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Abstract : 

We formulate a group-theoretical projection technique for the 

quantum statistical description of systems with exactly con

served charges corresponding to local non-abelian gauge sym

metries. The formalism is specified for SU(N) internal symmetry 

and a partition function related to a mixed canonical/grand ca

nonical ensemble is defined. Its perturbation expansion is de

rived and we point out potential applications. We also study 

single-particle Green's functions for the calculation of mixed 

ensemble averages with the help of a generalized Wick's theorem 

and find that a connected graphs expansion is impossible • 
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I. Introduction 

Quite often in physics we are studying many-particle 

tems with the help of statistical methods. Typically 

cle numbers are ranging from 101 to 10 23 and beyond, 

sys

parti-
e.g. 

in elementary particle, nuclear, or solid state physics. 

All these systems, if sufficiently isolated from the rest 

of the world, obey the local conservation laws of energy, 

~omentum and angular momentum reflecting invariance with 

respect to translations and rotations in space-time. But 

even for relativistic systems, where particle number con

servation no longer holds, more locally conserved quanti

ties can be identified, which are usually referred to as 

"charges" corresponding to local gauge symmetries. We will 

henceforth call them "internal symmetries" of s given theo

ry. They can be distinguished from other "external" ones, 

e.g. discrete symmetries of a crystal, which arise due to 

energetically favored ground-state properties usually 

breaking some larger internal symmetry. 

The purpose of our paper is to report a simple method 

to respect such internal symmetries in statistical descrip

tions of many-particle systems. 

It amounts to the construction of suitable canonical 

ensembles to incorporate exactly the charge conservation 

for a given dynamical system. In the context o( quantum 

statistical mechanics our aim is to (implicitly) build rock 

spaces of state~ which are characterised by definite sym

metry properties or prescribed charges. A general projec

tion technique to solve this problem for non-interacting 

systems was proposed by Redlich and Turko only a few years 

ago [1], but such considerations may be traced back to the 

famous work by Bathe who calculated the energy and total 

spin dependence of the single-particle density of states in 

the nuclear fermi gas •ode! [2]. Ho~ever, his approach was 

adapted to the particular SU(2) symmetry involved and could 

not be generalized. Three decades ago microcsnonical calcu

lations taking into accoun~ four-•omentum conservation [3] 

and electric charge or baryon number conservation [4] were 

carried out to describe particle production in inelastic 
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nucleon-nucleon scattering at s few GeV laboratory energy. 

More recently conservation of electric-like charges (baryon 

number, strangeness) was studied within the thermodynamical 

model of high-energy hadronic collisions [5,6] and, among 

others, important finite size effects were found - this 

will be a general feature to be •et again and again, when

ever in a statistical description phase. apace, or rock 

space respectively, are restricted due to conservation 

laws! 

It has been a common attribute to all applications of 

statistical methods to the study of charge conserving sys

tems mentioned so far (except Bethe'a) that the underlying 

symmetry corresponded to one or several unrelated U(1) 

groups. For a U(1) symmetry, which means that electric-like 

charges of constituents can be simply added to obtain the 

total charge of a many-particle state, the technical treat

ment is rather simple. This was also noted in a field-theo

retic formulation of the problem employing the functional 

integral representation of a partition function by Kapusta 

[7]. Since the pioneering work of Yang and Mills [a], how

ever, there has been an ever increasing interest in gauge 

theories based on various non-abelian internal symmetries 

[9]. Therefore we would like to explain a group-theoretical 

method which allows to treat non-abelian symmetries rigor

ously in·a canonical statistical description. In Sec.II we 

review the basic formalism and also show in detail how the 

results of Redlich and Turko can be extended to cover in

teracting systems. Furthermore, we introduce the concept of 

a mixed canonical/grand canonical partition function, which 

will be useful under circumstances where some charges have 

to be conserved exactly while others only on the average. 

Finally we also consider in Sec.III single-particle Green's 

functions, which can be defined in connection with mixed 

canonical/grand canonical ensembles. There we find i•por

tant differences as compared with the usual finite-tempera

ture perturbation theory. 
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for an illustration of the method and a detailed ap

plication the reader. may be referred to previously reported 
phenomeno1ogia1 studies of an approximately non-interacting· 

quark-gluon plasma [10-12]. This fascinating new state of 
matter should be formed in u1trare1ativistic nuclear col

lisions of present day or experiments in the near future 

[13], if one believes in the 5Uc(3)-co1or gauge theory of 

strong interactions {QCD) formulated in terms of quarks and 

gluons [14]. - It has been demonstrated that the 5Uc(3)

sing1et nature (colorlessness) of all physical (hadronic) 

states, the so-called confinement effect, has important 

consequences for thermodynamic properties of finite size 

plasma droplets to be expected experimentally [10,11,15]. 

Parts of the material presented in the following are con

tained in ref.[15], but we also include here several new 

results, the genera~ framework for perturbation theory in 

particular. 
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II. Projection Technique for SU(N) 'Internal Symmetry Group 

To be definite, we restrict ourselves in the formal devel

opment of the 11ethod to the SU ( N) group. As was at a ted ,in 

refs.[1], however, and as will become clear in the follow

ing it works for all compact semisimple Lie groups in the 

same 11anner. - For the benefit of the reader we recall some 

essential features of SU(N) in Appendix A, ~hich also 

serves to define our notation. We choose units such that 

1i=c=ke=1. 

A. Partition Tunction 

Let ~ denote the Hamiltonian defining the dynamical system 

under investigation. Then we may define an exact internal 

SU(N) symmetry by the commutation relations: 

A = ""' , ... , n. 
I I 

v = -'1 ... , r 
1 I I I 

( 1 ) 

where gA and Cv are the N2 -1:n generators and N-1=r 

Casimir operators respectively (see Appendix A). The second 

of eqs.(1) is a consequence of the first one. Thus internal 

symmetry especially means vanishing commutators between the 

Hamiltonian and all generators of the Cartan subgroup and 

all Casimir operators. Together they form a set of 2(N-1)+1 

= 2N-1 commuting operators which can be diagonalized simul

taneously (in principle); their eigenvalues are oft•n 

called the "good quantum numbers" of the physical states of 

the system. 

After these preliminary remarks we state the aim of 

this section: It is the calculation of a canonical parti

tion function Ztt defined by: 

I 

( 2 ) 

where ~=T-1 denotes the inverse temperature of the system 

and V its volume; the usual trace ~f the statistical opera-
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tor (density Matrix) has to be taken under the essential 

constraint that a11 states involved Must belong to an uni

tary irreducible representation of SU(N) specified by the 

(N-1)-dimensional integer-valued vector U (cf. Appendix 

A). The additional constraint that the physical Hilbert 

space considered is built up from (many-particle) states 

transforming as a definite Multiplet with respect to the 

symmetry group •akes it a can~nica1 partition function, 

since the quantum numbers corresponding to ~ are kept 

fixed. It can be understood as straightforward generaliza

tion of the U(1) case, where only states of a given total 

electric-like charge Q would have to be taken into account 

in a canonical partition function ZQ (cf.(4-6]). To get 

an impression of what is meant by Ztt, it helps to think 

of SU(2) multiplets, where ~ is still one-dimensional, a 

multiplet being specified e.g. by an integer 2J with J the 

total spin quantum number. 

Calculation of a partition function is a task central 

to all applications of quantum statistical mechanics, 

therefore the description of sytems with generalized non -

abelian charge conservation as expressed by eqs.(1-2) toge

ther with eqs.(A2,A4) is quite interesting in itself. How

ever, as soon as the internal symmetry group is SU(2), 

SU(J), or larger, the required construction· of all many -

particle states belonging to a given multiplet seems prac

tically impossible; the situation looks even worse for re

lativistic systems without particle number conservation. 

Therefore, the projection technique suggested in refs.[1] 

pre~ents a major step forward. Its most important quantity 

turns out to be a new generating function ! defined by: 

~ 

Z (Tv. « ..... « ' 
I J 41 I ,.; I 

(J) 

where a weighted summation is performed over all multiplets 
-A 

Q of canonical partition functions ZV, the type one is 

ultimately looking for; the weights are characters xa 
of the respective representations divided by their dimen

sions dim(tt'): 
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\I I ·, -· I 
A.-,t.lcx: 1,. «._J = tr 

<..{ ·1 I I • c1. 
(4) 

In this way the characters generally are complex-valued 

functions of those r real variables a~ which parametrize 

elements of the Cartan.aubgroup, and using eq.(4), we ob

tain the dimension of a representation from: 

dUv..(ll-j = g- 1 = X a (o;---, o-) 
(5) 

The prQperties of group characters were analyzed by 

Weyl in the context of the theory of lie group representa

tions [ 16-18]. We only 'borrow an orthogonality relation for 

gfoup characters from these more general resulis valid for 

compact semisimple Lie groups: 

C. \ * ( ) 
d..er: ... d..C( M1

c( ••• C{· I X " ,,.Cl( )X {Cl( ...... 0() 
)• ,'t t- ~

1

.171 I l"f d:~-11 I r l}t ••I I r. 
("~'II· 
~:; .. 

I (6) 

where the r-dimensional integration region is the parameter 

set of the Cartan subgroup and M is a suitable weight func

tion (Haar measure). Explicit realizations of eqs.(4-6) for 

the cases of U(1), SU(2), and SU(3), which were (re)derived 

in [15], are ~ompiled in Appendix 8 for easy reference. 

By applying the orthogonality relation, eq.(6), to 

eq.(3) we immediately find: 

zd (-r;v-J 

dJ:m. ((}) (J.O{ ... d.. 0{ M(« "'0( l xj..: .-; ..,.) z (~v; '\ ,-- -, oc,..) 
)' -'1 ,.... -1' I .,.; (.,( .., I ( 7) 

SU(W) 

which formally solves the problem of finding the canonical 

partition function ZU by expressing it as a group inte

gral over the generating function 1, defined in eqs.(2,3) 

resp~ctively. Of course, nothing would be gained, could we 

not prove the following remarkable identity: 

.. 
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I ( 8) 

which relates f to an essentially grand canonical "parti

tion function", since now an unrestricted trace is allowed 

irrespective of any internal SU(N) quantum numbers. It is 

not hard to imagine that the r.h.s. of eq.(B) can be cal

culated in practice, which is not true for either eq.(2) or 

eq.(J)! This is a most important result: While the canoni

cal partition function Zq in general cannot be calcu-
l~ted directly, the unrestricted summation required for the 

generating function f can be carried out. from the latter 

one can obtai~ the desired ZU in a rather straightfor-

ward way by exploiting relation (7), i.e. by projecting 

with a character Xt of the symmetry'group. In fact, for 

a non - interacting system all operators on the r.h.s. of 

eq.(B) can be expressed as linear combinations of number 

operators diagonal in Fock space; then Y can be calculated 

easily in complete analogy to free Fermi or Bose gas parti

tion functions, which is exemplified by our study of an 

idealized SU (3) quark-gluon plasma [10,11,15]. For in-c . 
teracting systems with an exact internal symmetry we set up 

a perturbation theory in Sec.II.B, which resembles the per

turbative approach to the ordinary many-body problem. 

To close this section, we prove eq.(8) by calculating 

its r.h.s. step by step. We begin by decomposing the Hil

bert 

"d' 0 f 

space according to unitary irreducible representations 

SU ( N) : 
;\ ,_ ;\ 

_GH -1- iL ~ ~ 
1/!.. ,- J-t=" I I 

I 

( 8 ' ) 

where we introduced the statistical operator a (density 
A 

•atrix) and a general element of the Cartan subgroup y res-

pectively defined by: 
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(9) 

The decomposition in eqs.(B'), where n denotes members of a 

Multiplet ~ and m accounts for additional degeneracies due 

to e.g. varying particle content of a given •ultiplet 

("principal quantum numbers"), is always possible (in prin

ciple), since we assumed exact internal symmetry as defined 

by eqs.(1). Inserting a complete set of states, we obtain 

for the r.h.s. of eq.(B'): 

r:h..s. < It' m' 1 C-t 1 It m.) 
I I 0 I I 

< ·'A I ' n./ j\ 11) I 

in the last equality use was made of the fact that 8 as 
A 

well as H can be chosen diagonal with respect to a repre-

sentation V because of eqs.(1) and that y is diagonal with 

respect to the substates m, sirice the charge operators G~ 
only act on states n of a multiplet (n corresponds to the 

magnetic quantum number in case of SU(2) symmetry). fur

thermore, because of eqs.(1) there is no fine structure 

splitting for an exact internal symmetry and matrix ele-
"' menta of H are constant within s given multiplet (i.e. in-

dependent of n), which implies: 

r. h.!. 

--

LL (rn.ff!rn) L (n/f!n) 
tl rn.Cltj l'lr:t:) . 

L' ~; '1 

7:1 dih'L (l}} 

-L Za 
r1 c(Lh,. (d) I 

.. 
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where we used the definitions of eqs.(9), (4), and (2) in 

the second last and last equality respectively; by the de

finition of the generating function r in eq.(3) this com

pletes the prove of eq.(8). 

B. Perturbation Theory for Mixed Canonical/Grand Canon

ical Partition function 

Our development of perturbation theory is based on the ob

servation that in deriving the projection formalism in or

der to respect exact internal symmetry in Sec.II.A nowhere 

the assumption of a non-interacting many-particle system 

entered. Therefore, the main results obtained there, which 

can be summarized by eqs.(4,7,8), are valid for interacting 

systems too [15]. However, a genuinely non-diagonal Hamil

tonian present through the density matrix, eq.(9), on the 

r.h.s. of eq.(B), which has to be calculated in any prac

tical application, generally is hard to deal with, which 

suggests a perturbative expansion of the generating func

tion Z. 
Before we start with perturbation theory, we intro

duce as a slight generalization of the canonical partition 

function defined in eq.(2) a "mixed canonical/grand canoni

cal" partition function: 

I (10) 

i.e. we define a canonical partition function with respect 

to an exact internal SU(N) symmetry with multiplets,~ as in 

Sec.II.A; but the partition function given in eq.(10) also 

allows for an average (grand canonical) conservation of m 

additive charges described by linear operators qk via 

chemical potentials ~k as usual. The formal derivation 

and results obtained in the previous section remain valid, 

provided the charge generators qk external to the set 
1\ of SU(N) generators gA do not break the exact internal 

symmetry, which •eana that eqs.(1) should be complemented 

by: 
I ( 1 I ) 
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I< - , . " . """' 
I I - -- I 

1\ 

v:.4 .. ..,J
, I 

A ~ . J-

H ~ H - L /'-<• ~" - -H~) I 
lc=4 ( 11) 

has to be made consistently throughout Sec. II .A. We could 

include the tar•s involving chemical potentials in the de
A 

finition of a new Hamiltonian H(~l••••• ~m) depending on 
A ...I. 

external parameters ~k; because of eq.(1') H(~), eq.(11), 

satisfies eqs~(1) and the formalism works as befo~e. We no-

" tice that a group structure to whic~ the operators qk 

could belong must not necessarily be known for the deriva

tion of the following equation replacing.eq.(B): 

, 
I 

Z~, eq.(10), _again is obtained by operati~g on 1, eq. 

(12), with the projection/integration as in eq.(7). 

Finally, we remark that the consideration of a mixed 

canonical/grand canonical partition function to us seems 

worthwhile because of potential applications as already 

discussed in the quark-gluon plasma case [11,15]; generally 

speaking, there are physical situations where a finite sys

tem easily exchanges some charges or quantum numbers with a 

surrounding (heat) bath, while others are strictly confined 

to or excluded from itt.- Other generalizations, e.g. for 

exact SU(N)xSU(H) internal symmetry, could be worked out as 

well. 

For the derivation of a perturbative expansion of the 

generating function Z, eq.(1Z), we split the Hamiltonian 

together with the terms depending on chemical potentials in 

two parts: 
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I (13) 

where H0 is chosen such that it can be easily diagonalized, 
e.g. in rock apace, and H1 describes some perturbing in-

. A 
tersction. Furthermore, we require that Ho itself also com-

•utes with all generators of internal symmetry: 

o- A=/1 ......... n.. 
I 1 I I 

( 14a) 

which implies by eqs. (1,1',13): 

A =4 ......... h. • 
I I I 

( 14b) 
~ 

Considering in the following density matrices S~ and 
~ 

Po~ respectively defined by: 

I,.-. .A } .A 
~ (3'+/(~)~H ~ /2_-p-Hc(j!J "';« - \. c t' -'fl 

f~'" = ( 15) 
~ 

J2_ 
I I 

we obtain an operator differential equation to be satisfied 

by "'~ p ~: 

I ( 16a) 

together with the "initial condition", 

(16b) 

Eqs.(16) are well-known and can be formally solved by ite

ratively solving an equivalent integral equation [21,22]. 
A j 

One starts with Po~ as zeroth approxi~ation and finally 

obtains: 

00 h 
"';t - ~ (--'1) 
VI - L h! 
) h.=O" 

p f . 
)~---rap .. f! ~ r fi,(fA) ___ +f. (f3.J] I ( 17) 
~ 0' 
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where T~ denotes the "time-ordering" operator placing 

the interaction et the latest •time" ~i farthest to the 

left, the one at the next latest "time" next, etc. and 

where the "interaction picture" operators are defined by: 

" +f (r) 
.~ 

(18) 

Naturally the perturbative expansion, eq.(17), is rather 

similar to the Dyson expansion of the 5-matrix in field 

theory, because eq.(16a) represents an "imaginary-time" 

Schrodinger equation. 

lnserti~g this result i~to eq.(12), we find the -wanted expansion for the generalized generating function Z: 

with y an element of the internal Cartan subgroup as de

fined in the second of eqs.(9). Since y commutes with all 

operators in front of it on the r.h.s. of eq.(19) on ac

count of eqs.(14,15), we may rewrite the argument of the 

trace: 

where we used eq.(1B), raexpressed y in terms of genera

tors, and with the a b brevi at ion ( c f. e q s • ( 1 J ) ) : 

( 21 ) 

" 
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Inserting eq.(20) together with eq.(21) into eq.(19), we 

observe that the perturbative expansion of the generating 

function ! becomes identical to the known expansion of the 

grand canonical partition function [22], where now, howev

er, some "chemical potentials" corresponding to ia1/~, ••• , 

iar/~ are purely imaginary • 

Combining the results obtained in this Sec. so far 

with the general formalism of Sec.II.A, we may summarize 
the projection method for a mixed canonical/grand canonical 

partition function by the formulae: 

du..._tct-) )~ ... "-;. M~J Vet) Z(-?;fri ot) 
.ruW,) 

(22a) 1 

~ (J 

/( 1
1 
V:fi-ri} ='Puc-;,."{' ~ct'f..-- · J olfn Tr[.e-(3~~lJ 

t7" lT 

. --rr.e ~r. ~~ ~,;t) 4 -f./1/r,~ 12., ... -Hi;.,~ -H =- f,:+.,c~,~ J 
~ L"' , ./L , ,. ,. A 4- ( zz b) I 

"' ~ ~ where x~(~) and Ho(~,a) are defined by eq.(4) and eq. 
(21) respectively. -It is very important to remark here 

that the calculation of perturbstive corrections for the 
generating function Z as given by eq.(ZZb) can be performed 

by applying Wick's theorem in its usual finite temperature 

form [22], however, including the Modification of complex 

"chemical potentials" as discussed in connection with 

eq.(21 ). The derivation of Wick's theorem, which relates (non-in

teracting} grand canonical ensemble averages of .. time-ordered" 
products of field operators, does not depend on _the che

•icsl potentials necessarily being real numbers. 

Therefore well-known results concerning grand canonical 

partition functions of •any-particle systems, whose inter-
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actions are treated perturbatively, can immediately be ge

neralized to respect exact internal symmetries. This obser

vation opens the way to interesting new applications of the 
projection formalism. Droplets of weakly interacting quark-gluon 

plasma are presently under investigation. 

• 
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III. Single-particle Temperature Green's functions 

The study of single-particle temperature Green's functions 

is motivated by the fact that they can be related to equi

librium thermodynamic properties of the system, i.e. en

semble averages of general one-body operators and of the 

two-body interaction energy in particular [22,23]. The pur

pose of this section is to define and investigate single

particle temperature Green's functions appropriate e.g. for 

the calculation of mixed canonical/grand canonical ensemble 

averages. We will call them m-Green'a functions hence

forth. Our presentation parallels the considerations in 

ref.[22], where the Green's functions related to grand 

canonical ensemble averages are studied, which we call 

g-Green's functions in the following. 

Using the .mixed canonical/grand canonical partition 
..Jo 

function Zq and the density matrix p~, respectively de-

fined in eq.{10) and eq.{15) in Sec.II.B, we define them

Green's function G¢: 

I (23) 

with the "Heisenberg picture" operators, 

-I (24) 

j denotes a complete aet of single-p~rticle apace-time and 

internal quantum numbers and ~j+, ~j are the correspon

ding creation and destruction operators satisfying (anti~ 

commutation rules for bosons (fer~ions). The "tiMe-order

ing" operator T~ is defined here to include a factor 

{-1)P for fermions, where P is the number of permutations 

of fermion operators required to perform "time-ordering", 

which was introduced previously {cf. eq.(17)). We do not 

explicitly distinguish between particles and antiparticles 

and suppressed the dependence on thermodynamic variables 

T,V,~ in GQ in order to keep the notation as simple as 
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possible. -Of course, the definition given in eq.(23) re

sembles the one of an ordinary g-Green'a function G: 

(25) 

where Z is the usual grand canonical partition function. 

We immediately conclude that' Gtj and G share the 

same analytical properties, as far as they only depend on 

the operator structures following the trace symbols in eq. 

( 2 3 ) and eq • ( 2 5 ) [ 2 2 , 23] : 

( 26 a) 

i.e. G(1) depends only on the difference of the "time" 

arguments, which follows from the Hamiltonian being inde

pendent of temperature; furthermore, it is necessary and 

sufficient for convergence of the traces that -~<~-~·<~ 

[23]. Then one obtains from eq.(23) or eq.(25) together 

with eq.(24) forO<~<~·<~: 

= + ~ltJ (j, /'; T"-T'+ j3) I 

where use was •ade of a cyclic permutation of operators un

der the trace, which does not change its value; similarly 

for o<~·<~<~: 

I (26c) 
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and where the upper (lower) sign refers to fermions (be

sons). It is well-known that the periodicity properties, 

eqs.(26b,c), lead to considerable simplifications ("Matsu

bara frequency representation"), if reynman rules for the 

perturbative evaluation of Green's functions are ultimately 

formulated in momentum apace (22,23]; however, we do not 

pursue this point and presently consider perturbation theo

ry in coordinate space at first. 

To find a perturbation expansion of the m-Green's 

function .in terms of a perturbing interaction A1 (cf. eqs. 

(13)), it is easiest to copy the path which is usually fol

lowed, when dealing with g-Green's functions [22]: It con

sists in a transscription of eq.(23) to the "interaction 
picture" (cf. eq.(18)) and subsequent insertion of a per

turbation expansion for the "time-development" operator, 
" A A A 
U(~,~·) = exp~Ho exp-(~-~·)H exp-~'Ho, which resembles 

eq.(17) in Sec.II.B and is obtained in a similar way. No

where the restriction of the trace in eq.(23) defining Gtt 

to a definite unitary irreducible representation tt of SU(N) 

presents an additional complication, since the perturbation 

expansion is solely based on operator properties! The re

stricted trace still has to be performed in the interme

diate result: 

,. ~ 

where Po~ denotes the no-interaction density matrix, cf. 
" eqs.(15), and "interaction picture" ope~stors H1(~), 

~(+)(~) follow from the "Heisenberg picture" ones by 

turning off the interaction (cf. eqs.(18,24)). Rewriting 

Zij, eq.(10), in the denominator of eq.(27) by exploiting 

the perturbation expansion of the density matrix ~~. 
eq.(17), we find: 
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r (--4/1. r:'(" .... j~T Z~ 4 /;- ;(1"~ TfH(T;;),,H(Th) l {2 B) 
h:f!" h ! ) ( ., 1'\ ~ (1" ~ )' 'l'" LT"' ., 'J 

(1" (T (.( 

the no-interaction mixed canonical/grand canonical parti-

tion function zu 0 ia multiplied into numerator and denom

inator for later convenience. As could be expected, the re-
. . 

aul t ing expression for G"d', eq. ( 28), ati 11 has a similar 

appearance aa the usual one for a g-Green' s function [ 22] 

with the exception of subscripts Q, which make the impor

tant (physical) difference. 

We observe that for the evaluation of a general term 

in eq.(28) we necessarily need to calculate {non-inter

acting) ensemble averages of the following type: 

I {29) 

,.,.,. ". 
where A,B,C, ••• ,~ are field operators or creation and de-

struction operators in the "interaction picture", since we ,. 
assume the interaction H1 at least to consist of a pair of 

field operators: 

{ JOa) 

h1 e.g. •ay contain an operator in the apace of internal 

quantum numbers and a function in coordinate apace (ex

ternal potential), another pair of field operators (self

coupled field), or a second kind of field {minimally 

coupled fields). The field operators can be expanded, 



.. 
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I (JOb) 

with the complete set of eigenfunctions +j satisfying a 

•edified time-independent Schr6dinger equation: 

""' ~ ,1, 1-1- (~) cj>.(~) = £." $Z-J 'f'' (X) 
(j/ J J J 

. 
I (JOe) 

ej(~):ej-t·~j' where 8j denotes the ordinary eigen-

value for t=O and ~j is the vector of (grand canonically 

treated) charges belonging to a single-particle state, com-

. pletely specified by j • . 
Now we define two types of contractions, an m-con-

traction, 

I (J1a) 

which thus is related to a (non-interacting) mixed ensemble 

average, and a g-contraction related to the (non-interac

ting) grand canonical ensemble, 

(J1b) 

With the help of the following generalized Wick's theorem 

it will be possible to evaluate expressions of the type re

quired by the perturbation expansion, eq.(28), or the 

r.h.s. of eq.(29) in terms of sums of fully contracted 

terms which are calcu!able in practice, as will be shown in 

a moment. In Appendix C we prove the generalization of 

Wick's theorem at finite temperst~respecting exact in

ternal symmetry: 

A A " A "' A 

A. "[)·c·· H- N- \;/'··· 
.D ,,, ,,., ••• " 

A A A A A A 

+ A·B··c· 11"' ',- x··· ..... _. .,.IV~ •• (32) 

-1- ••• 



- 20 -

J.e. the mixed canonical/grand canonical (non-interacting) 

ensemble average of p~oducts of "interaction picture" field 

operators or creation and destruction operators is equal to 

the sum of all possible fully contracted terms, with [A·e-c· 
... ] = ,;) [a· e· a:· .. ] etc. for fermions (boson a); however' 

each term on the r.h.a. contains exactly one •-contraction, 

which essentially differs from the grand canonical case, 

where only g-contractions occur [22]. 

To be able to apply Wick's theorem, eq.(J2), •oat 

economically, it is useful to relate the contractions de

fined in eqs.(J1a,b} to free g- .and m-Green'a functions. 

for simplicity we only consider contractions between crea~ 

tion and destruction operators (cf. Appendix C); to extend 

the results to field operators, one has to carry out the 

summations over normal modes of the fields as implied by 

eq.(JOb). We obtain directly from the definitions of the 

m-Green's function, eq.(23) (cf.eq.(26a)), for the non-in

teracting ensemble and of them-contraction, eq.(J1a): 

""' -I\+ -a. .(-r) a:, (7:'') 
J J' 

. 
I ( 33 a) 

furthermore, by eq.(31a) and eq.(23) again: 

11\-/- - A ( ')-., a..(T) a. 'L 
J d' 

( 33 b) 

similarly: 

.. 



.. 
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(JJc;) 

(JJcO 

cf. eqs.(25,31b). Therefore, all kinds of possible contrac

tions can be expressed by either a g- or m-Green's function 

evaluated in the non-interacting ensemble! 

The g-Green's function G0 can be further evaluated 

with the help of eqs.(CBa,b,C9) derived in Appendix C and 

eqs.(JJt:,d): · 

for~>~', and: 

+ < <1\ :f"' ·> -.2;(~)(-r-- T') - d ... , a, a, _ 2. c 1 
JJ d ~ v I (J4b) 

for ~·>~. - Concerning the free m-Green's function G 0~ we 

obtain directly from eq.(2J) using eqs.(CJa,b) again: 
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where in the second last equality we respected the fact 

that states of the non-interacting mixed canonical/grand 

canonical ensemble form a subset of all states defining the 
A 

diagonal representation of Ho; therefore only the above 

operator combinations diagonal in single-particle quantum 

numbers j can have non-vanishing expectation values; in the 

last equality, of course, we applied the (anti)commutation 

rules.- Now, what is the mixed canonical/grand canonical 

ensemble average of a number operator, ~&+jaj>vo? 

By following the same line of arguments which led to pro

jection formulae for the mixed canonical/grand canonical 

partition function in Sec.II.A (cf.eqs.(7,8)) we immediate

ly obtain the result: 

I 

(36) 

i.e. we find a group integral representation effecting the 

projection of a modified grand canonical ensemble average 

(corresponding to the generating function T introduced in 

Sec.II.A, cf. eq.(B)) onto a canonical one, which is speci

fied by a definite SU(N) multiplet~; insertion of the de-
t>:. A~ 

finition~ ofT and Po~, the second of eqs.(9,15) respec-

tively, yields: 

(37) 

The r.h.s. of eq.(37) is a useful expression again 

involving at most only linear combinations of number opera

tors in the exponential function and can be easily evaluat

ed in practice (cf. the comment following eq.(B) in Sec. 

II.A). 

Eqs.(J4a,b), which are well-known [22], and eqs. 

(35-37) show in detail the calculability of free single -

• 

• 
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particle g-Green'a functions end of •-Green's functions as 

well. Having these results in mind we finally return to the 

discussion of the perturbation expansion of m-Green's func

tions G[t, eq. (28), for an interacting many-particle sys

tem. 

First of all we incorporate the almost trivial Modi

fications of the formalism due to passing from creation and 

destruction operators back to field operators by performing 

summations· as required by eq.(30b). Thus we replace crea

tion and destruction operators by the corresponding field 

operators and quantum numbers j,j' by space variables x,x' 

in all relevant equations of this section from eq.(23) on, 

e • g.: 

,.. 
Then, considering a rather general interaction H1 as dis-

cussed in connection with eq.(30a), which is rewritten in 

the "interaction picture", 

(39) 
I 

we are able to draw several important conclusions from our 

analysis involving Wick's theorem at finite temperature 

respecting internal symmetry, eq.(32), and the relations 

found between g- and m-contractions and the respective 

types of Green's functions, eqs.(33«-4) (generalizations 

for field operators can iMmediately be written down with 

the help of eqs. (30b,38)): A general term of the perturba

tion expansion in numerator or denominator on the r.h.s. of 

eq.(28) can be evaluated as a sum of products of free 

Green's functions corresponding to the sum of all possible 

fully contracted terms, where all internal variables Xi, 

~~ <-x,~ or x',t' in case of the numerator) are inte-
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grated over apace and "time" on account of eqs.(28,J9); of 

course, we are presently and always from now on talking 

about the field operator form of eq.(2B) where both aides 

are summed over all j,j' after •ultiplication with +j(x), 

* tj•(x') in accordance with eq.(JB)! Furthermore, each 

fully contracted term consists of exactly one m-Green's 

function multiplying_ a well-defined product of g-Green' s 

functions, where the fixed total number of factors at nth 

order and particularly the weight given to an individual 

contribution depend on the precise definition of the inter

action Hamiltonian and will lead to the formulation of 

Feynman rules in practice. Anticipating an analysis of the 

various contributions to the r.h.s. of eq.(28) in terms of 

feynman graphs, we distinguish disconnected from connected 

contributions. By definition in a disconnected contribution 

a sequel of internal space and "time" variables, which ap

pear as arguments of Green's functions, and are completely 

integrated over apace and "time", closes on itself, whereas 

for a connected contribution the arguments interlace and 

finally are connected to the external refererice variables 

x,~ and x',~'. Omitting the integrations over internal 

variables and all details related to the "interaction 

bracket" (i.e. factors arising ~ithin or fr~m terms in 

brackets in eq.(J9)) we can write e.g. some typical pro

ducts indicating various connected and disconnected parts 

(for s4 representing an external potential, cf. eq.(30a)): 

Gd (x;x-<. ;r-~)G(x;,~;~-~) Glx;,x; !;-Tj 
I 

~J....n.ec-f£ei 

Go-(x;,~ ;~-r;)G;(~,S;~-~) G{~/;, i"S-~) 
~rsco-n.necteol 

(40) 

I • 

• 
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We observe that the numerator on the r.h.s. of eq.(28) 

eventually will give rise to connected es well as· products 

of Green's functions (diagrams) having a connected part to

gether with a disconnected one
1

which factors. However, the 

denominator will produce disconnected diagrams only, since 

there are no external reference variables (points) x,~ and 

x',~'. In the usual grand canonical ensemble case it is 

straightforward to prove that all diagrams arising from the 

denominator in an analogous expansion, which can be "de

rived" from eq.{28) by simply dropping the symbols 1 every

where, exactly cancel the disconnected parts occuring in 

the numerator; in this way one arrives at the famous con

nected graphs.expansion_of single-particle g-Green's_func

tions [22]. - In the present. case of m-Green's functions 

the situation is more complicated, since we always have one 

m-Green's function G 0 ~ among g-Green's functions G0 (cf. 

examples in (40)). G0~ is always fo~nd in a disconnected 

diagram occuring in the expansion of the denominator, 

whereas it can be found· either in a disconnected or in a 

connected part of a diagram contributing to the numerator. 

Therefore, following the combinatorial consideration given 

in ref.[22] for ordinary g-Green's functions, we obtain a 

different {graphical) characterization of the perturbat~ 

expansion of m-Green's function G~, eq.(38): 

( 41) 

I 



- 26 -

where d and c indicate that either disconnected or connected con

tributions respectively of the expressions in brackets have to be 

taken; the prefixes m- and g- distinguish the cases, where either 

the ordinary Wick's theorem ("g" for grand canonical averaging) 

or the generalization given in eq. (32) ("m" for mixed ensemble 

averaging) has to be applied when evaluating the terms in question; 

the subtraction in the second term of the numerator assures that 

the whole term does not contribute at zeroth order. The second 

equality in eq.(41) has been obtained by resumming the denominator 

into Z~/Z~o (cf.eqs.(27,28)) and realizing that the g-d part of the 

numerator equals the grand canonical partition function Z divided by 

its non-interacting limit Zo, whereas the g-c part gives the full 

Green's function·-G, cf.eq.(38), for the grand canonical ensemble [22]. 

Thus in our approach we find no connected graphs expansion for single

particle Green's functions Gft• eq.(38), which is related to a mixed 

canonical/grand canonical ensemble. 

We conclude our study of single-particle Green's 

functions with the remark that the absence of a connected 

graphs expansion seems plausible in view of the fact that 

the canonical ensemble restriction to states of a definite 

SU(N) multiplet presents a global property. Therefore the 

propagation of a particle is not only influenced by other 

particles with which it interacts more or less directly but 

also by the totality of charges present in the ensemble. 

This is in marked contrast with the situation in a grand 

canonical ensemble where only the average local charge den

sities matter. To state it differently: In a canonical en

semble corresponding to some definite SU(N) representation 

tt there are no fluctuations with states belonging to a •ul

tiplet ~·! Since the result given in eq.(41) shows a remar

kably simple structure, it still may be useful in practical 

applications, if the partition functions Z and Ztt are 

known perturbatively, which we already alluded· to in the 

discussion following eqs.(22) in Sec.II.B. The absence of a 
connected graphs expansion for. a Green' a function related 

to the mixed canonical/grand canonical ensemble ~as also 

found in a different approach. which will be shortly mentioned 

in the following section, and a detailed example illustrating these 

results will be reported elsewhere. 

.. 

• 

• 
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IV. Conclusion 

In this paper we have for•ulated a general projection tech

nique employing group-theoretical results to handle the de

scription of· systems by a quantum statistical mixed canoni

cal/grand canonical ensemble. Aa was mentioned in the in

troduction, this problem has quite an interesting history 

[1-7], however, •oatly the ai•pleat U(1) internal symme

tries only related to some exact charge conservation have 

been studied previously with the exception of an early work 

by Bethe concerning SU(2) of spin. We also mention ref. 

[2~], where SU(Z) of isospin conservation was studied re

cently with regard to pp annihilation. 
Here we have presented a formalism which is general 

enough to deal with all compact aemisimple Lie groups, al

though we restricted the more detailed description in Sec. 

II.A to the case of an internal SU(N) group. Our main at

tention has been devoted to the investigation of interac

ting systems and we showed that well-known method~ for the 

study of many-body systems, when suitably modified, can be 

applied here as well. Our results should help to extend the 

applic~bility of the projection technique beyond what was 

originally proposed in refa.[1]. 

A straightforward perturbation expansion for a mixed 

canonical/grand canonical partition has been developed in 

Sec.II.B, which can be applied to the study of droplets of 

weakly interacting quark-gluon plasma , which are in-

tensely looked for in present and future high energy ex

periments (1J]. Such a plasma droplet forms a rather well

defined finite system, where among other quantum numbers 

baryonic charge is conserved only on the average in a hot 

nuclear environment, but where color charges are still 

exactly confined to its interior [10-12,15], thus suggest

ing a statistical treatment involving a mixed canonical/ 

grand canonical ensemble. - In Sec.III we studied the pro

perties of suitably defined single-particle temperature 

Green's functions via a generalization of Wick's theorem 

respecting an exact internal ay•metry. Our approach, how

ever, did not produce an ordinary connected graphs expan-
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sian for the full Green's function, as is the case with 

grand canonical ensemble considerations [22]. We argued 

that this could have been expected on physical reasons. 

To further elucidate this point, we would like to 

mention that there exists at least one alternative approach 

to investigate single-particle Green's functions related to 

a mixed ensemble and we conclude with a technical remark: 

One can start with the following definition of a ge

nerating Green's function, 

(cf. eq.(38)), which is motivated by the successful study 

of a generating (partition) function in Sec.II.B. But again 

one arrives at the conclusion that a connected graphs ex

pansion for the Green's function obtained from eq.(42) by 

projecting onto the canonical ensemble is impossible, es

sentially because group integrals involved to not factor. 

Furthermore, the corresponding free generating Green's 

functions do not have the usual simple periodicity proper

ties (cf. eqs.(26)). That is why we have chosen the ap

proach presented in Sec.III of our paper. 
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Appendix A 

Charge - and Casimir operators 

We consider the (aatrix) g~oup SU(N) of special unitary 

transformations in N dimensions [16-18]. Ita group elements 

can be parametrized by n:N 2-1 real numbers; n is called the 

order of the group. Correspondingly there are n generators 

~h generating infinitesimally small transformations and 

which are related to the group elements e£5U(N) via: 

..... 
Gro<. .,,, « ) 

'-"11 I h 

( A1) 

Unitarity implies that the generators are (linear) hermi

tian operators characterized by real (additive) eigenva

·lues. There are r:N-1 generators or linear combinations 

thereof which commute with each other; r is called the rank 

of the group. We call these generators "charge operators" 
A 

Q~, and their eigenvalues "charges", with: 

= (} 
/ 

,u ,.('= ..../,., r 
I ~· I I 

(A2) 

The abelian subgroup generated by the charge operators is 

usually referred to as Cartan subgroup. Finally, there are 

r non-linear Casimir operators fv, 

~ "" V+4 
= L C ·' ( o,) 

~:~ v~ dA I 

which commute with all generators, 

I 
v = 4 ,.,,. ;-

1 I 

v= 4.,, r 
I I 

I 
A. = 4 ,.,., 1'1. 

I I 

(AJ) 
I 

(A4) 

Therefore, the Casimir operators can be diagonalized toge

ther with all charge operators on a common basis set (vec

tors, tensors etc.). The unitary irreducible representa

tions among them or "multiplet&" can be classified by an 

integer-valued r-dimensional vector with a one-to-one cor

respondence to eigenvalues of the r Casimir operators. 
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Appendix 8 

Examples of Group Characters 

In this appendix we list some useful relations for charac

ters of the groups U(1), SU(2), and SU(J) which were de

rived in detail in (15]. They may also serve as examples 

illustrating eqs.(4-6) in Sec.II.A. 

1. The unitary irreducible representations of U(1) 

are given by complex phase factors eika where k is an in

teger and a (O<a<2~) parametrizes the various group ele

ments. The representations are onedimensional and the or

thogonality relation for characters, eq.(6), is identical 

to a well-known integral representation of the Kronecker-6: 

-i.ko<. 
.£ 

The measure function is a constant in this case, 

M(a):1/2n. 

( 81) 

2. Unitary irreducible (vector) representations of 

SU(2) are characterized by a non-negative integer 2J, i.e. 

J is a non-negative halfinteger (total spin quantum num

ber). Their characters (see eq.(4)) are real functions of a 

single variable (O<a<4n): 

X (c.:J = 
l 

I (82) 

where J3 is an eigenvalue (magnetic quantum number) of the 

single charge operator belonging to SU(2) (cf. Appendix 

A). from eq.(&2) the dimensionality of representations is 

obtained according to eq.(5): 

The orthogonality relation of characters becomes: 
lfrr 

) f;; S"i"h 2 ~ X lo() Y. l'(ol) = d 77' I 

(J 

(83) 

(]4-) 
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from which the measure function M(a):{2~)- 1 sin 2a/2 can be 

read off. 
3. For SU{3) unitary irreducible representations in 

terms of tensors were constructed in [15,19]. They are spe
cified by non-negative integers P and Q, whic~ in turn can 

be related to the eigenvalues of the two Casimir operators 
of SU(3) [20]. The characters are complex functions of two 

variables (-~<+/2,~/3<~) [15]: 

The dimensionality formula is now calculated to be 

d_[m.('Pa) = A~n x'P (¢,'f)=; {'P+4)(a+4X?+G. -+2) I ( 86) 

' rAlf~O I a. 
and the following more complicated orthogonality relation 
is found: 

rr 2 

3~ .. frc~wa({) fth ~(tt+ g)rth t !Ln1(1"-t1 xr~~~~:~/) 
-lT 

(87) 

The Measure function thus is given by: 

M(cp, ~) 

2 

( r[n. ~ (lf+t) S[h ~ ![n. ~ (Y'- ~)) 
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Appendix C 

Wick's theorem at finite temperature respecting internal 

symmetry 

To prove the generalized Wick's theorem, eq.(J2), stated in 

Sec.III it ia necessary and sufficient to prove: 

+ 
• • • • o( ,....., ,., ~ •• c<. «, ~ . . . . .. « , .. v-

ex o c. h-'\. n "' 

+ ••• (all possible fully contracted terms), (C1) 

where ~j denotes either a creation or a destruction ope

rator in the "interaction picture" and the contractions 

were defined in eqs.(J1). The "time-dependence" of these 

operators can be calculated from their equation of motion, 

e.g.: 

= - .e. .(AJ) 8. .('T) J 7-~ d I (C2) 

where we used eq.(24) and respected eq.(JOc), which defines 
,. ~ ( the diagonal representation of Ho(~)e Eq. C2) implie~: 

"' cti(7:) 

Similarly: 

or 

0( .(-r:) 
J 

I 

A.£ .(-rll -r 
ol.(O) .R... J J I I 
J 

(CJa) 

(CJb) 

(CJc) 



... 
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where Aj=+1(-1) for aj designating a creation (destruc

tion) operator. - The next steps follow the prove of Wick's 

theorem for grand canonical ensemble averages given in ref. 

[22]. It is sufficient to consider the special case where 

"time-ordering" has already been performed in eq. (C1), be

cause otherwise reordering operators on both aides simulta

neously does not introduce any additional changes of (rela

tive) sign. from the l.h.a. of eq.(C1) we then obtain by 

commuting a 8 successively to the right: 

< . ) _r l / ) 
O(a ocb C<:c , ... , o: x- rt c:r - Lex-a., O(b..~± '~c , ,. ex>( a cr 

-+ f.:.ca, Q(c]:t < o(b ·-- ""x>lt"" + · · · 

+ [C)( a' o<.J ± ( o( b tXc .... , ~x->d:tt 
(C4) 

I 

where we have taken th~ (snti)commutators referring to be

sons (fermions) outside the traces- henceforth lower (up-· 

per) signs refer to bosons (fermions) - and we noticed the 

fact that the total number of a's must be even; traces va

nish in the non-interacting ensemble unless the number of 

creation operators equals the number of destruction opera

tors. Using the cyclic property of the trace and eq.(CJc) 

the last term in eq.(C4) becomes: 

+ 

Therefor.e, collecting terms in eq.(C4) together with eq. 

( C 5) , we find: 
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( o(a o( b) <"'c ... o( J(> d 17 

+ (oca occ) <"'~ ··· ... X') lt" + · · · 

+ ("'a <XX') <oe~, "'c··· <><"x->li" '(C6) 

c~[,cXJJ:t 
/f ± .e.~& £&Cjd)(3 

(C7) 

These brackets, however, can be calculated by using the 

(anti)commutation rules and extracting the "time-depen

dence" of operators by eq.(CJc); the only non-vanishing 

ones are: 

A .2-(~J('r- T') 
' I .£, 

(CBs) 

i.e. they can be simply expressed in terms of grand canoni~ 

cal ensemble averages of number operators. Assuming 

~a>~b eqs.(CBa,b) can be combined to yield: 

. . 
o<. C( o<. b 

(C9) 
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where we used the definition of a g-contraction, eq.(31b). 

We obtain from eq.(C6) together with eq.(C9): 

. + o(~ ~~ \ ~ftb --. ~)(]1 .. + ... + ~.x./t.b "f: .. J>ct" 

( fcfo<~ "'h «c · .. {/~" + ( {. {oe; O<h of · • · «J)ri" 
+ . . . + (:7; [oe~ c(b tx'c •• - tx'J)(j-~ ' (C10) 

where we put in T" reminding the reader that we as-
sumed "a>"b>"c> ••• >"x in eq. (C4) and therefore in eq.(C6) 
as well and where the last equality holds as a definition. 

Eq.(C10) presents the important first step towards 

Wick's theorem. Since the contractions can be taken out of 

the traces on the r.h.s. of eq.(C10) being merely scalar 

factors, the same analysis can be applied over and over 

again until all possible pairs of operators are g-con

tracted except a last one; we have to consider: 

- -- ~- 0(. 
L J I ( c 11 ) 

by definition, eq.(31a); eq.(C11) ia further evaluated in 

eqs.(33a,b) in Sec.III. - This remark completes the prove 

of eq. ( C 1 ) • 
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