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Abstract: 

The neutralization rate of covariant con~tant SU (N) fields due to 
quark and gluon pair creation is calculated semiclassically including in­
teractions between the produced pair. For SU(3) we find th~t this rate is 
remarkably independent to the color orientation in the Cartan subspace. 
Phenomenological consequences for quark-gluon plasma production in 
ultra-relativistic nuclear collsions are considered . 
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Pair production in external Abelian fields is well understood[1,2,3,4]. The pair 
production rate of gluons in covariant constant non-Abelian SU(2) fields was com­
puted in Ref.[5] in the one loop approximation neglecting interactions between the 
produced gluons. The same result was also obtained in Ref.[6] using canonical meth­
ods. In this note we generalize those results to SU(N) for both quark and gluon pair 
production, and consider semiclassical corrections to the rates due to the interac­
tions between the pair. The competition between quark-antiquark and gluon pair 
production in the color neutralization process is illustrated. Possible phenomeno­
logical consequenses for ultra-relativistic nuclear collisions are considered. 

Let ta, a = 1, · · ·, N 2 -1 be the generators of SU(N) in the fundamental represen­
tation. These traceless N X N Hermitian matricies satisfy [ta, tb] = ifabctc, tr(tatb) = 
Da,b/2. The conventional gluon field matrix is defined as A~£ = A:ta, the covariant 
derivative is D~£ = 8~£ + igA~£, and the field tensor is F~£v = [D~£,Dv]/(ig). In this 
notation the equations of motion for quarks and gluons are 

where Jv = 'Et iPt"'vtat/Jfta and f labels the quark flavors. 

(1) 

(2) 

The covariant-constant field[5], which satisfies Eq.( 2) in the source free region 
is of the form 

(3) 

where (F~£v) is independent of x~£, and na is an N 2 -1 dimensional color vector. The 
external AI£ field corresponding to Eq.(3) is (AI£) = -!(F~£v)xvnata. 

Since (A~£) is Hermitian, there exists a unitary matrix, U, that diagonalizes it. 
Since N x N traceless diagonal matricies can be expanded in terms of the N - 1 
traceless diagonal matricies, h;, representing the Cartan subgroup of SU(N), it is 
convenient to expand A~£ in the Cartan-Weyl basis of SU(N). That basis consists[7] of 
N -1 Abelian generators, h;, and the N(N -1) non-Abelian generators, {ei;, i,;· = 
1, .. ·, N; i # j}, that satisfy 

1 
[ei;, e;A:] = ..j

2 
eik 

where the h; are the Gell-Mann matricies 

fori# j # k , 

h; = (2;'(j + 1))-~diag(1, · · ·, 1, -j,O, · · · ,0) , 

with - j appearing in the j + 1 column and where 

1 

(4) 

(5) 

(6) 



are the root vectors of SU(N) as expressed in terms of the elementary weight vectors 

(7) 

(Note that ei; = eie}f.v2 in terms of the N orthonormal unit vectors ei.) 
In this basis, (A~£) can always experessed in terms of N- 1 Abelian components, 

jj~£ = (Hf,···,H~_1 ), as 

N 

(A~£)= :L UH/'hi ut = uii~£. h, ut , (8) 
i=1 

where U E SU(N) and h = (h~, · · ·, hN-1). We can then expand the gluon field 
around the external field as 

(9) 

where B~£ represents the quantum fluctuations around the external Abelian field, 
fiw 

The physical significance of Ei can be seen from Eq.(1) by considering the equa­
tion of motion for the tranformed quark field, 1/J' = ut,p. Eq.(1) then reduces to 
the set of equations 

(10) 

The approximation of neglecting higher order quantum fluctuations beyond the 
one loop order is equivalent to neglecting the O(B,P') terms on the right hand side 
of (10). We therefore see that in the one loop approximation, the equations for 
the N quarks (of each flavor) in the prime basis decouple and reduce to Abelian 
type equations where jj~£ plays the role of an effective electromagnetic field that 
couples to quarks with effective "charges" gEe. Since we know[1] the pair creation 
rate, w 1 ( eF~£v; m), of fermions in an external Abelian field F~£v, we can immediately 

2 

write down the pair creation rate per unit volume of 1/J~ quarks of flavor f as 

Wqc,/ = w ~(gEe . F~£V j m I) ' (11) 

where F~£V = 8~£ jjv- av jj~£' and the elementary spin 1/2 rate is given by[1,8] 

a oo 1 1oo a2 
w1(a,m) = O(a)-

2 
L- dEl exp(-mrEl/a) ~ O(a)-3 d2) , 

2 47!" n=1 n m2 471" 
(12) 

with O(x) = 0(1) for x < (> )0, d2) = 1r
2 /6, and where the approximation holds for 

1rm}ja ~ 1. 
Turning next to gluons, the equations of motion for B~£ in the one loop approxi­

mation are obtained by linearizing Eq.(2) in B~£. Since B~£ E SU(N), we can expand 
it in the Cartan-Weyl basis as 

N 

Bl£ = B:ta = Cl£ · h + L W/jeii 
#i=1 

2 

(13) 
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Inserting (9) into Eq.(2) and using the Cartan-Weyl expansion (13) forB~ together 
with the algebra ( 4) leads to the following equations of motion for the fluctuations 
a~ and w~n in the (linearized) one loop approximation to . 

(14) 

and 

(Dmn)~(D~nW~n- D~nW~n)- (Wmn)~[D~n,D~nJ = 0 , {15) 

where effective covariant derivative D~n is given by 

n~ = a~ + igit . ii~ mn •tmn {16) 

We therefore see that the Abelian fluctuations, c~, obey free field equations whereas 
the non-Abelian fluctuations, W~n obey Abelian vector field equations in the ex­
ternal field, ii~, with an anomalous magnetic moment coupling[6]. Note that 
[D!n, D~nl = igfimn · ff~v. Obviously these equations are decoupled in this approxi­
mation. The effective "charge" of the W!n gluon is given by gfimn· Pair production 
in SU(N) covariant constant fields is thus equivalent to N(N -1)/2 different SU(2) 
problems. Therefore, the pair creation rate per unit volume of W mn Wnm gluon pairs 
can be calculated from the known[5,6] rate, w1 (gF~v), of vector mesons for SU(2) 
covariant constant fields as 

{17) 

where ff~v is the same external covariant constant SU{N) field as in Eq.(ll) and 
the spin 1 rate is given by[4] 

U oo ( -1)n+l looo 1 
w1(u) = O(u)-

2 
2: dp}_ exp(-mrp}_/u) = -w!(u;O) . 

411' n=l n o 2 2 
(18) 

For a discussion on the physical origin of the ( -l)n factors in the above formulas 
see ref.[2] .. 

The case of particular interest in phenomenological applications[8,9] corresponds 
to constant color electric; fields created between interacting partons in high energy 
collisions. For that case F30 = -F03 = E = QE0 , where Eo= gjA.1. for a flux tube 
of transverse area A.1. and ±Q are the effective color charges of the projectile and 
target. We can think of that external field as being generated by a charge density 
Jo = PQ + P-Q, where 

I 3 ........ t 
d XPQ = UQ. h u . {19) 

The elementary qq string corresponds in this picture to Q = lc. We identify the 
string tension with u = ~(E) · (E)A.1. = ~Q · QgE0 • Strictly speaking the string 

tension is l(E · E)A.1., which is proportional to the second order Casimir operator, 

C2• Inherent in our semiclassical approximation is the assumption that (E · E) ~ 
(E) ·(E). This approximation is valid for large external fields, but even for strings 
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in the fundamental and adjoint representations it is a good approximation since 
uAiuF = C2(A)IC2(F) = 2N2I(N2 -1) whereas ff·ffl("f·f) = 2NI(N -1). For N ~ 
1, the ratio of the string tensions in the adjoint and fundamental representation in 
both cases is thus uAiuF ~ 2 .. For SU(3) uAiuF = 3 in our approximation as 
compared to the exact value 9 I 4. 

In high energy nuclear collisions[9] or very high energy hadronic collisions, mul­
tiple soft gluon exchange may lead to a large effective charges Q ~ 1. ·If Jl gluons 
are exchanged with random charges, then (Q2) = J1(1+N-1)-1 since only N(N -1) 
of the N 2 - 1 gluons are "charged" with ffij • ffij = 1. Of course such color electric 
fields are unstable againt pair production. The pair production rate per unit volume 
of massless quark-antiquark and gluon pairs is given from Eqs.(11,17) by 

Wq = 

g2 N _. _. 
2 

Q2 
- I: (TJij ·E) = -Nwo , 
4811" i>j=1 4 

(20) 

where w0 = (gE0 ) 2 1(2411") and N1 is the number of quark flavors such that 1rm}lu ~ 
1. We thus see that in the large color limit gluons are produced at a rate N I2Nf 
faster than quarks in the color neutralization process. 

The above rates of course neglect the interactions between the produced pair. 
In QED they are difficult to include because the electric field, elr2

, falls off rapidly 
with separation. However, in non-Abelian theories it is assumed that color electric 
flux can only :propagate in narrow flux tubes. For a flux tube of transverse area, A.L, 
the color electric field felt by a particle of charge gq due to its partner is -gqi2A.L, 
independent of separation. Because that field stregth is constant, it possible to 
include its effect on the pair production rate in a simple way[10,11]. The external 
covariant constant color electric field in Eq.(20) needs only to be replaced by the 
total field felt by the particle: 

- gQ gQ gq - 1 g 
E= -+--- = (Q- -(j)-

2A.L 2A.L 2A.L 2 A.L 
(21) 

The effective screened string tension that controls the pair production rate in (11,17) 
is therefore 

u(q, Q) = gq · E = u A ( q · (2Q - (j)) , (22) 

where u A = g2 I (2A.L) is the tension of the adjoint string, as produced, e.g.,in 
pp collisions. Noting that q = ei, ffii for quarks and gluons respectively, the rate 
per unit volume for pair production including interactions between the pair in the 
semiclassical approximation is thus given by 

Wq = (23) 
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w9 = l:w1(u(ffi;,Q)) , (24) 
;;;; 

where the sum over the ±fi includes both the N - 1 quark weight vectors and the 
N -1 antiquark weight vectors, the sum over ffii includes the N(N -1) root vectors. 

As pairs are produced the local color electric field becomes partially neutral­
ized. For large external fields ( Q2 ~ 17 2 = 1), the average local color electric field 
decreases at a rate 

(25) 

where the pair production rates per unit volume and effective volume elements, 6Vq-, 
depend on the particular charges, ij, as well as on the mean external charge, (Q(t)) = 
(E(t))A1.jg. The minimum volume elements for pair production are constrained 
by energy conservation[12]. For particles with charges, ±gij, the energy gained 
by separating them a distance, r, is ~E(r) = u(ij, Q)r in terms of the effective 
string tension (22). For a pair produced with transverse momenta, ±jh, energy 
conservation implies that the particles can come on shell only after a separation, 
rc = 2m1.ju(ij,Q), where mi = m2 + p}_. The average volume required for pair 
production of such pairs is therefore 

(26) 

If we choose 6V > 6V9, then we must take into account of the fact that the proba­
bility that the pair will screen the field at a particular point is only 6V9 / 6V. 

The neutralization rate is dominated by production of pairs with small mass 
(1rm2 ju ~ 1), for which 

(27) 

where d5/2) ~ 1.3415. Therefore, we estimate that 

1 (- ( - - )) 312 - fi. 2Q- fi 
1"1 

(28) 

where r1 ex: (g2yuA)-1 is independent of Q. Obviously for large Q, the interactions 
between the pair can be neglected, and thus Eq.(25) reduces to 

- ) 312 [ l d( Q ( t ) 2 t"""' """' """' 3 2 3 2 I"""' """' """' 3 2 
dt ~ ---:;:- .N' ~ fi(fi · (Q)) I + (1- 2- I )~ f/i;(11ii. (Q)) I , 

1 ±£; f'/ij 

(29) 

where the sums are restricted to charges with if· Q > 0. 
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Eq.(29) controls the rate of color neutralization of large covariant constant 
SU(N) fields and is the natural generalization of the equation derived for the Abelian 
case in Ref.[12]. The SU(N ~ 3) case is only complicated by the fact that Eq.(29) 
is a vector equation. The power 3/2 follows from dimensional considerations under 
the assumption that the only dimensional quantity in the problem is E. 

For Q(O) pointing along one of the weight or root vectors Eq.(29) reduces to an 
Abelian equation 

dQjdt = -Q312 /r(Q) , (30) 

where the relaxation time is given in the two special cases by 

r(€) = Tt((N -1)/2N)l14 [N,((1- N-1)312 + N-312) + (1- 2~312)Nr 1 

r(17) · = Tt [Nt + (1- 2-312) (N + 23/ 2 - 2)] -
1 

(31) 
The terms proportional to N1 are those due to qq pair production. For SU(2) the 
two times are of course identical. Amazingly, for SU(3) they only differ in the fourth 
decimal place. 

The numerical coincidence of r(€) and r(7]) for SU(3) has the pleasant conse­
quence that r(n) ~ 0.18r1 is independent of the orientation of the color charge in 
the Cartan subspace to a very high accuracy. Therefore for SU(3), the vector nature 
of Eq.(29) is irrelevant, and the solution is accurately given by the power law 

(32) 

as in the Abelian case[12], but with the characteristic time required to neutralize 
3/4 of the initial color field given by 

Ttf4( Qo) = 0.36 r1 Q~ 112 , (33) 

For an initial color field generated by a random walk[9] in SU(3) with )./ steps, 
yiQ0 ~ (3}./ /4)114 • In collisions of heavy nuclei of mass A, Glauber theory gives 
)./ ex A 213 for the number of binary collisions per unit area, and therefore the 
characteristic neutralization time decreases for heavy nuclei as r114 ,..., 0.4r1A -l/6 . 

This formula is however only valid as long as Q0 ,..., A113 ~ 1. For Q0 ,..., 1 , 
Eq.(29) strickly speaking does not apply, and the interactions between the pairs 
must be included. A rough estimate for the neutralization rate in that case can 
be obtained by including pair interactions via (28). For Q = ij ( Q2 = 1) this 
gives dQjdt ~ -1.7 /r1 for SU(3) with N1 = 2. In contrast, Eqs.(30,31) ignoring 
those interactions give dQjdt ~ -5.5/r1. Therefore, pair interactions delay the 
neutralization time for Q2 = 1 by a factor ,..., 3 relative to Eq.(33). In this way 
we estimate the neutralization time of adjoint (gg) strings to be r1t4 (ij) ,..., r1. The 
reduction of the characteristic neutralization time by an extra factor ,..., 3 for large 
A is due to the lesser importance of the interactions between the produced pairs. 

These results imply that most of the quarks and gluons produced in the neutral­
ization of large color fields created in ultrarelativistic nuclear collisions may appear 

6 

'· 



• 

at proper times an order of magnitude smaller than in elementary pp or e+ e- col­
lisions. Shorter neutralization times are encouraging in connection with the hope 
that a quark-gluon plasma can be generated and studied through ultra-relativistic 
nuclear collisions. Obviously shorter times imply that plasmas with higher initial 
energy densities can be produced[12,13]. However, it is not clear whether local 
thermal equilibrium can be achieved on such small time scales[14]. Fortunately, 
though, the color neutralization mechanism leads to initial conditions that are not 
far from local equilibrium. (1) First, in high fields the neutralization mechanism 
involves production of quarks and gluons at comparable rates (for SU(3)). Further­
more, u,d,s quarks are produced with nearly the same abundance since their masses 
become irrelavant. Thus the chemical composition of the non-equilibrium plasma 
produced through neutralization is close to that it would be in local equilibrium. 
Even charmed pairs (cc) could be produced with many orders of magnitude greater 
probability than in pp collisions (wc/Wu "'"'exp(-7rm~/a(l,Q)) "'"'exp(-10/A113

) ). 

(2) Second, the distributions of initial transverse momenta are nearly exponential 
as in local equilibrium, although gluons have initially about 30% larger transverse 
momentum than quarks via (27). (3) Finally, the produced quarks and gluons are 
subject to accelerations in the external color field. This leads to Joule heating of the 
plasma at a rate ex a)E · E, where O"c oc T/(alna-1)is the color conductivity[15]. 
Such Joule heating helps to drive the plasma toward local equilibrium more rapidly. 
Thus the non-equilibrium quantum tunneling dynamics and external field effects 
may play an important role in creating plasma initial conditions approximating 
local equilibrium at very early times in the collision. 

We close by pointing out that the rates derived here can be used to extend 
Monte-Carlo models such as the Lund model[16] to study quantitatively the pro­
duction and evolution of quark-gluon plasmas in large color fields. Such work is in 
progress and will be reported elsewhere. 
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