian (3.8) reduces to the effective one-loop potential [17] 

y(1) - __!!__!( 2) 
•II - 2(411")2 u, J.L (3.11) 

where u is defined in Eq. (3.2) and [c/. Eq. (2.45)] 

1 . 1 1 1 d4 
-- /(m2 2)- _.!. 4 r d>. r d p 
2(411")2 'J.L - 2J.L lo lo 11 ( -p2 + m2 + ).p,2 + '1J.L2)2 (21r)• 

f(m2, p,2) ~~~· 2p,2m 2 1n2 + ~m2 ln(2m2 /e3/2p,2) + const. 

2 2 m">u" f(m ,p,) -4 0 + const. (3.12) 

where "constant" means independent of m 2• For the Lagrangian (3.9) the scalar 

mass matrix (2.15) is 

U; av [ ;( 2 2) .l ; = 6;~; a¢>~; a¢>; = g 6; if> - F + 2¢>;¢>' 

which has N degenerate eigenvalues 

m2 = g(¢>2 _ p2) 

and a non-degenerate eigenvalue 

m~ = g(3¢>2
- F 2

). 

The one loop correction to the effective potential is given in this case by: 

y(1J 1 {Nf( 2 2) 2 2 } •II = 2(411")2 m ,J.L + f(m0 ,J.L) • 

As we take the limit g --+ oo, ¢>2 --+ F 2
, we obtain 

m~--+ 2gF2
--+ oo 
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(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

so the u-loop contribution drops out of (3.16) for 

g ~ J.L2/2F2 (3.18) 

which defines the scale J.L below which the non-linear model gives the correct effective 

theory. However, the pion mass m2, Eq. (3.14) is undefined in this limit. Therefore 

we must determine the way in which ¢>2 varies with g as g --+ oo. To do this we 

make a change of variables 

u = pcos8fF, 11"; = p~sin8/F 
92 =EO~, P2 = q,2 = u2 + 1r2. 

(3.19) 

In this formulation the 8; are the Goldstone modes. The part of the potential that 

grows with g contains only p; exciting the Goldstone modes costs only a finite (for 

c f. 0 in (3.9)) amount of energy as g --+ oo. We therefore fix p at its ground state 

value with the 8; free (in other words we introduce sources for the 9; but not for p), 
giving the condition 

which is solved by: 

auav 811"; av 
0 =--+--

ap au ap a1T; 

=!. (cu + ¢>2g(¢>2- F2)) 
p 

cu + ¢>2g(¢>2 - F 2) = o, 

m 2 = g(¢>2 _ p2) == _ cu = _ cyF2 _ 11"2 ¢>2 .,.. + O(g-1) 

= u + O(g- 1
). 

(3.20) 

(3.21) 

(3.22) 

Substituting this result in (3.16) and taking the limit m5 ~ p,2 ~ m 2, one recovers 

the result for the non-linear case, Eq. (3.11). 

In the case of a non-constant background field, we minimize the action with 

respect to the constrained field p, with the 8; and their derivatives as free variables: 
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giving 

we have 

so finally 

os au as a1r, as 
0 =-=--+--op ap au ap a'lr; 

( 2 2} CU 1 2 = gp p - F + - + -4>,a </>i, 
p p 

m2 = g(l- F2) 
CU 1 

= - p2 - p2 </J;a2 </>; 

1 = u- _-~..a2-~.. + o( -1} p2'~'' 'l't g ; 

4J,a2<~>• = ia2 P2- a,.<t>,a"<~>• 
= z•;a,.1r;a"1r; + o(g-1}, 

2 1 .. 1 
m = u- -Z''a 1r·a"1r· + O(g- } p2 " • ' . 

(3.23} 

(3.24} 

(3.25} 

(3.26} 

Substituting this result in (3.16), and taking the limits as before, we obtain a 

contribution 

~.C(1) = _ __!!_ {2p.2u In 2 + !u2ln(2u/e312p,2} 
•II 2(411')2 2 

+ ~2 z•;a,.1r,a"7r;[2p.2 ln 2 + u ln(2ufep,2
)]}' (3.27} 

which differs from the result (3.8) for the non-linear a-model by the expression: 

~.C' = --- --"-- + -Z''a 7r·a"7r·[2p,2ln2 + uln(2ufep,2
}] • 

1 1 { N a ua"u 1 . . } 
2(47r}2 12 u p2 "' ' 

(3.28} 

However, in order to extract the full effective Lagrangian up to second order in 

derivatives of 71';, we must include the derivative terms in the expansion [c/. Eq. 

17 
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(2.26}] of U(x- if,;); in other words we must go through the steps leading up to 

(2.50}, except that we must take the limit g --+ oo before the limit p,2 --+ oo. 

The term Tr[a2Uln(2U/p,2}] was obtained from [c/. Eq. (2.45}]: 

+ 2(4171')2 ~ Tr { a2u f p,2d>.. c2 +: + )..p,2 - (>..--+ >.. + 1})} (3.29} 

which may be evaluated by expressing the matrix U, Eq. (3.13), in terms of pro

jection operators: 

P/ = of - 4J,¢J I 4>2 , K/ = </>;¢) /4>2, 

PK = KP = 0, P 2 = P, K 2 = K, P + K = 1, 

U=m2P+m~K. 

Then the expression (3.29} takes the form 

(3.30) 

1 1 { 2 lo1 
2 [ P K ] } + -( )2- Tr a U p. d>.. 2 2 >.. 2 + 2 2 >.. 2 - (>.. --+ >.. + 1} 2 471' 6 o p + m + JL p + m0 + p. 

= __ 1_! {Tr(a2UP} In [m2(m2 + 2p,2)] 
2(47r)2 6 (m2 + p,2)2 

+Tr(a2UK}ln [m~(m~+2p.2)]} 
(m~ + p.2)2 

with 

2 . . 2 . 2 . . 
a u: = 2g[ofa,.x" +a <~>•<~>' +a 4>'4>• + 2a,.<t>,a"4>'l 

and 

Tr(a2 UP} = 2gNa,.x" + 4g [a,.<t>,a"<t>'- x;;"] 

Tr(a2 UK} = 29 [3a"x,.- 2a,.4>,a"<t>' + 2x;;"] 

where 
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(3.31} 

(3.32} 

(3.33a} 

(3.33b} 



- - 1 2 x,. = ¢>;a,.¢J; - 2a,.¢> . (3.34) 

Since we are neglecting terms of higher than second order in field derivatives, we 

may use the condition (3.22) in taking the limit g -> oo in the above expressions. 

First we note that 

[m~(m~ + 2#l2)] m~• O[(#l2 lm~)2] = O(g-2) 
In (mg + #l2)2 

(3.35) 

as g -> oo. Since Tr(a2UK), Eq. (3.33b) is O(g), the last term in (3.31) gives 

no contribution in the limit. To extract the divergent and finite terms we have to 

retain terms of order g-1 • Solving Eq. (3.22) to this order gives: 

P2 = ¢>2 = F2 + ulg + O(g-2) 

1 2 1 ( -2) x,. = 2a,.p = 
2
g a,.u + o g 

q = ..jp2 _ 7r2 = yF2 _ 1t2 _ _ c_ + O(g-2) 
2gF2 

a,.u = a,../F2 _ 7r2 + o(g-2) 

a,.¢>;a"¢>; = zii a,.1r;8"1r; + o(g-2
) 

Inserting these results in (3.33a) gives for (3.31) the expression: 

1 1 {Na2 I ( I 2) a 8" zii I [m2(m2 + 2#l2)]} 
- 2(47r)2 6 u n 2u #l + 4g ,.11"; 7rj n (m2 + #l2)2 . 

(3.36) 

+O(g-1) +O(ul#l2
) +0(84). (3.37) 

The last term in (2.50) may be evaluated in a similar way using 

a,.uf = 2g[x,.(K + P){ + a,.¢>;¢l + ¢>;a,.¢J]. (3.38) 

One finds, after some algebra, the expression: 
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4g2 {1 I d4p { [ N 9 ] 
- 2 lo #l2d>. (27r)4P2 x,.x" (p2 + m2 + >.#l2)5 + (p2 + m~ + ).#l2)5 

+(¢>2a,.¢>;8"¢>;- x,.x") [(p2 + m; + ).#l2)4 (p2 + m~ + ).#l2) + (m2 +-+ m~)J- (>.-> >. + 1)} 

g--+oo 111 2 I d4
p 2 { Na,.ua"u a,.7r;8"1r;Zii 

--+ -- #l d). --p + X 
2 o (21r)4 (p2 + u + ).#l2)5 F2 

( 
2gF

2 
1 ) } _1 

(p2 + u + ).#l2)4 - (p2 + u + ).#l2)S - (>. -> ). + 1) + O(g ) 

1 { 1 Na a" I a,.1r;a"1r;z;; =--- - u u u- x 
2(47r)2 12 " F2 

[
2gF2 m2(m2 + 2#l2) ] } 
- 3-In (m2 + #l2)2 + 2#l2 ln 2 + u ln(2ule#l2

) + O(g-1
) + O(ul #l2). (3.39) 

One sees that the divergent term as g-> oo cancels in the sum of (3.37) and (3.39), 

and that their contribution gives precisely (3.28) up to a total derivative: 

a2u ln(2ul #l2) = -a,.ua"ulu + a,.[a"u ln(2ul #l2 )]. (3.40) 

4 The Fermion Loop Contribution 

We consider a (Dirac) fermion Lagrangian of the form: 

.C = -~(-iZ(¢>){J+ B(¢>))t/J (4.1) 

where Z(¢>) is a scalar field dependent matrix in the space of internal fermion 

quantum numbers, and B(¢>) is a field dependent matrix in both internal and Dirac 

spaces. 

As before, the inverse propagator is given by the second derivative of the action: 

giving: 

S =I ~x.C =-I ~x~(-iZ(¢>){J+B(¢>))t/> 
o;(~)B = -(-iZ(x){J,- B(x))~tPA 

Ll:B1A(x,y) = 
028 

B = -(-iZ(x){J, + B(x))M(x- y) 
ot/JA(y)ot/J (x) 
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(4.2) 

(4.3) 



i 

=- [Z(x)(-iPz + C(x))]~ o(x- y), 

c = z-1B. (4.4) 

For Dirac fermion loops the one-loop contribution to the effective Lagrangian is: 

J d:'x£1 = -iTrlnZ- 1~-1 = -iTrln(iP- C). (4.5) 

As in Section 2 we write: 

(-iaz + C(x))o(x- y) = (ia11 + C(y))o(x- y) = j (d
4

p)4 e-ip·z(-p + C(-i~))e;P" 
21r ap 

(4.6) 

and obtain: 

j a'xC1(x) = -i j a'x j (:~4 Tr In (P- C(x- i :p)) . (4.7) 

In the following we take the field-dependent matrix C of the form: 

C(x) = C(cfo(x)) = /l(x) + M(x). (4.8) 

We use the identities 

TrlnAB = TrlnA + TrlnB 

Tr F(-y,.) = Tr F( -1,.) (4.9) 

where 1,. is a Dirac matrix, to write 

Trln(p -/1-M)=~ Trln(-(p -/1)2 + M
2 

+ [p -lf,M]), . (4.10) 

where we have defined 
- a .8 JL .8 a 
A,. = A,.(x- i ap) = e-• ··a. A,.(x)e' ··a. 

and similarly forM= M(x- iip). Next we note that 

[p,M] = ipM = e-iB,·-f.pM(x)e;8··t 

[p-AM] = i(PM + i[/1, M]) 

:=if:/.M 

(4.11) 

(4.12) 

where we define D,. as a covariant four-derivative operator; for a matrix valued 

operator M(x): 

D,.(x)M(x) = [d,.(x),M(x)] 

d,. =a,.+ iA,.. (4.13) 
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Finally, we follow the discussions of Sect. 2, Eqs. (2.27-41), to write the effective 

one loop Lagrangian in the manifestly invariant form: 

if d:'p - • • 
Cf = -2 (21r)4 Trln(-(p+ (1) 2 +M2 + (pM)) 

where 

M• -it~.·-1-M( ) it!.·JL M -1 = e op X e a,; = g g 

00 ( -i)n an 
=L:-(D ···D M)--

n=o n! 1'1 l'n ap,. • ... al'l'n 

and similarly for (PM), and 

- - a G,. =G,,.-a 
Pv 

-
00 n+ 1 an 

G,., = L(-it ( + 2) 1 (D,.1 ···D,.nG,.,)~a 
n=O n • P~&t Pl'n 

G,., = [d,.,d,]. 

(4.14) 

(4.15) 

(4.16) 

As before the expression (4.14) depends only on the covariant quantities M and 

G,., and their covariant derivatives. We further explicate the expression (4.14) by 

writing: 

(p + f:J2 = p2 + (';2 + {p, ro (4.17) 

and 

{p,m = 2P"G,. + [G",p,.] + iu""[G,,p,.]. (4.18) 

From the definition (4.16) of G,. we obtain 

[G,,p,.] =a,.,- ig,., (4.19) 

where we define 

g,.,= E(-it(n+1)(n+2) 
n=O (n + 3)! 

a an 
X (D,. • ... n,.n)D,.Guv ap" ap,. • ... ap,.n (4.20) 

Substituting these relations in (4.14) we obtain our final result for the fermion loop 

contribution to the effective Lagrangian: 

if d4p - - - • • cf = -2 (211")4 Trln ( -p2
- G2

- 2p"G,. + ig~- iu""(G,.,- ig,.,) + M 2 +PM) 
(4.21) 
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with G,., G,.11 and g,.11 defined by Eqs. (4.16) and (4.20). While the expression 

(4.21) may at first sight appear somewhat cumbersome, it should become imme

diately clear in the application to the QED ,8-function, to be given below, that it 

permits considerable simplification of calculations with respect to a straightforward 

expansion of (4.7) or (4.10) that involve the non-covariant field operator A,.(x), 
producing a number of terms that must cancel to give the necessarily invariant 

result. 

It is clear that the above discussion holds with C(x) in Eq. (4.8) as any function 

of background bose fields. As a first application to provide a check of the invariant 

formalism, we consider the case of a single Dirac field with the Lagrangian (4.1) 

taken to be the fermion part of the QED Lagrangian. 

Z(</>) = 1 

B(</>) = C(</>) = e/H,m. (4.22) ,., 

In other words in Eq. (4.8) A,.(</>) --+ eA,., is the",background electromagnetic field 

and M(</>) --+ m is the fermion mass. Then · ,. 

D,.M =0 

G,.11 = ieF,.11 

F,.l! ,;, a,.AII - aliA,.. 
,. ~ 

(4.23) 

We will use the above formalism to calculate the QED .8-function. This is deter

mined by the one-loop fermion contribution to the renormalization of the photon 

kinetic energy term: 
1 

.CK.E. = --F. F"ll 
, 4 I'll ' (4.24) 

so that upon substitution of (4.22-23) in the effective one-loop Lagrangian (4.21), 

we need only retain terms up to second order in the electromagnetic field strength 

F,.11 , and we may drop derivatives of F. From the definitions (4.16) and (4.20): 

- ie a 
G,. --+ 2FII,. apll 

- ie 
G,.ll --+ 2 F,.11 

g,.ll --+ 0 (4.25) 

and the effective Lagrangian (4.21) reduces to 

F i I d4p ( 2 . ,. a e2 I'll a2 e I'll 2) 
.C 1 = -- -( )• Trln -p - 1ep F11,.-a + -F F,.p-a a - -u,.IIF + m 

2 21r P11 4 P11 Pp 2 
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if d4p 
= -2 (27r)• TrlnJI. (4.26) 

The .8-function can be extracted from the once-subtracted result: 

i 1. I d
4
p ( 1 ) .C~"' = .Cf (0) - .Cf (JL2) = JL2 2 fo d>.. (27r )• Tr Jl + AJL2 ' 

.C(JL2) = .C(JI + JL2). (4.27) 

Because of the antisymmetry of F,.ll, the only terms in (4.26) that survive symmetric 

integration over d4 p and the Dirac trace in the expansion of (4.27) are 

.Cf"' = JL2 ~ {l d>.. J d4p Tr { 1 - 1 e2 F~'ll F. ___.!:.___ __ 1 
2 fo (21r)4 -p2 + m2 -p2 + m 2 4 ~'P ap11ap,. -p2 + m2 

e
2 

1 ,.11 1 FP" 1 } ( """) + 4 2 2q~'11F 2 2qP" 2 2 + 0 .l'--p + m -p + m -p + m 

+ derivatives, (4.28) 

where 

m2 = m2 + AJL2. 

The first term in (4.28) is the usual Coleman-Weinberg [17] contribution. After a 

Wick rotation in the Po plane, the second term in (4.28) gives a contribution 

2 F. F"ll r 2d>.. I d4p (m2 + AJL2) 
e I'll fo JL (27r)• (p2 + m2 + AJL2)4 

e2 
= 6(47r)2F,.~~F"IIlnJL2/m2 + O(m2 / JL2), 

and the third term gives 

and 

rl I d
4
p 1 

- e
2 
F,.11F~'

11 

fo JL
2

d>.. (21r)4 (p2 + m2 + AJL2)3 

e2 
,.11 2 2 = ---)-F,.11F lnJL /m , 

2(47r 2 

Reg_ e
2 I'll 2 2 

.C 1 - - 3(41r)2F,.11F lnJL /m. 

(4.29) 

(4.30) 

(4.31) 

The A,.-dependent part of the full effective one loop Lagrangian is therefore 

.C.I!(A) = .Ctree(A, JL) + .Cf"9 = -~ F,.11F"11 ( 1 + 3(::)2 lnJL2 /m2
) - e(JL)fiifi:rp 

1 R I'll ( ) ( 2a 2/ 2) - lL = -4F,.11 FR - e JL 1- 3(41r) lnJL m t/JT'Kt/1, (4.32) 
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where A!= Ap(1+ 3(4";..) lnp.2 fm2) is the renormalized photon field. Renormalization 

group invariance: 

at..11 (A)jalnp. = o 

gives the standard result: 

!pF = _!_ aa(p.) = ~ = ~. 
e aalnp.2 ealnp.2 311" 

(4.33) 

Note that for a scalar loop, there is only a contribution from the second term in 

(4.28), giving the result (4.29). Comparing this with (4.31) and taking into account 

a relative weight factor - 1/2 for a complex scalar loop relative to a fermion loop, 

we immediately obtain 
1 Ps = -(3p. 
4 

(4.34) 

Returning now to the fermion loop contribution to the effective scalar La

grangian, we make the identifications: 

M= M(t/>) 

A~'= -iapt/>;F(4>) (4.35) 

for the field-dependent matrices defined in Eq. (4.8). In the following we retain 

terms only up to second order in derivatives of the scalar fields. Then since Gpv = 
o(a2), expansion of (4.27) with a Jl defined by (4.21) gives the non-vanishing terms 

(after Wick rotation) 

t,f•' = rl 2 I d
4
p {- ( 1 ) 

- 2 fo IL d>.. (211")4 Tr p2 + M2(4>) + ).p.2 

+ Tr (p2 + M2~tf>) + >..p.2D~'M(4>) p2 + M2~tf>) + ).p.2 x 

D~'M(t/>) -• , ..... ~1' , .__.)} (4.36) 

where Tr implies a trace over internal indices only. The first term in the integrand 

of Eq. (4.36) is the same as in the case without derivative couplings, but with 

M(4>) (see Eq. (4.11)) replaced by M(t/>), Eq. (4.15). The expansion of this term is 

identical (after a second subtraction and with the Dirac fermion weight factor -4) 

to the expression (2.50) with the replacements 

U(t/>) ---+ M 2(4>) 

a~'U(t/>) ---+ DpM2(4>) = a~'M2 (4>) + [F(t/>)Bpt/>;,M2 (4>)]. (4.37) 
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Note that the derivative terms are at most logarithmically divergent, as is also the 

case for the second term in (4.36) since it contains two extra propagators relative 

to the quartically divergent expression (4.14). 

5 Locally Supersymmetric Models 

Locally supersymmetric models are characterized by N complex scalar fields 

Zi = (z;-)f (5.1) 

with the scalar Lagrangian 

l(z) = g;ia~'z.a~'ZJ+ V(z,zt) (5.2) 

where 
gii = a2 9(z, zt) (5.3) 

az.aZJ 

is the Kahler metric with the Kahler potential 9(z, zt) a real function of the scalar 

fields. In this section we wish to determine only the quadratically divergent con

tribution which contains at most two derivatives of the scalar fields. The effective 

Lagrangian up to terms with two derivatives is given in Eq. (2.53); the quadratically 

divergent part is 
£quod _ 1 2 
•II- -2(41r)2'1P. Tr(U+R) (5.4) 

where '1 is a prescription dependent parameter; '1 = 2ln 2 for the double subtraction 

procedure used in Sect. 2. Tr U, Eq. (2.15), determines [5,6] the effective Coleman

Weinberg potential [17] and TrR, Eq. (2.16), contains the derivative terms. With 

the scalar metric defined by (5.2), the only non-vanishing elements of the scalar 

metric Z and the Christoffel symbol r are: 

zi; = zii = gii, 

riii = (ri;.~:r = ~ 
az.aZJaZ"k 

r~ = (r~"')* = z_-1r1ii 
i ' il • 

(5.5) 

Then the matrix valued function R, Eq. (2.16) has non zero elements determined 

by: 

Rfkm = -Rfm:A: = (Rlf"')• =- (RJ"'iC)* = ~r?"' • • • • aZm • (5.6) 
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so that 
a r.i 

Tr R = --a f; a,.zka"zm: + h.c. . 
Zm; 

(5.7) 

We now focus specifically on a class of models [7-9] with a Kahler potential of 

the form: 

.9(z,zt) = -1n(8+ 8*)- 3ln(t +t*- k 14>1 2
) = lniW(z)l 2 (5.8) 

where 14>1 2 = ~;1/>;4>! and 8, t and the 1/>;, i = 1, · · ·, N are the N + 2 complex scalar 

fields of the theory with 8 and t gauge singlets. Using the Kahler potential (5.8), 

we evaluate (5.7) to obtain: 

TrR =-. 
4 )a,.8a118*,--~3 (N+~)a,.z~a"Zb.9aii 8 + 8* _ 

= -~Na,.zaa"Zbgaii { 1 + 0 (~)} (5.9) 

where a, b = 0, · · ·, N, Zo = t, Zi>o = 1/>;. As discussed in the preceeding sec

tion, fermion loops give no quadratically divergent contribution to the derivative 

terms. Since contributions proportional to N can_ arise only from scalars or their 

chiral fermion partners in internal loops, Eq. (5.9) completely determines the lead

ing N quadratically divergent derivative term. Combining this with the previous 

determination [6] of Tr U, we obtain 

where 

(l,N)- a,.8a~'8* ab - • .c.!/ - (8 + 
8
.)2 + (1 + E)azaaZbg - (1 + 2E)(V +D) 

- (1 +3E}U 

f = __!!___ 2 
3( 471")2, p. 

V = }:__e2G/3 W;W; 
3k (8 + 8*) 

. aw (-)· W'=-= W; 
at/>; 

g2 
[)-DaDa 

2/ 
Da = 3keGfS""$T;a;l/>; 

U =eB(8 + 8*)~~~~
2 

In writing (5.11) we used the notation 

<t =tk=(l/>;)t 

G = -3ln(t + t• - k 14>1 2
) 
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(5.10) 

(5.11) 

(5.12) 

and we have assumed a superpotential W(z) of the form 

W(z) = W(l/>;) + W(8), (5.13) 

in which case the tree potential is of the form (5.10) with f = 0. We see that the 

vacuum structure is unchanged by the leading N quadratically divergent radiative 

corrections . 

6 Summary and Conclusions 

We have presented expressions for the scalar- and fermion-loop contributions to 

the effective one loop scalar lagrangian that are explicitly invariant with respect to a 

redefinition of the scalar field variables. Our results, for the general class of models 

where derivative couplings arise through multiplication of canonical kinetic energy 

terms by a matrix-valued function of the scalar fields are given in Eqs. (2.41) 

and (4.21) for scalar and fermion loops, respectively. We have expanded these 

expressions up to terms of second order in the derivatives of scalar fields, to obtain 

more explicit expressions for the effective lagrangian in this order as displayed in 

Eqs. (2.53) and (4.36), respectively. As discussed in Section 4, the formalism is 

readily adapted to the case of a background gauge field, in which case the results 

are expressed in terms of the gauge covariant field strength and its gauge covariant 

derivatives. 

In Section 3 we applied the formalism to calculate the one loop effective la

grangian of the non-linear u-model including terms of second order in derivatives 

of the pion fields, and showed that the same result can be obtained as a suitably 

defined limit of the one loop effective lagrangian of the linear u-model. 

Finally, in Section 5 we applied the formalism to determine the leading N, where 

N is the number of chiral multiplets, contribution to the one-loop effective scalar 

lagrangian of "no-scale" locally supersymmetric models. A full treatment of this 

problem will require a generalization of the formalism to include higher spin loops. 
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