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ABSTRACT

Econometricians frequently propose parametric models which are contingent on an underly­
ing assumption of rational economic agents maximizing their utility. Accurate estimation of the
parameters of these models depends on using data disaggregated to the level of the actual agents,
usually individual consumers or firms. Using data at some other level of aggregation introduces
bias into the inferences made from the data. Unfortunately, properly disaggregated data is often
unavailable, or at least, much more costly to obtain than aggregate data.

Research on consumer choice of home heating equipment has long depended on state-level
cross-sectional data. Only recently have investigators been able to build up and successfully use
data on consumer attributes and choices at the household level. A study estimated for the Electric
Power Research Institute REEPS model is currently one of the best of these.

This paper examines the degree of bias that would be introduced in that 'study if only aver­
age data across SMSAs or states were used at several points in the investigation. \Ve examine the
market shares and elasticities estimated from that model using only the mean values of the exo­
genous variables, and find severe errors to be possible. However, if the models were calibrated on
only aggregate data originally, we find that proper treatment allows market shares and elasticities
to be found with little error relative to the disaggregate models.

* This work was supported by the Assistant Secretary for Conservation and Renewable Energy, Office of
Building and Community Systems, Building Equipment Division of the U.S. Department of Energy, under Con­
tract No. DE-AC03-76SF0009S.
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HOME HEATING AND COOLING EQUIPMENT

David J. Wood, Henry Ruderman and James E. McMahon

1. Introduction

The uncertain status of future energy supplies relative to demand has been a point of con­
cern in this country for more than a decade. A number of empirical studies have been conducted
to estimate the factors that influence demand in one fashion or another [2,3,4,5,5,9,12]. Some of
these have been in support of computer models that simulate long-run national energy demand
[6,12].

These econometric studies take a common view that energy-related decisions are made by
rational economic agents seeking to maximize their own utility, For the studies listed above, that
decision is the choice of a specific fuel or technology for residential space heating. The statistical
techniques used to estimate the determinants of that decision fall into a general category called
discrete choice modeling. In this context, the issue of aggregation bias can be critical. l

Aggregat£on b£as is a geneml terlll for enol'S induced by a mismatch of the economic theory
(of individual consumers) and the level of aggregation of data (e.g., mean values at the state or
national level). It has two distinct forms:

1) bias in the prediction of market shares and elasticities for aggregate groups, using pal'ame­
tel'S from a household choice model and representative values of independent variables (fre­
quently the means) for the gl'OUp; and

2) bias in the parameters of a houscllold utility maximization choice model estimated on data
aggregated at some regional Icvcl.

This paper offers examples of the potent,ial severity of both types of bias. The former is found to
be potentially dangerous, leading to predictions of market share which are severely in error; the
latter is found to be much less of a problem if handled correctly.

The present paper is organi:wd as follows: Section 2 contains a brief introduction to the
theory of aggregation bias. That section is strongly influenced by McFadden and Reid [16], but
has been cast in the context of consumer choice of space heating systcms.

The first form of aggregation bias (prcdict.ion of aggregate market shares or elasticities using
only mean values) is taken up in Section 3. This bias has been extensively analyzed in the litera­
ture on transportation modal choice [1O,1l,16,L7,18,19,20]. That literature has largely focused on
bias-reduction methods generally called c1assljicalz'on techniques; they depend on the relationship
between the bias and the covariance matrix of the independent variables. These techniques were
generally proposed as being computational short-cuts to the goal of bias-free market share esti­
mates. That goal can also be achieved through sample enumeralz'on, the calculation of predicted
choice probabilities for every member of a random sample from the population.

1 Readers interested in a brief review of the literature on home heating appliance choice are referred to Wood,
Ruderman, and McMahon 1221. I\lore extensive reviews may be found in Dohrmann [41 or Hartman 171. A com­
plete review of issues and techniques in discrete choice modeling is in Amemiya [11·
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VVe show a sample enumeration method of estimating market shares and elasticities which is
essentially bias-free (although computationally intensive). The method captures arc elasticity
effects of relatively large perturbations in the independent variables at the same time it estimates
the point elasticity. In an econometric model of residential heating equipment choice estimated by
EPRI [6]' using arc elasticities allows significant improvements (relative to the point elasticity) in
predicting market shares under large (e.g., greater than 20%) changes of the independent vari­
ables.

The second form of the bias is discussed in Section 4. Despite general acknowledgement of
some inherent error in estimating a household choice model from aggregate data, the appliance
choice literature has long depended on just such data [2,3,4,9]. There is a body of literature indi­
cating that such models may lead to biased parameter estimates [8,11,13,16,18,19]. Again working
with the EPRI model [6], we present an empirical example of the potential severity of aggregation
bias, and conclude that if the aggregate coefficients are used in a properly "disaggregated" fashion,
then the resulting calculation of market shares or elasticities can be without serious error.

In Section 5, we examine the models estimated on aggregate data and test the significance of
their parameters and implied elasticit,ies for predicting new market shares. Though the estimated
parameters on aggregate data are significantly different from the disaggregated estimates, those
diffcrences do not gcncrally lead to economically significant errors.

A brief summary and discussion of rcsults is found in Scction 6. Acknowledgements and
references to papers mentioned in the text follow.

There are two appendices: the first discusses the aggregation of EPRI's database into groups
by SMSA and geographical region; and the second discusses several probit versions of the models
estimated by EPRI, with particular attention to the asymptotic nature of the theory suggested by
McFadden and Reid [16].

-2-
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2. Introduction to Aggregation Bias Theory

In 1975, McFadden and Reid published an analysis of the role of aggregation bias in estimat­
ing parameters for consumer choice models [16]. That paper dealt with the estimation of probit
models for dichotomous choice problems (i.e., choice between only two alternatives).2 The authors
developed their analysis in the context of choice of transportation mode. In this section, we will
briefly review issues in their work that are relcvant to the current paper. Our presentation will be
in the context of consumer choice of space heating systems, but will follow closcly the development
by McFadden and Reid.

I

Almost all discrete choice estimation models start from an assumption that the utility a con­
sumer derives from his choice is some linear combination of his own and the choices' attributes,
plus a random term with some assumed distribution. Thus, utility is assumed to have a form like
this:

Utility = E j3 x + £ = BX + £

where X is a vector of exogenous variables,
B is a vector of the coefficicnts j3 which the researcher wishes to estimate, and
£ is a random tcrm.

The probability tha.t. a. consulller will choose any particular alt.c)'Jlativc from a given set of
choices is just the probability that that altcrnative is perccived as pl"Oviding more utility than any
other. In a choice between two alternatives, this leads to the following equations:

PROB {consumer chooses all, I} = PROB {utility of all, 1 > utility of all, 2}

PROB{BXI + £1 > BX2 + £2}

PROB{£2 - £1 < B(XI - X2)}

PROB{£2-£I < BZ} (2.1)

Note that the numeric subscript is associated with each alternative: Xi refers to the vector of exo­
genous variables associated with the £th alternative,and Z is the vector of diITerences Xl - X2• As
long as utility is linear in these variables, it is only the diITerence between these two vectors that is
significant.

Thus, the probability that the consumer will choose alternative 1 depends on the probabilis­
tic nature of the diITcrence bctwecn the two random terms. If we assume that the difference has a
standard normal distribution, then we have the standard probit modcl, and equation 2.1 above
will look like this:

PROB {consumcr chooses alternative I} = <.P(BZ)

where <.P ~s the cumulative standard normal distribution function.

2 However, their results are at least indicative of the kind of bias that occurs in multichotomous choice
models, or models other than the probit (e.g., the logiq. Heid [171 took advantage of the similarity of the normal
and logistic distributions to extend the analysis to binary logit models.
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(2.3)

(2.6)

Then the best prediction of the fraction of N particular individuals choosing the first alter­
native is:

_ 1. N

P = N E <I> (BZJ
j=l

The quantity P is the expectation of the response probability of the empirical distribution (over
the N individuals sampled) of the vector of the independent variables Zj. It is the expected market
sh.are of alternative 1. in the group of N individuals.

To estimate P for an entire state, state k say, it is appropriate to instead consider the expec­
tation of the response probability of the underlying distribution of the independent variables.3 If
that distribution is jointly normal with mean Zk and covariance matrix AkJ then the term
y = BZk is distributed normally with mean BZk and variance 0'; = BAkB. Therefore, the expec­
tation of the response probability is

+00 [- 1- 1. y-BZ kJ\ -+ f <I>(y)-¢i dy
Nk-oo -00 Uk Uk

where ~( ) is the normal probability density function.

McFadden and Reid simplify this equation further by using the convolution properties of the
normal distribution. That simplification results in the following relationship:

- [BZk]P -+ <I>
k Nk-OOV1. + 0'&

This result can also be seen by direct consideration of the condition necessary for an individual to
choose the first alternative (equation 2.1.).

The difference between equations 2.2 (for individuals) and 2.3 (for aggregate regions) is the
fundamental bias derived by McFadden and Reid. Its effect can be seen quite easily for aggregation
bias of the first kind, the prediction of aggregate market shares. Equation 2.3 suggests that when
estimating Pk, the aggregate explanatory variables Zk can be viewed as having the same relative
weights B as in the disaggregated model, but that the variables (or the weights) should be divided
by the term (l + 0';)0.5 before applying the nonlinear transformation <I>(). If a region is com­
pletely homogeneous with respect to the independent variables Zk (all individuals holding the same
values Zk), then A k = 0, and the term 0'; = BAkB will have no effect.

Similarly, when equation 2.3 is substituted into the least-squares equations typically used to
estimate a coefficient vector (call it D) on aggregate data (e.g., state-wide averages):

<I>-I(Pk ) = DZk + (k (2.4)

~_.[ ~[v~: .1]] ~ DZ, + " (25)

we find that, in the limit as the number of observations increases, the estimated coefficients Dare
functions of the true vector B and multiplicative bias factors in the terms (l + u;rO.5for all k
regions. If the individual aggl'egate data (i.e., state-wide averages) have a constant covariance
matrix A k = A for all regions k, then the bias terms reduce to a simple form:

D = 1. B
V1. + BAB

Only if all regions are completely homogeneous (i.e., all A k are zero), will D be a consistent esti­
mator of B.

3 The two are equivalent as the number or individuals sampled, Nt, goes to infinity.
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30 Naive Estimates of Market Shares and Elasticities

This section is concerned with aggregation bias of the first kind: bias in the estimation of
aggregate market shares and elasticities from a disaggregated model. This problem has been
extensive analyzed in the literature on transportation modal choice [10,11,16,17,18,19,20].

The transportation literature has largely focused on bias-reduction methods generally called
classification techniques. In very simplified form, these techniques work by dividing the popula­
tion into groups for which the set 01' exogenous variables is more or less homogeneous. Market
shares are calculated for each group lIsing the mean values, and the results combined with
appropriate weights to get an overall probabilit,y. The number of groups necessary depends on the
number of independent variables and how each contributes to the overall covariance matrix. Past
efforts have used numbers ranging from as few as four [18] up to several dozen or more.

Naive estimation rel'ers to the use of aggregate mean values of the exogenous variables in
analytic expressions for market share or elasticity (without regard to the variance of those vari­
ables). It can be viewed as a limiting case of classification techniques, with the population being
divided into exactly one group. It is the simplest, and probably the most commonly used, method
of getting aggregate market shares. Unfortlll1ately, it can produce highly inaccurate estimates.

Table 1 shows the results of naive estimation of market shares for the population in EPRI's
disaggregated database. The relative error betwpen the aggregate and disaggregate predictions
ranges from a quite tolerable 0.5% (for electric forced air with central cooling) to a serious 50%
(1'01' electric baseboard systems without central cooling).

Table 1

Effect of Aggregation on Market Share Estimation

estimated market shares:

disaggregated relative
system enumeration "naive" difference difference

central cooling 0.5264 0.5908 -0.0774 -12.1 %

gas forced air, with ac 0.3097 0.3720 -0.0623 -20.1 %
oil forced air, with ac 0.0266 0.0327 -0.00(31 -22.9 %
elecforced air, with ac 0.1595 0.1587 0.0008 0.5 %
heat pump 0.1150 0.1280 -0.0130 -11.3 %
elec baseboard, with ac 0.0306 0.0275 0.0032 10.3 %

gas forced air, w/o ac 0.1915 0.1749 0.0165 8.6 %
gas hydronic, w/0 ac 0.0063 0.0053 0.0010 15.8 %
gas non-central, w/0 ac o.oon 0.00'14 0.0003 5.5 %
oil forced air, w/o ac 0.0321 0.0267 0.0054 16.9 %
oil hydronic,. w/ 0 ac 0.0318 0.0184 0.0134 42.2 %
oil non-central, w/o ac 0.0021 0.0018 0.0003 18.2 %
elec forced air, w/ 0 ac 0.03H 0.0216 0.0125 36.6 %
elec baseboard, w/o ac 0.0559 0.0280 0.0279 49.9 %

all gas systems 0.5121 0.5566 -O.OtlS -8.7 %
all oil systems 0.0927 0.0796 0.0131 14.2 %
all conventional elec 0.2802 0.2358 O.O·IH I 15.8 %

A similar bias effect occurs in e1a..<;ticities which are simply evaluakd a.t t,he mean values of
the exogenous variables. Such an clasticit,y is, at best, the elasticity 01' a household all of whose
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exogenous variables are at their respect.ive means (which may be completely unrepresentative of
the population). In general, it will be a poor estimator of the mean of the individual household
elasticities.

However, even the mean of the individual elasticities for all households in the database is not
an ideal measure of how an overall market share will respond to changes in an exogenous variable.
A better measure can be obtained by taking a weighted mean of household elasticities, where the
weights are the probabilities that the household selects the alternative whose elasticity is being
sought. That calculation results in an overall market elasticity.4 Let

household elasticity of alternative £ with respect to variable x
household probability of selecting alternative £

estimate of overall market share of alternative £ = ~ E P j

Then the overall market share elasticity of alternative £with respect to x is:

oAfSi x---.--ox . }.fSi EFj

(4.1)

"We estimated these market elasticities by simulating economic changes in the dataset. Our
method is to perturb by a small fraction 8 (e.g., 8 = 0.01) the exogenous val'iable and calculate
new market shares (under the perturbed conditions) by summing the household probabilities. The
difference between the new and unperturbed market shares is due to the change in the exogenous
variable. Dividing that difference by the perturbation size 8 and the original market share gives
an estimate of the overall market arc-elasticity for that perturbation:

(4.2)

Both the new market shares and the resulting market share arc elasticities above are func­
tions of the perturbation size 8. Due to the nature of the logit model, they can be approximated
quite well by second-order polynomials.s We can exploit this relationship to express a whole range
of arc elasticities using only the three parameters of a quadratic curve.

\Ve do this by calculating the arc elasticity above for several discrete perturbations over the
range -33% to +50%. Using ordinary le<lst squares techniques, these values are regressed on a qua­
dratic curve in 8. If the resulting fit is close enough, the parameters of the fitted quadratic convey
all the information necessary to find any arc elasticity in the fitted range. Furthermore, the con­
stant term in that quadratic (the intercept) is the limiting value of 1](8) as the perturbation size
goes to zero. As such, it is the point elasticity of the overall market share.6 This process is pic­
tured in Figure 1.

The difference bctwecn these bias-frce elasticities of overall markct share and a naive projec­
tion of the elasticity at the mcan values of the exogenous variables can be quite significant. Table
2 shows comparable values for a sampIc of scvcn elasticities on the EPRI dataset.

4 In effect, the more likely a household is to choose a particular alternative, the more important that
household's elasticity is in determining the overall market elasticity.

6 Specifically, due to the fact that individual probabilities are expressed as ratios of exponentials.

6 Readers interested in a more detailed discussion of the "simulation" approach to calculating elasticities
should see Wood, Ruderman, and McMahon [221. In that paper, however, this methodology was applied to an ex­
tensively modified version of the EPRI study. Specific disaggregate elasticities reported there will differ from
those reported here.
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Table 2

Effect of Aggregation on Elasticity Estimation

estimated market share elasticities

relative
market share exogenous variable disaggregated naive difference difference

central cooling price of gas -0.143 -0.162 0.019 -13.3 %

all gas space heat price of gas -0.529 -0.536 0.007 -1.3 %
all oil space heat price of gas 0.424 0.643 -0.219 -51.7 %
all elec space heat price of gas 0.572 0.674 -0.102 -17.8 %

central cooling own capital cost -0.293 -0.149 -0.144 49.1 %

heat pump own capital cost -1.770 -1.350 -0.420 23.7 %

central cooling household income 0.282 0.375 -0.093 -33.0 %

Our simulation method provides bias-free estimates by using sample enumeration to get
unbiased market shares and appropriately combining them to get an overall market elasticity.
Furthermore, representation of an entire range of arc elasticities in only three parameters allows
an investigator to capture changes in market share which are non-linear in the size of the pertur­
bation of an exogenous variable.

A new market share (under a change in some exogenous variable) can be calculated as a
function of the old market share, the elasticity, and the relative perturbation size necessary to
reach the new value of the exogenous variable:

(4.3)

If only the point elasticity is available, calculating new market shares from equation 4.3 amounts
to an assumption that 1](8) = 1], a constant. The result will be slightly biased, with error more
significant as 0 is larger or the true arc-elasticities less constant.7

This error in estimating new market shares is graphically shown in Figure 2. Since the rela­
tive change in market share is just the product of the perturbation 0 and the elasticity 1](0), the
correct relative change in market share for a 33% increase in the exogenous variable is just the
area of the smaller rectangle (= 0.14) shown in Figure 2. The naive elasticity produces a notice­
ably larger estimate (area = 0.21). In this example, the curve of arc elasticities is nearly flat, so
the results of using a point elasticity instead of the correct arc elasticity are only slightly in error.
This would not be the case for elasticities and market shares estimated from the curve shown in
Figure 1, above.

7 Arc-elasticities are not constant in 8 because of the non-linearity of the logistic distribution. TIJi:, is ex­
pressed in the coefficients of 8 and {)2 in our quadratic fit: very roughly, the larger the absolute values of these
coefficients, the more error in predicting new market shares using only the point elasticity.

-8-
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The two error-inducing effects (naive estimation and the use of point elasticities alone) may
be either compounding or partly canceling.8 The result depends, at least in part, on the direction
of the proposed movement of the exogenous variable. Results for particular examples of combined
effects are shown in Table 3. There, we report new market shares for seven different technology
groups implied by the elasticities in Table 2. All are due to a 33% increase in the exogenous vari­
able shown. Existing (i.e., unperturbed) market shares by disaggregated methods are listed in the
first column.

Table 3

Predicted Market Shares for Selected Technologies

with 33% increase in exogenous variable
disaggregated "naive" relative

market share exogenous variable un perturbed mkt share mkt share difference difference

central cooling price of gas 0.5264 0.5025 0.5590 -0.0565 -11.2 %

all gas space heat price of gas 0.5121 0.42·19 0.4372 -0.0323 -7.6 %
all oil space heat price of gas 0.0927 0.1059 0.0966 0.0093 8.8%
all conv elec heat price of gas 0.2802 0.3312 0.2887 0.0425 12.8 %

central cooling own capital cost 0.5264 0.4754 0.5615 -0.0861 -18.1 %

heat pump own capital cost 0.1150 0.0642 0.0704 -0.0062 -9.7 %

central cooling household income 0.5264 0.5724 0.66<16 -0.0922 -16.1 %

8 For arc elasticities with significant slope, it may well turn out that the naive elasticity is exactly equal to
the arc elasticity for some specific perturbation size. This very nearly occurs for our example in Figure 1.
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4. Examination of Aggregation Bias in a Logit Model

This section considers a different model than the probit analyzed by McFadden and Reid.
Instead, we examine aggregation bias as it would occur in estimating the parameters of a nested
logit model.

Our analysis is made possible by the availability of a disaggregated dataset developed for the
Electric Power Research Institute [6]. That dataset was developed to estimate submodels in
EPRI's Residential End-Use Energy Planning System (REEPS). The EPRI study used a database
of some 1300 households drawn from the Annual Housing Surveys conducted by the Bureau of the
Census. Only new, single-family, owner-occupied housing was included. The AHS data were sup­
plemented by estimates of household enet'gy requirements calculated using the MIT Thermal Load
Model [15].

The EPRI database allows us to see how much difference aggregated data makes in estimat­
ing the coefficients of an econometric model. To this end, we defined two aggregate datasets: each
of the independent and dependent variables in EPRI's model was averaged by Standard Metropoli­
tan Statistical Area (SMSA) and by geographical region (one or more contiguous states).9

EPRI used a nested logit structure in which the choice of space heating technology is depen­
dent on the choice to have central cooling or not. Specifically, at the root of the nested logit tree,
the consumer chooses a central cooling alternative. Given that decision, he selects a space heating
alternative. There are five possible choices given central air conditioning (including heat pumps),
and eight choices given no central air conditioning.

The logit formulation specifies that consumer utility is a linear combination of the exogenous
variables (consisting of appliance attributes such as operating cost, consumer attributes such as
income, and geographical characteristics such as weather). The probability of selecting any alter­
native at a given level of the tree is the ratio of the exponential of the utility of that alternative to
the sum of exponentials of utilities of all the alternatives on that level. lO

The EPRI study used normalized values of the capital and operating costs. Normalization
was by the operating cost of an electric baseboard system in the case of space heating and by the
annual air conditioning energy usage in the case of central cooling. (The improved statistical pro­
perties of the model with this normalization suggest that it is the relative costs of different heating
systems which are relevant for the consumer's choice.) In this paper, we assume that normalization
would be carried out using aggregated values. Thus, the exogenous cost variables for a given
space heating choice are its own average costs in that aggregation group, divided by the average
cost of an electric baseboard system. This normalization reflects what would be possible using
only the aggregate data. We consider it highly unlikely that an investigator would be able to
obtain an aggregate version of the normalized variable.

We calculated mean values for each of the independent variables in each of the three regres­
sions of EPRI's model, averaging over both SMSAs and regions as shown in Appendix 1. In each
case we then carried out the same logit regression as in EPRl's study. The regressions were car­
ried out by maximum likelihood techniques similar to those used for the household data. Each
entry in the sum of log-likelihoods to be maximized was weighted by the number of household
observations over which the mean data had been averaged.

The best choice of a weighting scheme to use in aggregate choice estimation is not a simple
question, and depends on the goal of the regression. For a goal of estimating aggregate coefficients
consistent with the disaggregate ones, Section 2 suggests the best choice of weight on observation k
would be (1+BAkB)-o·5 if the values of B were known (at least for probit models). The choice
made here (i.e., to weight each entry in the sum of aggregate log likelihoods by the number of

9 The aggregation groups used are detailed in Appendix 1.

10 See EPRI 161 or McFadden 1141 for a complete description of the nested logit model.
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households in the aggregate) was made for both ad hoc and theoretical reasons:

i) From a purely ad hoc viewpoint, this weighting scheme outperformed the two other leading
candidates: equal weights on all data and weighting by the square root of the number of
households. The improved performance was judged both in the overall log-likelihood of each
estimation, and in the number of coefficients whose sign or value was inconsistent with util­
ity maximization.

ii) From a more theoretical viewpoint, the aggregate regression would produce exactly the same
results as the disaggregate only if a) all aggregation groups were completely homogeneous,
and b) each aggregate data point was weighted by the number of households it represented.
Thus, the weighting scheme we use means that any differences between aggregate and disag­
gregate coefficients are due to a pure "heterogeneity" effect.

Tables 4 through 6 show the results of each aggregated regression in comparison with the
equivalent results from EPRI's household database. l1 The statistical significance of the differences
found, and any special comments on the results, are noted after each table. One general comment
should be observed in advance: We use a standard likelihood ratio test to test for the statistical
significance of the differences between two sets of estimated parameters. This test is simple both
conceptually and in practice, but it effectively dismisses the uncertainty in the aggregate
coefficients, treating them as constants and comparing them to the disaggregate estimates (whose
uncertainty is used for the test of statistical significance). If the covariance matrix between these
two sets of estimates is sufficiently similar to the covariance matrix of the disaggregate estimates,
then the resulting statistic will underestimate the true significance of their difference.

Table 4

Effect of Aggregation on Choice of Central Cooling

logit estimates (t-statistics in parentheses)

Disaggregated Aggregated Aggregated
variable name (household level data) by SMSA by Region

normalized capital cost -5.152 (-5.076) -6.793 (-1.878) -9.221 (-0.819)
normalized operating cost -126.1 (-3.464) -144.9 (-1.086) -309.4 (-0.586)
weather 0.1396 (10.250) 0.1210 ( 2.715) 0.09641 ( 0.698)
central alc choice X income 0.07177 ( 7.605) 0.1531 ( 1.596) 0.2599 ( 0.391)
inclusive value 0.3013 ( 2.704) 0.5522 ( 1.118) 0.3825 ( 0.229)
central alc choice -1.250 (-2.016) -2.170 (-0.708) -2.623 (-0.140)

Likelihood Ratio Test

log likelihood household model: -592.6

log likelihood household model
restricted to aggregated results: -634.3 -840.4

2 X difference (~ xl) 83.4 p < .01 495.6 P < .01

The likelihood ratio test is used 1,0 test the significance of the difference between two sets of
parameter estimates. The test compares the log likelihood of the unrestricted household regression

11 There were some minor errors in the data used by ErRr to estimate the coefficients of their model (Wood,
Ruderman, & McMahon [211). These errors caused some of the coefficients to be reported incorrectly in their pa­
per. Corrected versions of the estimates are used in this study and are reported in Tables 4 through 6.
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(-592.6) with the log likelihood of the household database restricted to the parameter estimates
from the aggregated regressions (-634.3 and -840.4). Twice the difference between them is asymp­
totically distributed as a X2 random variable with degrees of freedom equal to the number of
parameters being restricted (6 in this case). The values of the likelihood ratio test statistic (83.4
and 495.6) are highly significant for six degrees of freedom.

Table 5

Effect of Aggregation on Choice of Space Heating
(given no central cooling)

logit estimates (t-statistics in parentheses)

Disaggregated Aggregated Aggregated
variable name (household level data) by SMSA by Region

normali~ed capital cost -0.4843 (-4.683) -0.5326 (-1.925) -0.5007 (-0.756)
normalized operating cost -2.259 (-5.773) -2.163 (-2.439) -2.972 H.406)
gas restrictions type 1 -2.715 (5.781) -5.265 (-2.765) -6.871 (-1.374)
gas restrictions type 2 -1.400 (-3.477) -1.890 (-1.718) -3.600 (-0.732)
gas restrictions type 3 -1.033 (-3.539) -1.312 (-1.449) 1.327* ( 0.236)
gas hydronic choice -1.826 ( 3.779) -1.656 (-1.378) -1.754 (-0.629)
gas non-central choice -3.562 (-8.550) -3.521 (-3.652) -3.555 (-1.692)
oil forced air choice -1.001 (-4.456) -1.279 . (-2.318) -1.190 (-0.955)
oil hydronic choice 0.09985 ( 0.252) -0.06773 (-0.066) -0.1177 (-0.050)
oil non-central choice -3.976 (-6.672) -4.260 (-3.073) -4.176 (-1.377)
elec forced air choice -1.187 (-3.746) -1.512 (-2.020) -0.8597 (-0.477)
elec baseboard choice -1.183 (-3.946) -1.456 (-2.053) -0.8309 (-0.488)

Likelihood Ratio Test

log likelihood household model: -560.0

log likelihood household model
restricted to aggregated results: -570.5 -623.4

2 X difference (~ X~2) 21.0 P < .10 126.8 P < .01

* This parameter estimate has the wrong (i.e., counterintuitive) sign; however, the variance of the
estimate is so large that it is not significantly different from zero.

The values of the likelihood ratio statistic found here (21.0 and 126.8) are significant at the
10% level (for the aggregation by SI\lSA) and at better than the 1% level (for aggregation by
state).
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Table 6

Effect of Aggregation on Choice of Space Heating
(given central cooling)

logit estimates (t-statistics in parentheses)

Disaggregated Aggregated Aggregated
variable name (household level data) by SMSA by Region

normalized capital cost -0.1657 (-6.640) -0.2507 (-2.585) -0.2724 (-0.447)
normalized operating cost -2.473 (-4.757) -0.7140 (-0.225) 4.809* ( 0.34:!)
operating cost X income -0.04503 (-3.009) -0.1753 (-1.427) -0.3644 (-0.671)
gas restrictions type 1 -2.4:!8 (-7.598) -3.658 (-2.547) -5.522 (-1.026)
gas restrictions type 2 -1.001 (-2.209) -1.182 (-0.717) 2.506* ( 0.30:!)
gas restrictions type 3 -1.793 (-5.999) -2.837 (-2.087) -2.319 (-0.396)
heat pump trend 0.04506 ( 3.855) 0.08418 ( 1.461) 0.07206 ( 0.430)
oil forced air choice -1.827 (-8.750) -1.713 (-2.590) -1.950 (-0.986)
elec forced air choice 0.9907 ( 3.811) 1.496 ( 1.719) 0.7834 ( 0.:!30)
heat pump choice -0.3947 (-1.700) -0.2780 (-0.335) -0.2200 (-0.072)
elec baseboard choice -1.097 (-4.170) -0.7775 (-0.924) -1.237 (-0.401)

Likelihood Ratio Test

log likelihood household model: -938.0

log likelihood household model
restricted to aggregated results: -990.8 -1188.0

2 X difference (~ X~l) 105.6 P < .01 500.0 p < .01

* Both of these two parameter estimates have the wrong (i.e., counterintuitive) sign; however, the
variance of the estimates is so large that they are not significantly different from zero.

The values of the likelihood ratio test statistic found here (105.6 and 500.0) are highly
significant for eleven degrees of freedom.

-14-



5. Effects of Aggregation Bias on Elasticities and Projected Market Shares

In this section, we isolate the effects of aggregate data used in estimating coefficients on elas­
ticities resulting from the model. In particular, we would like to exclude further bias effects due to
naive estimation of market shares and elasticities.

To this end, we found elasticities using the coefficients estimated on aggregate data,
described in the previous section. \Ve used both the naive approach and the sample enumeration
approach described in Section 3. Sample enumeration was over the 122 SMSAs (or 20 regions) in
the database, reflecting the best a researcher could do using only aggregate data. Examples of this
process are shown in Figures 3 and 4, below. The resulting elasticities are tabulated in Tables 7
andS, along with "aggregate naive" and disaggregated elasticities.

Some consequences of this aggregation bias are shown in Tables 9 and 10, where the
predicted market shares for the seven different heating/cooling choices are shown under 33%
increases in the exogenous variable listed. The true (i.e., calculated by enumeration using the
disaggregated coefficients), unperturbed market shares are shown in the center column.l2

As can be seen from both the figures and tabulated results, elasticities estimated from sample
enumeration on SMSA-aggregate data are generally close enough to the disaggregate elasticities to
be acceptable. Naive estimation produces unacceptable errors with both aggregate and disaggre­
gate data.

12 Market shares for both enumeration methods were calculated from arc elasticities. All market shares in
Tables 9 and 10 were calculated as changes from an unperturbed "base" figure, using the elasticities in Tables 7
and 8. However, that base was different for the different methods. Each was found by procedures equivalent to
those used for the elasticities: a) enumeration on household data using coefficients from the disaggregate regres­
sions, b) naive market share estimation, and c) enumeration on the aggregate data using coefficients from the ag­
gregate regressions.
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Table 7

Effect of Aggregation on Elasticity Estimation

estimated elasticities from logit models:

aggregated by SMSA

enumerated
market share exo?;enous variable disa?;?;re?;ated naive on SMSAs

central cooling price of gas -0.143 -0.249 -0.195

all gas space heat price of gas -0.529 -0.674 -0.590
all oil space heat price of gas 0.424 0.73 /1 0.413
aU conv elec heat price of gas 0.572 0.786 0.62 11

central cooling own capital cost -0.293 -0.245 -0.413

heat pump own capital cost -1.770 -2.034 -2.752

central cooling household income 0.282 0.516 0.390

Table 8

Effect of Aggregation on Elasticity Estimation

estimated elasticities from logit models:

aggregated by regions

enumerated
market share exogenous variable disa?;?;re?;ated naIve on regions

central cooling price of gas -0.143 -0.087 -0.091

all gas space heat price of gas -0.529 -0.562 -0.512
all oil space heat price of gas 0.424 0.623 0.394
all conv elec heat price of gas 0.572 0.565 0.517

central cooling own capital cost -0.293 -0.295 -0.503

heat pump own capital cost -1.770 -2.207 -2.38,1

central cooling household income 0.282 0.883 0.770
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Table 9

Predicted Market Shares for Selected Technologies

with 33% increase in exogenous variable
aggregated by SMSAs

disaggregated naive enumerated
market share exogenous variable unperturbed mkt share mkt share on SMSAs

central cooling price of gas 0.5264 0.5025 0.5400 0.4989

all gas space heat price of gas 0.5121 0.4249 0.4177 0.4132
all oil space heat price of gas 0.0927 0.1059 0.0950 0.1073
all conv elec heat . price of gas 0.2802 0.3312 0.3129 0.34M

central cooling own capital cost 0.5264 0.4754 0.5408 0.4576

heat pump own capital cost 0.1150 0.0642 0.04'12 0.0·161

central cooling household income 0.5264 0.572'1 0.6902 0.5979

Table 10

Predicted Market Shares for Selected Technologies

with 33% increase in exogenous variable
aggregated by regions

disaggregated naive enumerated
market share exogenous variable unperturbed mkt share mkt share on regions

central cooling price of gas 0.5264 0.5025 0.5675 0.50H

all gas space heat price of gas 0.5121 0.42,19 0.4071 0.4078
all oil space heat price of gas 0.0927 0.1059 0.0856 0.1058
all conv elec heat price of gas 0.2802 0.3312 0.3487 0.3460

central cooling own capital cost 0.5264 0.4754 0.5270 0.4366

heat pump own capital cost 0.1150 0.0642 0.0356 0.0530

central cooling household income 0.5264 0.572'1 0.7563 0.649,1
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6. Summary

This paper has tried to explain the ways in which aggregation bias can affect econometric
investigations, and to provide a clear example of that bias. By reworking a correctly disaggre­
gated EPIU study, using only aggregate data at particular points, we found:

i) potentially severe aggregation bias in naive estimation of market shares (Table 1),

ii) large relative errors in naive estimation of market share elasticities (Table 2), with potential
errors in prediction resulting from the use of naive elasticities (Table 3),

iii) statistically significant errors in estimating the coefficients of logit models on aggregate data
(Tables 4, 5, and 6),

iv) coefficients of aggregate models leading to large errors in estimated elasticities (Tables 7 and
8), with consequent errors in predicting market shares (Tables 9 and 10).

\Ve also found that the errors resulting from models estimated on aggregate data can be
reduced J?y aggregating over smaller geographical units (SMSAs rather than regions) and by calcu­
lating market shares and elasticities using enumeration over the aggregate groups.
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Appendix 1 Aggregation by SMSAs and by Regions

-.

-.

The database used by EPRI consisted of more than 1300 households in 122 SMSAs and 41
states. \Ve aggregated each of the independent variables in EPRI's model by averaging the values
for:

1) SMSAs: Each SMSA (Standard Metropolitan Statistical Area) was allowed to be
represented by as many or as few households as was available in the database. In
some cases, this meant that the average value of the explanatory variables for an
SMSA might be based on only one or two households. This is a potential source
of error in the aggregated results.

2) Regions: \Ve felt it was unrealistic to allow entire states to be represented by only one or
two household observations, so we aggregated contiguous states together to make
larger regions with a minimum number of households in each region for each of
the three different regressions in the model. This left us with twenty regions, each
geographically contiguous and more or less homogeneous in climate.

The state/region grouping analysis showed that the nine states not represented in the data­
base were almost all from the northern tier of the country (Montana, North Dakota, Vermont,
etc.) Although not large in population, the absence of these cold-weather states may be skewing
the results found in EPRI's study.

The tables on the following pages show the state/regional groupings used, the SMSAs within
each state, and the number of household observations available for aggregation in each of the
three regressions of the model. There were twenty regions (representing different numbers of
households) in each of the three regressions. But there were as few as 88 SMSAs represented in the
"heating choice, no central cooling" regression, and as many as 121 SMSAs in the "central cooling
choice" regression.
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Appendix 1
Sl\ISAs, Regional Groupings, and Number of Households

heat heat ac
choice choice choice

Regional Grouping no ac ac

ALABAMA
Birmingham, AL 2 14 16 .~
Mobile, AL 1 3 4

FLORIDA
Fort Lauderdale-Hollywood, FL 1 5 6
Jacksonville, FL 1 7 8
Miami,FL 0 II II
Orlando, FL 1 13 14
Tampa-St. Petersburg, FL 0 III III
West Palm Beach-Boca Raton, FL 2 11 13

GEORGIA
Atlanta, GA 0 37 37
Augusta, GA-SC 0 4 4

LOUISIANA
New Orleans, LA 0 14 14
Shreveport, LA 0 3 3

MISSISSIPPI
Jackson, MS 0 2 2

Regional Total 8 141 1411

ARIZONA
Phoenix, AZ 0 33 33
Tucson, AZ 13 3 16

Regional Total 13 36 49

ARKANSAS
Little Rock-North Little Rock, AR 0 6 6

KANSAS
Wichita, KS 0 5 5

IOWA
Davenport-Rock Island-Moline, IA-IL 1 2 3
Des Moines, IA 0 7 7

MISSOURI
Kansas City, MO-KS 6 18 24
St. Louis, ~IO-IL 1 18 19

NEBRASKA
Omaha, NE-IA 0 6 6

OKLAHOMA -,.
Oklahoma City, OK 0 12 12
Tulsa, OK 3 12 15

Regional Total 11 86 97
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Appendix 1, continued
SI\ISAs, Regional Gi'ouplngs, and Number of Households

heat heat ac
choice choice choice

Regional Grouping no ac ac

CALIFORNIA
~ Anaheim-Santa Ana, CA 15 14 29

Bakersfield, CA 0 7 7
Fresno, CA 1 6 7
Los Angeles-Long Beach, CA 5 26 31

-, Oxnard-Simi Valley-Ventura, CA 5 7 12
Sacramento, CA 0 27 28
Salinas-Seaside-Monterey, CA 5 0 5
San Bernardino-Riverside-Ontario, CA 1 30 31
San Diego, CA 18 7 26
San Francisco-Oakland, CA 15 4 19
San Jose, CA 16 2 19
Santa Barbara-Santa Maria-Lompoc, CA 4 0 4
Stockton, CA 0 12 12

Regional Total 85 142 230

COLORADO
Denver-Boulder, CO 33 8 41

CONNECTICUT
Bridgeport-Milford, CT 6 1 7
Hartford, CT 2 0 2
New Haven-Meriden, CT 1 0 1

MASSACHUSETTS
Boston, MA 7 3 11
Springfield, MA-CT 2 0 2
Worcester, MA 2 0 2

RHODE ISLAND
Providence, RI 11 0 11

Regional Total 31 4 36

DELAWARE
Wilmington, DE-NJ-MD 2 1 3

DISTRICT OF COLUMBIA
Washington, DC-MD-VA 1 29 30

MARYLAND
Baltimore, I\1D 4 12 16

Regional Total 7 42 49
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Appendix 1, continued
SMSAs, Regional Gl'ouplngs, and Number of Households

heat heat ac
choice choice choice

Regional Grouping no ac ac

ILLINOIS
Chicago,IL 6 32 38 .,
Peoria,IL 3 6 9
Rockford, IL 2 2 4

Regional Total 11 40 51

INDIANA
Fort Wayne, IN 2 3 5
Gary-Hammond-East Chicago, IN 0 9 9
Indianapolis, IN 5 10 15
South Bend, IN 1 0 1

Regional Total 8 22 30

KENTUCKY
Louisville, KY-IN 0 9 9

TENNESSEE
Chattanooga, TN-GA 0 1 1
Knoxville, TN 1 6 7
Memphis, TN-AR-MS 0 16 16
Nashville-Davidson, TN 0 3 3

NORTH CAROLINA
Charlotte-Gastonia-Rock Hill, NC-SC 1 6 7
Greensboro-Winston-Salem-etc., NC 4 12 16

SOUTH CAROLINA
Charleston, SC 1 4 6
Columbia, SC 1 6 7
Greenville-Spartanburg, SC 1 2 3

VIRGINIA
Newport News-Hampton, VA 0 3 3
Norfork-Virginia Beach, VA-NC 0 6 6
Richmond, VA 1 12 13

WEST VIRGINIA
Huntington-Ashland, WV-KY-OII 0 1

Regional Total 10 87 98

MICHIGAN
Detroit, MI 23 12 35
Flint, MI 2 0 2
Grand Rapids, MI 5 0 5
Lansing-East Lansing, MI 2 0 2 ~.

Regional Total 32 12 44
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Appendix 1, continued
Sl\ISAs, Regional GI'ouplngs, and Number of Households

heat heat ac
choice choice choice

Regional Grouping no ac ac

MINNESOTA-, Duluth-Superior, MN-WI 1 0 1
Minneapolis-St. Paul, MN-WI 9 15 24

Regional Total 10 15 25

NEVADA
Las Vegas, NY 0 12 12

UTAH
Salt Lake City-Ogden, UT 12 4 16

Regional Total 12 16 28

NEW JERSEY
Newark, NJ 6 0 7
Paterson-Clifton-Passaic, NJ 2 1 4
Trenton, NJ 0 1 1

NEW YORK
Al bany-Schenectady-Troy, NY 6 0 6
Binghampton, NY-PA 1 0 1
Buffalo, NY 6 0 6
New York, NY 2 2 4
Rochester, NY 5 0 5
Syracuse, NY 7 0 7

Regional Total 35 4 41

NEW MEXICO
Albuquerque, NM 6 10 16

OHIO
Akron, OIl 0 2 2
Canton,OlI 1 1 2
Cincinnati, Oll-KY-IN 3 16 18
Cleveland, OH 7 6 13
Columbus, OIl 3 7 10
Dayton-Springfield, OIl 3 8 11
Lorain-Elyria, OIl 3 0 3
Toledo, OIl 5 2 7
Youngstown-Warren, 01 I 3 1 4

Regional Total 28 43 70
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Appendix 1, contInued
SMSAs, RegIonal GroupIngs, and Number of Households

heat heat ac
choice choice choice

RegIonal Grouping no ac ac

OREGON
Portland, OR-WA 19 2 21 ,-

WASHINGTON
Seattle-Everett, WA 27 2 30

,~

Spokane, WA 3 1 4
Tacoma, WA 11 1 12

Regional Total 60 6 67

PENNSYLVANIA
Allentown-Bethlehem, PA-NJ 5 0 5
Erie, PA 2 0 2
Harrisburg, PA 4 1 5
Johnstown, PA 1 0 1
Lancaster, PA 1 0 1
Philadelphia, PA 12 14 27
Pittsburgh, PA 6 6 12
Reading, PA 4 0 4
Wilkes-Barre-Hazelton, PA 1 0 1
York, PA 5 2 7

Regional Total 41 23 65

TEXAS
Austin, TX 0 7 7
Beaumont-Port Arthur-Orange, TX 0 6 6
Corpus Christi, TX 0 3 3
Dallas, TX 0 26 26
El Paso, TX 7 1 8
Fort Worth-Arlington, TX 0 23 23
Houston, TX 0 20 22
San Antonio, TX 1 9 10

Regional Total 8 95 105

WISCONSIN
Appleton-Oshkosh-Neenah, WI 3 0 3
Madison, WI 2 3 5
Milwaukee, \VI 7 5 12

Regional Total 12 8 20
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Appendix 2 Aggregation Bias in a Probit Model

The aggregation bias theory developed by McFadden and Reid [16] shows that, given reason­
able assumptions, equation 2.3 holds as an asymptotic relationship as the number of observations
in each aggregation group goes to infinity.

l', N~ ~[V~:Uf] (23)

where F\ is the market share of alternative 1 in aggregation group k, O'f = BAkB, and A k is the
covariance matrix of the exogenous variables in aggregation group k.

Since we were in possession of a fully disaggregated dataset, from which we had estimates of
the true (i.e., the disaggregated) parameters B, we decided to test to see if a correction suggested
by equation 2.3 could improve the estimation of a probit model on aggregated data.

To that end, we initially calculated a disaggregated probit model of the the central cooling
choice at the root of EPRl's nested logit. The results of that estimation are shown in Table 11.
The probit coefficients are fairly similar to the (appropriately scaled) logit coefficients reported in
Table 1.13 For the purposes of the probit modeling, the inclusive value of the nested logit was
treated as an arbitrary independent variable.

Table 11

Disaggregated Probit Model of Central Cooling Choice

coefficient
variable name estimate t-statistic

normalized capital cost -2.6122 (-6.881)
normalized operating cost -77.4534 (-4.179)
weather 0.0838 (11.595)
Income 0.0413 ( 8.079)
inclusive value 0.1567 ( 3.757)
central cooling choice -0.7580 (-2.742)

\Ve then calculated the empirical means Zk and covariance matrix A k of the six independent
variables for each of the twenty regional groupings. From these we formed O'f = BAkB, using the
B estimated from the disaggregate probit model, and estimated via weighted least squares two
models of the following forms:

(2.4)

and

(APP 2.1)

13 The actual quantity estimated in most qualitative choice models is not the vector of coefficients n, but
rather the vector n I(J, where (J2 is the variance of the stochastic term in the random utility model. Since the pro­
bit and logit models are driven by the standard normal and logistic distributions, respectively, coefficients es­
timated on the same data using these two models will differ at least by a scale factor representing the relative size
of their standard deviations. Amemiya [11 has shown that dividing logit coefficients by 1.6 allows very close ap­
proximation to the probit coefficients on the same data.
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Values of <1>-1 were found by rational approximations using standard techniques. 'Veights were
inversely proportional to the square root of the number of households in each aggregation group.

The results of this aggregated estimation (the parameters D and C) are compared with the
results of the disaggregated probit estimation (the parameters B) in Table 12, below. Differences
between the estimates can be attributed to aggregation bias.

Table 12

Effect of Aggregation on Choice of Central Cooling
Probit Model

Aggregated by State/Region

Aggregated Corrected Disaggregated
variable name D C B

normalized capital cost -2.477 -2.403 -2.6122
normalized operating cost 386.3 418.3 -77 .453t1
weather 0.06353 0.06977 0.0838
income 0.110t1 0.1131 0.0<114
inclusive value 0.6066 0.6679 0.1567
central cooling choice -4.987 -5.299 -0.7580

Likelihood Ratio Test

log likelihood household model: -593.95

log likelihood household model
restricted to aggregated results: -1432.8 -1515.7

2 X difference (~ X~) 1677.7 1843.5

Equation 2.3 suggests the estimates C should be closer to the true B than D, and their
difference is tested in the table with a logistic ratio test. 14 By that test, at least, the corrected
results are even worse than the uncorrected ones (i.e., they have a higher X2 statistic).

The failure of the estimates to improve significantly when the attenuation term (1 + ".2)°·5 is
divided into the independent variables is not entirely surprising. Equation 2.3 holds only asymp­
totically, and requires a joint normal distribution of the exogenous variables Z". This last
assumption was not even remotely met by the EPRI dataset.

'Ve examined the joint normalcy assumption by testing the marginal normalcy of each
independent variable in each aggregation group.15 The results of that test were more or less what
we could have expected: only the independent variables of income and inclusive value were approx­
imately normal in most aggregation groups. The central cooling choice dummy variable is COl).­

stant across all households, so it contributes nothing to the covariance matrix (and therefore

14 This is not the technique that McFadden and Reid proposed to estimate the parameters n from aggregate
data. Their approach was to consider the problem of estimating D (the vector of estimated parameters from ag­
gregated data) as an implicit function of itself. The approach we take here is only possible because we are in pos­
session of a disaggregated dataset. It would not be possible for an investigation with only aggregate data.

15 If the variables are distributed as a joint normal, their marginal distributions must be normal. Therefore
failure to find normal marginal distributions indicates that the joint normalcy assumption was not met by the
data. Normalcy was tested by the Kolmogorov-Smirnov test using SPSS-X, with corrections for the use of the
empirical mean and variance of the data itself.
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nothing to the aggregation bias). The climate variable is constant for all households in a given
SMSA; therefore it tends to be "lumpy" for a state or region with households from several SMSAs.
Similarly, the cost variables tend to be close to constant across an SMSA (where common fuel
prices and common climate do more to make costs uniform than variation in dwelling size does to
make them varied). But over a larger area, the distribution of costs tends to be multi-modal,
unless many SMSAs have been included.

This lack of a joint normal distribution of the independent variables probably doomed the
correction from the start. But for the reasons discussed above, this same lack is likely to occur in
other datasets and other studies of household space heating appliance choice. Unfortunately, this
tends to cast doubt on the usefulness of most classification techniques (which require normal, or at
least symmetric, distributions for the independent variables) to reduce aggregation bias.

Interestingly enough, we find a potential conflict between two desirable goals in choosing the
size of an aggregation group: small groups are likely to have smaller variance across the individu­
als in the group (e.g., climate is common to an entire city), but larger groups may have a wider
and more nearly continuous set of determining conditions and therefore a better chance of insuring
approximately normal distributions for the independent variables (e.g., capital costs). Researchers
on transportation choice generally found that no geographical classification scheme was practical,
although grouping on smaller units generally worked better than larger units. But if a
classification-type of correction is going to be made, larger groups may come closer to satisfying
the assumptions: more symmetric distributions of the independent variables and better estimates
of the covariance matrices. Smaller groups will have less overall bias, but larger groups may be
more amenable to correction of that bias.

\Ve also looked at one other aspect of equation 2.3: its asymptotic properties. Clearly, as an
asymptotic result it holds completely only for an infinite number of observations in each aggrega­
tion group. Equally clearly, for some large enough number, it ought to hold reasonably well. How
large is large enough?

The answer will certainly vary with the circumstances and the data used. Sufficient observa­
tions for one problem may be insufficient for another, and different datasets will require greater or
lesser samples to get reasonable estimation of the covariance matrices A k •

\Ve can get some idea of what is involved by looking at this particular problem and its asso­
ciated data. If our data had a joint normal distribution, with different means but a common
covariance matrix A k = A in each aggregation group, then the conditions of equation 2.3 are met.
In that circumstance, the parameters D estimated from

<t>-l(Pk ) = DZk + (k

would be asymptotically just simple multiples of the true coefficients B:

B
D -+ V .

Nt-CO 1 + BAB

(2.4)

(APP 2.2)

How many observations per aggregation group do we need in the EPRI dataset (if it were
normally distributed) for the law of large numbers to come to our aid and give us approximately
the result in equation APP 2.2? The answer can be hinted at by a simple simulation experiment.

\Ve generated 50,000 independent standard normal variates and transformed them by matrix
techniques into five vectors of 10,000 joint-normal variates. Each vector corresponds to one of the
first five independent variables in EPRI's cooling choice model. (We eliminated the dummy for the
central cooling choice, since as a constant it does not contribute to aggregation bias). The five
vectors were organized into 20 groups of 500 observations per vector. Each group was given a
joint normal distribution with mean vector equal to the empirical mean of one of the aggregate
states/regions in the EPRI database. All groups were given a common covariance matrix A, equal
to the overall covariance of the EPRI database. \Ve also formed a dummy choice vector, using a
known linear combination of the five independent variables and one additional normal random
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variate to "blur" the choices.

'vVe then estimated the disaggregate probit model of equation 2.2, and the two least-squares
aggregate models 2.4 and APP 2.1 on datasets of gradually increasing size. Specifically, we
estimated those three models for five observations per aggregation group (100 total), 10 observa­
tions per group (200 total), 25 per group (500 total), 50 (1,000), 100 (2,000), 250 (5,000), and
finally 500 observations per group (10,000 total). The resulting coefficients from each model were
used to estimate the market share of the choice variable on the disaggregated dataset. The results
of that estimation are displayed in Table 13 and Figure 5, below.

Table 13

Asymptotic Effects in Correcting Aggregation Bias

Estimated Market Shares of Central Air Conditioning

Aggregated Corrected Disaggregated
number of observations D C B

5/group (100 total) 0.7273 0.7374 0.7639

la/group (200 total) 0.6766 0.6998 0.7329

25/group (500 total) 0.7181 0.7936 0.7551

50/group (1,000 total) 0.72'17 0.8132 0.7616

lOa/group (2,000 total) 0.7004 0.7613 0.7527

250/group (5,000 total) 0.7011 0.7670 0.7520

500/group (10,000 total) 0.6938 0.7582 0.74'14

The true market share is not displayed, but varies from sample to sample as the amount of
included data increases. The disaggregated estimate was consistently within 0.001 of the true
market share.

Note that the correction moves the aggregated estimate in the right direction in every sam­
ple, but in some samples (25/group and 50/group), it overshoots its mark and actually ends up
with a slightly worse estimate than the uncorrected one. Not until we reach a level of 100 obser­
vations in each aggregation group does the correction consistently outperform the raw aggregate
estimate.

We should be careful about the extent of the conclusions to be drawn here. This does not
constitute a full simulation study of the problem (the 10,000 observations would have to be repli­
cated many times, using different random seeds).l6 Even if this were done, the generality of the
conclusions is still limited by the particular characteristics of the EPRI dataset. Other problems
and other datasets might require fewer observations in each group to make satisfactory use of
classification bias-reduction schemes. But for at least this one empirical dataset, a minimum of 50
to 100 observations per aggregation group seems to be required for a classification type of bias­
reduction scheme to be effective.

16 A second run produced qualitatively similar results, however.
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Figure 5. Asymptotic Effects in Correcting Aggregation Bias:
Estimated Market Shares of Central AlC.
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