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FOURIER TRANSFORM ZERO FIELD NMR AND NQR
David Bruce Zax
‘Abstract

The characterization of the structural and chemical properties of
matter, particularly in disordered condensed phases, is a difficult
process. Feﬁ analytical methods work effectively on polycrystalline or
amorphous solids. In many systems the chemical shifts measured by
traditional high resolution splid state NMR meéhods are insufficiently
sensitive or the informatipn contained in the dipole-dipole couplings
is more important. In these cases Fourier transform zero field
mggnetic resonance may make an important contribution. Zero field NMR
and NQR is the subject of this thesis.

Chapter I presents the quantum mechanical backgréund and
notatiohal formalism for what follows. Chépter II gives a brief review
of high resolutioﬁ magnetic resonance methods, with particular emphasis
on techniques applicable to dipole-dipole and quadrupolar couplings.
Level-crossings between spin-1/2 and quadrupolar spins during
demagnetization transfer polarization from to low y nuclei. This is
the basis of very high sensitivity zero field NQR.measurements by field
cycling.

Chapter III provides a formal presentation of the high resolution
Fourier transform zero field NMR method. Theoretical signal functions
are calculated for common spin systems, and examples of typical spectra
are presented. Chapters IV and V review the experimental progress in

zero field NMR of dipole-dipole coupled spin-1/2 nuclei and for



quadrupolar spin systems.

Variations of the simple experiment described in earlier chapters
which use pulsed dec fieids are presented in Chapter VI. Some
advantages of these variant experiments are suggested. Theorétical
predictions for the experimental spectra are given and compared to
experimental results. High sensitivity experiments closely related to
traditional level-crossing spectroscopy are discussed. Some two-
dimensional zero field correlation experiments are proposed.

Chapter VII contains a description of the application of group
theory fo problems of coupled spins in the apsence of applied fields.
Normal point group theory and time reversal are both importaﬁt.

Experimental details and a description of a zero field NMR
spectrometer apbear in Chapter VIII. Design criteria are presented,
along with suggestions as to some variations and technological

improvements.
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I. Preliminaries

The work described in this thesis is primarily concerned with the
extraction of chemical and structural information from disordered solid
state systems. The technique to be described is nuclear magnetic
resonance (NMR)., 1In NMR, the nuclear moments which occur naturally in
a large number of nuclei are used as spies to relay to the
experimentalist microscopic details about the local environment often
inaccessible by any other technique. The interactions of nuclei with
their environment help elucidate chemical and/or structural properties
of matter and, less direcﬁly, dynamical behavior. This information
appears in its richest form in solid state materials. Yet it is also
in solids that it is most difficult to reveai. This thesis describes a
new techﬁique for the extraction of such information with both high
sensitivity and high resolution and from disordered systems. The
method to be described is zero field NMR. fhe goal of this first

chapter will be to present the required fundamentals.

A, Microscopic and Quantum Mechanical Formalities

1. The Nuclear Spin

Due to considerations of nuclear bonding whose origins remain
mysterious but much appreciated by chemists, most atoms contain nuclei
with a degree of freedom known as spin. The spin degree of freedom
corresponds classically to a dipolar (or higher order) nuclear magnetic
moment. The energy of an atom or molecule containing a nucleus with a

magnetic moment depends on the state of the nucleus. Formally the



nuclear moment is treated as an angular momentum operator, which I will
label with the generic symbol I. (Occasionally, when two different
spins types with significantly different properties simultaneously
comprise our spin system, the second will be labeled S.) This angular
momentum satisfies all the traditional properties of angular momenta.

In units where h=1

12|¢(1,m)> = I(I+1)|y(1,m)> (1.1)
and

II$(Im> = n|pI,m> mn=-I,-T+1,...,T (1.2)

I, is conventionally chosen to be the diagonal component of the angular
momentum and m is the projection of the angular momentum along the
(arbitrarily chosen) z-axis. I may be either integral or half-integral

and each nuclear spin I has 2I+l magnetic sublevels. For I=1/2 the

eigenstates are often represented by the short hand notation,

lo> = vz P> B> = G - > (1.3)

There are two additional components of the angular momentum which are
off-diagonal in the conventional basis set. In terms of raising and

lowering operators,

1| 1/2

Ll @m> = [(T-m) (T4m+1) 1777 [9(T, m41)> (1.4)
and

1/2

I |w(@,m)> = [(I+m)(I-m+l)]~/ “|9(I,m-1)> (1.5)

or, as angular momenta



1
I, = 5 (I +1) (1.6)
and
I = 2, -1) (1.7)
y 21 4+ - )

For spin-1/2 particles, these operators are proportional to the Pauli

spin matrices, and

1
I. = & s, (1.8)
J 2]
where
2
s, = E (1.9)
j :
for E the identity operator. The Pauli matrices S5 satisfy
s.sksj = - 8 if j =k
= Sy if j=k “(1.10)

The different components of the angular momentum operators satisfy the

commutation relations

[I, , I

jp i (1.11)

kel 7 Tiplka T Tkatip T Mgiabea N1
where j,k, and 1 are any cyclic permutation of %, y, and z, and p and q
identify a specific nucleus.

We will ignore the possibility that excited nuclear states might
make any contribution to observables in whatever follows, as the energy
differences between the ground and excited states is exceedingly large
and requires exotic instrumentation.1

The magnetic moment of the nucleus interacts with any and all

surrounding electromagnetic fields. The strength of that interaction



is governed by two parameters. The first is some physical constant
characteristic of the structure of all similar nuclei (and presumably
measured many years ago when magnetic resonance experiments were
carried out in physics laboratories with the goal of measuring these
nucleaf properties). The second and more important parameter is.some
local envirommental variables which differ from molecule to molecule
and site-to-site and are characteristic of structural or chemical

properties at those sites. The measurement and interpretation of these

Table 1.1: Nuclear Spin Hamiltonians

Interaction Form of the Hamiltonian
Chemical Shift H =- 4I-0-B
cs 0
Dipole-Dipole HD = - Ij-ﬁ-Ik where j=k and
-3
Daﬂ = 7j7Eﬁ rjk (saﬂ - 3eaeﬂ) and
a,f=x, y, z and e, is a direction cosine
J coupling HJ = - Ij-J-Ik where j=k
eQ s
Quadrupole , H, = - ——=—5=—= I:V-I where

Q 4I(2I-1)A

vV = {Vaﬂ}; a,f=%x,y, z

latter parameters is the goal of this work and all modern NMR. These
chemically sensitive term; include the chemical shift, the direct
dipole-dipole coupling, the quadrupolar coupling, and the J coupling.
The Hamiltonians corresponding to these interactions are summarized in
Table 1.1.2 More useful expanded forms wili be derived below. To
arrive at these other forms will require a brief development of tensor

notation.



2. Rotations and Tensors

The Hamiltonians of Table 1.1 are expressed as products of spin
(I) and spatial (e.g. D and 6) terms. Each is a tensor. It will prove
necessary to delve rather deeply and often into the problem of the
operations of éngular momenta and their higher order relatives, with
specific reference to their transformation properties under rotations.
Traditionally rotatibns between axis systems are parameterized in terms

3,4 These

of the Euler angles («,8,v7) and a rotation operator R(a,8,7).
three angles relate a three-dimensional coordinate system to any other
via three rotations: a rotation of v radians about the original z-axis,
B radians about the new y-axis, and a« radians about the newest z-axis,
with @ and v < 27 and 8 < n. It is awkward to work with this set of

rotations about a set of continually varying axes, and it is customary
to derive the form of the rotation operator referenced to a fixed set

of axes. In this fixed set of axes, the rotation operator R can be

formally written
R(a,B,7) = R(0,0,v)R(0,8,0)R(a,0,0) (1.12)

that is, a rotation about the fixed z axis by a radians, the fixed y
axis by B, and the fixed z axis by y. As an example, consider the form
of a general operator £ expressed in the basis set of the coordinate
system (x,y,z) when viewed instead from a new reference frame
(x',y',z'). The operator has not changed, and no observables
associated with the operator £ can be affected by simply reexpressing
it in a new basis set. Only the description of that operator differs.

This is made more formal if we note that, for any operator P



plp - !l - E (1.13)

where E is the identity operator. By definition, multiplication by the

identity operator leaves all operators unchanged; that is,
-1,.,-1
<x,y,z|€|x,y,z> = <x,y,z|P PéP PIx,y,z>
’ ' ' -1 ' ' '
= <x',y',z IPEP lx v y',z'> (1.14)
and

Plx,y,z> o= |x',y',z'> (1.15)

For P = R(a,B,v7) this establishes a simple relationship between the
form of the operator in the old frame of reference and the new. For
vectors in three space, the transformation R can be derived from

geometric considerations. Its most general form is

cosy siny O cosfp 0 -sinB|| cosa sina O

R(a,B,v) = |-siny cosy O 0 1 0 -sina cosa O (1.16)
0 0 1 sinB 0 cosp 0 01

This sort of transformation functions merely as a bookkeeping operation
and can have no fundamental effect on any observables. It may,
however, serve as a notational aid by taking observables from one
reference frame to a second. Presumably, the interesting behavior of
these observables is more succinctly expressed or observed in the new
reference frame.

The description of rotations on operators which are not readily
expressed as vectors in three-space is more difficult, and is the
motivation for the development of techniques for the study of the
algebras of angular momenta.5 Angular momentum and higher'order

spherical tensor operators serve as a convenient basis set for the



description of many problems in NMR. The general form of the spherical
tensors is presented here and provides the groundwork for subsequent

chapters. We will take as fundamental Racah’s definition of the

spherical tensors;6 that is, an operator Tg is a spherical tensor
operator of rank k and order q if
k k 1/2
= +
(T, Tq ] Tory ((FQ) (kEqh1)) (1.17)
and
ok k
I., T = T 1.18
(15, Tg ] aTg (1.18)
where
-1/2
= + +
Iil +(2) (Ix + in) (1.19)
and
I0 = Iz (1.20)

The commutation relations can be used to derive the transformation
properties of the spherical tensors (and/or angular momenta) under
rotations. The angular momentum operators are the generators of finite

rotations. Following Edmonds,3

R(a,B8,7) = eXP(ivlz)exp(iﬁly)eXP(iaIz) (1.21)

Writing down an expanded form for the exponential operators of Equation

(1.21):

. . 1,2.2 i .3.3 .
exp(ifI,) = 1 + i9I, - = 0717 - =671, + ... 1.22
P ( J) i 72 j 3 3 ( )

Because the nuclear spin basis vectors are chosen as eigenstates of I,



rotations about the z-axis are particularly simply expressed and

exp(ifl ) |¥(I,m)> = (1 + ifm - l-02m2 - 5-03m3 + . )| YOI, >
z 2 6

=  exp(ifm)|¥(I,m)> (1.23)

Rotations about the x- and y-axes are more difficult to derive from
first principles. An explicit expression will be derived using the
Pauli spin matrices and will therefore be a proof only for the case of
a spin-1/2 nucleus. All higher dimensionél systems follow by induction
from this proof.

Consider a rotation through an angle § = 2¢ about the j axis.
Using Equation (1.8) to reexpress the rotation in terms of the Pauli

matrices;

+ ...

1,22 i 33
R = exp(i6I, xp(ig¢s,) = 1 + igs .- 5 ¢"s5- = ¢”s;:
exp(if1,) = exp(ids,) tigss- G éss- g oSy

cos¢ + 1 sjsin¢ _ (1.24)

For sj * S (otherwise, the rotation commutes with the operator),

exp(i¢sj)6% sk)exp(-i¢sj)=-% (cos¢g + isjsin¢)sk(cos¢ - isjsin¢)

1 2 . 2 < s
= E{cos ¢ s, + sin ¢ Sjsksj + lsln¢cos¢v(sjsk-sksj)]

1 2 . 2 .
= -7((005 ¢ - sin"¢) S -2singcosé sl)
= cos2¢ Ik - sin2¢ I1
= cosf Ik - sing I1 (1.25)

Explicit matrix representations of the rotation operators are given by



the Wigner rotation matrices D%m.(a,ﬂ,y). Symmetry properties relate

7

many of the elements of the D matrices,’ and will often be exploited.

Summarizing, for any operator £

RER'T =  D(a,B,7)€D “(a,B,7)

—  D(a,8,7)€D(-7,-B,-a) (1.26)
and
R =D(a,,7) = exp(imy) &  (B) exp(ima) (1.27)

where the d(B8) matrices are the matrix representations of the operator
which for j = y guarantee that Equation (1.27) holds. If £ is a

spherical tensor, a special relationship holds:

e
=3
e
1

I Ma

k k
1.28
q Dq(@:8m) T ( )

p
that is, tensors of rank k transform under rotations only into other
tensors of the same rank. Generally, analytic forms for the
transformation properties of the spherical tensors will only be
required for k = 1 or 2 (as k = 0 is trivial and all others a bit too
involved.) Zeroth rank tensors are invariant to all rotations; first
rank tensors transform as vectors, and second rank tensors have the
rotational properties of the d electronic orbitals. The important
transformation properties of the spherical tensors are encapsulated in
Equation (1.28).

As the spherical tensors are traditionally defined they exhibit
particularly simple transformation properties with respect to rotations

about the z-axis. More frequently in NMR applications rotations about

the x-y plane are required. Table 1.2 gives the transformations of a



Table 1.2:

10

Transformations of Operators

A. Definitions of Second Rank Tensors Uk:
U, = 6"/2 [312- 1(I+1)]
_ -1/2 -1/2 2 .2
1+ = 2 (IyIz + IzIy) u,, = 2 (Ix Iy)
_ -1/2 _ -1/2
1. = 2 (LI + I1I) U, = 2 (IXIy + Iny)
B. Transformation under Rotations Rj(ﬂ):
[ U ] --J—f{-];sinzﬂ U,. - sinfcosf U, } + l(3cos29-1)U ]
0 2 2+ 1+ 2 0
U1+ - sinfcosé U2++ cos2fd U1+ - JTS- sinfcosd UO
Rx(o) Ul- Rx(-o) = siné U2_+ cosf Ul- J_
1 2 . 3 .2
U2+ -2—(1+cos 6) U2+ + sinfcos? U1+ - "7 sin [/ U0
U2_ cosf U2_- sinf Ul-
U, 3 {%sin20 U,,- sinfcosd U, } + -]2;(3c0520-1)U0
U1+ - sing U2_+ cosf U1+
Ry(ﬁ) Ul- Ry(-ﬁ) = - sinfcosé U2++ cos2f Ul- + 43 s?ﬁcosa Uo
1 2 . 3 .2
U2+ 5(1+cos 8) U2+ + sinfcosd Ul- + 5 sin 0 U0
U2_ cosé U2_ + siné U1+
Yo Yo
U1+ cosf U1+ + sinf Ul-
Rz(o) Ul- RZ(—0) = - sinég U1+ + cosé Ul-
U2+ cos2f U2+- sin26 U2_
U2_ sin26 U2++ cos28 U2_
L J L .
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set of linear combinations of the second rank spherical tensors which
will frequently prove useful in the analysis of NMR experiments and in
the zero field NMR and NQR experiments which follow.

3. Hamiltonians: Tensor Notation

The fundamental problem of NMR is the solution of the time-
dependent Schroedinger equation. It is therefore necessary to find a
convenient representation of the nuclear spin Hamiltonians which will
simplify the task of the calculation and analysis of spectra. This
presents a paradox. The Hamiltonian is a scalar operator and is
presumably unaffected by rotations and/or- translations in space. Yet
it is a continuing theme in modern NMR experiments that an appreciation
of the properties of tensors under rotations is essential to
understanding modern NMR experiments.

The solution to this apparent paradox is that the nuclear spin
Hamiltonians of Table 1.1 are the products of tensorial interactions.
Just as the dot product takes two vectors and produces a number

operator, the generalized dot product of two kth rank tensors is

K
H = (T-¢) = 3 (-1)378¢cK (1.29)

-k q -9

Hamiltonians can always be expressed as just such a contraction of two
tensor operators. One (C) operates on the spatial degrees of freedom
and the other (T) on the spin degrees (which, however, are expressed in
a basis set necessarily referenced to the laboratory frame fixed in
space). While at intermediate stages of the calculation, either spin
or spatial variables may take "center stage" separately or sequen-
tially, actual calculation of Hamiltonians requires that ultimately the

contraction of Equation (1.29) is performed. Rotations which operate.
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separately in only one or the other of the reference frames profoundly
effect the observables. Bulk rotations of the entire system, which
transform the two sets of spherical tensors identically from one
reference frame to a second can have no effect on observables. An
attempt will be made to clearly delineate between those rotations which
are transformations between coordinates, and which effect only
bookkeeping, (of which Equation (1.14) is an example) and a rotation of
either the spin or spatial frames with respect to the other, whereby

observables of the system are fundamentally altered.

B. Nuclear Spin Hamiltonians

The total nuclear spin Hamiltonian consists of a number of
independént contributions., There are two broad classifications of
interactions: laboratory frame interactions ﬁhder the control of the
experimentalist, and local or molecular frame interactions whose
measurement is the goal of the experiment. As the laboratory frame
interactions are the experimentalist’s only tools, they will be
detailed first.

1. Laboratory Frame Interactions

a. The Zeeman Hamiltonian

This Hamiltonian describes the direct coupling of the nuclear spin

magnetic moment with an externally applied magnetic field. 1Its form is

H, =-2 vyHI.B = 2w i I. (1.30)

where 7jﬁ is the nuclear moment of the jth spin and is characteristic

of a particular nucleus and ©0j is the Larmor frequency. Magnetogyric
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ratios of many common nuclei are w;/2m ~ 1 kHz/gauss in familiar units,
-or ~ 10 MHz/Tesla in more proper units. Nnumerical values are almost
universally assigned not in angular frequency units of radians/sec (w),
but in the more common frequency units v = w/2rx where the standard unit
is hertz. In common laboratory fields of a 1-10 Tesla (10-100 kgauss)
the Larmor frequencies of most nuclei fall between 10-500 MHz.

b. The Rf Hamiltonian: Rotations in Spin Space

Oscillating magnetic fields are the experimentalist’'s primary tool
for the manipulation of nuclear spin systems. We will assume that the
rf field is applied in the plane perpendicular to the static magnetic

field, and

H = 27jh B1 cos wt I = wl[exp(iwt) + exp(-iwt)] I¢ (1.31)

rf ¢

where w is the frequency of the applied rf field, wy its strength, and

I¢ = cos¢ Ix + sing Iy (1.32)

All subsequent calculations are simplified if the rf Hamiltonian is
transformed into an equivalent time-independent form. This is known as
moving to an interaction picture, or entering the rotating frame. All
other Hamiltonians will need to be modified to consistently fit this
rotating frame picture of the rf Hamiltonian. Starting from the time-
dependent Schroedinger equation (with energies expressed in angular

frequency units so as to remove all factors of Planck’s constant):
i— = Hv (1.33)

with
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H = Hz + Hrf + Hloc (1.34)

where Hloc refers to all the local interactions to be described

immediately below. Substituting

¥ = U8 = exp(iwIzt) e (1.35)

and O represents the eigenstate in the rotating frame. Then the

Schroedinger equation can be rewritten

; 5(U0) . U se,  _
i 5T i (St e + U 5t = HU® (1.36)
Rearranging,
., 68 _ -1 ,-1 6U
l?t—:' = (U HU - iU -S—E ) ) (137)
But
§U : -
-s—t- =  lw IZU (138)
and
. 60 -1
i 3t = (U HU + wIz) 2] (1.39)

Using the rotation operators tabulated previously, the rotating frame

Zeeman Hamiltonian is written

c
jars
a
Il
jae
]

Z (v - wo) Ijz = I Aw Ijz (1.40)

J N
where the rotated Hamiltonian is indicated by the ~ and Aw is the

resonance offset. Similarly, in the rotating frame

-1 - .
U HrfU Hrf = w [1 + exp(2iwt)] I

p (1.41)

and the rf Hamiltonian in the rotating frame contains both a static
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component and a rapidly rotating component. If wy>>w; then only
components of H whose time average over many Larmor periods (wo)'1 is
nonzero contribute (to first order) to observable features. The
rapidly rotating component of Equation (l.41) has zero time average and

can be ignored, and the first order rf Hamiltonian is

' ~

Hrf = <Hrf>t = wlI¢ (1.42)

For each of the H;,., these same two steps (entering the rotating frame
and averaging over the Larmor éeriod) will need to be repeated. If

w = 7B0 (Equation (1.40)), then in the rotgting frame the Zeeman
Hamiltonian is zero. This is referred to as the on-resonance condition
and the rf field is most effective in causing transitions between
eigenstates. As long as w; ~ Aw the rf field is near resonance and can
interact with the spin system. Generally the on-resonance condition is
assumed. If the rf Hamiltonian is strong (Hrf >> Hloc) and on
resonance then the effect of the applied rf field may be well-
approximated as a rotation in spin space about the ¢ axis in the x-y
plane.

2. Local or Molecular Frame Interactions

Each of the molecular frame Hamiltonians is a second-rank tensor,
and a principle axis system exists where its matrix representation can
be given a diagonal form. As these Hamiltonians are not necessarily
observed in the principle axis system but more generally in the
laboratory frame of reference and in the rotating frame, each of the
local Hamiltonians will have representations in their own principal
axes, in the lab frame, and in the rotating frame. As the rotation

operators have been defined in this chapter, there exists a rotation R,



16

defined with respect to the fixed laboratory frame of reference, such
that R(y,B8,a) takes operators from the local or molecular frame of
reference (subscripted M) into the laboratory frame (subscripted L).
This coordinate transformation is shown in Figure 1.1. rR1 performs

the inverse rotation;
R&MR = EL _ (1.43)

In the rotating frame at high field the orientation of the x and y axes

is arbitrary and without loss of generality we can choose y = 0 and
R = R(0,8,0) = R(A) (1.44)

If the internal Hamiltonians are observed in high field this
transformation between the principal axis system and the laboratory
frame is required in order to explain the observed spectra. Where two
or more interactions are simultaneously present there will be a
different R for each interaction.

a. Chemical Shift

The symbol ;j represents the chemical shift tensor of the jth
nucleus (typically ~ ppm). The largest component of the Zeeman
interaction is isotropic and chemically uninformative. The chemical
shift ;j is a correction to the Zeeman Hamiltonian which arises from
the shielding of the external magnetic field due to perturbations in
the electron cloud at a given site. The chemical shift is an
anisotropic second rank tensor and different for chemically

distinguishable sites. The size of the anisotropy is comparable to the

interaction itself. 1In its principal axis system,
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Laboratory Frame

Figure 1.1. Relationship between the
laboratory frame of reference (x,y,z) and the
molecular frame (xy,yy,zy). The laboratory
frame is reached from the molecular frame by a
rotation R({l) about the laboratory-fixed axis
system. The most general rotation R(Q}) is
described by rotations about the z, y, and z
axes successively. In most NMR applications,

only the latter two rotations are necessary.

XBL 855-8884
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Hcs = - ? 1jﬁBo- aj- I (1.45)

Because its magnitude is proportional to the applied field By, in zero
applied field H,, = 0. In the rotating, laboratory frame related to

the principal axis system by the transformation R(0,f8,a)

H = - 273.'613

I [0, +%¢ (3cos2B - 1 + nsinZBcos2a)](1.46)
cs ; zj

0 iso 2 "aniso

While most high resolution NMR techniquesz’8

emphasize the importance
of measuring the isotropic component of the chemical shift and/or its
anisotropic components, in ﬁhe work to be described below the existence
of a chemical shift will rarely prove relevant and in most cases it

will be ignored.

b. Dipole-Dipole Couplings

In many spin-1/2 systems and in particular for Iy nuclei, the
dipole-dipole couplings dominate the spectral features in the solid
state. The classical energy of one magnetic dipole in the field of a

second 1is

H = - flﬁg (I.-I. - 3 (I,-r..0(I,-,,)) (1.47)
D r3 1 72 r2 1 712 2 712 )
12 12

Substituting p; = v;Hi, the dipole coupling constant (again, in angular

frequency units) is given by

Y17,h
wll)z =_1_§__ (1.48)
2ﬁr12

For many coupled spins, the dipole-dipole Hamiltonian is given as a sum

over all pairs, and
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H = = H.. (1.49)
D ok Djk

Henceforth I focus on a single pair. In zero applied field, the two-
spin dipole-dipole Hamiltonian (Equation (1.49)) has four eigenstates
and three distinct energy levels. The eigenstates can be divided into

the triplet manifold (T Tg, and T_ ) and a singlet (S), whose energies

+?
are

1
<t |Hp|T,> = <T |HjT> = -Fw

<%|HD|S> =0

D (1.50)

<to | ITe> = wp

The rotating frame form of Equation (1.49) is given by again expanding
in a laboratory-based reference frame. As Hb and HQ are formally
identical (except that there is no asymmetry parameter n in the static
dipolar tensor) the same treatment will apply to the quadrupolar

coupling to be treated below, and’

HD = - v (A+B+C+D+E+F) (1.51)
with
A = I.1 (1-3c0520)
1lz7 2z
B = L (1-3cos?6)(I, I, - I, -I.)
2 °s 1z72z -~ "1 "2
3 .
cC = - 5-51nﬁcosoexp(i¢)(11212+ + Il+122) (1.52)
*
D = C
E = - é- in2€ xp(2i¢) (I, . I,,)
g ST Yexp 1+ 2+
*
F = E

(These forms differ slightly from those found in most standard
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referencesl?+1l because I have defined the transformation between L and
M frames with what amounts to opposite signs of the Euler angles from
most authors.) When the dipolar Hamiltonian is observed in the
presence of a large external magnetic field, it is further necessary to
enter the rotating frame where the rf Hamiltoniaﬁ is static and the

dipole-dipole Hamiltonian observed in high field is

, _ w
H = <H (t)> = .2 fexp(-iwI t) (A+B+C+D+E+F)exp(iwl t)dt
D D Wy z z

= - wy(A + B) ) (1.53)

Because the A and B terms have an explicit dependence on R the energy
levels of the truncated dipolar Hamiltonian do’as well. 1In any
reasonably large field, no higher order correction terms are necessary.
The truncated Hamiltonian described above may reﬁuire further
modification. The B term in Equation (1.53) contains spin operators
which "flip" spin 1 while spin 2 Qflops.“ These flip-flop terms are
effective only if the total energy of the system is conserved. If the
spin system contains spins with two different magnetogric ratios g
and vyg then the spin reference frame is doubly accelerated with respect
to each of the Larmor frequencies. The B terms of the dipolar
Hamiltonian are then oscillatory at frequencies comparable to the
difference in Larmor frequencies. For heteronuclear spins (say 13¢ ana
1H) this large difference in Zeeman energies makes these flip-flop
terms ineffective; their time average is zero. Even for a single spin
species (meaning y; = 7g) the flip-flop terms may be truncated by large

12 11

chemical shift differences or quadrupole coupling constants.
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c. Quadrupole Couplings

For spins I =2 1, the largest of the internal Hamiltonians is most
often the quadrupolar Hamiltonian. It arises from the electrostatic
interaction of an asymmetric chgrge distribution in the nucleus with
surrounding electric field gradients (created by an asymmetric electron
cloud distribution). This interaction is present in ~70% of all the
elements in the periodic table. In spherical tensor notation, the form

of the quadrupolar Hamiltonian is

. eq
HQ - - 3 m!m Ij jIj J (1.54)

which emphasizes that it is characteristic of a single spin label and

<t

site. The nuclear quadrupole moment, eq, is a fixed nuclear parameter.
Therefore, the nuclear quadrupole interaction in any particular
compound is determined entirely by the size and direction of the
electronic field gradient, V. HQ is often more chemically sensitive
than is the chemical shift. Quadrupole coupling constants are quite
broad-ranged (~10 kHz - 1 GHz), and we will concentrate in this work on
systems at the low end of this range.

In the principle axis system and'using the conventional

definitions,ls'14
vV, = eQ (1.55)
LA A
n = _ZZ__V < 1 (1.56)
ZZ
v, I > v I v, | (1.57)

and
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v +V +V =0 (1.58)
Further defining

2 _
e qQ. 59
AyD = ZTId (1.59)
the quadrupolar Hamiltonian for a single spin takes on the simple

expanded form

2 2 .2
Hy = - (D DI, - I+ + g (I - 1] (1.60)

For a spin 1 nucleus in zero field, there are three eigenstates (x,y,

and z) with energies

<x|HQ|x> = -(l-n)A <y|HQ|y> = -(l+n)A <z|HQ|z> = 2A (1.61)

For quadrupolar nuclei in high field, the same transformations
performed on Hp must be applied to HQ. Rotating into the laboratory
frame and then into the rotating frame, the truncated first order

quadrupolar Hamiltonian is

Héj - - %-AQj(I)(3I§ - I(I+41)) [(1-3cos’B)+nsin’fcos2a]  (1.62)

If

HZ >> qu(I) (1.63)

then the first order approximation may suffice. 1If the high field
condition of Equation (1.63) does not hold, it may be necessary to go
higher order in perturbation theory. The second order shift in energy

due to the quadrupolar coupling 1515’16
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)y 3Aé:ﬁlz 9 2
- .z -1- -1-
HQj wg {c1(41(1+1) 1 8Iz) + 02(21(21+1) 1 212)} (1.64)
where
2 2 2 2 3 2 2 2
¢, = z (sin"2a-cos " Bcos 2a + 5 cos B - n cos " Bcos2a| sin"B (1.65)
3 . 4 2 [ 2 2 2. . 2 n .2
c2 = §-s1n B +'—€_ [ ¢y cos 2a - cos Bsin Za] + Cy 5-51n Bcos2a (1.66)
and
1 .2
¢y = 1 - 7 sin B (1.67)

d. J Couplings

The final significant interaction is the J coupling (also called
the exchange coupling, electron mediated dipole coupling, or indirect
dipole-dipole coupling). Its form is

H, =- 3 I, -J,

(1.68)
j=k NN

- I
k "k
In general, the J couplings are anisotropic with an isotropic
component. Only the latter is routinely measured. Anisotropic
components of the J tensor have the same transformation properties as
the dipolar couplings and are rarely separable from them. The

isotropic J coupling takes the form

1
H, =- 3 J(Iszz + 3 (1+j1_k+ I (1.69)

I..))
J 3ok k -jT+k
In zero field, two J coupled spins can be classified in the same sets

of eigenstates as the dipolar coupled pair (i.e. the triplet and the

singlet). All the triplet energy levels are degenerate, and
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1 3
<rlH;|r> = -7 J <s|H |s> = +J (1.70)

The isotropic J coupling is independent of orientation even in high
field. 1If, however, the jth and kth spin Larmor frequencies differ by
much more than the size of the J coupling, then the flip-flop terms are

truncated and in the weak coupling limit

H = X JI.I
J 3wk zj zk (1.71)
C. Macroscopic Considerations
1. The Density Operator

The density operator is a convenient bookkeeping formalism for
the description of macroscopic phenomena.17 It serves as a shorthand
method for summarizing all available information about macroscopic
ensembles of quantum éystems. Due to the small size of the quantum of
nuclear spin energy (for example, hwy ~ 100 MHz corresponds to a
thermal energy kT ~ 5 mK) no NMR detector is capable of observing
individual events of absorption or emission. Only the average behavior
weighted over a large number of similar systems is detected. The
density operator serves as a convenient formalism for the calculation
of the parameters of such macroscopic systems, to the extent that the
experimentalist has any knowledge or control over such parameters.

Formally, we can define the matrix representation of p as

(1.72)

where the coefficients ¢, and ¢, are the probability factors that the
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system is in eigenstate a or b, and the bar over the product indicates
ensemble averaging over some large number of otherwise identical
systems. The diagonal elements p,, are the populations of the energy
levels. Off-diagonal elements are termed coherences.

Expectation values for operators are given by
<¢> = Tr [{p] = Tr [p€] (1.73)

a. Time Evolution

More importantly, time evolution under a Hamiltonian operator H
is readily treated using this formalism. The Von-Neumann equation for

the evolution of p is

82~ i(p,H] = i(pH - Hp) (1.74)

For H time-independent, a formal solution to the differential equation

is
p(t) = exp(-iHt)p(0)exp(iHt) (1.75)
The abth element of p can be evaluated

Pp(t) = exp(-iE_t)p(0) exp(iE t)

t

Pap(0) exp(i(E - E )t)

pab(O)exp(iwbat) = pab(O)exp(-iwabt) (1.76)

If H is not time-independent, we will assume it can be subdivided into
n time-independent pieces. Then the Von-Neumann equation can be
integrated stepwise over each time-interval and in each step Equation

(1.75) holds. Over n such time intervals,

p(t) = exp(-iHntn)...exp(-iHltl)p(O)exp(iﬂltl)...exp(iHntn) (1.77)

is a formal solution and exp(-iH t ) is termed a propagator. Fourier
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transformation with respect to any one of the t  results in a one-
dimensional spectrum with all the other time variables as parameters;
Fourier transformation with respect to two different time variables

18 where the one-dimensional

results in a two-dimensional spectrum
spectra are the projections onto the w; and wy axes, and the crosspeaks

correspond to correlations between the two time-variables.

b. The Density Operator at Equilibrium

For a spin system in equilibrium with the lattice at a finite
temperature Ty, the populations of the system satisfy the Boltzmann

distribution law,

o AE/KT (1.78)

o |”

where

AE = E_ - Eb = w (1.79)

At equilibrium p is necessarily time-independent and no coherences may
exist. The equilibrium density operator is completely charécterized by
the population ratios of Equation (1.78). As nuclear spin energies in
attainable laboratory fields are considerably smaller than thermal
energies, the exponentials of energy differences in the distribution
law can be expanded in a power series and trunéated after the first
term, and

n AE

a
—_— = 1 - == ) (1.80)
nb kT

This is the high field, high temperature approximation. We will never
be concerned with the density operator as such but instead its close

relative, the reduced density operator defined by
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p = p - DE (1.81)

where E is the unit matrix and b is a normalization constant chosen

such that
Tr[p] =1 (1.82)

The dynamical evolution of the reduced density operator, p;, and the
density operator, p, are identical as the identity operator E commutes
with all unitary operations. All subsequent references to the density
operator will refer to the reduced density operator and the subscript
will be dropped. |

The equilibrium density operator in the high temperature limit is
proportional to its energy. Im high field,vthe Zeeman Hamiltonian is

much larger than the local Hamiltonians, and in operator form

p = bIIZ = ;bII_zj (1.83)
J
with
7IB
bI = TET (1.84)

and Z is the partition function. Where only a single spin species is
involved, then all of the bI's are identical and without loss of
generality it can be omitted (as it serves only to scale the absolute
size of all observables). When more than a single type of magnetic
nucleus exists in the sample, it will generally prove important to
retain at least the ratio between the normalization constants.

2. Magnetization, Polarization, and Other Order

The nuclear ordering which appears as a sample in high field

reaches equilibrium with the lattice gives rise to a longitudinal
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magnetization, whose value is given by

M = 9B Tr [pL,] (1.85)

At equilibrium in high field for all other operators £

Tr [p€] =0 if Tr [sz] =0 (1;86)

This is a restatement of the Curie law

2,2
Ny™h"I(I+l)
M = XOB0 T B0 (1.87)

Equally spaced energy levels are characterized by equal population
differences. Transverse magnetization is longitudinal magnetization
which has been rotated into the x-y plane and therefore tr(I, p) or
tr(Iyp) is nonzero. Transverse magnetization is normally the only
observable. The magnitude of the signal observed in an rf coil is

given by the Faraday law of induction, and

4 w- M (1.88)

€ - dt 0'x

where ¢ is the flux in the coil. Polarization will be used rather
loosely to describe the more general case of any long-lived steady

state; i.e.
[p,H] = 0 (1.89)

and at least one operator £ exists, such that Tr [p€] »# 0. Last,
coherence refers to any off-diagonal elements of the density operator
(transverse magnetization or otherwise).

It will occasionally be necessary to talk about the "size" of an
operator, e.g. when by some technique order is transferred from one

spin to a second. Arguments about the "size" of an operator can be
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made more exact by referring to a function called the norm. If P is a

matrix, ||P|| represents its norm. The norm is roughly analogous to
the length of a vector. Formally, the norm is a function such that: 19
1. |[]p|] > 0 unless Pijj = O for all i,j. Then lle|| = o.
| 2. For all constants a, ||aP|| = a||P||.
3. 1lpy + Byll= [ + |IByl].

A definition of the norm of an (nxn) matrix is

[1?]] = JTr [PPT]/n (1.90)

The norm is equivalent to the rms eigenvalue of P. As the eigenvalues
of p are just its population differences, as the norm decreases there
is less nuclear spin polarization.

3. Spin Temperature

If in high fields a longitudinal magnetization exists in the
sense of Equation (1.83) yet its magnitude‘is incommensurate with the
Curie law for T = Ty where Ty is the lattice temperature, then we will
define a spin temperature T, such that the Curie law holds. For times
short compared to the spin-lattice relaxation time Ty, spin and lattice
temperatures need not be correlated.

4. Adiabatic Demagnetization: Strongly Coupled Spins

The concept of spin temperature is intimately connected to the
process known as adiabatic demagnetization in either the laboratory
frame (ADLF)20 or rotating frame (ADRF),Z]"23 although I will be
primarily concerned with the former. If a sample of polarized strongly
coupled nuclei is removed slowly from the polarizing field, as long as

vBg >> Hy,. the density operator p remains unchanged and
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T = L 7 (1.91)

where B is the initial value of the field and By its final value. If
the demagnetization is allowed to proceed to Bg = 0, then Equation
(1.91)'cannot hold because it implies that the spin temperature
vanishes. This difficulty is eliminated if the effects of the dipolar

24,25 assumes that

fields are included. The spin temperature hypothesis
the density operator remains describable by a spin temperature at all
values of the field and therefore p is always proportional to the
instantaneous Hamiltonian. If the spin temp;rature hypothesis holds,
then the demagnetization can be followed through all values of the

external field By, and Equation (1.91) is only an approximation to the

complete description of T,

9 2 1/2
: Bf + Bloc
TS = 32 N 32 TL (1.92)
0 loc

for Bloc = Hloc/7' For By = 0, the final density matrix is (as usual,

to within a proportionality constant)

p = H (1.93)

loc

Because Hy,. contains only bilinear terms the density operator of
Equation (1.93) corresponds not to a magnetization but instead to some
other form of nuclear spin polarization. If the spin system is not
strongly coupled then the spin temperature hypothesis is not expected
to hold and the results of an slow demagnetization are more difficult
to predict. Some discussion of this more complex and interesting case

is given in Chapter II and again in Chapter VI,
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In the presence of extensive networks of dipole-dipole couplings,
it may become difficult to define what in fact constitutes the system
being studied. I will define a spin system as being any set of coupled
spins where the B terms in the dipolar Hamiltonian are effective in
establishing a common spin temﬁerature. Therefore, I-S (e.g. lH-13C)
systems in high field will be treated as two independent systems.
Furthermore, for S a quadrupolar (I = 1) nucleus in an ordered phase,
two S spins with different quadrupole couplings also constitute two
independent spin systems. In zero field, all spin-1/2 nuclei
constitute a spin system which may be tregted as isolated spins only to
the extent that some of the dipole-dipole couplings are significantly
larger than all others. In these systems the spin temperature
hypothesis is not expectéd'to hold. Quadrupolar spins in environments
of lower than cubic symmetry are always isolated except perhaps at some
accidental value of both the externally applied magnetic field and

orientation of two neighboring spins where spin diffusion is rapid.
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II. High Resolution High and Zero Field Nuclear Resonance

One of the greatest of impediments to the use of NMR as a
technique for the routine analysis of solids is the problem of "powder
broadening."26 In the solid state all of the largest terms and most
interesting constituents of the local frame Hamiltonians (chemical
shift, dipole-dipole coupling, and quadrupole coupling) are
anisotropic. When observed as a perturbation on the high field Zeeman
Hamiltonian, their magnitude depends on the precise relationship
between the orientations of the local principal axes and the externally
applied field (as described in Section I1.B).

Often oﬁly powders or similarly disordered systems are available.
Then the absorption lineshape f(w) consists of one or more absorption
lines and essentially a different spectrum for each local system
orientation present in the sample. The bandwidth of absorption is as
large as the magnitude of the local Hamiltonians. Where the
interaction of interest is a single-body interaction (i.e. a chemical
shift or quadrupolar coupling) powder lineshapes may be sufficiently
structured so that some information may be extracted.26’27 But where
the spectrum arises from large numbers of strongly interacting spins
(=23 coupled spin-1/2 nuclei) resolved structure in high field powder

1,28'30 and the high field powder spectrum generally

patterns is unusua
resembles a broad and featureless band like the spectrum of Figure 2.1.
Even for the single-body interactions, the presence of overlapping
lines from chemically or crystallographically inequivalent sites may

render these spectra uninterpretable. In this chapter, I briefly -

review the most common approaches to high resolution NMR in solids and,
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Figure 2.1. High field spectrum of 1,2,3,4-

tetrachloronapthalene
bis(hexachlorocyclopentadiene) adduct. Like
most dipolar powder patterns, little structure
is resolved even though only a small number of

spins (4) are strongly coupled one to another.
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in somewhat more detail, to high sensitivity pure NQR.

A, High Field NMR Methods

1. Coherent Averaging

As the presence of high resolution NMR fagilities at virtually
every chemistry department testifies, the routine measurement of
chemical shifts in solution by NMR is central to the identification and
characterization of chemical compounds. In analogy to liquid state
spectroscopy, by far the largest number of high resolution solid state
NMR studies?:8 emphasize the primacy of chemical shifts, due both to
its chemical sénsitivity and its ease of interpretation. Because the
chemical shift is often no larger than (and generally much smaller
than) the other local fields, these other terms must be suppressed
before the solid state chemical shifts can be.observed. In liquids,
nature averages all tﬁe anisotropic interactions to zero via rapid,
isotropic motion. In solids, the experimentalist attempts to mimic the
process of stochastic averaging used in nature with some form of
coherent averaging. As such, experimental work has.emphasized:

1. Isolation of individual spins. Resonant rf fields can be

used to decouple abundant spins (typically 1H) from rare (13C,

15N, 31P) so that the latter might be observed free of the

31 Alternatively, multiple pulse

heteronuclear couplings.
sequences (WAHUHA,32 MREV-8,33 BR-2434) which decouple the abun-
dant spins from one another allow for observation of spectra

dominated by only their chemical shifts.

2. Averaging out of the chemical shielding anisotropy (CSA). As



35

the solid state chemical shift contains an anisotropic éomponent
- (Equation (1.46)), chemical shift spectra of powders are broad
and may be poorly resolved. Chemical shiftvpowder patterns can
be transformed to narrow line spectra by:
a) Choosing to work with single crystals; or, more
generally, by
b) Magic angle sample spinning (abbreviated MASS,
occasionally MAS or MAR).35 Slow spinning.breaks the CSA
powder pattern into a finite (preferably small) number of
sharp lines.36 Rapid spinning produces liquid-like
spectra.
3. Combinations of (1) and (2).
In polycrystalline or disordered samples what is ideally accomplished
is the obliteration of all anisotropic components of the local
Hamiltonians. The traceless interactions (quadrupolar, dipolar, and
heteronuclear J céuplings) are averaged to zero and become irrelevant
while the isotropic terms (homonuclear J couplings or isotropic
chemical shifts) survive and are measured. Rarely, multiple-pulse NMR
is used to isolate small numbers of interacting spins (typically an IS
system). In favorable cases dipole-dipole couplings can be extracted

37-39

from the resulting powder spectra Combinations of MAS and

multiple pulse techniques result in high-resolution two-dimensional

chemical shift-dipole-dipole correlation spectra.40

High resolution NMR in solids is reviewed in significantly
greater detail in texts devoted to the subject.z’8

2. Deconvolution Methods

As the quadrupolar coupling constant A(I) often is large neither
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the high field nor strong rf assumptions need hold. Because to first
order the |-1/2> + |1/2> transition is unshifted by the quadrupolar
Hamiltonian, the spectrum observed in NMR experiments on half-integral
quadrupolar nuclei in asymmetric environments may be due exclusively to
coherence between these two energy levels. Residual spectral
broadening is often dominated by the second order quadrupolar frequency
shift (Equation (1.64)). Correction terms from higher-order
perturbation theory depend on angular factors which differ from the
Pz(cosﬂ) dependence of either the first order shifts or the chemical
shift anisotropy, and there is no laboratory axis about which rapid
spinning simultaneously eliminates both the second-order quadrupolar
broadening and the CSA. Even with MASS, all tﬁat is observed is an
averaged powder pattern which results from a convolution of the
partially averaged second order quadrupolar and chemical shift
anisotropy powder patterns.41

Even where only a portion of the quadrupolar spectrum can be
observed it is possible to accurately measure quadrupolar couplings in
half-integer spin systems using two-dimensional NMR techniques. The
central transition spectrum can be observed as a function of the flip
angle § = w1Th where o is the length of the applied rf pulse.
Fourier transformation with respect to the rate of nutation of the
observable in the rf field results in characteristic patterns which are
matched to the fundamental parameters, A(I) and n.42 Where many such
patterns overlap, the analysis becomes more difficult.

In the important case of the spin-1 nucleus (14N or 2D) althird

possibility exists. Bloom and coworkers use an algorithmic method they

call "de-Paking" to extract quadrupolar tensors from experiﬁentally
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observed high field powder patterns.43 If a specific form for the
powder lineshape distribution function is assumed, high field spectra
can be processed So as to separate out the quadrupolar couplings (which
serve as a scaling constant determining the overall spectral width)
from the assumed lineshape function. If the assumed lineshape
(generally, n=0) is a good approximation to the real form the
deconvolution results iﬁ a sharp line for each distinct quadrupolar
coupling constant in the sample.m"45 Where the actual lineshape
function differs from the assumed form, the de-Paked spectra are
distorted.

De-Paking is most successfully applied to 2p NMR, where the
quadrupolar tensor is often axially symmetrié and the quadrupole moment
not so large as to make the spectroscopy prohibitively difficult. This

14N. As its quadrupole moment is large and its

14

is not the case for

N NMR spectra are rarely
q 14

magnetogyric ratio is small, solid-state

d.%® Because high quality high fiel

observe N spectra are so
difficult to measure, neither de-Paking nor any other high field

technique is generally useable.

B. Zero and Low Field NQR Methods

The motivation for zero- and low-field solid state magnetic
resonance experiments is clear; in zero field, the local frame
Hamiltonians are observed directly and at their untruncated values.

The high field powder methods described above achieve high resolution
by averaging away the anisotropic terms in the Hamiltonian. Zero field

methods aim instead to render the anisotropy irrelevant by removing the
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laboratory-based reference axis.

Experiments in zero field NMR date from the earliest years of
magnetic resonance.#’ Both theoretical and experimental work on the
behavior of strongly coupled spin systems in low fields (H, ~ Hy.,.),
particularly in connection to the spin temperature hypothesis, is
extensive.ll’za’25 Nonetheless, zero field NQR experiments are far
more common.l* For pure NQR, there are two experimentally very

different cases which need be treated separately:

1. Local Fields > 1 MHz and Isotopic Abundance High

At high frequencies and nuclear densities, direct observation of
the pure NQR spectrﬁm is possible using straightforward techniques.
For 3501, the zero field resonance frequency is often ~30 MHz, and as
this isotope appears at relatively high natural abundance (~75%) the
expected signal amplitudes are comparable to many high field NMR
experiments done at similar frequencies. In ahalogy to NMR experiments
rf pulses applied at resonance to an NQR line result in a free
induction signal whose transform is the spectrum of that transition®®
or a continuous wave (CW) sweep may reveal the spectrum more directly.
Experimental complications arise because the NQR lines may appear at
widely separated frequencies; or, for spin-3/2 nuclei, a small Zeeman
field is required to lift some degeneracies and provide complete
information about the quadrupolar tensor. These techniques are well-
known and relatively unrelated to the work described in the rest of
13,14

this thesis. Standard reference works provide a deeper treatment.

2. Local Fields < 1 MHz or Isotopic Abundance Low

Where the local fields are small and/or the interesting magnetic

nuclei appear at low density, direct detection of pure NQR is difficult
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due to the low frequencies and/or small numbers of nuclei which:
contribute to the signal. In most direct detection schemes the signal
2).

available for detection is ~0(w In extraordinary circumstances (low

T, high density of spins, and/or large sample volumes)ag or with non-

Faraday law SQUID detectors,50

zero field signals can be detected at
these low frequencies but such opportune circumstances are rare. Often
the low sensitivity of pure NQR necessitates more elaborate experiments
with higher sensitivity.

Most high-sensitivity methods use field cycling techniques of the
sort introduced by Ramsey and Pound’! to probe the zero field
frequencies indirectly. Preparation of polarizatioh and observation of
the signal take place in as large an applied field as is available so
as to maximize the detected signal. In between these two phases of the
experiment, the spin system is brought to low or zero field and its
behavior monitored as a function of the evolution in these low fields.
Because nuclear Spin-lattice relaxation times (Tl) in solids may be
rather long (anywhere from 100 ms to 100 hours depending on the
temperature, nuclear spin species, and the specific compound) the field
cycle need not be executed particularly rapidly. Unless otherwise
specified, the nuclear spin Ty's will be assumed much longer tﬁan any .
other time interval in the experimental scheme (an assumption which may
often imply lowered temperatures and inconveniently long polarization
periods!) and will not be a limiting factor in performing the
experiments.

The field cycling and level-crossing experiments of Ramsey and
Pound, Andersen,52 Redfield,53 Hahn,54 and ot:]:xersss'58 are closely

59-63

related to the Fourier transform zero field experiments which are
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the main subject of this thesis, and will be described in some detail.
Their high sensitivity is inextricably linked to the behavior of spin
systems under demagnetization. In the presence of large quadrupolar
splittings, quadrupolar nuclei are not strongly-coupled to one another
and the demagnetization is not characterized by a spin temperature.
Therefore, the rest of this chapter will be devoted to some predictions
about the form of a system of spins after demagnetization from a large‘
applied field.

a. Adiabatic Demagnetization

1, Isolated Spins

The simplest case that can be treated is that of an isolated spin
(for concreteness, S = 1) initially polarized in a large external
field, By. For simplicity, H, in the polarizing field is assumed much
larger than HQ. Then the initial density operator pS corresponds to a
magnetization proportional to S, (Equation (1.83)). The applied field
is slowly reduced froﬁ its initial value B, to zero. At the end of the
demagnetization p has some new form which we wish to make explicit.

In principle, the time development of p can be solved numerically
by direct integration of the Von-Neumann time development Equation
(1.73) through all values of the external field and times. This is,
hpwever, a tedious operation which results in little physical insight.
In the limiting case of an adiabatic field sweep a more appealing,
approximate presentation is possible.64

In an adiabatic process and where.the Hamiltonian contains no
degenerate eigenstates for any value of the time-dependent parameter,

the populations which characterize the final density operator are those

which characterize the initial density operator. Whatever populations
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are prepared in high field are taken over smoothly into the zero field
eigenstates which correlate to the high field eigenstates. The
problem, then, is reduced to ascertaining the correlations between high
and zero field eigenstates with particular attention to values of the
field where eigenstates may become degenerate. At most values of the
field, the correlations are obvious. Certainly as long as H, >> Hq,
the eigenstates are always approximately equal to the eigenstates of
the high field Hamiltonian Hy. Similarly, at low values of the applied
field (where H, << HQ) the true eigenstates are nearly the eigenstates
of the zero field Hamiltonian HQ. Only for values of the external
field where H, ~ HQ and where eigenstates of the full Hamiltonian
become degenerate or nearly degenerate are the correlations between
eigenstates problematic.

This situation is shown in Figure 2.2. The exact problem is to
identify the correlations between eigenstatés before and after a level-
crossing of the sort illustrated in the figure. Near the level
crossing field two possibilities exist: first, that the eigenstates
follow the "trajectories" described by the solid lines in the boxed
region. For some value of the external field the energies of the two
eigenstates go through an "accidental degeneracy" where the eigenstates
are degenerate. At any arbitrarily small disﬁance on either side of
the crossing the eigenstates are well-defined and correlations can be
established. But within the framework of the adiabatic approximation,
no conclusions can be drawn about the transfer of populations. For an
energy splitting rigorously equal to zero, no finite rate of
demagnetization can satisfy the conditions of the adiabatic

approximation. If level crossings are frequent, then only a very



Figure 2.2. Level crossing region. As some external parameter
(e.g. the applied magnetic field) is varied, the energies of
eigenstates |1'> and |2'> approach one another. In the level
crossing region (boxed area) the eigenstates may either cross

(dotted lines) or avoid one another (solid lines).
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different approach will afford any insight into the nature of the
demagnetized operator p.

The second possibility, of course, is that there is no level
crossing. This case is shown in the correlation trajectory described
by the dotted lines in Figure 2.2 and corresponds to an anti-level
crossing or an avoided crossing. In an avoided crossing and within the
framework of the adiabatic approximation, the populations are
maintained in the same energy-ordered sequence before and after the
avoided crossing. If there are only avoided crossings, then the
demagnetized operator p is simple to predict. All populations are
conserved in precisely the same energy level ordering scheme in high
and low fields.

Yet again the question appears merely to have been reformulated,
and in a form that appears no more tractable. Now the task is to
identify whether allowed or avoided crossiﬁgs are more likely, and
whether the level-crossing behavior depends on the details of the spin
system or not. The solution is surprisingly simple. Pairs of
eigenstates which far from the level crossing region are uncoupled by
off-diagonal matrix elements may cross. As no coupling term exists,
two such energy levels cannot know that there is any crossing to be
avoided. If, however, the Hamiltonian contains coupling terms which
are off-diagonal and make no first order contribution to the energies
far from the level crossing region all crossings are avoided. As the
difference in energies of the two eigenstates becomes arbitrarily close
to zero, what was formerly merely a perturbation can no longer be
treated by perturbation theory, and the effect of the "perturbation" is

to cause the eigenstates of the system to repel one another.
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This difference will be made explicit using the specific example
of a spin-1 nucleus. (Explicit expressions for the eigenstates and
energies of spin-1 and spin-3/2 nuclei as a function of field are
available®® but will not be used because they provide little
qualitative insight.) The full Hamiltonian consists of a term
proportional to the Zeeman frequency in the applied field and a

quadrupolar term,

H = Hy+ H, (2.1)

The Zeeman Hamiltonian is generally represented in the laboratory frame
of reference as described in Section I.B. As the high field
approximation need not hold (because the applied field takes on all
values and the crossing field occurs where Hy, ~ HQ), it is preferable
to represent both HQ and H, in a single consistently defined frame and
in practice I will use the molecular frame, where the total Hamiltonian
is

H = HQ + alsx + azsy + a3Sz (2.2)

The ay are proportional both to the direction cosines and sines derived
from R(Q) which relate the molecular axis system to the laboratory
direction along which the external field is applied, and to the
strength of the applied field. Only the latter changes during the
demagnetizations. Therefore the eigenstates of H depend both on the
strength and direction of the applied field. 1In either of the two
extfeme limits (HZ>>HQ or H; = 0) these eigenstates are readily
identified as either the high field (|1'>, |2'>, and |3'>) or zero

field (|1>, |2>, and |3>) eigenstates, numbered in order of descending

energies. At intermediate values of the field, the eigenstates will be
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.represented as |p>, |¢>, and |r> which correspond in the zero field
limit to [1>, |2>, and |3>.

Table 2.1

A. Eigenstates and Eigenvalues of Spin-1 in Zero Field:
-1/2

|2> = x> = -1 (2) [+1> - |-1>); <2[Hy|2> = -A(L-m)
1> = |y> = @) Y2 [|+1> + |-1>]; <1|Hy|1> - -ACL+n)
[3> = |z> = o> ; <3|HQ|3> - 2A
|+1>, |-1>, and |0> are the projections of IZ on the molecular z-axis
B. Matrix Representations of I_, I , I
. x' Ty’ Tz
|> |y> [z> |> |y> |z> > |y> |=>
«<x|fo o o] <x|[0 o 1 «|[0 i o0
21 =<yl}0 0 1|J21=<yl|l0 o0 0] 2 I=<y[[-1 0 O
* «|lo 1 o Y «|l1 o o <|lo o o
66

In the conventional basis set of zero field NQR given, along
with a number of operator representations, in Table 2.1, each angular

momentum operators couples pairs of eigenstates only, and in matrix

form the Hamiltonian is

| 2> 1> [3>
<2] [ -A(1-9) ia, a,

H = <1 -ia;  -A(1l+n) a; (2.3)
<3| a, a; 2A

If any two of the aj's are zero then the external field mixes only
pairs of the zero field basis vectors. This problem can be
diagonalized exactly and the eigenstates and energies written down as a

function of the Zeeman energy. Choosing only a, = 0 (i.e. the field

applied along the molecular y axis)
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H = HQ + a28y A (2.4)

The energy of state |p> is independent of the field and 1> is an
eigenstate for all values of the a,. |1>, |p>, and |2'> are identical.
The other two (|q> and |r>) are mixed states. The eigenvalﬁe equation

for this pair is

(-A-(L-mA) (-3428) - a2 = 2% - 2a(l+n) - (28%(L-m) + a5) = 0 (2.5)
with eigenvalues
aemt[a@m? + ea’(1-n) + 4al
- ~ : (2.6)
- 3 AQ) x3 JA2(3-n)2 + bal 2.7)

In the limit a;, -+ 0, the eigenvalues are (as might be expected)

A, = 2A, -A(l-n) (2.8)

while in the high field limit a,>>A the eigenvalues are

1
Ai = iaz + E‘(l'ﬂ)A (2.9)

The details of the correlation diagram depend on the absolute sign of A
(and the convention used in defining HQ; NQR and NMR conventions
generally differ.65 Consistency with eqﬁation (1.54) is intended if
not maintained). For A positive, |1'> correlates with |1>; for A
negative, to |3>. 1In either case, |3'> correlates with |2>. Also in
either case, there is one level crossing in the correlation diagram for
demagnetization along the molecular y-axis. The level crossing

behavior expected for demagnetization precisely along the x, y, and z-
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axes respectively is shown in Figure 2.3 for A assumed positive. For
demagnetization along these axes, level crossings are allowed and the
adiabatic approximation can not be applied.

If, however, at least two of the three coefficients aj are
nonzero, then all level crossings become avoided crossings. Thus as
any pair of energy levels approach one another they repel and |1>
always correlates with |1'>, |2> with |2'>, etc. As long as the
adiabatic condition is satisfied, populations remain ordered as they
were in high field.

Consider the Hamiltonian of Equation (2.3) with A positive,
ap>>a; and a3 = 0. This corresponds to applying the external field not
precisely:along the molecular y-axis but instead tipped slightly into
the y-z plane. It is reasonablé to treat the component of the field
along the molecular z-axis.(who;e mégﬁitude is represented by a ) as a
perturbation and to ignore its effects on the mixing of states |2> and
|3>. It will havevimportant consequences only in the range of values
of the external field where the level crossing occurs for a; = 0 and
where |q> and |r> are nearly degenerate. This corresponds to the range
of values of fields where the energy of |q> in the absence of a;
differs by no more than 2§ from E = -A(l+n). Then the |p>, |q>

subblock of H is

| > |a>
Hpq - <pl E + 2§ € (2.10)
<q| € E

where ¢ is proportional to a;. The associated eigenvalue equation is

(E+ 25 - X)(E - X) - 62 = E2 + 26E - 52 - 2X(E+6) - Az =0 (2.11)

whose solutions are
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Figure 2.3. Allowed level crossings for demagnetized spin-1 nucleus.
The externally applied field is oriented alongvthe principle axes of
the quadrupolar tensor, and A is assumed positive. a). x axis; no

level crossings occur. b). y axis; |r> and |q> cross. c¢). z axis; |

and |p> cross.
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A, = (E+8) = | 6"+ ¢ (2.12)

If ¢ »# 0, there is no value of § where A, = X_ and therefore no level
crossing. For arbitrarily small displacements of the direction of the
applied field from any of the principle axes of the quadrupolar tensor
and in the adiabatic limit, only the level-anticrossing behavior is
exhibited. Therefore, to a very high degree of approximation the
demagnetized state of an isolated quadrupolar spin (with S arbitrary)
is uniform over the entire powder pattern. Only for demagnetizations
precisely along each of the axes dé eigenstaées cross. This fact will
be used extensively in Chapter VI, where the assumption of a uniformly
prepared demagnetized density operator will be én important
simplification. In the absence of spin-lattice relaxation and in the
adiabatic 1imit’the entire order prepared in high field is transported
to zero field.

2, Coupled Spins

It is rare that isolated spins are found in nature. Occasionally
crystals may be found which contain only a single type of magnetic
nucleus (e.g. 1y in gypsum) or magnetic spins of a chemical identity
which occur only as a low percentage of the total number of similar

13C, ~1% natural abundance). As discussed in the first

atoms (e.g.
part of this chapter, spins are isolated in high field if their
magnetogyric ratios differ significantly, or if appropriate sequences
of rf pulses are used to artificially isolate them. But in
demagnetizing a sample from high field to low field it is

experimentally rather more difficult to maintain good isolation of one

spin type from all others. In zero applied field the Zeeman energies
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of all nuclei are identical independent of y. In the absence of strong
quadrupolar couplings (i.e. only spin-1/2 nuclei or quadrupolar nuclei
in cubic crystals) all spin types are strongly coupled.50 Even if
there are strong quadrupolar couplings so that I and S spins are not
matched in zero field, there may be some other value of the field
intermediate between B, and zero where spin diffusion between the two
spin species is allowed and efficient.67
Often, for example, a spin system contains a quadrupolar (S)
nucleus in addition to some spin-1/2 species (labeled I and most often
1H). It is in precisely this sort of system that the indirect, zero

52-57,68,69 work best and attain the

field level-crossing techniques
highest sensitivity. This section provides a brief description of the
basic procedure with particular emphasis on the mechanism by which
polarization is transferred in the laboratory frame.

In moderately high laboratory fields as are commonly used in NMR
spectrometers, the 1H resonance frequency is = 60 MHz. Apart from 3T
and some covalently bound halogen compounds, the resonance frequencies
(Zeeman plus quadrupolar) of all other spin species lie at frequencies
below that of the 1H.nuclei. In zero field, on the other hand, the 1H
pure dipolar frequencies generally fall in a rather broad band from
zero to as much as 100 kHz. Quadrupolar S spins have zero field
resonance frequencies which range from zero to several megahertz.
Inevitably, at some value of field intermediate between the large
laboratory field By and zero field the splittings between pairs of S
spin energy levels equal those between the I spins.

In some range of fields about the level crossing field, the

quadrupolar spin sublevels are capable of communicating via spin flip-
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flops with the network of strongly coupled I spins. If the S spin
sublevels are less polarized than the I spins and if the rate of
passage through the level-crossing field is slow compared to the
inverse of the I-S dipole-dipole couplings, some I spin magnetization
should appear as order in the S spin system after demagnetization. In
this section, I will try to give a simple quantitative argument which
will illustrate the process of I-S polarization transfer and which
clarify the essential process which lies at the heart of all high
sensitivity zero field methods. Most of this model is developed in

68 .nd Edmonds®? and -the description which

69a

greater detail by Blinc
follows relies heavily on the latter presentation.
Assume for simplicity that S = 1, and that in high field the S

spins are unpolarized (as their T;'s may greatly exceed those of the I
spins). The I spins consist of a set of equally spaced Zeeman levels.
All level-crossings are assumed to take placenin "large" fields H,>>H;
for the I spins but in "small" fields HZ<<HQ for the S spins. A rough
energy level diagram is given in Figure 2.4. The total number of S
spins is N’ (each assumed uncoupled from all others) and the initial

density operator describing the S spins is

S
pjk = 0 (2.13)
Because the S spins are uncoupled pS is of dimensionality 2S+1. The
number of I spins is N (each assumed coupled to all other I spins in a

system characterized at all times by a single spin temperature) such

that

(2.14)
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Figure 2.4, Polarization transfer from I spins to S spins. I spins
are in eigenstates of Hy; S spins are in eigenstates of HQ. As the
external field is decreased to zero, energy splittings in the I spin

bath successively match S spin quadrupolar splittings. I spins are

warmed and S spins cooled until a common "spin temperature" is reached.

54
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The dimensionality of pI is (2)N.

The S spins are in contact with the I spins only at fields where
energy splittings of the S spin quadrupolar (plus Zeeman) Hamiltonian
are equal to splittings in the I spin Zeeman (plus dipolar)
Hamiltonian. For S = 1 the pairs of energy levels separated by the
zero field v, v_, and vy lines become sequentially matched to the I
spin splittings. At each level crossing, the population differences of
the S spin levels reach a "spin temperature" associated with the
pseudo-two level system which matches that of the I spin bath. Both
the number of spins of either type and the energy of the system at a
level crossing is fixed. These conservation laws are the basis of the
rest of the analysis. At the first level cfossing energy conservation

requires that
' [
2bI(N +N) = 2bIN _ (2.15)

where bi is the I spin population coefficient after the first level
crossing. Rewriting in terms of the initial polarization and a number

operator, X,

b.=Xb (2.16)

The I spins are now characterized by a new density operator

= 2X bIIz 5. (2.17)

I
ik ik

and a new spin temperature. Some of the order originally stored in the

I spins has "leaked out" into the S spin system. Because not all of

the S spin levels participate in the polarization transfer at any one

time pS is not described by a spin temperature. Only diagonal elements
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are nonzero, and they can be written compactly in terms of the

eigenvalues of a population operator P where

<¢k|p|¢j> - pf;jskj (2.18)

At the end of the first level crossing the diagonal components of pS

are given by

P|p> = 'XbI Ip>
Ple> = |o> (2.19)
Plr> = Xb, |r>

At the.second level crossing, the v_ line of the spin 1 comes in
contact with the I spin reservoir and reaches equilibrium. The
population difference between the |q> and |r> étates equilibrates with
the I spin bath (now somewhat warmer than before due to the transfer of
polarization analyzed above). Subject to the_same'conservation laws

and restrictions on numbers of particles, after the second level

crossing the new populations of ps are given by
P|p> = 'be IP>
Plg> = - 2% o> (2.20)
Plr> = [6:4 +%X2)b1|r>

Finally, the |p> and |q> eigenstates become energy matched and
equilibrate with the I spin bath. After the final level crossing, the

populations are

3.3
Plp> = - (7 X7+ Xby |p>
3,3 1.2
Plg> = (ZX-7X)bI|q> (2.21)
Plr> = (X + l-X2)bI|r>

2
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Similarly,

1 3 2 '
p = Z{3 X* - X"+ 2X] bIIz 6jk (2.22)

During the.demagnetization, the norm of pS is increased at the expense
of pI.
Reviewing the assumptions of the coupled spin model:
1. The I spins constitute a strongly coupled spin network
characterized at all times and for all values of the field by a
single spin temperature. |
2. The é spins are isolated from one another and interact only
with the I spins and then only at level crossing fields.
3. At the level crossing fields only.pairs of S spin quadrupolar
energy levels are matched to the I spin Zeeman energy.
4, All level crossings occur in fields large compared to the I
spin dipolar fields.
If all these conditions hold then the model provides a reasonable
description of the demagnetization. If the sample is merely returned
to high field the level crossings described above occur again and in
reverse order. Even if there is no relaxation and no additional fields
are applied, the final populations returned to high field are not equal

S 11,24

I and p°. No matter how slow the

to the initial populations of p
field cycle, the polarization transfer process is not reversible.

In the commonly used frequency sweep methods the zero field
spectrum is probed by low-frequency irradiation after demagnetization.
If the irradiation is on-resonance with an S spin NQR transition that
line is saturated and the populations of two S spin eigenstates are

equalized. After the irradiation phase, the sample is returned to high
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field and through the level crossing region where the S spin history is
communicated to the I spins. The final spin temperature of the I spins
depends on whether an S spin resonance was found, the populations of
the S spins after irradiation, which specific line(s) was (were)
saturated, all the relaxation times which éharacterized the system, and
whether the level crossing sequence was repeated many times or only
once. Detailed predictions as to the observed signal and sensitivity
for many of these cases and for S>1 are given elsewhere in more
complete reviews of field cycling NQR methods.68’69 .
Over a broad range of frequencies and types of spin systems of
interest, the sensitivity of the technique is relatively frequency-
independent and, to some extent, independent of the actual number of S
spins in the sample. Higher sensitivity variants exist as well, 69p,70
What is common to them all is the idea that the polarization induced in
the abundant, high v I spins in the polarizatibn phase is exploited by
arranging the experimental parameters such that the § spins share in

that order.

3, Deuterium-Hydrogen Level Crossings

For systems where the zero field absorption frequencies appear at
very low frequencies, the theory presented above requires extensive
modification. Neither the level-crossing sequence nor the irradiation
phase proceeds quite as simply as described above. This is
particularly true for the specific case of deuterium, where the zero
field splittings generally are less than 200 kHz. As 1y pure dipolar
absorption may extend out to nearly those frequencies, none of the
assumptions of the coupled spin model need hold. Even when the 1y

dipolar bath frequencies are much lower than the v, and v_ lines, they
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almost certainly are as large as the vy line. In the first level
crossing both v, and v_ lines are likely to be polarized to nearly the
same extent consistent with the 1H Zeeman temperature at the crossing
field. The vy line is in resonance with the dipolar bath with its own
spin temperature. As the Zeeman splittings collapse into the dipolar
linewidth levels separated by the v line approach the new spin
temperature of the combined Zeeman-dipole-dipole Hamiltonian (warmed
somewhat by the first stage of polarization transfer). Where level
crossing to the S spins occurs at such low frequencies, the extent to
which the lines separated by the v, line-are differentially populated
will certainly depend on the frequency of the vy line, and a new spin
temperature no cooler than that which characterizes the order stored in
the (v,, v_) pair is established. Where n is small the population
differences between the |1> and |2> states may be negligible. 1In any
case, the final populations reached via demagnetization of systems with
small quadrupolar couplings will differ markedly from those described
in the above model. Nonetheless, the basic principle (that the order
stored in the S spins is comparable to that stored in the I spins) is
still wvalid.

A further consequence of this dependence on the polarization
transfer from and to I spins is that there is a precipitous drop in
available signal powers at very low S spin frequencies. The very
source of the high sensitivity (the bath of ly nuclei) short circuits
the indirect process by direct absorption of radiation. If the zero
field lH energy levels are saturated by direct absorption of rf,
quadrupolar transitions found in the same range of frequencies are not

observable. Because the irradiation phase is non-selective, level
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crossing techniques which monitor only the disappearance of 1y signal
in high field are unable to distinguish between energy absorption by
the quadrupolar nuclei and direct absorption by the bath.

(In principle, the vastly differing linewidths between, say,
deuteron (2D) and proton (IH) resonances might result in observable
changes in the signal even at the lowest frequencies. Should the
proton resonance be saturated while a 2D line remains unaffected,

14 bath during

magnetization transfer back from the rare spins to the
remagnetization would marginally repolarize the 14 bath. Therefore,
slight decreases in the observed lH signal should be observed for
irradiation simultaneously near a 2D resonance and at a bath frequency.
To my knowledge, such effects have not previouély been reported--which
may be an indication of the small amount of order actually stored in
the quadrupolar system in a single crossing, or the breakdown of the
assumption that the two types of nuclei are ndh-interacting at the
residual fields. 1In any case, the effect is probably too small to be
routinely noticed.)

At the very lowest frequencies, frequency sweep methods suffer
from another important disadvantage. The rate at which spin
transitions occur under rf irradiation is proportional to the frequency
at low frequencies.51’71 The absorption of energy under irradiation
decreases asymptotically towards zero at the very lowest frequencies.
Spectral features near zero frequency become increasingly difficult to
observe, particularly if accurate lineshapes are required. This may be
the greatest advantage of the Fourier transform methods to be described
in subsequent chapters; in principle, they are equally sensitive at

all zero field frequencies (although as a practical matter they perform
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best at frequencies somewhat lower than 500 kHz). Moreover, the
lineshapes observed in the absence of all applied fields are reliable.
This will prove important in any analysis of strongly coupled spins.
Further comments on level-crossing experiments and possible
applications of level-crossings in Fourier transform zero field
experiments with isotopic selectivity will appear in Chapter VI.

b. Sudden Demagnetization

64 or (ideally) instantaneous

In the opposite limit of sudden
switching off of Bj there is a different and simpler solution to the
form of the demagnetized density operator p. No assumptions need be

made about the spin system. Beginning from a spin system with a

Hamiltonian

H = H, + H (2.23)

and a density operator p. At a time r, the external polarizing field
responsible for H, is instantaneously turned off. The spin system is
unable to follow the change in the applied field, and the state of the

system (and of p) is unchanged;

p(r) = p(r) (2.24)

(Note that this is not equivalent to the final state reached by
adiabatic demagnetization of an isolated spin system, where all
populations are unchanged and in the new eigenstates.) Though the
density operator is unchanged, the Hamiltonian and thus the eigenstates
are different. Even if p expressed in the eigenbasis of the
Hamiltonian including the Zeeman term is diagonal, it need not be in
the zero field eigenbasis. If p contains off-diagonal elements, it

begins to evolve at the frequencies characteristic of Hy,c (cf Equation
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1.75).

In principle, the evolution of p might be detected in zero
field, just as the absorption of energy might be monitored directly in
the field cycling methods described previously. Experiments based on
this idea have been performed on liquid samples.72’73 In solids, and
where the natural frequencies of Hy,. are so low that field cycling
methods are required, high field detection is likely to prove much more
sensitive. At a time t;, the external field is instantaneously
reapplied. The time-evolved operator p(f+t1) can subsequently be
probed indirectly by measurihg the high field free induction decay.
Such an experiment is shown schematically in Figure 2.5.

Because the technical requirements for sudden demagnetization are
experimentally more difficult to fulfill than for adiabatic
demagnetization, the former approach is more rarely attempted.53a’74
It is, however, the essential component of Fourier transform zero field
NMR experiments. The‘basic zero field experiment is described more

fully in Chapter III.

C. Summary

To sum up; if a measurement of the chemical shift tensor proves
sufficiently informative, high field techniques are cépable of
providing such information. If, however, the chemical, structural, or
dynamical information required is found most directly in the traceless,
anisotropic interactions such as the dipolar or quadrupolar tensors,
high field techniques generally observe only powder pattern lineshapes.

Such spectra are simply interpretable only under restrictive
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Figure 2.5. Response of a spin system to a sudden change in the
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assumptioné about the numbers of interacting spins and the form of the
interaction. In the presence of larger numbers of interacting spins,
or where the response from several different systems overlap, all
information about these interactions is generally sacrificed in order
to measure the isotropic interactions with greater precision.

Where the measurement and interpretation of these anisotropic
interactions is desired, zero field methods are more promising. For
systems with large quadrupolar couplings, pure NQR may be employed. At
lower frequencies, lower concentrations, and at somewhat sacrificed
resolution, field-cycling techniques utilizing level-crossings become
essential. And at the lowest frequencies or where maximum resolution
is required, or where indirect techniques fail due to the absence of a
suitable bath of spin-1/2 nuclei, Fourier transform zero field
techniques may be essential. Furthermore, working in the time-domain
makes possible the extention of these experimeﬁts to include

18 Some

applications of two-dimensional correlation spectroscopy.
extensions using two-dimensional spectroscopy will be covered in

Chapters VI and VIII.
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ITI. Fourier Transform Zero Field NMR and NQR

Faraday’s law (Equation (1.88)) gives the voltage induced in an rf
coil by an oscillating magnetization. This signal is proportional to
both the size of the initiél magnetization and the frequency at which
it oscillates (i.e. the resonance frequency). In high fields, both
terms are field-dependent. The equilibrium magnetization given by the
Curie Law (Equation (1;87)) is proportional to the applied field. In
the high field limit the frequency of oscillation is essentially the
Larmor precession frequency. The obserygd signal’s strong field
dependence is the continuing motivation for the purchase of higher
field (and more expensive) superconducting magnets. Direct detection
of low frequency magnetic resonance requires large sample volumes and
extensive signal averaging. The alternative field-cycling methods
outlined in Chapter I1 combine the resolution advantage of zero field
experiments with the sensitivity of high field NMR. I will concentrate
only on experiments where both polarization and detection phases take
place in a large static magnetic field (in practice, nearly all of our
experiments are performédlin a persistent superconducting magnet of
nominal field strength 4.2 Tesla (42 kgauss) where the 14 Larmor
frequency 185.032 MHz). Practical experimental details, and some

thoughts on alternative instrumentation, are given in Chapter vIII.’?

A, A Practical Two-Step Field Cycle

Since it is impractical and expensive to repeatedly energize and

deenergize the high inductance magnets routinely used in modern NMR
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spectrometers, in the field cycling experiments described in this
thesis the field cycle presented in an idealized faghion in Figure 2.5
is always executed in two distinct steps as illustrated in Figure 3.1.
In the first step, the sample is removed from the region of
concentrated flux within the bore of the superconducting magnet and
mechanically transported through space. This step takes the spin
system at equilibrium in high field to an intermediate field Bint-
This intermediate field arises from some combination of the fringe
fields of the main solenoid, electromagnets, the earth’s field, and
other stray magnetic fields; and is are sufficiently reduced in size so
as to be readily matched by electromagnets which can be rapidly
switched in times ~1 ps. Practical values of the intermediate field
are < 500 gauss. Detailed descriptions of the apparatus are available
elsewhere.’? For simplicity I assume that the intermediate field is
sufficiently large that the high field condition Hy>>H, . applies in
the intermediate field. The eigenstates at high field and at the
intermediate field are identical. 1In the absence of significant spin-
lattice relaxation, the total magnetization prepared in high field is
conserved in B; . and the density operator p which describes the spin
system is unchanged independent of the rate of demagnetization.

(Formally, however, p is characterized by a much reduced spin

temperature;

Bint
T = T (3.1)

where Ty is the lattice temperature.)

At the intermediate field p corresponds to a bulk magnetization
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Figure 3.1. Magnetic field vs. time in two-step experimental

field cycling diagram. In the first step the sample is removed
from the polarizing field by mechanical means and the field slowly
falls from By to By... Bj,. is rapidly turned off. A time t,
later, B; . 1s turned back on and the sample mechanically returned
to Bo.
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parallel to B For simplicity I assume that B; . and By are

int-
coaxial. At a time t = 0, B;, . is suddenly switched off. The density
operator p is unable to follow the rapid change in the field, becomes
time-independent, and evolves in zero field. At t = t;, By . is
suddenly reapplied and the sample transported back to By for detection
of the evolved operator p(ty). The two-step cycle of Figure 3.1 is
equivalent to the hypothetical cycle of Figure 2.5 if Bint is large

enough. This condition is assumed, and from here on I focus on the

evolution of the magnetization transported to low field.

B. A Formal Calculation of the Signal

The central question is the érediction of the signal expected for
the sequence in Figure 3.1, and its solution will occupy the rest of
this chapter. Two coordinate systems (the high field frame with z-axis
parallel to the appliéd field and some consistently chosen local or
molecular frame), and the relationship between them, are required. The
local frame is chosen so that otherwise identical but arbitrarily
oriented systems have the same expanded form of the Hamiltonians
(Equations (1.47), (1.54), and (1.68)). For simple systems (e.g.
isolated quadrupolar spins or a pair of dipolar coupled spin-1/2
nuclei) it will prove convenient to choose the principal axis system of
the main interactions, but this is neither necessary nor generally
possible. Where some convenient choice of zero field axis system
exists which will make subsequent calculations simpler or more
informative, it will be useful to exploit that option.

As was described in Chapter I, transformations between axis
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systems are conventionally described in terms of Euler angles, and in
most NMR applications only two are required. The transformation which
takes the laboratory (L) frame into the local or molecular (M) frame is

R L),
-1 -1
<1oc|§M|loc> - <lab|RR €, RR""[1ab> (3.2)

The relationship between the laboratory and molecular frames is
illustrated in Figure 1.1. In a disordered system, where many
orientations of the local frame are allowed, R will differ for each of
those orientations and the form of the operator §M of Equation (3.2)
will differ for each orientation because R does.

Following the logic of the sudden‘appfoximation described at the
end of chabter II, at a time t = 0 the intermediate field B;, . which
guarantees the high field condition is instantaneously switched off.
Before the switching of the field, the spin system was in eigenstates
of the high field Hamiltonian (made up of a Zeeman term aﬁd a set of

’
truncated local fields Hloc)

H = H,+ Hj__ (3.3)

with
[p, H] = [p, Hz] = [p, Hy ] = 0 (3.4)

Except for special cases, in the untruncated fields Hige

e, Hi 1 = O (3.5)

and therefore



70

b0 L. (3.6)

that is, there is time evolution under Hi,c: At a time t

p(t) = exp(-iHloct)p(O)exp(iﬂloct) 3.7)

At a time tq, the evolution implied in Equation (3.7) is interrupted by

reapplication of B After a time ~Ty (which in solids may be as

int-

short as ~10 us), coherence in a solid is assumed to disappear and

[p(ty), I,1 =0 (3.8)

Evolution of the density operator (Equation 23.7)) is most conveniently
described in the molecular frame where the Hamiltonian is identical for
all orientations and reached by a tranformation of variables as given
in Equation (3.2). Because all measurements are made in the laboratory
frame of reference, the calculation of observables must include the
reexpression of p in that frame. This is followed by an integration
over the known or assumed distribution of orientations, R(1). Starting
from p expressed in the laboratory (L) frame of reference, the sequence

of transformations resulting in the evolved density operator is
p. (t.) = < lex (-iH, t.)R (O)R'lexp(iﬁ t, )R> (3.9)
L' "1 P 0c 1ML loc 1 '

where the subscript L identifies p as being expressed in the laboratory
frame of reference and the angle brackets <> imply an averaging over
all R(Q1) = R(0,B8,a). If the initial density operator prepared in the

high field polarization interval is

(O = I =TI (3.10)
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then p reexpressed in the molecular frame is

oy () = R (@), (OR(®)

exp(-iaIz)exp(-iﬂIy)IzLexp(iﬂIy)exp(iaIz)

Ichosﬂ - I __sinfcosa + IyM51nﬂ51na (3.11)

xM

Ignoring the details of the zero field Hamiltonian Hy,., a general

time-evolved zero field operator £(t) can be defined by

E(t) = exp(-iHloct)fgxp(iﬂloct) - (3.12)

and

pM(tl) = IZM(tl)cosﬂ - IXM(tl)sinﬂcosa + IyM(t1)51nﬁ31na (3.13)

Following the logic of Equation (3.9) the lab frame operator py(tq) is
calculated by rotating the time-evolved form (Equation (3.13)) back to
the laboratory frame. This is precisely the strategy adopted at the
end of this chapter. Here, a different approach is used which
simplifies subsequent algebraic manipulations. What is measured is
never the density operator itself, but only the expectation value of
some observable (Equation (1.73)). The theory is simplified if the
observable is assumed to be I ; (although in practice an rf pulse is
required to transform longitudinal magnetization like I,; into the
observable transverse magnetizations IxL and IyL)’ and the actual

quantity to be calculated is the signal function

G(tl) = Tr [pL(tl)IzL] (3.14)

Using the general rule that
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Tr [ABC] = Tr [CAB] = Tr [BCA] (3.15)

and, substituting for p; from Equation (3.9),

G(t,) = Tr [<RpM(t1)R-1IZL?] - Tr [<pM(t1)R’112LR>] (3.16)

1)
This is equivalent to calculating the signal function with the
observable defined in the molecular frame rather than in the laboratory

frame. The required transformation of IzL is given in Equation (3.10).

The signal G(tl, Q) for a given orientation, R, is

G(tl, Q) = Tr[(IZMcosﬂ - Ist1nﬂcosa + I sinBsina)

yM
(IZM(tl)cosﬂ - IXM(tl)sinﬂcosd + IyM(tl)sinﬂsina)](3.17)

Integrating the signal function G(t;,0) over the known or assumed

distribution of local frame orientations, P(Q1), the observable G(tl) is

G(t = [ G(ty, 9) P(2) do (3.18)

1)

In high field, the distribution of orientations P(Q) is convoluted with
orientation-dependent absorption frequencies to produce high field

26 In zero field, the distribution of orientations

powder patterns.
P(Q) is convoluted instead with an orientation dependent intensity
distribution. Where in high field R(2) is revealed by the shifts in
frequency as a function of orientation, in zero field it is the
intensities of the various absorption lines which change. This
comparison is shown in Figure 3.2. For the common case where the

probability distribution is uniform (e.g. a powder distribution where

all orientations are equally probable)
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P(@)da = - Z]';d(cosﬂ)da (3.19)

Over the entire sphere, the orthogonality of the rotation matrices’

restricts the signal function to only auto-correlations of the angular
momenta., The orientation dependence of the zero field signal is easily

integrated over  and yields
1
G(tl) = E-Tr [(IzM(tl)IzM+ IxM(tl)IxM + IyM(tl)IyM)] (3.20)

.
coswkjt' (3.21)

1 |
=3 Z z 1

i,k P=x,Yy,Z

<Gyl

Equation (3.21) provides a general prescription. for the calculation of
zero field spectra acquired by the sequence of Figure 3.1. It is also
the heart of the program DBZINT.FOR which we commonly use for the
simulation of zero field spectra of dipolar coupled spin-1/2 nuclei.
From an assumed geometry the molecular frame Hamiltonian Hy,e 1s
calculated and diagonalized. The operators Iemo IyM’ and I,y are
expressed in the eigenbasis of the zero field Hamiltonian. The zero
field frequencies correspond to the difference in energy between pairs
of eigenstates connected by nonzero elements of these operators, and
the iine intensities are the squares of the individual matrix elements.
For simple systems (i.e. quadrupolar nuclei with n=0 or some
special cases of dipolar coupled systems where a molecular axis of
quantization exists) simple selection rules may exist and components of
the molecular frame operators may be diagonal, i.e. non-evolving. In
more general systems, no choice of basis set results in particularly

simple evolution operators and non-zero matrix elements exist between
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any pair of eigenstates.

In the remainder of this chapter, I present solutions to Equation
(3.21) for a number of examples of spin systems where the Liouville
space of eigenstates is sufficiently small (and/or enough selection
rules exist) so that the operations suggested in this section are

conveniently made explicit.

C. Coupled Spin-1/2 Systems

1. Two Identical Dipoie-Dipole Coupled Nuclei

A natural choice for the molecular frame z-axis is along the
internuclear vector rj, connecting spins 1 and 2. Expressed in this

frame of reference, Equation (1.47) becomes

HD = - (11-12 - ‘3121122 ) (3.22)
where, as before,
Y{Yoh
o, = L2 (3.23)
D 21rr3
12

The initial condition is assumed to be magnetization, i.e.

p(0) = Iz = Izl + I22 (3.24)

As described in Subsection I.B.2.b, the eigenstates of this Hamiltonian
are traditionally given as the triplet (symmetric with respect to
interchange of the two spin labels) and the singlet (antisymmetric with
respect to exchange). Table 3.1 provides explicit forms for the
eigenstates and eigenvalues of Equation (3.22). The matrix

representations of the angular momentum operators IxM’ IyM’ and IzM are
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identical to those given in Table 2.1 Table 3.1 adds matrix
representations for the second rank tensors UkM' No matrix elements of

these operators couple the singlet state to the triplet manifold and

Table 3.1

A. Eigenstates of Two Coupled Spin-1/2 Nuclei in Zero Field

1> = -1 @Y (o> - 1851 1> = (@Y7 [aw> + |pp]

1/2 1/2
|T> = Y2 [lap> + |>] s > = @2 [lap> - |pa>]
where a and 8 correspond to <Iz> = 1/2 or -1/2, respectively

B. Matrix Representations of Uk

Matrix elements between S and T states are zero; within the T manifold

|-> |+ [o>.
<- 1 0 0
IE'UO = <+ 0 1 o0
<0 0 0 -2
|-> |+ |o> : |-> |+ o>
<- 0 -0 i <- 0 0 0
IEUl_= <+ 0 0 0 .]—2-U1+= <+ 0 0 -i
<0 -1 0 0 ' . <0 0 i 0
|-> |+ o> |-> [+ |o>
<- 0 1 O <- -1 0 O
{20, = <+ 1 0 0 {2v, = < 0 1 o0
<0 0 0 0 <0 0 0 0
For |-> = |x>, |+> = |y>, and [0> = |z> this same set of operators

describes an isolated spin-1 system.

the singlet has no effect on the spectrum. The singlet is not included
in any of the matrix representations of Table 3.1. Time evolution

under the Hamiltonian can be described using Equation (1.75), and
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Ij(tl) = Ij coswlkt1 + (IkII + Illk)51nw1kt1 (3.25)

and

(I I +1 Ik)(t (I I + IlIk)cosw t, - I.sinw,. t (3.26)

V- k1~ %k

This describes time evolution for six of the eight operators first and
second rank tensors necessary to describe the evolution of the three
level system. The remaining two operators (proportional to Uy and U,,)
are diagonal in the zero field basis set and undergo no evolution. The
trace of Equation (3.20) is easily performed once a few general rules

are described;

Tr [Ij k] = sjk (3.27)
and
Tr [Ij k 1] 0 for all j,k,1 (3.28)
Therefore,
%—Tr[ z (t )I ] = l-(cosw t, + cosw,,t. + cosw ) (3.29)
JM 1 3 2171 3271 13%1

i=x,y,z

For two coupled spin-1/2 nuclei, and in the basis set of Table 3.1
o = b = 3, (3.30)
31 2D :

and

Wi, = 0 (3.31)

. Normalizing to unity at zero time, the zero field free induction decay

from two identical spin-1/2 nuclei is
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G(t,) = %— 1+ 2cos(-§wntl)] (3.32)

1’
An experimental example of this prediction is shown in Figure 3.3,
where the zero field NMR spectrum of the 1H nuclei in Ba(ClO3)2-H20 is
presented. Crystalline water molecules are well isolated one from
another, and the spectrum corresponds closely to the case of two
coupled identical spin-1/2 nuclei. 1In the absence of molecular motion
which may average the observed couplings, the observed line splitting
(42 .4 kHz) corresponds to a 14-14 distance of 1.62+.02A. Single
crystal spectra of this same>compound have already appeared in Figure
3.2. As this two-spin system is convenient for experiments,
theoretical modeling and easy interpretation of results I will return
to this compound and spectrum repeatedly in subsequent sections.

2. Two Distinguishable Dipole-Dipole Coupled Nuclei

The singular difference between the heteronuclear (I-S) spin pair

(e.g. 13C-lH) and the homonuclear (I-I) spin pair described above is
that for two spin species the high field density operator can no longer

be written as IzL alone. Rather,

pL(O) = bIIzL + bSSzL (3.33)

where the coefficients by and bg differ in general because the
magnetogyric ratios of the two spin species do. The density operator
of Equation (3.33) corresponds to an unequal division of the initial
magnetizations between the two spins in high field. Even though the
zero field Hamiltonian for the two spin systems is independent (to

within a scaling constant) of the chemical identity of the two spins,



Figure 3.3. !H NMR spectra of Ba(ClO3),-H,0. At top: High field
single crystal spectrum. Middle: High field powder spectrum. Bottom:
Zero field powder spectrum. The splitting in the zero field spectrum

corresponds, in the absence of motion, to r = 1.62%.02 A.
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the high field preparation sequence can discriminate between the two
spin species. Rewriting Equation (3.33) in a form which emphasizes the

difference between it and the density operator of Equation (3.24)

_,pL(O) = b+ (IZL + SzL) + b_(IzL - SZL) (3.34)
with
b.+b
IS
b+ = 5 (3.35)
and
b.-b
b - 123 (3.36)

In this form I emphasize the existence of two distinct high field
components of the initial density operator p with very differing
symmetries. The first term corresponds to the average magnetization
shared between the two spins, is symmetric with respect to interchange
of the spin labels; and has the same characteristics as the
magnetization in Equation (3.24). The second term in Equation (3.34)
corresponds to the difference between the initial magnetizations at the
two spins, is antisymmetric with respect to exchange of the two spin
labels, and has no counterpart in the homonuclear problem. It couples
the singlet state of the zero field Hamiltonian to the triplet
manifold. It is responsible for new transition frequencies not allowed
in the homonuclear case.

Both types of operators are first rank tensors. The symmetric
combination behaves precisely as does the operator I, for two
identical spin-1/2 nuclei as described immediately above. Under the

influence of Hp, these operators evolve into second rank tensor
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operators. The antisymmetrié combination transforms under the rotation
operator R'l(ﬂ) into first rank antisymmetric molecular-frame operators
proportional to (I y-Syy), (IyM'SyM)' and (IzM'SzM)' The only nonzero
matrix elements of these operators are <-|IxM-SxM|S>, <+|IyM-SyM|S>,
and <O|IzM-SzM|S>. These operators evolve into a new set of first rank
tensor operators (of the general form (IjSk-Iij)) at frequencies
characteristic of transitions between the singlet and triplet
manifolds. Because of the differing symmetry characteristics of the
two types of operators, no cross terms between these two sets can ever
contribute to the trace of EQuation (3.20). ‘In the laboratory frame,

py, always consists of two orthogonal pieces, and

pL(tl) = b+(t1)(IzL + SZL) + b_(tl)(IzL - SzL) (3.37)
where
b (0) 3
b+(t1) = 3 [1 + 2cos(§thl)]. (3.38)
b_(0) L '
. b_(tl) = ——3——{cos(th1) + 2cos(§th1)] (3.39)

The zero field signal G(t;) depends on which nuclear spin reservoir is

observed in high field. If the S spin system is observed,

G(tl) = Tr [SzL pL(tl)] (3.40)

- b+(t1) - b_(tl) (3.41)

or, if the I spins are observed,
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G(tl) = Tr [IZLpL(tl)] (3.42)

= b+(t1) +b (t (3.43)

1)

Because the high field resonance frequencies wy and wg differ, it is
possible to selectively irradiate either spin species in high field and
alter the initial condition. In particular, if either b, or b_ is made
equal to zero by an appropriate preparation sequence the observed
spectrum is simplified by the disappearance of one set of lines. These
predictions are confirmed by the zero field NMR spectra of the 13¢.1y
pair in ﬁ-Ca(H13COO)2 shown in Figure 3.41 The observed spectra
precisely follow the predictions of Equations (3.41) and (3.43).
Assuming no motion, the observed dipole-dipole coupling corresponds to
a 13¢.14 distance of 1.11A. Figure 3.5 is a comparison of the high and
zero field NMR spectra observed for I-I and I-S two-spin systems.

The signal function G(t;) corresponds to the magnetization stored
in the T or S spins after a zero field evolution period t;. Most
frequently, it is the frequency-domain spectrum (the Fourier transform
of G(tl)) which is of interest. Where it is difficult to attain useful
polarization levels in high field (either because the equilibrium S
spin magnetization is small or where the S spin Ty is inconveniently
long), zero fiéld evolution could conceivably be of use as a method of
polarization transfer between spin species. As b, and b_ evolve

differently in time, there exist values of ty which maximize the

evolved S spin magnetization. The maximum in SzL(tl) occurs when



Figure 3.4. 14 detected zero field NMR spectra of 1y-13¢ pair in
p-ca(ul3co0y,. 13

sequence. The sample is depolarized in zero field, then returned to

C spins are polarized by field-cycling preparation

high field for ~10 s (approximately Tiy). A complete field cycle is
executed with fixed time t; = 32 ps. This strongly magnetizes the 13¢
nuclei to 160% of theirvequilibrium value. Ty, is several minutes. 1In
high field the 14 nuclei are repolarized. Prior to executing the field
cycle with variable time ty, a resonant rf pulse is applied to the 1H
spins of length, from top: 0°, 66°, 90°, 114°, and 180°. This
generates the zero field initial conditions indicated in the plot. The
spectra closely follow the predictions of the text. The observed w

corresponds to <r 3>1/3 = 1,11 A.
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Figure 3.5. Summary of the high field and zefd field Hamiltonians,
eigenstates, and spectra for homonuclear (I-I) and heteronuclear (I-S)
dipole coupled spin pairs. Transitions are indicated by the arrows.

In high field the transition energies are orientation dependent and the
spectrum is continuous absorption band. The zero field energy levels
are orientation indepéndent, and the zero field spectrum consists of a
finite number of absorption lines. 1In I-I systems, only transitions

within the triplet manifold are allowed.
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zL + -
- . — - 0 (3.44)

6t1 8t1 8t1

or, defining x = (th1/2),

[3sin3x b+ - (sin2x + sinx)b_ ] =0 (3.45)

Solutions to Equation (3.44) include wpt; = 0,2n,4%,..., where

Tr [pS,1] = 0. A second set of solutions is given By

2b * (Ab? + 144bi+ 48b_'_b_)1/2
cos X = (3.46)

24b+

b + 3b
- —_— _.;_'_ ; (3.47)

6b+ !

In the limit bg = 0, then b, = b_ = by and

2 + 14 1 2
cos xv = —5; <~ "33 (3.48)
Choosing cos x = -(1/2),
Tr(S_.p) = = (3b, + b) (3.49)
zLP A I S :

which corresponds to a very significant transfer of polarization from
the I to the S spin. In this two spin system, and for an initially
depolarized S spin, 75% of the total order in the sample can be
transferred from I to S. A derivation of the actual value of S,; is
more complicated for the last root of Equation (3.43) and only the

results are given here;
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3

b’b 27

Tr(S, p) = L 3[— L. 9b_bf + —b_b_?_ - 54bi (3.50)
162b.| 2 2

In the limit b+ =b_ (i.e. no initial polarization on the S spins),

Equation (3.49) simplifies to give

49

TI(S,.p) = - Tz b, (3.51)

In the limit b_ = 0 (i.e. a homonuclear spin system) then this solution
corresponds to a minimum at -1/3 of the originally prepared
magnetization, precisely as is found in the homonuclear zero field free
induction decay of Equation (3.32).

3. Heteronuclear J Spectroscopy in Liquids

The antisymmetric operators which allow transitions between the
singlet and triplet manifold to take place provide a mechanism for the
observation of pure J spectra‘in the zero field NMR of heteronuclear
liquids. Ordinarily, one does not expect to observe oscillating
magnetization from J couplings between pairs of nuclei in a liquid
because the J coupling is isotropic in space. No spatial truncation
occurs when a magnetic field is applied to a liquid. Thus, the removal
of the field results in no discernable change in the density operator.
In a residual field perpendicular to the polarizing field, oscillations
corresponding to the Larmor frequency in the residual field may be
observed. This is the basis of the Varian magnetometer experiment for

d.72’73 In heteronuclear

the measurement of the earth's magnetic fiel
systems, the application of a magnetic field truncates the J coupling

in the spin variables rather than the spatial variables. 1In a large

field, the flip-flop terms in the J coupling tensor are rejected
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because of the difference in Larmor frequencies (Equation (1.71)). The
initial spin polarizations are also different (consistent with the
magnetogyric ratios y; and vg).

The transitions within the triplet manifold of the two spin-1/2
system all appear at zero frequency because the J coupling shifts all
energy levels within the triplet by the same amount in the same
direction (Equation (1.70)). It is only the transition between the
triplet and the singlet which carries any information and it appears at
a frequency equal to the J coupling itself. Skipping the intermediate
steps (which are similar to those in dipolar coupled systems as
discussed above), and noting that without loss of generality R(1) =1,
the zero field free induction decay from a heteronuclear J coupled pair

of spin-1/2 nuclei is

1
M_(t)) = 3 (b, *b cosit (3.52)

+ 1)

Rapid molecular reorientation in a liquid limits the interactions to
those within a molecule and Ty's in liquids are usually long. In zero
field the linewidths in the heteronuclear liquid are dominated by field
inhomogeneities. Therefore, these systems provide a sensitive test for
the effects of residual fields on the width of zero field resonance
lines. Figure 3.6a shows the 31P-detected zero field spectrum of
diethyl phosphite ((C,H50),PH). The directly bound lH-3!P coupling is
very much larger than any of the couplings to methylene 14 nuclet
several bonds away and it is a good approximation to treat this systems
as a two spin-1/2 system. The triplet of lines predicted by Equation
(3.52) is observed and the spacing corresponds reasonably well with

previously reported values of the J coupling.76 Now consider the
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Figure 3.6. Zero field J spectra of diethylpﬁosphite ((CoH50) oPHO) .
Both spin systems equlibrate in high field. Immediately prior to the
field cycle, a 180° pulse is applied to the ly spins. This enhances
the amplitude of the peaks at XJ. The coupling between 31p and the
directly bound Iy contributes the sharp line at * 692 Hz. a). 31p
detected spectrum. Only signal from the directly bound pair is
observed. The spectrum is artificially broadened for purposes of
display. The true linewidth is ~ 1 Hz. b). 14 detected spectrum.
The same line at * 692 Hz is observed. In addition, broad peaks

corresponding to the ethyl group l4's are observed at * 100 Hz. This

most likely corresponds to their Zeeman frequency and a residual field

~.02 gauss.
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effect on the spectrum of a small applied field;
H = (—yIIJ. + 7ssj)Bres +J I-S (3.53)

with J >> B The eigenvalues of H are changed from their zero

res’
field values only to second order in the field, and the Zeeman
Hamiltonian is truncated by the much larger J coupling. The absence of
Zeeman-broadened lines in the spectrum of Figure 3.6a indicates the
quality of the zero field region. (Just how bad the zero field region
can afford to be is shown in Figure 3.6b. Here, the same experiment is
performed with 1§ detection of the high field signal. The same narrow
three-1line spectrum is observed for the P-H pair. 1In addition, all the
other H nuclei appear at approximately their Larmor frequency of ~100
Hz, with a spread of +20 Hz. At this level of residual field the
J-coupled line is still less than 1 Hz wide.) Where broad lines are
observed in zero field, the source will rarely be imperfections in the
applied fields which can routinely be adjusted to within several

hundredths of a gauss of zero. Broad lines are more often the result

of a distribution in local Hamiltonians.

D. Quadrupolar Spin Systems

NQR spectra of integer and half-integer spins differ greatly from
one another. A general and more detailed presentation of pure NQR is

given in the standard reference works.13’14

Here I dwell only on those
aspects which are essential to the remainder of this work.

As the quadrupolar Hamiltonian HQ is generally much larger than

Hpy, in this section I will deal with only those aspects of Fourier
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transform NQR which apply to isolated quadrupolar nuclei. Experimental
data on coupled spin-1 nuclei, and a discussion of the possible use of
dipole-dipole couplings in structure determination, appear in Chapters
V and VI.

1. Integer Sping: I =1

Of the integer spins, only I =1 (2D and 14N) systems are
commonly observed. This will be the only case I will discuss. 1In the
case of the spin 1 nucleus, operator techniques prove extremely
powerful and the majority of my discussion will rely heavily on the
" operator set presented in Tables 2.1 and 3.1:;66’77 The spin-1
quadrupolar Hamiltonian (Equation 1.68) consists of two commuting
terms, one proportional to the spin operator Uo;and a second
proportional to the spin operator U, ; it and its three eigenstates
(with n=0) are formally identical to the triplet manifold of two
spins-1/2, and therefore the problem of the homonuclear pair. For
nonzero 7, the term in HQ proportional to n breaks the degeneracy of
the two states (|x>,|y>) and requires that the eigenstates be chosen
proportional to what otherwise would appear to be the rather awkward
linear combination of the tables.

a. The Signal Function

All of the algebraic machinery established in the calculation of
G(ty) for the homonuclear pair is directly applicable to the problem of
the spin-1 nucleus in zero field. As there are three distinct energy
levels there are also three distinct transition frequencies. In direct
analogy to Equation (3.32), the zero field free induction decay from a

polycrystalline sample for I = 1 is
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G(t = %-(cos What, + CcOS W, .t + CcOS w (3.54)

23%1 31%1 21%1)
with

Wiy = 2nA Wyq = -(3+n)A Wy = (3-n)A (3.55)

In keeping with the convention long established in zero field NQR, only
positive frequencies will be displayed and therefore three lines will
be observed (where the same signal function G(tl) would result in three
pairs of lines as we have chosen to display the spin-1/2 spectra). A
number of illustrative examples of typical spin-1 zero field NMR
spectra appear in Chapter V. Figure 3.7 shows a comparison between the
zero field spectra of I-I and I-S dipole-dipole coupled spin systems
and of a spin-1 quadrupolar nucleus.

b. Explicit Calculation of p

In this section, I take a somewhat different approach to the
calculation of the.signal function of Equation (3.54). Rather than
calculating G(tl) as in Section B, I obtain an explicit expression for
the lab frame representation of the density operator for a specific
orientation, pg(tl). This corresponds to following the evolution of
the lab frame magnetization at each orientation of the powder for all
times ty.

While it is always possible to represent p as a matrix of
numbers, somewhat greater insight is gained if instead p is represented
in an operator basis set. This approach has gained popularity in the
use of fictitious spin-1/2 operator bases in the analysis of multiple-
quantum NMR /7 -80 but its use in NQR is older.81 Generally, a traceless

NXN Hermitian matrix is represented by NZ-1 independent traceless
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Figure 3.7. Comparison of spectra and Hamiltonians for two

dipole-coupled spin-1/2 nuclei, and for a spin-1 quadrupolar
nucleus. a). Summary of zero field eigenstates and transition
frequencies of dipole-coupled pair. Transition frequencies allowed
in both I-I and I-S systems are shown in bold lines; allowed only
in I-S, dashed. For comparison to quadrupolar spins, only positive
frequencies are shown. b). Eigenstates and energy levelé of
spin-1 system in the notation of Table 3.1. A non-zero value of 75
splits the |+> and |-> eigenstates. For n = 0, the spectrum is
identical to that of the I-I pair.
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operators. The operators in Tables 2.1 and 3.1 provide a convenient
basis set for the discussion of spin-1 nuclei in zero field. The
transformations of the first rank tensors under rotations are given by
Equation (1.25); the second rank tensors U, in Table 1.2. Time
evolution is summarized in Equations (3.25) and (3.26).

Until Equation (3.13) the treatment of Section III.B is adequate.

At a time ty the density operator pn(tl) is

Q .
pM(tl) = cosﬂ(Ichosw12t1 + (IxMI +I I Dsinw

yM ytam 12%1)

cosw,qt; + (IyMI;M+IzMIyM)Slnw

t

-sinﬁcosa(IXM 23t1)

1 + (IXMIZM+IZMIXM)51nw31t1) (3.56)

+51nﬂ51na(IyMcosw31

or, in slightly more compact notation,

Q . .
pM(tl) = cosﬂ(Ichoswlzt1 + U2+M51nw12t1) - sln.,Bcosa(IxMcosw23tl +

cosw, . t '+ U sinw,.t.) (3.57)

U sinw,,t,) + 51nﬂ51na(IyM 3151 1-M 31%1

1+M 2371

Finally, pﬁ must be rexpressed in the laboratory frame pg = R'lpﬁR, and

Pt = ag(ET g +ag(eTy + ag(t)I; + a,(c)Vs  + ag(tUpy

+ a6(t1)U1-L + a7(tl)U2+L + a8(t1)U2_L (3.58)
where

2 . 2
1-(cos acosw, ., t.+sin acosw

al(tl) = sinBcosfB[cosw 23t 31tl)]

12t

a2(tl) = sinfBsinacosa(cosw,.t, - cosw

3151 23%1)

a3(tl) = coszﬂcoswlztl + sinzﬂ(coszacosw23t1 + sinzacosw31t1)
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I; cosﬂsinzﬂsinZa (sinw,.,t, + sinw,.t. + sinw12t1) (3.59)

a,(t)) = - 23%1 31%1

. .2 2 . .
aS(tl) = cosfsinfB(sin a51nw31t1 - cos aslnw23t1 - cosZa51nw12t1)

a6(t1) = sinacosasinﬂ[2coszﬂsinw12tl+c052ﬂ(sinw23t1+ sinw31t1)]

2, .
) + cos2acos fBsinw. .t

. 2 2 . 2 .
a7(t1) = sin B(sin"asinw,,t,- cos asinw 1251

3141 23%1

1 . 2 ; . 2 . .
a8(tl) = - E-sanacosﬂ[(l+cos ﬂ)31nw12t1- ?ln ﬂ(51nw23t1+51nw31t1)

Normally when the external field is reapplied only I, ; and U, are
stored as diagonal elements of p;, but suitable detection sequences can
be designed to transform any of these lab-based tensor operators into
an observable transverse magnetization. In the most general ordered
system all of these coefficients may be non-zero. Magnetization
initially aligned in fhe laboratory frame may appear as any other type
of operator. If n =0, ay, ag, ay, and ag vanish and the magnetization
is limited to excursions in the plane defined by the laboratory and
molecular z-axes. Where the sample contains a distribution of
orientations P(Q1), the ap coefficients must be integrated over that
distribution function. In powders where P(Ql) is a constant, only aj
has non-zero integral over all space, and is responsible for the free
induction signal of Equation (3.54). In powders there are no
observables orthogonal to the initially prepared operator. I return to
this point in Chapter VI.

2. Half-Integer Spins: I = 3/2, 5/2

Kramer'’s theorem (which will be introduced and explained more
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rigorously in Chapter VII) states that each energy level of a zero
field Hamiltonian with half-integral spin must be at least doubly
degenerate. An isolated.spin I nucleus has 2I+1 eigenstates but because
of this degeneracy there are no more than (21+1)/2 distinct energy
levels. If each energy level were coupled to all others, the number of
lines which would be expected to be observed (ignoring the inevitable
line at zero frequency which éorresponds to coupling between degenerate
pairs of eigenstates) would be (2I+1)(2I-1)/8 = (4I2-1)/8. Generally
far fewer lines are observed. 1In contrast to the integer spin, the
Hamiltonian of a half-integer spin nucleus consists of two non-
commuting pieces. The asymmetry parameter 5 couples only eigenstates
with vastly differing quadrupolar energies and perturbs their energies
only to second order in perturbation theory. In the basis set where
I,v is a good ﬁuantum number, corrections to the zeroth order
.eigenstates are small. Particularly for small values of n, but even
for larger values, the eigenstates of the quadrupolar Hamiltonian can
be identified as being almost eigenstates of lIle. Were I,y a
rigorously good quantum number, then in the molecular frame the dipole

selection rule

AmM = *1 (3.60)

would hold and only I-1/2 distinct non-zero frequency lines can be
observed by the experimental scheme developed in this chapter. Even
where the asymmetry parameter n breaks this selection rule, the
amplitudes of the "forbidden" lines are small and they are rarely
observed. 82

The spectrum observed in high field is generally not the entire
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powder pattern but instead only that portion which is unshifted to
first order by the quadrupole coupling (for spin systems where the
second order quadrupolar broadening in not too severe. For other
systems, no high field technique is well suited and only zero field
methods with direction detection in low field, or with indirect
detection via level crossings are applicable.) As long as some portion
of the high field powder pattern is unifdrmly observed, it can be shown
(see Appendix A) that‘the intensifies of the zero field spectra are
uniformly scaled by the detection sequence. Calculation of the
spectrum in this chapter will therefore be based on the assumption of
uniform and, implicitly, complete detection.

The simplest case is for I = 3/2. By either of the counting
schemes outlined above, only a single non-zero line can be observed and
the two components of the electric field gradient tensor cannot be
individually determined. On the other hand, each unique line must
correspond to a unique site. Performing the calculation indicated in

Section III.B, the zero field free induction decay is

1
G(tl) = 3 (3 + 2costt1) (3.61)
with
e2qQ 1 2
wQ = 5% 1+ 3N (3.62)

The existence of only a single nonzero frequency line is from the
counting arguments discussed above. It is less obvious that the
relative intensities of the nonevolving and evolving components should
also be independent of e2qQ and n. It can be shown, independent of the

size of g5, that this is generally true.
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An illustration of the zero field NQR spectrum of a system of
spin-3/2 nuclei is shown in Figure 3.8, in the 7Li spectrum of
Li,S0,-Hy0. Diffraction studies reveal two sites, and they are clearly
resolved in the zero field spectrum at frequencies consistent with the
values of e2qQ and 5 derived from high field single crystal studies of
the same compound.83 The broad lines are presumably due to dipolar
couplings to 14 nuclei in nearby H,0 molecules and should be
considerably narrowed by replacement of the 14 atoms with 2p.84

For I = 5/2 no closed form solution to the eigenvalue equation
can be given. For any given value of 5, the eigenvalue equation can be
reduced to a pair of identical cubic equations which can be solved
analytically. Tables of the eigenvalues for spin-5/2 nuclei in zero

82 most often, the eigenvalue equation is given

field have been given;
as an expansion in 5. For n = 0 and where Im is a good quantum

number, the form of the zero field signal is

1
G(tl) = o5 (53 + 32 costtl + 20 cosZth1 ) (3.63)
for
3e29Q
wQ = 10% (3.64)

Slightly more than half of the magnetization fails to evolve (either
because it originally corresponds to I,y or because it corresponds to
matrix elements gf Iy or IyM which couple degenerate eigenstates). Of
the rest, nearly twice as much evolves in the coherence associated with
the transitions |1/2> -+ |3/2> than at transitions of the form

|3/2> - |5/2>. Unlike the spin 3/2 case, and in common with all larger

half-integer spin systems, as n grows both the spacing between lines
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Figure 3.8. Zero field TL1 NQR spectrum of polycrystalline
Li,50,-Hy0. The lithium zero field evolution was sampled at 10 ps
intervals for a total of 630 us. One line (in additibn to non-
evolving signal which appears at zero frequency in the spectrum)
is expected for each site and two such sites are resolved. &he

zero frequency line is partially truncated.
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and their relative intensities will vary in a regular fashion. For

I = 5/2 and larger values of 5, a third line may appear at the sum of
the two "allowed" lines but even for n = 1 its amplitude is less than
7% of that of either of the two other lines. Tables of dipole-allowed

intensities and normalized frequencies as a function of n are given for

I =5/2, 7/2, and 9/2 elsewhere.8?2 For I = 5/2 and to order n2, the
transition frequencies are11
3/2,5/2 2292
w /e = A (12 - —-él- (3.65)

for the line between the states which forfn = 0 can be associated with

|1,4| = 3/2 and 5/2, and

2

Ww/%03/2 L a6+ sz? y (3.66)

for the line between the 1/2 and 3/2 eigenstates. Where it is
observed, the transition frequency between the 1/2 and 5/2 eigenstates
appears at the sum of these two frequencies. |

Figure 3.9 shows an example of a typical zero field NQR spectrum
for I = 5/2. 1t shows the 2751 spectrum of polycrystalline potassium
alum (KA1(804)2-12H20). Using Equations (3.65) and (3.66), the
quadrupolar tensor elements e2qQ/h = 391%+2 kHz and n = .17%.05 can be
derived. Presumably, the abundant 1y nuclei in the lattice are

responsible for the breadth of the observed spectral lines.
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Figure 3.9. Zero field 2751 NQR spectrum of polycrystalline
KAl(SO4)2-12H20. Each distinct spin-5/2 nucleus has two zero
field frequencies in addition to some non-evolving magnetization.

Only one site is observed.
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IV. Experimental Results: Dipolar Coupled Systems

Both high and zero field NMR are sensitive to structure and
geometry in disordered solids. The spectrum of the ibcal nuclear spin
Hamiltonians detailed in Section I.B reflect the crystalline or
molecular characteristics which are the source of these Hamiltonians.
In the presence of motion, NMR spectra are averaged in a fashion
characteristic of the dynamic processes and an analysis of the spectrum
may reveal these processes. High field magnetic resonance yields
information whose fundamental content is %dentical to that of zero
field spectra but whose analysis is considerably more difficult because
of the superposition of orientational broadening on top of the useful
structural information in the spectrum. Because the evolution of the
nuclear spin systems is observed (ideally) in the absence of all
perturbing fields (dc or rf) the only limitation on the observgd
linewidths is that imposed by the nature of the spin system itself,
rather than by orientational broadening, field inhomogenetty, or
saturation. The spectral linewidths correspond to the minimum allowed
for that system (sample and T) and consistent with the Hamiltonians
being observed. Multiple pulse sequences have the potential to modify
the information content of zero field spectra,85'87 but no applications
to zero field dipolar spectra have appeared. In this chapter and the
next, what is intended is a critical review of the current experimental
situation.

Since an understanding of many of the results of this and
subsequent chapters requires an appreciation of the effects of motion

on nuclear spin interactions a brief review is given in Appendix B.
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More complete treatments using more sophisticated models are available
throughout the literature of modern NMR.88  The focus in this work has
been not on a deep understanding of the dynamics themselves but rather
on the interpretation of the spectra. Motional averaging will be
discussed on an ad hoc basis and only where necessary.

All spectra which appear in this thesis are of polycrystalline

samples at room temperature.

A, Two and Three Coupled Spin-1/2 Nuclei

In Chapter III the simple case of two coupled spin-1/2 nuclei was
discussed. Still, a number of minor but inferesting points remain
undiscussed. The gross features of Figure 3.2 (three lines of equal
intensity) are explained by the exact treatment of the two-spin system.
In this section, I confront some of the fiﬁer details which arise, for
the most part, from the breakdown of the static two-spin model. 1In
this chapter I hope to explore some of the current capabilities and
limitations of the technique of zero field NMR.

Two details in Figure 3.2 merit further discussion:
contributions to the zero field linewidth (as the "high resolution"
zero field NMR lines are still ~4 kHz full width at half maximum and
are significantly broader than would be acceptable in most other high
resolution applications), and the low intensity absorption bands at
roughly double the frequency of the main bands. (These latter are
almost certainly not due to instrumental artifacts. Wﬁile an obvious
source for lines at multiples of some fundamental frequency is non-

linearity in the receiver section of the spectrometer, the relative
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amplitudes of these lines show little or no dependence on the strength
of the input signal.)

1. Contributions to the Linewidth

a. Residual Fields

One possible source for contributions to the linewidths observed
in zero field NMR spectra is the effect of residual dc fields. 1In
routine operation the zero field region is shimmed using a Hall effect
gaussmeter and the residual dc field is certainly less than 100
milligauss. For isolated 1H nuclei, 100 mgauss corresponds to a Larmor
frequency of ~400 Hz. Dipolé-dipole couplings in a solid truncate the
Zeeman interaction just as the J coupling truncates the effects of
residual fields in diethylphosphite (Figure 3.6). The anisotropy of
the dipole-dipole coupling introduces a directional dependence;
additionally, the zero field spectrum must depend on whether the
residual field is primarily paréllel or perpendicular to the prepared
magnetization. (In the limit of exceedingly large longitudinal fields
HZ>>Hloc’ there is no signal in a "zero field" experiment as the
polarizing field is never turned off!) 1In Figure 4.1 the powder
ﬁattern lineshape is simulated for a pair of coupled spin-1/2 nuclei in
the presence of small residual dc fields. The resulting Zeeman-
perturbed dipolar spectra bear no close resemblance to the experimental
results of Figure 3.2 even for applied fields much larger than might
actually be expected to be present.

b. Other Dipole-dipole Couplings

In any real solid, small numbers of spins are isolated only to
the extent that the dipole-dipole couplings between clusters have not

had sufficient time to act; roughly, for a time 7 such that
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Figure 4.1. Simulations of low field NMR épectra. The sample is
assumed composed of two-spin Iy systems with r = 1,60 A. Spectra are
calculated for transverse (a,c,e) and longitudinal (b,d,f) residual
fields of: '

a, b). 0.35 gauss (1.5 kHz).

c, d). 1.17 gauss‘(S.O kHz).

e. f). 2.34 gauss (10.0 kHz).

The spectra are seen to broaden and acquire structure but none of these
simulations closely reproduces the observed features. The residual

fields are almost certainly smaller than 0.35 gauss.
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IIHDCCIIT < 1 where IIHDccll is a "mean" dipole-dipole coupling
constant characteristic of the distance between clusters. Dipole-
dipole couplings are zero only for two magnetic nuclei infinitely far
apart. In most high field solid state techniques high resolution is
achieved by causing the time-average of the dipole couplings to become
vanishingly small and observing only those components of the total
spin-Hamiltonian which survive the averaging process.z’8 The approach
in this work is instead to emphasize these couplings and at their full
values. Where these multi-spin couplings are emphasized and no active
effort is made to discriminate between large and small couplings,4o
"clusters" and thus well-resolved zero field dipole-dipole spectra may
be observed only in carefully chosen real-world systems.
Traditionally, linewidths in solids are expressed (and

calculated) in terms of moments of the lineshape, where the nth moment

of the lineshape is given by
<™ = f(‘)’(w - <w>)" f(w)dw / j‘; £f(w) dw (4.1)

and f(w) is the lineshape of the specific line or band of interest.
The moments can be calculated from first principles and without
reference to exact dynamical calculations or numerical diagonalization

9,11 (Note that in this section I refer not

of multi-spin Hamiltonians.
to the more usual second moment of an entire high field spectrum
referenced to its center at w = wQ the Larmor frequency, but rather to
the second moment of an isolated line referenced to its center of
gravity.) Several authors have treated the moments of the lineshapes

for pure NQR lines.66:84,89 1y, coupled spin-1/2 nuclei closely

resemble a spin-1 nucleus, and few modifications to the theories for
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NQR linewidths are necessary to accomodate pairs of 1§ nuclei. In an
attempt to explain the observed zero field linewidth, the experimental
moment of the spectral line at ~42 kHz was calculated from the spectrum
for comparison to theoretical results. The experimentally observed

second moment is

M2 = <Aw2> = (2.82 £.05 kHz)2 (4.2)

The lH-lH dipole-dipole tensor trivially substitutes for the spin-1
quadrupolar tensor. The only necessary modification to the theory for
spin-1 nuclei is that only the contribution from 3/4 of the total
number of crystalline Hy0 molecules is included. Two coupled spin-1/2
nuclei comprise a four-level system. The triplet mainfold (3/4 of the
total number of pairs) mimics a spin-1 three level system while the
singleﬁ (the other 1/4) corresponds to a nonmagnetic spin-0 p&rticle.

2> the numerical constants

In the theoretical calculation of <Aw
tabulated by Vega were used.®® Based on the neutron diffraction
data,90 all 1H-18 vectors in the unit cell are parallel. Using the

single-crystal neutron diffraction coordinates, the theoretical second

moment is

<Aw?> = (1.95 +.01 kHz)> (4.3)

If the angle between the crystalline axis system and the internuclear
vector is changed, the theoretical value takes on values as large as
the observed but only for severe and improbable deviations from those
of the diffraction study. Therefore other dipole-dipole couplings
appear unlikely to explain the entire linewidth. More complicated

calculations which might include not only the dipole-dipole couplings
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but also small residual fields might be attempted but were not.

c. Dilution Studies

In order to observe at higher resolution the line at 42 kHz,
samples of Ba(ClO3)2-H20 were recrystallized from D,0 solution. In the
recrystallization, most of the crystalline 14 atoms were replaced by 2p
atoms. This greatly reduces the dipole-dipole couplings between sites
as the 2D quadrupolar tensor is known to have a large motionally-

induced asymmetry parameter at room temperature91

and couplings between
integer spins with large n and half-integer spins are quenched in zero
fie106: 84 Simultaneously, the number of ly.1g pairs decreases as the
square of the percentage of residual 1H nuclei in the lattice. IH-1H
pairs within a single water molecule should still have nearly unchanged

2p

resonance frequencies. 14 nuclei which share an oxygen atom with a
nucleus are coupled only much more weakly to far distant lh's ana
appear near zero frequency. Pairs of 2D nuclei are not expected to be

1H'spectrum.

observed in the
The second moment calculation suggests a significant percentage of
the linewidth is due to unresolved couplings to other molecules in the
lattice. This contribution to the linewidth decreases approximately
linearly with the decrease in 1§ concentration. Figure 4.2 shows zero
field NMR spectra observed as a function of the 14 concentration.
Removing 14 from the lattice decreases the width of the lines in the
spectrum of the residual pairs. As these lines narrow it becomes
apparent (Figure 4.2c,d) that two distinct resonance frequencies were
hidden beneath the single peak observed in the completely protonated

form. (Whatever is happening to the spectral features of the line at

zero frequency is unfortunately masked by the spectra of all the
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Frequency (kHz)

Figure 4.2. 14 zero field NMR spectra of
partially deuterated Ba(Cl04),-H,0.

a). 100% 1H.
b). 60% lu.
c). 31z 1H.

d). 10% lH.
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unpaired sites, which is concentrated in a broad blob characteristic of
the range of local fields in the crystal about zero frequency.) This
splitting is similar to that expected for quadrupolar spin-1l nuclei
with an asymmetric tensor‘v. Residual fields, which cause the entire
absorption pattern to broaden and move to higher frequencies, cannot be
the source of this splitting.

13,

Motionally induced asymmetries in Iy dipole-dipole

92 93

couplings, in carboxylic acids, and in hydrate crystals94 have

previously been observed in high field. It is known from 2p NMR

studies91

that the water molecules in this and many other hydrates
execute jumps which interchange the two nuclear sites. If the flips
occur rapidly, this sort of motion cannot be observed in pure NMR
because the dipolar tensor is unaffected by the interchange of the two
nuclear positions. The dipolar tensor is, however, modified if these
flips are not precisely rotations by =« but instead have a mean value of
m. Small angle librations superposed on the flipping motion should be
observable in the NMR spectrum. Section C of Appendix B treats the
effect of small amplitude librations on quadrupolar tensors (relying on

11 4f the results of Bayergs). These

the presentation by Abragam
results are equally relevant to the problem of two spins-1/2. Assuming
the rather unphysical but eminently tractable picture that only rocking
modes  in the plane defined by the internuclear vector and normals to

the bisector of the HOH bond are allowed, the motionally averaged zero

field dipolar Hamiltonian <ﬁD(t)> is
<H (t)> = w_. (1 - ﬂ)[312' I(I+1l) + (I2 - 12)] (4.4)
D D z ik y )

where
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To first order in 5, the high frequency transitions are shifted by -nuwp

and -2nwp from the static value of 3wp/2. Solving for n and wp,
n = .052 (4.6)
and

wD/ZR = 29.87 kHz 4.7)
In terms of the molcular parameters,

<6?)>? - 19 = - 11° (4.8)
and, corrected for the libration,

= +
i, 1.59 +.01 A (4.9)

in closer agreement with neutron diffraction results.90

d. Double Frequency Lines and More Water

The high frequency lines at multiples of the fundamental dipolar
frequency conclusive argue for the breakdown of either the zero field
or two-spin approximations. Two coupled spins in zero field cannot

51,71,96 4t

support the observed energy splitting. It is well-known
in low applied fields overtone lines at multiples of the fundamental
absorption frequency are allowed. Figure 4.3 shows simulated low field
spectra of Ba(Cl03),-Hy0 as a function of the strength of the applied
Zeeman field. At fields H; ~ Hp a rather complicated pattern is
observed and for applied fields ~2Hj lines appear at roughly twice the

Zeeman energy. For larger fields these lines grow progressively

weaker. But no double-frequency lines are observed in the range of



Figure 4.3. Low field NMR simulations, showing the transition from
zero field spectrum to high field spectrum as a function of the applied
field in two-spin system. The assumed spin system is two 14 nuclei
1.60 A apart (wp/2m = 29.3 kHz). The magnetic field is assumed
perpendicular to the magnetization so that precession occurs. a).

2.94 gauss (12.5 kHz). b). 5.87 gauss (25 kHz). <c¢). 11.74 gauss (50
kHz) .

d). 23.5 gauss (100 kHz). e). 47.0 gaussv(200 kHz). £f). 93.9 gauss
(400 kHz). In (d-f) the horizontal scale is changing. These
simulations show the source and decay of the allowed transitions at
twice the Larmor frequency in addition to the transformation of the

zero field spectrum into the high field Pake pattern.
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fields where the dipolar spectrum is still sharp.

 In dilution studies of Ba(Cl03),-Hy0 the double frequency lines
disappear, which suggest that near-neighbors are involved. Simulations
of small numbers of interacting pairs (< 3) fail to reproduce these
features. For many more than six interacting spin-1/2 nuclei, an exact
calculation of the spectrum using the formalism of Section III.B is
difficult.

Even allowing for an enlarged nuclear spin system the double
frequency lines remain mysterious. For pairs of pairs, lines at this
frequency appear at vanishingly small intensities if the prepared and
detected operator is I, ;. The amplitudes of these lines vary with
changes in an as-yet unidentified variable. Figure 4.4 shows two
spectra of Ba(ClO3)2-H20 taken with all routinely set experimental
parameters identical and separated in time by two days. In the first
spectrum, the amplitude of the high frequeﬁcy satellite lines is ~5%
that of the main lines; in the second, nearly zero. Often, these high
frequency lines appear badly phased with respect to the main lines in
the spectrum.

All of these observations are consistent with the possible
preparation and detection of interpair dipolar order created at some
point in the field cycle and detected in high field. Dipolar order
between two pairs has been observed in high field studies of gypsum,
Ca804-2H20.97 The amount of such order prepared during the field cycle
might depend on factors which are not routinely well-regulated, such as
the precise rate of demagnetization. Were such a state prepared before
the field Bint is quenched it would evolve at the observed frequencies.

Transported back to high field, this type of dipolar order can be



S - Ba (CIO3)2 *H0

a)

b)

U A

l il | | |
2100 -50 0 50 100

Frequency (kHz)

Figure 4.4. 14 zero field NMR spectra of polycrystalline
Ba(ClO3)2-H20. All experimental parameters which the
experimentalist routinely sets were identical. 1In a) little
evidence appears of the double frequency lines. 1In b), these

lines are of relatively large amplitude.
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converted into an observable by any pair of pulses and would appear in
quadrature with the signals due to the evolution of Zeeman order. This
may serve as a warning as to the complexity of the demagnetization
process in systems of discrete energy levels and where the spin
temperature hypothesis does not hold.

Other two spin systems exhibit spectra similar to that of
Ba(C103)2-H20. Two spin systems differ from one another only to the
extent that they really are two spin systems and therefore to the
extent that the ideal three-line spectrum is broadened and ultimately
split by dipolar couplings to other magnetic nuclei. 1In Figure 4.5,
two zero field NMR spectra of other two spin systems are shown. The
spectrum of the first (K2C204-H20) is nearly indistinguishable from
that of our model hydrate, Ba(ClO3)2-H20 and even reproduces the weak
double frequency transitions. In other systems (Li,50,-H,0 and
CaCl,-Hy0, shown in Figure 4.6) the ideal triplet is significantly
broadened. Céuplings to other high vy nuclei (either the 7Li or other
water molecules in the lattice) contribute to the linewidths.
Nonetheless, these weaker interactions are insufficient to produce any
radically new features.

2. Beyond Water: the Methyl Group

In search of new and different zero field NMR spectra, Figure 4.7
shows a series of spectra of sodium acetate trihydrate. Each sample
was recrystallized from D50 and the only 14 nuclei in the sample are
found in the methyl groups of the acetate anion. Despite this
dilution, the zero field NMR spectrum of the network of -CHj groups,
whose spectrum is shown at the top of the figure, is basically

unstructured. Couplings between methyl groups are strong and the



a)

b)

ﬂ | KyC,0,H 0
Liy SO, *Hy0
| l | | |
-100 -50 O 50 100
Frequency (kHz)
Figure 4.5. 1H zero field NMR spectra of polycrystalline a).

K,Cy0,-H,0 and b). Li,S0,-Hy0. In both the three-line spectrum is
observed. In a). the spectrum is stikingly similar to that of
Ba(ClO3)2-H20; even the double frequency lines are reproduced. 1In
b). the lines are significantly broadened by nearby H,0 sites and
the 'Li spectrum.
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High field

Zero field

| | | I |
-100 0 100

Frequency (kHz)

Figure 4.6. High field and zero field 1y »r spectra of

polycrystalline CaCl,-2H,0, acquired after a two-pulse solid echo
sequence. The high field Pake pattern is significantly broadened
and the singularities ill-defined. The zero field lines are broad

yet well-resolved.



Figure 4.7. Zero field NMR spectra of polycrystalline -CH; group in
sodium acetate (NaOAc-3D20) as a function of concentration of the -CH3
groups. At top, the spectrum of the system with 100% -CH; groups.
Middle and bottom, -CH3 groups have been replaced by -CD3 groups. At
low concentrations the spectrum shows the features characteristic of
isolated methyl groups. Assuming rapid rotation about the C5 axis the
splitting observed in the spectrum at bottom corresponds to

<r3>"1/3 ~ 1,89 A,
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system closely resembles a dense lattice of coupled spins (discussed in
more detail below) rather than a collection of isolated groupings of
three spins. Replacing a large percentage of the remaining s with
2p previously was shown to greatly increase the resolution in zero
field NMR. To avoid complications which might arise from mixtures of
isomers (and because of the extremely small number of three spin
systems found in a statistical distribution at low concentrations),
three samples were recrystallized from solution as mixtures of
NaOAc-3D,0 containing only perdeuterated -CD5 and perprotonated -CH,
groups. At low concentrations (~10% or less protons) the spectrum of
the isolated methyl groups appears. It, like the spectrum of the
dipolar coupled pair, consists of a triplet of'iines. Unlike the two
spin systems, most of the integrated intensity appears at zero
frequency.

Using the formalism of Chapter III and the results of Appendix B
it is simple to numerically calculate the spectrum of the isolated -CHjy
group. In this section, I attempt less formalism if no less rigor.

The simulation of the spectrum in the fast motion limit consists of two
nearly distinct problems: first, the calculation of the eigenstates
and energies of the zero field Hamiltonian, and second, a calculation
of the relative intensities of the observed lines. First, the
Hamiltonian:

At high temperature the -CHj group undergoes rapid rotation about
its C; axis and the zero field molecular frame will be referenced to
this symmetry axis. (None of the conclusions which follow depend in
any way on any assumptions about that motion except that it is rapid

and that, over a time period comparable to the inverse of the dipolar
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couplings, the methyl group rotational potential well is at least

three-fold symmetric.) The Hamiltonian can be written

HD = wp jik [Ij-Ik - 3(Ij-rjk)(Ik-rjk)] (4.10)

where all the ik are assumed equal in length. Hp can be expanded and
wp defined as in Chapter I. Because of the assumption of rapid motion
about the molecular z axis, the averaged Hamiltonian <ﬁD(t)> is most
readily calculated in an interaction frame where the spatial variables
are changing with time. This is in contrast to the more familiar high
field picture where the spin variables are accelerated with respect to
the spatial and laboratory frames. (A somewhat more formal treatment is
given in Appendix B.) In this accelerated frame of reference, and as
long as the methyl group motion is rapid, the Hamiltonian observed in
an NMR experiment is Equation (4.10) averaged over many periods of the
rotation. This corresponds to truncating all terms in the Hamiltonian
which do not commute with rotations about the axis of rotation, and if

the spin Hamiltonlan is expanded with its z-axis chosen as above

<H> = H =wII+II

p (11, 2253z ¥ 13211,

1
Z-(I1+I2 + I1 12 + 12+I3_+ 12 13 I3 Il + I3 Il+)] (4.11)

The eigenstates of H, gg are

|¢l> = Iaaa> = |¢4> |¢2> =-}§ [Iqaﬂ>+|aﬂa>+|ﬂaa>] = |¢3>
|¢5> - [|eap> + exp(in/3)|afa> + exp(2ir/3)]|Baa>] = |¢6> (4.12)

F

and
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*

* 4> - 6> (4.13)

|¢7> = |¢5>
The bar over an eigenstate is a symbol I will occasionally use to
indicate the inversion of all spin operators (i.e. |a> is changed to
|ﬂ> and vice versa). No particular significance can be attributed to
any specific choice of eigenstates, as any linear combinations of
degenerate levels are also eigenstates. Because of the rapid motion
about the C5 axis, molecular quantum numbers J (the total angular
momentum) and |M] (the projection of J on the quantization axis) can be
defined and are good quantum numbers. Eigenstates |¢1>-|¢4> comprise a
quartet with J=3/2 which is functionally equivalent to a pseudospin-3/2
particle. Eigenstates |¢5>-|¢8> correspond to a pair of J = 1/2 two-
level systems and can be treated as two isolated pseudo spin-1/2

particles. Where E = <¢n|Heff|¢n>,

E = -E, = -E, = E = %-w (4.14)

E.. = E, = E, = E, = 0 (4.15)

Formally, the normalized signal averaged over a powder distribution

function is given by

pX Tr[IjIj(tl)]
- - j=x,v,z :
G(tl) > Tr[IjIj] (4.16)

J1=X,y,2

The operators Ij are block-diagonal in the expectation values of J.

The sums over the traces can be separated into traces over each of the

pseudo-particles, and
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? (2Tr [14) 515159 + Tx [143/9153/2¢E) 1)
G(t,) = (4.17)
1 ;: (2Tx (131 551 5] * 0% [T13/2%53/2])

The zero field Hamiltonians H;,. vanish for a spin-1/2 particle and
magnetization associated with these two pseudo particles is
nonevolving. Only Ix3/2 and Iy3/2 contain off-diagonal matrix elements
between nondegenerate states. All other operators are non-evolving.
For the spin-1/2 submatrices, Tr [Ij1/21j1/2] = 1/2 and

Tr [123/2123/2] = 5, For each of IX3/2 and Iy3/2,

. 3 _
Tr [Ij3/21j3/2(t)] -2+ 3 COSGE thl) (4.18)
Substituting back into Equation (4.17),
3
3+4+6cos(—2-wtl)+5
6(t,) = D
1 3+4+6+5
; ‘l.[2 + coské- ty)] (4.19)
3 2 “p1 :

In the frequency domain this produces a triplet of relative intensities
1:4:1 and is closely reproduced by the spectrum of the most dilute
system shown at the bottom of Figure 4.7. The observed dipole-dipole

coupling corresponds to a 1H-1H distance of 1.89A.

B. Heteronuclear Spin Systems

The basic differences between hetero- and homonuclear spin
systems have been covered in Chapter III. In this section, I present

simulations of spectra for larger heteronuclear spin networks .and
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comment on the possible use of field-cycling NMR as a means for
inducing polarization transfer from abundant, high y spins to lower
sensitivity spin-1/2 nuclei. Some aspects of this problem weré covered
in detail in Section C of Chapter III. These are really the same
problem because the magnetization function, Tr [Szp(tl)], and the
spectrum, f(w), are a Fourier-conjugate pair.

In Section III.C I showed that in an I-S pair t; might be chosen
so that the final transfer of polarization from I to S spin is more
efficient than by any other technique. The final value of the S spin
magnetization is much larger than might be observed if the two spihs
were brought into equilibrium in high field via standard techniques
like cross-polarization.98’99 The complete undémped time evolution of
the magnetization function for the I-S pair is shown in Figure 4.8a.
This technique is not, unfortunately, of general utility. As the
number of interacting spins becomes larger (Figures 4.8b,c,d),
magnetization tends to wander rather more chaotically from site to
site. Maxima in the function SzL(tl)lare not as well defined nor as
dramatic as in larger spin systems. Where small numbers of spins are
not well-isolated, couplings to other spins rapidly damp out the
oscillations and the theoreﬁical maxima may not be achieved. 1In the
experiménts illustrated in Figure 3.4 the maximum observed transfer of

13C nuclei in 13C-calcium formate was ~40% of the initial

order to the
14 order. This is only about half the maximum predicted in Figure
4.8a. Figures 4.9 and 4.10 illustrate the zero field spectra predicted
for the other common spin groupings occurring in organic compounds,

13CH2 and a rapidly spinning 13CH3. The spectra observed for S, (0) = 0

are in fact the Fourier transforms of the magnetization functions



Figure 4.8. Simulated polarization transfer functions Sz(tl) for InS

spin systems for I = 14 ana s = 13

C. In each simulation, the S spins
are assumed initially depolarized. The y-axis is in units of the
equilibrium ly magnetization. a.)- ¢). Common groupings of spins in
organic compounds. Realistic bond lengths (1.095 A) and angles
(109.5°) are used.

a). I-S dipole-dipole coupled pair. At its‘peak, S, =.75. An
equilibrium distribution would correspond to I, = S, = .5.

b). 13CH2 group. Peaks are well-defined but the maximum value (~.55)

is somewhat less than equilibrium (.67).
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Zero Field NMR
13
CH2

Theory

Frequency (kHz)

Figure 4.9. Simulated zero field spectra of 13CH2 groups as a
function of the high field initial condition. Tetrahedral bond
angles and r,_ y = 1.095 A assumed. The stick spectra are shown in
the insets; superposed, spectrum convoluted with a 6 kHz
Lorentzian line. For the initial condition where the
magnetization is shared equally between sites, several of the

allowed transitions have nearly vanishing intensity.
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Zero Field NMR

13
CH3
Theory
|+S,
|Z
,-S,
~80 0 | 80
Frequency (kHz)
Figure 4.10." Simulated zero field spectra of rapidly spinning

13CH3 group as a function of high field initial condition.
Tetrahedral bond angles and r; y = 1.095 A assumed. The stick
spectra are shown in the insets; superposed, spectrum convoluted

with a 6 kHz Lorentzian line.
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plotted in Figure 4.8b and 4.8c and are calculated with the simulation
program HETZF.FOR, which is similar to DBZINT.FOR but also accepts
heteronuclear spins.

A more general approach to the problem of transferring order from
one spin species to a second in low field is to use the level-crossings
described in Chapter II; or, in systems of.spin-1/2 nuclei, adiabatic
demagnetization. In a coupled spin system demagnetized to zero field,
polarization stored in the I nuclei is transferred to the S nuclei
consistent with equilibrium in the the untruncated Hamiltonian Hj. As
the remagnetization reestablishes Zeeman order, the magnetization

stored in the S spins while in zero field remains there.ll’24

C. More Complicated Spin Systems

As the number of strongly coupled spihs increases, the number of
discrete transition frequeﬁcies present in the spectrum multiplies
rapidly. A treatment based on considerations of symmetry will be given
in Chapter VII. For the present, these comments aim to establish a
framework for the understanding of subsequent zero field NMR spectra
presented in this chapter.

Depending upon which Hamiltonians dominate the spectrum,
predictions about the numbers of lines expected from systems of coupled
spin-1/2 nuclei vary greatly. In high field and if there are no
couplings between spins, then N spins produce N transition frequencies,
.and each line is characteristic of the chemical shift o at a specific
site. This situation is common in high field, high resolution dilute

13C).

spin spectroscopy (often In the weak coupling limit (Ao >> J)
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the energy levels of isolated spin-1/2 nuclei are split by the secular
component of the J coupling (Equation (1.71)) and each chemical shift
line breaks up into a number of lines roughly equal to the number of
near neighbors. There are certainly no more than N such neighbors and
often far fewer. This is commonly the situation for 1y high resolution
NMR in liquids. A gross overestimate of the number of allowed lines is

N2,

More often, the number of spectral 1ines increases only linearly
with N.

In strongly coupled spin systems, the eigenstates of the
Hamiltonian can no longer be identified as belonging to a single spin
but rather are characteristic of the system of N spins in concert.
Excitation under an rf pulse corresponds to the flipping of a single
spin and each eigenstate is excited simultaneously. In high field and
the rotating frame where I, is a good quantum number a single pulse can
only excite coherences where Am = 1. This diﬁole selection rule for Am
can be manipulated éo,that different values of Am = n are
excited. 100101 peyer lines are observed in these higher order spectra

and these lines are presumably more readily interpreted. In strongly

coupled systems in high field,102

_ (2N)!
W = N T(N-1) | for n = 0 (4.20)

where W is an upper bound to the number of allowed lines per order.

As described in Section 4 of Chapter III, the zero field spectrum
acquired by the sequence of Figure 3.1 is also the product of dipolar
selection rules (aithough the alteration of these selection rules is
one of the topics covered in Chapter VI). In the absence of uniaxial

molecular motion (as in the CHy group above) where zero field molecular
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frame selection rules exist, or other unusual circumstances, all energy
levels are coupled to all others by the three angular momentum
operators. The number of eigenstates in an N spin-1/2 system is 2N;
therefore, the maximum number of lines which might be expected to be

observed is

v o=2% V-1 (4.21)

As was shown by explicit calculation for I = 1 and will be generalized
in Chapter VI, in a powder sample the only observables are proportional
to those operators which appear in the prepared density operator p(0).
For p(0) = I,;, only a single oscillating component of the
magnetization is detected and there is no distinction between positive
and negative frequencies. To facilitate comparison to high field
spectra, we have chosen in dipolar coupled spin systems to treat the
real data set G(ty) as if it were a complex function and a Fourier
transformation yields a symmetrized spectrum f(w) = f(-w). Only half
the lines enumerated in Equation (4.21) contain independent
information.

There is one coupling constant for each pair of nuclei in the sum
of Equation (1.49), and only N(N-1)/2 couplings provide all available
structural information. Even for small spin systems, the geometrical
problem is grossly overdetermined as there are far more lines than
couplings. If individual lines are not well-resolved because too many
lines appear in the spectrum, this may prove to be a crippling
difficulty‘which renders any analysis difficult or impossible. The
technique of multiple quantum NMR is designed specifically to overcome

this difficulty.103
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Equation (4.21) overcounts the actual number of lines which
appear in the spectrum if there are symmetries in the Hamiltonian. A
more detailed treatment is given in Chapter VII. One symmetry
operation in particular plays a sufficiently important role to be
mentioned here. Time reversal symmetrylol”105 has a profound effect on
the spectra of systems where the total spin angular momentum is half-
integral. Time reversal symmetry guarantees that for N odd, all
eigenstates are at least doubly degenerate. W is really equal to tﬁe
number of coupled pairs of energy levels (rather than eigenstates). For
N odd Equation (4.21) overcounts the number of allowed lines by a
factor of four. (An additional line appears at zero frequency; as in
half-integer quadrupolar nuclei, this corresponds to magnetization
shared between degenerate pairs of eigenstates.) For strongiy coupled

spin systems in zero applied field,

w= 22N -1y N even

(4.22)

N-1

W= 2NN

1) +1 N odd

In any case, for N = 4 the number of allowed transitions becomes
large and lines corresponding tb individual transitions are rare.
Dipolar couplings to distant spins (for two 1y nuclei 10A apart the
dipolar coupling constant is still ~ 100Hz) may fail to split lines but
still contribute significantly to the linewidths. (The near-neighbors
in Ba(ClO3)2-H20 are > 5 A away) . Giveh a large number of inherently
broad lines it is rare that any will be well resolved. Geometric
information in larger spins networks will rarely be derived by solving
for observed line frequencies and extracting the dipole-dipole

couplings. Instead, this information is most conveniently derived by
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computer simulation.

1. Structure Determination: N = 4

In this section, two examples of spectra of isolated groupings of
four coupled 14 nuclei will be shown. Distances within a "spin system"
are, for the most part, short compared to the distances between "spin
systems." The evolution in zero field is determined primarily by the
near-range couplings, and if there are few enough of these couplings
sufficient structure might be observed in the spectrum to characterize
the configuration and geometry of these isolated groups.

| Figure 4.11 shows the zero field powder NMR spectrum of 1,2,3,4-
tetrachloronaphthalene bis(hexachlorocyclopentadiene) adduct. The high
field spectrum was shown in Figure 2.1. To our knowledge, no structure
determination has been performed on this compound. The geometric
question of interest is the configuration of the 14 nuclei situated
about the central ring. These course details are readily modeled.
Figure 4.12 shows spectra predicted to arise from six possible
conformations. Only one of the predicted zero field spectra bears a
close resemblance to the observed spectrum.

A sketch of the molecular structure of di(u-hydrido) decécarbonyl
triosmium ((p-H)2053(CO)10) is shown in Figure 4.13a. (p-H)2053(CO)10
is a metal carbonyl cluster complex whose crystal structure has been
studied both by single crystal neutron and x-ray diffraction.}0® Two
molecules share one unit cell whose volume is ~800 A3. The carbonyl
groups contain only a negligible number of magnetic nuclei; neither are
the heavy metal nuclei likely to complicate the observed spectrum. In

zero field the more abundant magnetic isotope, 18905 (I =3/2), evolves

independently of the spin-1/2 nuclei due to its large quadrupole



Figure 4.11. Top: the molecule 1,2,3,4-tetrachloronaphthalene

bis(hexachlorocyclopentadiene) adduct. The configuration of the four
14 atoms about the central ring is unknown. All other ring positions
are chlorinated. The high field spectrum of this compound is shown in
Figure 2.1.

Bottom: Zero field NMR spectrum. The sharp peak at zero frequency is
truncated for purposes of display. The evolved zero field
magnetization is sampled at 5 ps intervals giving an effective zero
field bandwidth of *100 kHz. Only half that;spectral width is shown.

The magnetization is sampled once every minute. Twelve 256-point zero

field FID's were summed and Fourier transformed to yield this spectrum.

Figure 4.12. Simulated zero field spectra for six possible

configurations of the 14 nuclei about the central ring in the molecule
1,2,3,4-tetrachloronaphthalene bis(hexachlorocyclopentadiene)
adduct.For clarity, only the configuration of the central ring is
shown, to the left of the associated spectrum. For each configuration,
the zero field spectrum is calculated, broadened to match the
experimentally observed linewidths, and plotted. The simulation at
bottom right closely resembles the observed spectrum (Figure 4.11). A
Co, axis of symmetry which interconverts the two innermost (1 and 1')
and two outermost (2 and 2') sites is assumed. Because of the assumed
symmetry, only four distances characterize the simulation;

rll' = 2.83 A, r12 = 2,22 A, rlzf = 4,34 A, and ]'.'22' = 5.01 A.
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1,2,3,4 Tetrachloronaphthalene-
bis (hexachlorocyclopentadiene) adduct
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Figure 4.13. Structure of (p-H)2053(CO)lO in

the solid state. Top: Approximate molecular
geometry. Bottom: Simplified representations
showing only the arrangement of the 1y atoms
within a single unit cell. Positions 1 and 1’
and 2 and 2’ are related by an inversion

center.
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187Os, has a low magnetogyric ratio and

moment. The spin 1/2 isotope,
appears at low natural abundance.

The four IH nuclei in one unit cell afe relatively isolated from
all other magnetic spins. The approximate arrangement of the four 1y
nuclei is shown if Figure 4.13b. The spin lattice relaxation time T;
for the lH nuclei is long (= 1 minute) and there appears to be little
motion which might complicate the interpretation of the spectrum. An
early powder NMR study of the high field spectrum of this compound
(shown in Figure 4.14) which assumed only two protons interacted
strongly was unable to reprdduce the observed spectrum.107 Thus
(p-H)2053(C0)10 makes a good test case for the applicability of zero
field NMR to the location of H nuclei in modefately large spin
systems.

Figure 4.15 (top) shows the experimentally obtained zero field
NMR spectrum of (y-H)20s3(CO)1o. The zero field spectrum proves
unequivocally that thé two-spin interpretation is incorrect. 1In
comparison with the H)O spectra of section A, far too many features are
resolved to allow for the possibility that the coupling between only
two spins dominates the spectrum. To reasonably approximate the
spectrum requires that the spin network be treated as (minimally) four
interacting spins; i.e. considering both sets of Iy pairs in the unit
cell.

Figure 4.15 (bottom) shows a simulated zero field spectrum based
on the neutron diffraction study done at low (110 K) temperature.

While some similarities are evident, the match between the observed
zero field NMR powder;spectrum and that predicted by the coordinates of

the diffraction study is not particularly good. Attempting to improve
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Figure 4.14. High field NMR spectra of polycrystalline

(p-H)ZOs3(C0)10. Upper:. Experimental spectrum obtained by solid echo
sequence, with polarizing period between successive shots of 2 minutes.
Center and below: computer simulations of the high field spectrum
ignoring chemical shifts based on a "best fit" to the room temperature
zero field NMR results (rll' = 2.81 A, rio = 2.38 A, and rio' = 5.17 A)
and the low temperature neutron diffraction data (rll' = 2.94 A,

Y19 = 2.38 A, and r12’ = 5.28 A). The simulations are convoluted with
a Gaussian lineshape function to account for the finite number of

orientations sampled in the simulations,

Figure 4.15. Zero field NMR spectrum of polycrystalline

(p-H)2053(CO)10. Upper: Experimental spectrum. Eleven zero field
FID’s 256 points long were summed and Fourier transformed. The zero
field signal was sampled at 5 ps intervals; only half the full
bandwidth is shown. Center and below: computer simulations of the
zero field spectrum based on the distances given in Figure 4.14. The
stick spectra of the simulations are broadened with a Lorentzian
lineshape function of ~2.8 kHz to more closely match the observed

features. A sharp line at zero frequency has been truncated.
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the fit, an iterative brute force three step process (simulation, plot,
and comparison to the experimental results by the graduate student
eyeball) was developed. Assuming that the equilibrium positions of the
14 nuclei are consistent with the known inversion symmetry of the unit
cell, all four 14 nuclei lie in one plane, and only three distinct
distances (rll" Ti9r, and r19 in the notation of Figure 4.13) are
. independent. One of these distances serves as a scaling constant which
determines only the absolute width of the zero field spectrum. The
other two parameters determine the spectral appearance and were
exhaustingly varied until an.acqeptable fit was achieved; (In
practice, it was simpler to choose ry, and the angle between ry, and
ri11+ as the two parameters.) Finally, the speétrum was scaled so that
the strongest bands appeared at identical frequencies in the
experimental and simulated spectra. Small variations in the remaining
parameters lead to noticeable changes in the sﬁape of the spectral
bands, as is shown in Figure 4.16. 1In favorable cases, distances
derived from zero field NMR experiments appear reliable to ~.02A, even
in larger spin systems where individual lines may not be resolved.
Small deviations remain between the observed and calculated
spectra even for the four-spin geometry which gives the "best fit"
within the assumed constraints. One disturbing element is that there
are comparatively short inter-1H contacts between 2 and 2' sites in
different unit cells; in fact, shorter than the 2-2' distance within a
given cell. This may call into quéstion the appropriateness of
considering only a four-spin network rather than eight, twelve, or
Avogadro’'s number. Practical constraints on computer memory make it

infeasible to model larger (>8) spin networks. In cases such as this,



Figure 4.16. Simulations of the zero field NMR spectrum of

polycrystalline (p-H)2053(CO)10. e) corresponds to Simulation A of
Figure 4.15 with slightly less broadening (~2.6 kHz). By columns, rqj,
varies by -0.03, 0.00, and +0.03 A from that of simulation e). By
rows, the angle between r11- and rig varies by -59, 0°, +5° from that

of simulation e).
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it should also be unnecessary. The assumed Lorentzian linewidth of 2.8
kHz is much broader than whatever additional features might be
introduced by a new coupling constant wp/27x~700Hz. More importantly
(and generally), the effect of an isolated spin at a distance r is very
different from that of a cluster whose closest approach is r. In the
former case, the main interaction of the isolated spin is with the
nearby cluster. In the latter case, the main interactién is with its
nearest neighbors, and the dipole-dipole coupling to nearby spins will
partially truncate the interactions with more distant neighbors.

2. Comparison of Zero and High Field NMR in Model Systems

Figures 4.17 and 4.18 show the simulated zero and high field NMR
spectra for ten model groupings of identical nuclear spins (all
chemical shifts equal and chosen equal to zero). The zero field
spectra are calculated using the program DBZINT.FOR (largely written by
Dr. James B. Murdoch). The simulated powdef patterns were calculated
using the prégram PAT6.FOR. The powder patterns are calculated by
formulating Hp as in DBZINT.FOR and performing a numerical truncation
by adding on a large Zeeman interaction. In order to simulate the
powder, the effective field is applied over a large number of
directipns relative to the arbitrarily chosen "molecular frame". The
number of orientations depends primarily on the patience of the
programmer and the expense of computer time, and ranged from ~14400
(for the 3 spin systems) to 400 (for the six spin systems). The
spectrum for each orientation is summed with all others, and the
resulting powder pattern convoluted with a Gaussian lineshape to
account for "residual couplings" and all unsampled orientations.

Although a Lorentzian more accurately reproduces observed zero field



Figures 4.17, 4.18. Calculated high field and zero field NMR spectra

for systems of small numbers of static, equivalent coupled Iy spins and
for a variety of geometries as illustrated. Internuclear distances
were chosen so that all the spectra appear to fit in the same frequency
range. The base distance is that of the two-spin Pake pattern where
rij = 1.60 A. Each of the high field spectra is calculated by summing
the simulated spectra over a large number of orientations of the spin
system in an externally applied field (varying from as many as 14,400
orientations for the three-spin systems to as few as 400 for the six-
spin systems. The resulting spectra (see insets) are then convoluted
with a Gaussian lineshape to account for the finite sampling intervals
and the effects of all other spins. The zero field spectra are
calculated using the procedure indicated in Chapter III. The delta
function simulationsv(fhe insets) are convoluted with the same Gaussian
as the high field spectra for comparison, although a Lorentzian line
seems to more accurately reproduce experimental results. In most of
the odd-spin systems, a sharp zero frequency peak has been truncated in

the unbroadened spectra; occasionally, in the broadened spectra as

.well.
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lineshapes, the same Gaussian lineshape was used to broaden the zero
field spectra so these figures are a worst-case estimate of the
resolution advantage of zero field NMR for the observation of dipole-
dipole couplings in solids. 1In all systems the zero field spectrum is
more structured, but for large N neither spectrum need contain many
resolved features.

3. Zero Field NMR for N -+ Avogadro'’s Number

As the number of coupled spins grows large, the zero field
spectrum rapidly becomes too complex to be modeled exactly. Exact
dynamical approaches require'that a density matrix with ~22N matrix
elements, and corresponding angular momentum operators of equivalent
size, be multiplied, diagonalized, and otherwise manipulated. Even for
relatively large machines, for N > 10 it will be impossible for the
program to remain core-resident and execution times will become
intolerably long. Moreover, it is in preciseiy these cases that the
result of an exact spéctral $imu1ation are least meaningful. For these
large N systems, the spectrum merges slowly into a broad, continuous
absorption band where individual dipole-dipole couplings are |
unmeasureable and only a statistical model of the lattice as a whole
can be extracted.

The model for zero field NMR lineshapes in dense spin-1/2 systems

9%  For dipolar fields which are stationary,

is due to Kubo and Toyabe.
Gaussian, and Markoffian a simple form can be derived for the decay of

an initial polarization. In zero field, these assumptions lead to a

polarization function
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1(t) = 3 (1 + 21 - a%ed) (exp(- %Azti)] (4.23)

2 is one half of the second moment of the resonance line. This

where A
polarization decay function is identical to pL(tl) if pL(O) =1I,. The
Fourier transform of this decay function is shown in Figure 4.19, along
with the same decay function multiplied by a Lorentzian decay to
account for finite Ty. This theory has found its primary application
to the analysis of muon polarization decéy.108 Further modifications
can be introduced account for métional effects109 but these corrections
are not large. The KuonToyabe form provides a convenient model for
comparison to experimental results in densely coupled lattices. Even
in sparse spin systems, the prediction that 1/3 of the total
magnetization fails to evolve corresponds closely to what is observed.

Figure 4.20 shows the zero field spectrum of squaric acid. 110
This system does not strictly satisfy the conditions of the Kubo-Toyabe
model. The magnetic nuclei in squaric acid correspond more closely to
a linear distribution than to the isotropic distribution assumed in the
model. Nonetheless, the general shape of the spectrum is similar to
that predicted in the statistical approach.

Figure 4.21 is the zero field NMR spectrum of lauric acid
(CH3(CH2)lOCOOH). The proton zero field spectrum at naturai abundance
(Figure 4.19a) is broad and virtually featureless, and characteristic
of most "off-the-shelf" organic compounds. An attempt was made to
increase the resolution by observation of the residual 1§ nuclei in a
highly enriched randomly deuterated samples (>90% 2D) of lauric acid
(Figures 4.19b,c). While the spectrum is considerably narrowed little

structure other than that predicted in Equation (4.23) is resolved.
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Figure 4.19. Fourier transform "spectrum" of the Kubo-Toyabe

magnetization decay function (Equation (4.23)), with A2 = 3900 sz.

a). With no Lorentzian decay superposed; central line is truncated.

b). With 2 kHz Lorentzian decay superposed; central line is

truncated. c¢). With 4 kHz Lorentzian decay superposed.
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0 Squaric Acid

-60 -30 0) 30 60
’ Frequency (kHz)

XBL 853-1571

Figure 4.20. Zero field Iy R spectrum of polycrystalline

squarié acid. The flat wings and sharp central spike correspond

closely to the spectrum of Figure 4.19c.



Figure 4.21., Zero field Iy am spectra of polycrystalline lauric acid
(CH3(CH2)10COOH). a). Spectrum of completely protonated material.
Sharp features centered at zero frequency are distorted due to
truncation of the decay function. b). Spectrum of 93% randomly
deuterated lauric acid. Relatively sharp peaks at ~*35 kHz may be due
to residual pairs. Continuing to replace residual lyrs by 2prs results
in ¢). Spectrum of > 96% deuterated randomly deuterated lauric acid and

little improvement in resolution.
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Figures 4.22-4.24 show the zero field spectra of amorphous Si:H,
>90% randomly deuterated palmitic acid, and 1,4-dimethoxybenzene
(CH,DOC¢D,0CH,D). In each sample, the magnetic spin-1/2 nuclei are
reasonably dilute and reasonably uniformly distributed throughout the
sample volume. Each resembles the spectrum of the Kubo-Toyabe theory,
with a broad, occasionally structured central band. In addition, and
at much lower intensity, absorption lines appear at relatively higher
frequency which may be due to small numbers of strongly coupled pairs
or triplets. At extremely high dilution (>99% 2D) these sharper
features might begin to dominate the spectrum (but at significantly

lowered signal-to-noise).
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Figure 4.22. Iy or spectra of materials-grade amorphous

silicon hydride. a). High field spectrum after solid echo
sequence.

b). Zero field spectrum. c¢). Zero field spectrum X 6. Broad,
low intensity lines at ~45 kHz are presumably due to tightly bound

species.
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a) Palmitic Acid
>90% 2D

b) X 16

I I N I
—-50 0 50
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Figure 4.23. a). 1H zero field NMR spectrum of >90% randomly
deuterated palmitic acid (CH3(CH2)1ACOOH), closely matching the
Kubo-Toyabe form. b). The same spectrum X16. Small peéks at ~ 30

kHz may be due to isolated pairs.
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OCH,D
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Fipure 4.24. a). 1H zero field NMR spectrum of d6-

dimethoxybenzene (CH,DOCH, OCH,D). The spectrum appears much like
the Kubo-Toyabe form, although the observed structure at *15 kHz
probably reflects the pair-wise dipole-diple couplings within the

methyl group, instead.
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V. Experimental Results: Quadrupolar Spin Systems

The interactions between the local electric field gradients and
quadrupolar moments of nuclear spin systems with I > 1 often give a
more detailed picture of the local electronic environment than do the
chemical shifts observed in the same systems. Yet the chemical shifts
are far more frequently measured. In no small part, this is because
experimental techniques for the sensitive and accurate measurment of

quadrupolar couplings are less well developed.

A, Comparison of Chemical Shifts and Quadrupolar Couplings

As a comparison of the chemical sensitivity of chemical shifts
and quadrupolar couplings, Figures 5.1 and 5.2 show experimental 2751
MASS and zero field NQR spectra of two inorganic aluminum salts,
potassium and ammonium alum (KA1(SO,),-12H,0 and (NH,)AL(S0,),-12H,0).
The high field (7.05 Tesla) MASS spectra were graciously provided by
Dr. Steven W. Sinton of the Exxon Corporation. The high resolution,
high field spectra of these two compounds are essentially identical.
Isotropic shifts in these two compounds are nearly the same and the
chemical shift is insufficiently sensitive to distinguish between the
two. In the MASS spectrum of a mixture of the two salts, only a single
main line appears. This is a common limitation of high field studies
of 27Al. MASS studies of 27Al reveal the isotropic chemical shifts
only where the second order quadrupolar broadening (and thus the
quadrupolar coupling itself) is small. Except in rare cases and at

110

very high fields the chemical shift differences between similarly
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Figure 5.1. From top to bottom: 2751 magic angle sample spinning
(MASS) NMR spectra of potassium alum (KAl(SO4)2-12H20), ammonium alum
(NH4A1(304)2-12H20), and a 1.3:1 mole ratio mix of the two. Spectra
are observed at 78.2 MHz with a spinning speed of 4 kHz. Chemical
shifts are referenced to A1(H20)g+.

Figure 5.2. From top to bottom: 27A1 zero field NQR spectra. Each
site conributes two lines to the zero field spectrum. For potassium
alum, equ/h = 39142 kHz; for ammonium alum, e2qQ/h = 438%+2 kHz. 1In
each compound n = 0.17%.05. The pair of high frequency lines in the

spectrum at bottom clearly indicates the presence of two distinct

sites.
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coordinated aluminum sites are too small to be resolved. Only the
difference between tetrahedral (at ~60 ppm from the chemical shift
reference, Al(H20)2+) and octahedral coordination (~0 ppm) is routinely
resolved.111

Figure 5.2 shows the zero field spectra of these same two
compounds obtained by the experimental technique described in Chapter
III. 1In the pure NQR spectrum and for I = 5/2, two lines are predicted
for each type of site, and the predicted pair is indeed observed for
each pure compound. Even though the zero field resonance lines are
broad, the mixture at bottom certainly conta%ns at least two chemically
distinct aluminum nuclei. The broader peaks at ~50 kHz merge into a
single line in the spectrum of the mix, but the pair of lines at high
frequency remain distinct and clearly indicate the presence of two
identifiable components.

Because both the chemical shift and quadrupolar contributions to
the nuclear spin Hamiltonian result from interactions of the nucleus
with the surrounding electron cloud (rather than with other magnetic
nuclei like the dipole-dipole coupling) spectra dominated by these
single-spin interactions are more simply interpreted than those which
primarily reflect the correlations between multiple spins. Spectral
lines in quadrupolar systems are generally associated with specific
crystalline or molecular sites. The assignment of lines is often
automatic because sum rules relate the frequencies of the allowed
transitions at a given site. This is in contrast to the dipole-dipole
coupled systems presented in Chapter IV where modeling the interactions

of more than two or three spins requires a computer modeling. The high
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resolution achieved in 2D Fourier transform NQR spectra, the
observation of dipole-dipoie couplings between sites is routine. As
they appear only as a perturbation to the main Hamiltonian, the rate of
increase in the number of lines is far slower than in systems where the
dipole-dipole coupling dominates the spectrum.

The existence of small couplings between chemically
distinguishable sites is analogous to the common . "weak-coupling" limit
in liquid state high resolution NMR, and suggests possible two-
dimensional applications of time-domain NQR to the problems of
structure determination and crystallography in disordered solids.

692,112 4, 2p NQR is a frequency domain

Double-transition spectroscopy
approach. Some time-domain experiments with the same goal are
described in Chapter VI.

The rest of this chapter will focus on studies of spin 1 systems--
specifically, 2p--where field cycling Fourier transform zero field NQR
is most powerful and generally applicable. The local fields
characteristic of quadfupolar spin systems are generally larger than is
pure spin-1/2 networks and necessitate the use of switched fields
larger than are required to satisfy the high field condition in systems
of dipole-dipole coupled spins. All experiments in this chapter used

switched fields of ~300 gauss (three times larger than was used in

obtaining the spectra of dipolar coupled systems shown in Chapter 1IV).

B. High field NMR of Deuterium

High field quadrupole perturbed NMR studies of integer spin

nuclei (realistically, 2D and occasionally 14N) are among the most
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demanding of solid state experiments. The sensitivity of 2p NMR to
dynamical processes in molecules has accelerated the development of new

113 ana interpretatioh of

techniques for efficient broadband excitation
the observed spectra.114 Even in highly enriched samples high quality
high field spectra are far from routine: its magnetogyric ratio is low,
the quadrupole moment results in high field spectra often 250 kHz wide,
and relaxation times may be inconveniently long. Magic angle spinning
of integer spin nuclei requires extremely careful adjustment of the

115 and the range of isotropic shifts is small. While

spinning axis
cross polarization revolutionized high field ' NMR of low vy spin-1/2
nuclei it is not generally applicable to quadrupolar nuclei. Even with
high power rf transmitters (~1 kwatt) experimehtally observed spectra
are distorted by incomplete excitation of the entire powder pattern.116
This may be particularly serious if.the derivation of important
information depends on a comparison of the observed lineshape function
f(w) to that predicted by a particular model.

For comparison to the zero field spectré of the remainder of this
chapter, Figures 5.3-5.5 show high field powder spectra of four of the
perdeuterated compounds to be discussed in this and the next chapter.
All spectra were acquired using the 5-pulse low power composite
quadrupolar echo sequence introduced by Levitt113 (~200 watts of rf
power and 5.0 ps 90° pulses) and phase cycling. The spectrometer data
acquisition system (see Chapter VIII) is incapable of sampling the FID
at the required rate (> 300 kHz). The bandwidth of the spectrometer
was artificially doubled by accumulating two transients in succession

with their sampling periods offset by one-half of a sampling period.

These two FID’s were subsequently interwoven to provide a single data
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set with an effective sampling rate twice that of either data set
individually. Prior to Fourier transformation the out-of-phase
component of the detected magnetization was zeroed to eliminate

116 and to facilitate comparison

contributions from non-echoed signals
to the zero field spectra where a similar procedure is routine.

Figure 5.3 shows high field spectra of perdeuterated
1,4-dimethoxybenzene (DMB) and 1,4-dimethylterephthalate (DMT). 1In
both compounds, only high field signals from the -CD; groups are
observed. T, relaxation times differ greatly between the methyl group
and sites on the aromatic ring. Even when the spins are allowed to
polarize for several minutes between successive shots, little
additional signal is observed. ‘The ratio of the integrated signals
arising from the ring sites to that of the methyl groups is much less
than the stoichiometric ratio of 3:2. Moreover, whatever ring site
signal exists is spread over a frequency rénge more than three times as
large.

Figure 5.4 shows high field spectra of perdeuterated
1,8-dimethylnapthalene. From top to bottom I illustrate the effect of
the length of the high field polarization period on the observed
spectrum. For very short polarization periods (~200 ms) only signal
from the -CDj groups is observed. At longer times, signals from the
aromatic ring sites begin to grow but at different rates. (There is
also evidence for anisotropic relaxation within the -CD, group. For
very short times the central singularities in the Pake pattern are less
pronounced than at longer times.) Finally, for polarization periods as
long as minutes little additional signal is observed.

The spectrum of perdeuterated lauric acid (CD3(CD2)1OCOOD) in
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Figure 5.3. High field 2p powder pattern spectra. The 5-pulse
quadrupolar echo sequence {(w/2)o(n)ﬂ(w/2)0(3w/4)“(ﬂ/4)o replaces each
of the n/2 pulses of the normal quadrupolar echo sequence) is applied
and the echo sampled until no signal éan be observed. Rf pulse
strength was w;/2n = 50 kHz and the dephasing period r between sets of
pulses was 30 pus. a). Spectrum of pérdeuterated 1,4-dimethoxybenzene
(DMB) . Spectrum is result of 1034 scéns with 30 s between scans.

b). Spectrum of perdeuterated 1,4-dimethylterephthalate (DMT).
Spectrum is the result of 800 scans with 10 s between scans. No

additional signals were observed with recycle rates as long as 2 m.
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Figure 5.4. High field 2p powder pattern spectra of perdeuterated

1,8-dimethylnaphthalene (DMN) acquired with the five-pulse
quadrupolar echo sequence, as a function of the polarizat{on
period between scans.

a). 200 ms/shot, 1710 shots. b). 3 s/shot, 616 shots,
c). 6 s/shot, 2000 shots. d). 15 s/shot, 1436 shots.
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Figure 5.5 shows a similar progression. For short times, only siénal
from the methyl groups is observed. At longer times, the deuterons on
the alkane chain contribute more and more significantly to the overall
intensity of the signal. These spectra illustrate some of the
difficulties associated with high field NMR studies of 2p. In none of
the experimental spectra of these samples is the entire powder pattern

corresponding to the static sites be observed.

C. Zero field NQR of Deuterium

These technical difficulties associated with high field NMR of 2p
make zero field NQR studies attractive. Instead of a powder pattern
hundreds of kilohertz wide, all of the magnetization which evolves in
zero field is concentrated in a small number of lines which can be
individually as narrow as ~100 Hz. All the signal energy is
concentrated in a comparatively small bandwidth. Because the signal-
to-noise ratio is generally referenced to a unit bandwidth, this
provides a significant signal-to-noise advantage in the zero field
experiment which may more than compensate for the disadvantage of
having to observe the evolving magnetization indirectly in a ppint-by-
point manner. The high field spectra of Figures 5.3-5.5 and the zero
field spectra which follow are acquired in comparable émountslof time.

Many of the most powerful applications of 2p MR spectroscopy are
in systems which are motionally averaged and it is the dynamic process
itself which is interesting.117 In this chapter, only systems which
are static or where the motion is rapid will appear and the results of

Appendix B will generally be adequate for an interpretation of the
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Figure 5.5.
lauric acid (CD3(CD,)1,COOD) acquired with the five-pulse quadrupolar
echo sequence, as a function of the polarization period between scans.
a). 200 ms/shot, 6454 shots.
b).
c).
d).

1 s/shot, 4324 shots.
15 s/shot, 1146 shots.
1 m/shot, 444 shots.

High field 2p powder pattern spectra of perdeuterated

17442
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experimental results which follow.
In Section III.C the zero field free induction decay for an
isolated spin-1 nucleus evolving under HQ was shown to be (in slightly

different form)

G(tl) = %-[cos(ZnAtl) + cos(3—n)At1 + cos(3+4n)At (5.1)

1!

where for I =1, A = e2qQ/4ﬁ. Each isolated deuteron contributes three
lines of equal intensity to the zero field spectrum. The principle

axis of the quadrupolar tensor eQ = V,, often lies along the bond axis

z
and the electron cloud distribution in C-D bonds is nearly
cylindrically symmetric