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FOURIER TRANSFORM ZERO FIELD NMR AND NQR 

David Bruce Zax 

Abstract 

The characterization of the structural and chemical properties of 

matter, particularly in disordered condensed phases, is a difficult 

process. Few analytical methods work effectively on polycrystalline or 

amorphous solids. In many systems the chemical shifts measured by 

traditional high resolution solid state NMR methods are insufficiently 

sensitive or the information contained in the dipole-dipole couplings 

is "more important. In these cases Fourier transform zero field 

magnetic resonance may make an important contribution. Zero field NMR 

and NQR is the subject of this thesis. 

Chapter I presents the quantum mechanical background and 

notational formalism for what follows. Chapter II gives a brief review 

of high resolution magnetic resonance methods, with particular emphasis 

on techniques applicable to dipole-dipole and quadrupolar couplings. 

Level-crossings between spin-l/2 and quadrupolar spins during 

demagnetization transfer polarization from to low 1 nuclei. This is 

the basis of very high sensitivity zero field NQR measurements by field 

cycling. 

Chapter III provides a formal presentation of the high resolution 

Fourier transform zero field NMR method. Theoretical signal functions 

are calculated for cornmon spin systems, and examples of typical spectra 

are presented. Chapters IV and V review the experimental progress in 

zero field NMR of dipole-dipole coupled spin-l/2 nuclei and for 
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quadrupolar spin systems. 

Variations of the simple experiment described in earlier chapters 

which use pulsed dc fields are presented in Chapter VI. Some 

advantages of these variant experiments are suggested. Theoretical 

predictions for the experimental spectra are given and compared to 

experimental results. High sensitivity experiments closely related to 

traditional level-crossing spectroscopy are discussed. Some two­

dimensional zero field correlation experiments are proposed. 

Chapter VII contains a description of the application of group 

theory to problems of coupled spins in the a~sence of applied fields. 

Normal point group theory and time reversal are both important. 

Experimental details and a description of a zero field NMR 

spectrometer appear in Chapter VIII. Design criteria are presented, 

along with suggestions as to some variations and technological 

improvements. 

-----_ .. __ ._ ... _J 



i 

ACKNOWLEDGMENTS 

It has been my pleasure these last five years at Berkeley to be 

associated with the research group of Professor Alex Pines. Alex's 

group has been an exciting place to learn about modern magnetic 

resonance. His enthusiasm infects the group so that excellence and 

originality in research work is expected and, in fact, demanded. No 

project is allowed to rest for long repeating the routine. Alex has 

been not only an inspirational research director but has grown into a 

friend as well. 

Part of the excitement of working with his group is the 

intellectual quality of the entire group. In these five years the 

group has shifted from being a small, sharply focused ensemble into a 

much larger melange with many largely independent projects and too many 

individuals to acknowledge individually. The intellectual debt lowe 

to many of those both more senior to me and to my contemporaries is at 

least partially acknowledged in the author's lists on many papers. 

Amongst those that have appeared as coauthors one is particularly 

deserving of individual mention. Tony Bielecki has worked closely with 

me for nearly four years and I only hope I do not flatter myself in 

thinking that working together as a team we have accomplished far more 

than twice what either of us might have produced individually. His 

technical expertise has been central to all our experimental 

accomplishments. Even more important, his indefatigable good humor, 

scientific sense, and tolerance for my peculiarities have kept our 

scientific endeavors marching forward and our personal relationship 

warm. 



ii 

The debt lowe to many older members of the group is harder to 

repay, as some of those who contributed most I barely knew. The legacy 

they left in the laboratory equipment I have worked would have been 

hard to reproduce, and to those who built the Pines' laboratory I can 

only issue a generalized thanks. Of those who overlapped with me in 

the group, Dr. Joel Garbow deserves credit for teaching much of what I 

have learned about spectrometers and, more generally, the field of NMR. 

He was always willing to sacrifice a few minutes to track down some 

baffling inconsistency or ponder some scientific point, no matter how 

trivial. He and his wife Debbie were also good friends. 

Other students and postdocs associated with Alex's group in the 

past few years have contributed many happy hours arguing the fine 

points of my and their projects. It is the sort of vibrant 

intellectual environment I doubt could be recreated in many other 

locations. 

Within the Department of Chemistry, the support staff is central 

to the excellence of the research efforts. The advice and instruction 

of Don Wilkinson of the Electronics Shop, and more recently, Dr. Yau­

Man Chan, will be sorely missed. 

Finally, I would like to acknowledge my friends, and particularly 

Andrea Thompson, who have never given up reminding me that a life 

exists beyond the cement walls of the sub-basement of Hildebrand Hall. 



iii 

TABLE OF CONTENTS 

I. Preliminaries ................................................... 1 

A. Microscopic and Quantum Mechanical Formalities .............. 1 

1. The Nuclear Spin ........................................ l 

2. Rotations and Tensors ................................... 5 

3. Hamiltonians: Tensor Notation .......................... 10 

B. Nuclear Spin Hamiltonians .................................. 12 

1. Laboratory Frame Interactions ................. '" ...... 12 

a. Zeeman Hamiltonian .... : ............................ 12 

b. The Rf Hamiltonian: Rotations in Spin Space ........ 13 

2. Local or Molecular Frame Interactions ......... , ........ 15 

a. Chemical Shift ..................................... 16 

b. Dipole-Dipole Couplings ............................ 18 

c. Quadrupole Couplings ............................... 21 

d. J Couplings ........................................ 23 

C. Macroscopic Considerations ................................. 24 

1. The Density Operator ................................... 24 

a. Time Evolution ..................................... 25 

b. The Density Operator at Equilibrium ................ 26 

2. Magnetization, Polarization, and Other Order ........... 27 

3. Spin Temperature ....................................... 29 

4. Adiabatic Demagnetization: Strongly Coupled Spins ...... 29 

II. High Resolution High and Zero Field Nuclear Resonance .......... 32 

A. High Field NMR Methods ..................................... 34 

1. Coherent Averaging ..................................... 34 

2. Deconvolution Methods ....................... ;-.;;;-.; .... 35 



iv 

B. Zero and Low Field NQR Methods ............................. 37 

1. Local Fields> 1 MHz and Isotopic Abundance High ....... 38 

2. Local Fields ~ 1 MHz or Isotopic Abundance Low ......... 38 

a. Adiabatic Demagnetization .......................... 40 

1 Isolated Spins ................................. 40 

2 Coupled Spins .................................. 50 

3 Deuterium-Hydrogen Level Crossings ............. 58 

b. Sudden Demagnetization ............................. 61 

C. Swnmary .................................................... 62 

III. Fourier Transform Zero Field NMR and NQR ....................... 65 

A. A Practical Two-Step Field Cycle ........................... 65 

B. A Formal Calculation of the Signal ......................... 68 

C. Coupled Spin-l/2 Systems ................................... 75 

1. Two Identical Dipole-Dipole Coupled Nuclei ............. 75 

2. Two Distinguishable Dipole-Dipole Coupled Nuclei ....... 78 

3. Heteronuclear J Spectroscopy in Liquids ................ 89 

D. Quadrupolar Spin Systems ................................... 93 

1. Integer Spins: I = 1 ................................... 94 

a. The Signal Function ................................ 94 

b. Explicit Calculation of p ........•.•...••.•..•..•.. 95 

2. Half-Integer Spins: I = 3/2, 5/2 ....................... 98 

IV. Experimental Results: Dipolar Coupled Systems ................. 104 

A. Two and Three Coupled Spin-l/2 Nuclei ..................... 105 

1. Contributions to the Linewidth ........................ 106 

a. Residual Fields ................................... 106 

b. Other Dipole-Dipole Couplings ..................... 106 

c. Dilution Studies .................................. 111 



v 

d. Double Frequency Lines and More Water ............. 114 

2. Beyond Water: the Methyl Group ........................ 119 

B. Heteronuclear Spin Systems ................................ 127 

C. More Complicated Spin Systems ............................. 133 

1. Structure Determination: N = 4 ........................ 137 

2. Comparison of Zero and High Field NMR in Model Systems148 

3. Zero Field NMR for N ~ Avogadro's Number .............. 152 

I 
Experimental Results: Quadrupo1ar Spin Systems ................ 162 

A. Comparison of Chemical Shifts and Quadrupo1ar Coup1ings ... 162 

V. 

B. High Field NMR of Deuterium ... : ........................... 167 

C. Zero Field NQR of Deuterium ............................... 173 

VI. Variant Experiments .................. : ........................ 196 

A. Other Initial Conditions .................................. 196 

1. Initial Conditions Prepared in High Field ............. 196 

2. Demagnetization to Zero Field ......................... 202 

B. Zero Field NMR with Pulsed dc Fields ...................... 206 

1. Transformation and Evolution of Quadrupolar Order ..... 2l2 

2. Transformation and Evolution of Eta Order ............. 214 

3. Calculation of Signals ................................ 216 

a. Sudden Switching of B ............................. 216 

b. Two-Pulse Experiments ............................. 221 

4. Summary ............................................... 234 

C. Indirect Detection ........................................ 239 

D. Zero Field-Zero Field Correlation Experiments ............. 246 

1. Correlation between Zero Field Lines .................. 247 

2. Cross-Correlation Through Dipole-Dipole Couplings ..... 251 

VII. Considerations of Symmetry .................................... 255 



vi 

A. Formal Aspects ................... ' ......................... 259 

1. Symmetry Operations ................................... 259 

2. Operations in Spin Space .............................. 259 

a. Rotations about a Fixed Axis ...................... 260 

b. Reflections Through a Plane ....................... 262 

c. Inversion ......................................... 263 

d. Improper Rotation Axis ............................ 263 

3. Operations in Time .................................... 263 

B. Examples .................................................. 267 

1. Two Coupled Spin-1/2 Nuclei.. / ........................ 267 

a. Homonuc1ear Pair .................................. 267 

b. Heteronuclear Pair ................................ 268 

2. Four Spin Systems ..................................... 269 

'a. The Square ......................................... 269 

b. The Rectangle ................... : ................. 272 

c. General Four-Spin Systems ......................... 275 

3. Three Spins 1/2 ....................................... 276 

4. Heteronuclear Spins ................. ; ................. 279 

C. Conclusions ............................................... 281 

VIII. Experimental Details .......................................... 282 

A. Zero Field Region ......................................... 282 

1. Timing Considerations ................................. 283 

2. Field Cycling ......................................... 283 

3. Area of Zero Field .................................... 287 

4. Details of the Field Cycle ............................ 288 

S. Zero Field Homogeneity ................................ 291 

B. High Field NMR Spectrometer ............................... 291 



1 

I. Preliminaries 

The work described in this thesis is primarily concerned with the 

extraction of chemical and structural information from disordered solid 

state systems. The technique to be described is nuclear magnetic 

resonance (NMR). In NMR, the nuclear moments which occur naturally in 

a large number of nuclei are used as spies to relay to the 

experimentalist microscopic details about the local environment often 

inaccessible by any other technique. The interactions of nuclei with 

their environment help elucidate chemical and/or structural properties 

of matter and, less directly, dynamical behavior. This information 

appears in its richest form in solid state materials. Yet it is also 

in solids that it is most difficult to reveal. This thesis describes a 

new technique for the extraction of such information with both high 

sensitivity and high resolution and from disordered systems. The 

method to be described is zero field NMR. The goal of this first 

chapter will be to present the required fundamentals. 

A. Microscopic and Quantum Mechanical Formalities 

1. The Nuclear Spin 

Due to considerations of nuclear bonding whose origins remain 

mysterious but much appreciated by chemists, most atoms contain nuclei 

with a degree of freedom known as spin. The spin degree of freedom 

corresponds classically to a dipolar (or higher order) nuclear magnetic 

moment. The energy of an atom or molecule containing a nucleus with a 

magnetic moment depends on the state of the nucleus. Formally the 
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nuclear moment is treated as an angular momentum operator, which I will 

label with the generic symbol I. (Occasionally, when two different 

spins types with significantly different properties simultaneously 

comprise our spin system, the second will be labeled S.) This angular 

momentum satisfies all the traditional properties of angular momenta. 

In units where h=l 

2 
I 1~(I,m» I(I+1)1~(I,m» (1.1) 

and 

I 1~(I,m» z ml~(I,m», m=-I,-I+1, ... ,I (1.2) 

I z is conventionally chosen to be the diagonal component of the angular 

momentum and m is the projection of the angular momentum along the 

(arbitrarily chosen) z-axis. I may be either integral or half-integral 

and each nuclear spin I has 21+1 magnetic sublevels. For 1=1/2 the 

eigenstates are often represented by the short hand notation, 

I~> = I~(~, (1.3) 

There are two additional components of the angular momentum which are 

off-diagonal in the conventional basis set. In terms of raising and 

lowering operators, 

1+ 1~(I,m» [(I-m)(I+m+1)]1/21~(I,m+1» (1.4) 

and 

I 1~(I,m» [(I+m)(I-m+1)]1/21~(I,m-1» (1.5) 

or, as angular momenta 



and 

I x 

I 
Y 

1 
"2 (1+ + I ) 

1 
2i (1+ - I ) 

3 

(1. 6) 

(1.7) 

For spin-1/2 particles, these operators are proportional to the Pauli 

spin matrices, and 

where 

2 
s. 

J 
E 

for E the identity operator. The Pauli matrices Sj satisfy 

if j ¢ k 

if j k 

(1. 8) 

(1. 9) 

(1.10) 

The different components of the angular momentum operators satisfy the 

commutation relations 

[1. , 1k ] 
JP q 1. 1k - 1k 1. JP q q JP 

(1.11) 

where j,k, and 1 are any cyclic permutation of x, y, and z, and p and q 

identify a specific nucleus. 

We will ignore the possibility that excited nuclear states might 

make any contribution to observab1es in whatever follows, as the energy 

differences between the ground and excited states is exceedingly large 

and requires exotic instrumentation. 1 

The magnetic moment of the nucleus interacts with any and all 

surrounding electromagnetic fields. The strength of that interaction 
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is governed by two parameters. The first is some physical constant 

characteristic of the structure of all similar nuclei (and presumably 

measured many years ago when magnetic resonance experiments were 

carried out in physics laboratories with the goal of measuring these 

nuclear properties). The second and more important parameter is ,some 

local environmental variables which differ from molecule to molecule 

and site-to-site and are characteristic of structural or chemical 

properties at those sites. The measurement and interpretation of these 

Table 1.1: Nuclear Spin Hamiltonians 

Interaction Form of the Hamiltonian 

H 1'I·u·B cs 0 
Chemical Shift 

Dipole-Dipole HD - I
j

.i5.I
k where j;><£k and 

-3 
(oa{3 3ea e{3) Da{3 1'j1'kn r jk - and 

a,{3=x, y, z and e is a direction cosine 
a 

J coupling HJ Ij.J.lk 
where j;><£k 

HQ 
eQ I·V·I where 

4I(2I-1)fl 
Quadrupole 

V {Va{3} ; a,{3 x, y, z 

latter parameters is the goal of this work and all modern NMR. These 

chemically sensitive terms include the chemical shift, the direct 

dipole-dipole coupling, the quadrupo1ar coupling, and the J coupling. 

The Hamiltonians corresponding to these interactions are summarized in 

Table 1.1. 2 More useful expanded forms will be derived below. To 

arrive at these other forms will require a brief development of tensor 

notation. 



5 

2. Rotations and Tensors 

The Hamiltonians of Table 1.1 are expressed as products of spin 

(1) and spatial (e.g. D and V) terms. Each is a tensor. It will prove 

necessary to delve rather deeply and often into the problem of the 

operations of angular momenta and their higher order relatives, with 

specific reference to their transformation properties under rotations. 

Traditionally rotations between axis systems are parameterized in terms 

of the Euler angles (a,fi,1) and a rotation operator R(a,fi,1).3,4 These 

three angles relate a three-dimensional coordinate system to any other 

via three rotations: a rotation of 1 radians about the original z-axis, 

fi radians about the new y-axis, and a radians about the newest z-axis, 

with a and 1 ~ 2~ and fi ~~. It is awkward to work with this set of 

rotations about a set of continually varying axes, and it is customary 

to derive the form of the rotation operator referenced to a fixed set 

of axes. In this fixed set of axes, the rotation operator R can be 

formally written 

R(a,fi,1) = R(O,O,1)R(O,fi,O)R(a,O,O) (1.12) 

that is, a rotation about the fixed z axis by a radians, the fixed y 

axis by fi, and the fixed z axis by 1. As an example, consider the form 

of a general operator ~ expressed in the basis set of the coordinate 

system (x,y,z) when viewed instead from a new reference frame 

(x' ,y' ,z'). The operator has not changed, and no observables 

associated with the operator ~ can be affected by simply reexpressing 

it in a new basis set. Only the description of that operator differs. 

This is made more formal if we note that, for any operator P 
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E (l.13) 

where E is the identity operator. By definition, multiplication by the 

identity operator leaves all operators unchanged; that is, 

<x,y,zlelx,y,z> I -1 -1 I <x,y,z P pep P x,y,z> 

<x' ,y' ,z' Ipep-llx' ,y' ,z'> (l.14) 

and 

plx,y,z> Ix' ,y' ,z'> (l.15) 

For P = R(a,p,~) this establishes a simple relationship between the 

form of the operator in the old frame of reference and the new. For 

vectors in three space, the transformation R can be derived from 

geometric considerations. Its most general form is 

R(a,p,~) = 
[ 

cos~ 
-Si~~ 

sin~ 0 1 [ cos~ 0 
o 1 

cosp 
o 

sinp 

o 
1 
o 

sina 
cosa 

o 
(l. 16) 

This sort of transformation functions merely as a bookkeeping operation 

and can have no fundamental effect on any observables. It may, 

however, serve as a notational aid by taking observables from one 

reference frame to a second. Presumably, the interesting behavior of 

these observables is more succinctly expressed or observed in the new 

reference frame. 

The description of rotations on operators which are not readily 

expressed as vectors in three-space is more difficult, and is the 

motivation for the development of techniques for the study of the 

algebras of angular momenta. 5 Angular momentum and higher order 

spherical tensor operators serve as a convenient basis set for the 
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description of many problems in NMR. The general form of the spherical 

tensors is presented here and provides the groundwork for subsequent 

chapters. We will take as fundamental Racah's definition of the 

spherical tensors;6 that is, an operator Tk is a spherical tensor q 

operator of rank k and order q if 

and 

[10 , Tk 
q 

where 

I±l = 

and 

k 
~. 

q 

±(2)-1/2 (I 
x 

I 
z 

± iI ) 
y 

(1.17) 

(1.18) 

(1.19) 

(1.20) 

The commutation relations can be used to derive the transformation 

properties of the spherical tensors (and/or angular momenta) under 

rotations. The angular momentum operators are the generators of finite 

rotations. Following Edmonds,3 

= exp(i~I )exp(ipI )exp(iaI ) 
z y z 

(1.21) 

Writing down an expanded form for the exponential operators of Equation 

(1.21): 

exp(iOI.) 
J 

(1.22) 

Because the nuclear spin basis vectors are chosen as eigenstates of I z 
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rotations about the z-axis are particularly simply expressed and 

+ .. ·)I~(I,m> 

exp(iOm)I~(I,m» (1.23) 

Rotations about the x- and y-axes are more difficult to derive from 

first principles. An explicit expression will be derived using the 

Pauli spin matrices and will therefore be a proof only for the case of 

a spin-l/2 nucleus. All higher dimensional systems follow by induction 

from this proof. 

Consider a rotation through an angle 0 = 2~ about the j axis. 

Using Equation (1.8) to reexpress the rotation in terms of the Pauli 

matrices; 

R exp(iBI.) 
J 

exp(i~s.) 
J 

cos~ + i s.sin~ 
J 

For Sj ~ sk (otherwise, the rotation commutes with the operator), 

(1.24) 

(1.25) 

Explicit matrix representations of the rotation operators are given by 



the Wigner rotation matrices Dlm,(a,p,1). Symmetry properties relate 

many of the elements of the D matrices,7 and will often be exploited. 

Summarizing, for any operator ~ 

9 

(1.26) 

and 

R exp(im1) d~,(P) exp(ima) (1.27) 

where the d(P) matrices are the matrix representations of the operator 

which for j = y guarantee that Equation (1.27) holds. If ~ is a 

spherical tensor, a special relationship holds: 

q 
~ 

p=-q 
(1.28) 

that is, tensors of rank k transform under rotations only into other 

tensors of the same rank. Generally, analytic forms for the 

transformation properties of the spherical tensors will only be 

required for k = 1 or 2 (as k = 0 is trivial and all others a bit too 

involved.) Zeroth rank tensors are invariant to all rotations; first 

rank tensors transform as vectors, and second rank tensors have the 

rotational properties of the d electronic orbitals. The important 

transformation properties of the spherical tensors are encapsulated in 

Equation (1.28). 

As the spherical tensors are traditionally defined they exhibit 

particularly simple transformation properties with respect to rotations 

about the z-axis. More frequently in NMR applications rotations about 

the x-y plane are required. Table 1.2 gives the transformations of a 
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Table 1.2: Transformations of Operators 

A. Definitions of Second Rank Tensors Uk: 

U 5 6- 1/ 2 [312_ 1(1+1)] o z 

U 5 
1+ 

2- 1/2 (I I + I I ) 
Y z z y 

U 5 2- 1/2 (I I + I I ) 
1- x z z x 

U = 2- 1/2 (I I + I I ) 
2- x y y x 

B. Transformation under Rotations R.(8): 
J 

Uo 

U1+ 

R (8) 
x 

U
1

_ R (-8) 
x 

U2+ 

U
2

_ 

Uo 

U1+ 

R (8) 
Y 

U
1

_ R (-8) 
Y 

U2+ 

U
2

_ 

Uo 

U1+ 

R (8) z 
U

1
_ 

U2+ 

U
2

_ 

-II{~in28 U2+- sin8cos8 U1+} + ~(3cos28-1)Uo 

- sin8cos8 U2+ + cosU U1+ - II sin8cos8 Uo 

sin8 U
2

_+ cos8 U
1

_ 

1(1 2D) U . D D U II. 2D U '2 +cos u 2+ + Sl.nuCOSu 1+ - '2 Sl.n u 0 

cos8 U
2

_- sin8 U
1

_ 

II {~in28 U2+- sin8cos8 U1 _} + ~(3cOS28-1)UO 

- sin8 U2_+ cos8 U1+ 

- sin8cos8 U2++ cos28 U1 _ + II sin8cos8 Uo 

~(1+coS28) U2+ + sin8cos8 U1 _ + II sin
2

8 Uo 

cos8 U2_ + sin8 U1+ 

Uo 

cos8 U1+ + sin8 U
1

_ 

R (-8) - sin8 U1+ + cos8 U
1

_ 
z 

cos28 U -2+ sin28 U
2

_ 

sin28 U2++ cos28 U
2

_ 
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set of linear combinations of the second rank spherical tensors which 

will frequently prove useful in the analysis of NMR experiments and in 

the zero field NMR and NQR experiments which follow. 

3. Hamiltonians: Tensor Notation 

The fundamental problem of NMR is the solution of the time-

dependent Schroedinger equation. It is therefore necessary to find a 

convenient representation of the nuclear spin Hamiltonians which will 

simplify the task of the calculation and analysis of spectra. This 

presents a paradox. The Hamiltonian is a scalar operator and is 

presumably unaffected by rotations and/or translations in space. Yet 

it is a continuing theme in modern NMR experiments that an appreciation 

of the properties of tensors under rotations is essential to 

understanding modern NMR experiments. 

The solution to this apparent paradox is that the nuclear spin 

Hamiltonians of Table 1.1 are the products of tensorial interactions. 

Just as the dot product takes two vectors and produces a number 

operator, the generalized dot product of two kth rank tensors is 

H (T·C) 
k 
~ 

q=-k 
(1. 29) 

Hamiltonians can always be expressed as just such a contraction of two 

tensor operators. One (C) operates on the spatial degrees of freedom 

and the other (T) on the spin degrees (which, however, are expressed in 

a basis set necessarily referenced to the laboratory frame fixed in 

space). While at intermediate stages of the calculation, either spin 

or spatial variables may take "center stage" separately or sequen-

tially, actual calculation of Hamiltonians requires that ultimately the 

contraction of Equation (1.29) is performed. Rotations which operate 
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separately in only one or the other of the reference frames profoundly 

effect the observables. Bulk rotations of the entire system, which 

transform the two sets of spherical tensors identically from one 

reference frame to a second can have no effect on observables. An 

attempt will be made to clearly delineate between those rotations which 

are transformations between coordinates, and which effect only 

bookkeeping, (of which Equation (1.14) is an example) and a rotation of 

either the spin or spatial frames with respect to the other, whereby 

observables of the system are fundamentally altered. 

B. Nuclear Spin Hamiltonians 

The total nuclear spin Hamiltonian consists of a number of 

independent contributions. There are two broad classifications of 

interactions: laboratory frame interactions under the control of the 

experimentalist, and local or molecular frame interactions whose 

measurement is the goal of the experiment. As the laboratory frame 

interactions are the experimentalist's only tools, they will be 

detailed first. 

1. Laboratory Frame Interactions 

a. The Zeeman Hamiltonian 

This Hamiltonian describes the direct coupling of the nuclear spin 

magnetic moment with an externally applied magnetic field. Its form is 

HZ - ~ ~.~ I 
zj BO ~~ I 

zj 
(1.30) 

j J 

where ~j~ is the nuclear moment of the jili spin and is characteristic 

of a particular nucleus and WOj is the Larmor frequency. Magnetogyric 
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ratios of many common nuclei are wO/2~ - 1 kHz/gauss in familiar units, 

or - 10 MHz/Tesla in more proper units. Nnumerical values are almost 

universally assigned not in angular frequency units of radians/sec (w)" 

but in the more common frequency units v = w/2~ where the standard unit 

is hertz. In common laboratory fields of a 1-10 Tesla (10-100 kgauss) 

the Larmor frequencies of most nuclei fall between 10-500 MHz. 

b. The Rf Hamiltonian: Rotations in Spin Space 

Oscillating magnetic fields are the experimentalist's primary tool 

for the manipulation of nuclear spin systems. We will assume that the 

rf field is applied in the plane perpendicular to the static magnetic 

field, and 

wl[exp(iwt) + exp(-iwt)] I~ (1.31) 

where w is the frequency of the applied rf field, wl its strength, and 

I~ cos~ I + sin~ I x y 
(l. 32) 

All subsequent calculations are simplified if the rf Hamiltonian is 

transformed into an equivalent time-independent form. This is known as 

moving to an interaction picture, or entering the rotating frame. All 

other Hamiltonians will need to be modified to consistently fit this 

rotating frame picture of the rf Hamiltonian. Starting from the time-

dependent Schroedinger equation (with energies expressed in angular 

frequency units so as to remove all factors of Planck's constant): 

with 

• oW 
~­ot H W (l.33) 



where Hloc refers to all the local interactions to be described 

immediately below. Substituting 

ue exp(iwI t) 9 
Z 

and 9 represents the eigenstate in the rotating frame. Then the 

Schroedinger equation can be rewritten 

i 5(U9) i (5U 9 + U~) HU9 
5t 5t 5t 

Rearranging, 

59 (U-1H U 'U-l 5U ) 9 is"t ~ S"t 

But 

5U iw I U Tt Z 

and 

59 (U-1H U + wI ) 9 is"t Z 

14 

(1.34) 

(1. 35) 

(1.36) 

(1.37) 

(1. 38) 

(1. 39) 

Using the rotation operators tabulated previously, the rotating frame 

Zeeman Hamiltonian is written 

j 
~ (w - w

O
) 1. 

JZ j 
~ /:;.w L 

JZ 

where the rotated Hamiltonian is indicated by the - and /:;.w is the 

resonance offset. Similarly, in the rotating frame 

wl [1 + exp(2iwt)] I~ 

(1.40) 

(1. 41) 

and the rf Hamiltonian in the rotating frame contains both a static 
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component and a rapidly rotating component. If wO>>W1 then only 

Fl (wO) -l . components of whose time average over many Larmor periods 1S 

nonzero contribute (to first order) to observable features. The 

rapidly rotating component of Equation (1.41) has zero time average and 

can be ignored, and the first order rf Hamiltonian is 

(1.42) 

For each of the H1oc ' these same two steps (entering the rotating frame 

and averaging over the Larmor period) will need to be repeated. If 

w = ~BO (Equation (1.40», then in the rotating frame the Zeeman 

Hamiltonian is zero. This is referred to as the on-resonance condition 

and the rf field is most effective in causing transitions between 

eigenstates. As long as w1 - ~w the rf field is near resonance and can 

interact with the spin system. Generally the on-resonance condition is 

assumed. If the rf Hamiltonian is strong (Hrf » H1oc ) and on 

resonance then the effect of the applied rf field may be we1l-

approximated as a rotation in spin space about the ~ axis in the x-y 

plane. 

2. Local or Molecular Frame Interactions 

Each of the molecular frame Hamiltonians is a second-rank tensor, 

and a principle axis system exists where its matrix representation can 

be given a diagonal form. As these Hamiltonians are not necessarily 

observed in the principle axis system but more generally in the 

laboratory frame of reference and in the rotating frame, each of the 

local Hamiltonians will have representations in their own principal 

axes, in the lab frame, and in the rotating frame. As the rotation 

operators have been defined in this chapter, there exists a rotation R, 
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defined with respect to the fixed laboratory frame of reference, such 

that R(~,p,a) takes operators from the local or molecular frame of 

reference (subscripted M) into the laboratory frame (subscripted L). 

This coordinate transformation is shown in Figure 1.1. R- 1 performs 

the inverse rotation; 

(1.43) 

In the rotating frame at high field the orientation of the x and y axes 

is arbitrary and without loss of generality we can choose ~ = ° and 

R R(O,p,a) = R(O) (1.44) 

If the internal Hamiltonians are observed in high field this 

transformation between the principal axis system and the laboratory 

frame is required in order to explain the observed spectra. Where two 

or more interactions are simultaneously present there will be a 

different R for each interaction. 

a. Chemical Shift 

-The symbol Uj represents the chemical shift tensor of the jth 

nucleus (typically - ppm). The largest component of the Zeeman 

interaction is isotropic and chemically uninformative. The chemical 

shift Uj is a correction to the Zeeman Hamiltonian which arises from 

the shielding of the external magnetic field due to perturbations in 

the electron cloud at a given site. The chemical shift is an 

anisotropic second rank tensor and different for chemically 

distinguishable sites. The size of the anisotropy is comparable to the 

interaction itself. In its principal axis system, 



x 

z 

Frame 

;-----------------~y 

Laboratory Frame 

Figure 1.1. Relationship between the 

laboratory frame of reference (x,y,z) and the 

molecular frame (xM'YM,zM)' The laboratory 

frame is reached from the molecular frame by a 

rotation R(O) about the laboratory-fixed axis 

system. The most general rotation R(O) is 

described by rotations about the z, y, and z 

axes successively. In most NMR applications, 

only the latter two rotations are necessary. 

XBL 855-8884 
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H cs ~ 'Y :ti.BO· q.. I 
j J J 

(1. 45) 

Because its magnitude is proportional to the applied field BO' in zero 

applied field Hcs ~ O. In the rotating, laboratory frame related to 

the principal axis system by the transformation R(O,fi,a) 

H cs 
1 2 

~ 'Y:'fiBOI .[0'. +-20' . (3cos fi 
. J zJ 1.S0 anl.SO 
J 

1 + ~sin2ficos2a)](1.46) 

While most high resolution NMR techniques2 ,8 emphasize the importance 

of measuring the isotropic component of the chemical shift and/or its 

anisotropic components, in the work to be de'scribed below the existence 

of a chemical shift will rarely prove relevant and in most cases it 

will be ignored. 

b. Dipole-Dipole Couplings 

In many spin-l/2 systems and in particular for lH nuclei, the 

dipole-dipole couplings dominate the spectral features in the solid 

state. The classical energy of one magnetic dipole in the field of a 

second is 

H = 
D 

(1. 47) 

Substituting ~i = 'Yi~' the dipole coupling constant (again, in angular 

frequency units) is given by 

(1. 48) 

For many coupled spins, the dipole-dipole Hamiltonian is given as a sum 

over all pairs, and 
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(1.49) 

Henceforth I focus on a single pair. In zero applied field, the two-

spin dipole-dipole Hamiltonian (Equation (1.49» has four eigenstates 

and three distinct energy levels. The eigenstates can be divided into 

the triplet manifold (T+, TO' and T_) and a singlet (S), whose energies 

are 

<T+IHDIT+> - <T_IHDIT_> == -; wD (1. 50) 
<ToIHD1To> - wD <SIHDls> == 0 

The rotating frame form of Equation (1.49) is given by again expanding 

in a laboratory-based reference frame. As HD and HQ are formally 

identical (except that there is no asymmetry parameter q in the static 

dipolar tensor) the same treatment will apply to the quadrupo1ar 

coupling to be treated below, and9 

with 

A 

B 

c 

* D C 

* F == E 

- wD (A + B + C + D + E + F) 

(These forms differ slightly from those found in most standard 

(1.51) 

(1. 52) 
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references10 ,11 because I have defined the transformation between Land 

M frames with what amounts to opposite signs of the Euler angles from 

most authors.) When the dipolar Hamiltonian is observed in the 

presence of a large external magnetic field, it is further necessary to 

enter the rotating frame where the rf Hamiltonian is static and the 

dipole-dipole Hamiltonian observed in high field is 

Iexp(-iwI t)(A+B+C+D+E+F)exp(iwI t)dt z z 

= - w (A + B) 
D 

(1.53) 

Because the A and B terms have an explicit dependence on R the energy 

levels of the truncated dipolar Hamiltonian do as well. In any 

reasonably large field, no higher order correction terms are necessary. 

The truncated Hamiltonian described above may require further 

modification. The B term in Equation (1.53) contains spin operators 

which "flip" spin 1 while spin 2 "flops." These flip-flop terms are 

effective only if the total energy of the system is conserved. If the 

spin system contains spins with two different magnetogric ratios ~I 

and ~S then the spin reference frame is doubly accelerated with respect 

to each of the Larmor frequencies. The B terms of the dipolar 

Hamiltonian are then oscillatory at frequencies comparable to the 

difference in Larmor frequencies. For heteronuc1ear spins (say 13C and 

1H) this large difference in Zeeman energies makes these flip-flop 

terms ineffective; their time average is zero. Even for a single spin 

species (meaning ~I = ~S) the flip-flop terms may be truncated by large 

chemical shift differences12 or quadrupole coupling constants. 11 
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c. Quadrupole Couplings 

For spins I ~ I, the largest of the internal Hamiltonians is most 

often the quadrupolar Hamiltonian. It arises from the electrostatic 

interaction of an asymmetric charge distribution in the nucleus with 

surrounding electric field gradients (created by an asymmetric electron 

cloud distribution). This interaction is present in -70% of all the 

elements in the periodic table. In spperical tensor notation, the form 

of the quadrupolar Hamiltonian is 

- ~ 
j 

e~ 
(1.54) 

which emphasizes that it is characteristic of a single spin label and 

site. The nuclear quadrupole moment, eq, is a fixed nuclear parameter. 

Therefore, the nuclear quadrupole interaction in any particular 

compound is determined entirely by the size and direction of the 

-electronic field gradient, V. Hq is often more chemically sensitive 

than is the chemical shift. Quadrupole coupling constants are quite 

broad-ranged (-10 kHz - 1 GHz) , and we will concentrate in this work on 

systems at the low end of this range. 

In the principle axis system and using the conventional 

definitions 13,14 , 

and 

v zz - eQ 

v - V IT ~ 

V zz 

Iv I IT > 

~ 1 

(1.55) 

(1.56) 

(1.57) 
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v +V +V =0 xx yy zz 
(l. 58) 

Further defining 

41(21-1)fl 
(l. 59) 

the quadrupo1ar Hamiltonian for a single spin takes on the simple 

expanded form 

A
Q

(I) [31 2 - 1(1+1) + q (1 2 - 12)] 
z x y 

(l. 60) 

For a spin 1 nucleus in zero field, there are three eigenstates (x,y, 

and z) with energies 

<xlH Ix> = -(l-q)A 
Q 

For quadrupo1ar nuclei in high field, the same transformations 

(l. 61) 

performed on Hn must be applied to HQ. Rotating into the laboratory 

frame and then into the rotating frame, the truncated first order 

quadrupo1ar Hamiltonian is 

(l. 62) 

If 

(1.63) 

then the first order approximation may suffice. If the high field 

condition of Equation (1.63) does not hold, it may be necessary to go 

higher order in perturbation theory. The second order shift in energy 

due to the quadrupo1ar coupling is15 ,16 
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and 

d. J Couplings 

1 1 . 2f3 - 2 SLn 
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(1.67) 

The final significant interaction is the J coupling (also called 

the exchange coupling, electron mediated dipole coupling, or indirect 

dipole-dipole coupling). Its form is 

(1.68) 

In general, the J couplings are anisotropic with an isotropic 

component. Only the latter is routinely measured. Anisotropic 

components of the J tensor have the same transformation properties as 

the dipolar couplings and are rarely separable from them. The 

isotropic J coupling takes the form 

- ~ J(I .1 k+ 
. k zJ Z 
J~ 

(1.69) 

In zero field, two J coupled spins can be classified in the same sets 

of eigenstates as the dipolar coupled pair (i.e. the triplet and the 

singlet). All the triplet energy levels are degenerate, and 
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(l. 70) 

The isotropic J coupling is independent of orientation even in high 

field. If, however, the jth and kth spin Larmor frequencies differ by 

much more than the size of the J coupling, then the flip-flop terms are 

truncated and in the weak coupling limit 

c. Macroscopic Considerations 

1. The Density Operator 

J I .1 k zJ z (l. 71) 

The density operator is a convenient bookkeeping formalism for 

the description of macroscopic phenomena. 17 It serves as a shorthand 

method for summarizing all available information about macroscopic 

ensembles of quantum systems. Due to the small size of the quantum of 

nuclear spin energy (for example, hwO - 100 MHz corresponds to a 

thermal energy kT 5 rnK) no NMR detector is capable of observing 

individual events of absorption or emission. Only the average behavior 

weighted over a large number of similar systems is detected. The 

density operator serves as a convenient formalism for the calculation 

of the parameters of such macroscopic systems, to the extent that the 

experimentalist has any knowledge or control over such parameters. 

Formally, we can define the matrix representation of p as 

(1.72) 

where the coefficients ca and cb are the probability factors that the 
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system is in eigenstate a or b, and the bar over the product indicates 

ensemble averaging over some large number of otherwise identical 

systems. The diagonal elements Paa are the populations of the energy 

levels. Off-diagonal elements are termed coherences. 

Expectation values for operators are given by 

<e> = Tr [ep] Tr [pel (1.73) 

a. Time Evolution 

More importantly, time evolution under a Hamiltonian operator H 

is readily treated using this formalism. The Von-Neumann equation for 

the evolution of p is 

~ ot = i[p,H] = i(pH - Hp) (1.74) 

For H time-independent, a formal solution to the differential equation 

is 

p(t) = exp(-iHt)p(O)exp(iHt) 

The abth element of p can be evaluated 

exp(-iEat)p(O) exp(i~t) 

Pab(O) exp(i(~ - Ea)t) 

(1.75) 

(1.76) 

If H.is not time-independent, we will assume it can be subdivided into 

n time-independent pieces. Then the Von-Neumann equation can be 

integrated stepwise over each time-interval and in each step Equation 

(1.75) holds. Over n such time intervals, 

is a formal solution and exp(-i~tm) is termed a propagator. Fourier 
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transformation with respect to anyone of the tm results in a one-

dimensional spectrum with all the other time variables as parameters; 

Fourier transformation with respect to two different time variables 

results in a two-dimensional spectrum18 where the one-dimensional 

spectra are the projections onto the wI and w2 axes, and the crosspeaks 

correspond to correlations between the two time-variables. 

b. The Density Operator at Eguilibrium 

For a spin system in equilibrium with the lattice at a finite 

temperature TL, the populations of the system satisfy the Boltzmann 

distribution law, 

where 

~E 

n 
a 

E 
a 

(1.78) 

(1.79) 

At equilibrium p is necessarily time-independent and no coherences may 

exist. The equilibrium density operator is completely characterized by 

the population ratios of Equation (1.78). As nuclear spin energies in 

attainable laboratory fields are considerably smaller than thermal 

energies, the exponentials of energy differences in the distribution 

law can be expanded in a power series and truncated after the first 

term, and 

n 
a 

~ 1- (1.80) 

This is the high field, high temperature approximation. We will never 

be concerned with the density operator as such but instead its close 

relative, the reduced density operator defined by 
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P bE (1.81) 

where E is the unit matrix and b is a normalization constant chosen 

such that 

Tr[p] - 1 (1.82) 

The dynamical evolution of the reduced density operator, PO' and the 

density operator, p, are identical as the identity operator E commutes 

with all unitary operations. All subsequent references to the density 

operator will refer to the reduced density operator and the subscript 

will be dropped. 

The equilibrium density operator in the high temperature limit is 

proportional to its energy. In high field, the Zeeman Hamiltonian is 

much larger than the local Hamiltonians, and in operator form 

p 

with 

... b I 
I z (1.83) 

(1. 84) 

and Z is the partition function. Where only a single spin species is 

involved, then all of the bI's are identical and without loss of 

generality it can be omitted (as it serves only to scale the absolute 

size of all observab1es). When more than a single type of magnetic 

nucleus exists in the sample, it will generally prove important to 

retain at least the ratio between the normalization constants. 

2. Magnetization, Polarization, and Other Order 

The nuclear ordering which appears as a sample in high field 

reaches equilibrium with the lattice gives rise to a longitudinal 
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magnetization, whose value is given by 

M = 15 Tr [pI ] z 
(1.85) 

At equilibrium in high field for all other operators ~ 

(1.86) 

This is a restatement of the Curie law 

M (1.87) 

Equally spaced energy levels are characteriz.ed by equal population 

differences. Transverse magnetization is longitudinal magnetization 

which has been rotated into the x-y plane and therefore tr(Ixp) or 

tr(Iyp) is nonzero. Transverse magnetization is normally the only 

observable. The magnitude of the signal observed in an rf coil is 

given by the Faraday law of induction, and 

E 
d4> 
dt 

(1. 88) 

where 4> is the flux in the coil. Polarization will be used rather 

loosely to describe the more general case of any long-lived steady 

state; i. e. 

[p,H] o (1. 89) 

and at least one operator ~ exists, such that Tr [p~] ~ O. Last, 

coherence refers to any off-diagonal elements of the density operator 

(transverse magnetization or otherwise). 

It will occasionally be necessary to talk about the "size" of an 

operator, e.g. when by some technique order is transferred from one 

spin to a second. Arguments about the "size" of an operator can be 
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made more exact by referring to a function called the norm. If P is a 

matrix, Ilpll represents its norm. The norm is roughly analogous to 

the length of a vector. Formally, the norm is a function such that: 19 

1. Ilpll > 0 unless Pij = 0 for all i,j. Then I Ipl 1= o. 

2. For all constants a, IlaP11 = al Ipil. 

3. Ilpl + P211:s Ilplll + Ilp211. 

A definition of the norm of an (nxn) matrix is 

(1. 90) 

The norm is equivalent to the rms eigenvalue of P. As the eigenvalues 

of p are just its population differences, as the norm decreases there 

is less nuclear spin polarization. 

3. Spin Temperature 

If in high fields a longitudinal magnetization exists in the 

sense of Equation (1.83) yet its magnitude is incommensurate with the 

Curie law for T = TL where TL is the lattice temperature, then we will 

define a spin temperature Ts such that the Curie law holds. For times 

short compared to the spin-lattice relaxation time TL, spin and lattice 

temperatures need not be correlated. 

4. Adiabatic Demagnetization: Strongly Coupled Spins 

The concept of spin temperature is intimately connected to the 

process known as adiabatic demagnetization in either the laboratory 

frame (ADLF)20 or rotating frame (ADRF),2l-23 although I will be 

primarily concerned with the former. If a sample of polarized strongly 

coupled nuclei is removed slowly from the polarizing field, as long as 

~Bf » Hloc the density operator p remains unchanged and 
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(l. 91) 

where BO is the initial value of the field and Bf its final value. If 

the demagnetization is allowed to proceed to Bf = 0, then Equation 

(1.91) cannot hold because it implies that the spin temperature 

vanishes. This difficulty is eliminated if the effects of the dipolar 

fields are included. The spin temperature hypothesis24 ,25 assumes that 

the density operator remains describable by a spin temperature at all 

values of the field and therefore p is always proportional to the 

instantaneous Hamiltonian. If the spin temperature hypothesis holds, 

then the demagnetization can be followed through all values of the 

external field BO' and Equation (1.91) is only an approximation to the 

complete description of Ts ' 

T 
s 

(l. 92) 

for Bloc = Hloc/~. For BO = 0, the final density matrix is (as usual, 

to within a proportionality constant) 

p H loc 

Because Hloc contains only bilinear terms the density operator of 

(l.93) 

Equation (1.93) corresponds not to a magnetization but instead to some 

other form of nuclear spin polarization. If the spin system is not 

strongly coupled then the spin temperature hypothesis is not expected 

to hold and the results of an slow demagnetization are more difficult 

to predict. Some discussion of this more complex and interesting case 

is given in Chapter II and again in Chapter VI. 
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In the presence of extensive networks of dipole-dipole couplings, 

it may become difficult to define what in fact constitutes the system 

being studied. I will define a spin system as being any set of coupled 

spins where the B terms in the dipolar Hamiltonian are effective in 

establishing a common spin temperature. Therefore, I-S (e.g. IH_13C) 

systems in high field will be treated as two independent systems. 

Furthermore, for S a quadrupolar (I ~ 1) nucleus in an ordered phase, 

two S spins with different quadrupole couplings also constitute two 

independent spin systems. In zero field, all spin-l/2 nuclei 

constitute a spin system which may be treated as isolated spins only to 

the extent that some of the dipole-dipole couplings are significantly 

larger than all others. In these systems the spin temperature 

hypothesis is not expected to hold. Quadrupolar spins in environments 

of lower than cubic symmetry are always isolated except perhaps at some 

accidental value of both the externally applied magnetic field and 

orientation of two neighboring spins where spin diffusion is rapid. 
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II. High Resolution High and Zero Field Nuclear Resonance 

One of the greatest of impediments to the use of NMR as a 

technique for the routine analysis of solids is the problem of "powder 

broadening. ,,26 In the solid state all of the largest terms and most 

interesting constituents of the local frame Hamiltonians (chemical 

shift, dipole-dipole coupling, and quadrupole coupling) are 

anisotropic. When observed as a perturbation on the high field Zeeman 

Hamiltonian, their magnitude depends on the precise relationship 

between the orientations of the local principal axes and the externally 

applied field (as described in Section I.B). 

Often only powders or similarly disordered systems are available. 

Then the absorption lineshape f(w) consists of one or more absorption 

lines and essentially a different spectrum for each local system 

orientation present in the sample. The bandwidth of absorption is as 

large as the magnitude of the local Hamiltonians. Where the 

interaction of interest is a single-body interaction (i.e. a chemical 

shift or quadrupolar coupling) powder lineshapes may be sufficiently 

structured so that some information may be extracted. 26 ,27 But where 

the spectrum arises from large numbers of strongly interacting spins 

(~3 coupled spin-1/2 nuclei) resolved structure in high field powder 

patterns is unusual,28-30 and the high field powder spectrum generally 

resembles a broad and featureless band like the spectrum of Figure 2.1. 

Even for the single-body interactions, the presence of overlapping 

lines from chemically or crystallographically inequivalent sites may 

render these spectra uninterpretable. In this chapter, I briefly -

review the most common approaches to high resolution NMR in solids and, 
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Figure 2.1. High field spectrum of 1,2,3,4-

tetrach1oronaptha1ene 

bis(hexach1orocyc1opentadiene) adduct. Like 

most dipolar powder patterns, little structure 

is resolved even though only a small number of 

spins (4) are strongly coupled one to another. 
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in somewhat more detail, to high sensitivity pure NQR. 

A. High Field NMR Methods 

1. Coherent Averaging 

As the presence of high resolution NMR facilities at virtually 

every chemistry department testifies, the routine measurement of 

chemical shifts in solution by NMR is central to the identification and 

characterization of chemical compounds. In analogy to liquid state 

spectroscopy, by far the largest number of high resolution solid state 

NMR studies2 ,8 emphasize the primacy of chemical shifts, due both to 

its chemical sensitivity and its ease of interpretation. Because the 

chemical shift is often no larger than (and generally much smaller 

than) the other local fields, these other terms must be suppressed 

before the solid state chemical shifts can be observed. In liquids, 

nature averages all the anisotropic interactions to zero via rapid, 

isotropic motion. In solids, the experimentalist attempts to mimic the 

process of stochastic averaging used in nature with some form of 

coherent averaging. As such, experimental work has emphasized: 

1. Isolation of individual spins. Resonant rf fields can be 

used to decouple abundant spins (typically lH) from rare (13C, 

l5N, 3lp ) so that the latter might be observed free of the 

heteronuclear couplings. 3l Alternatively, mUltiple pulse 

sequences (WAHUHA,32 MREV-8,33 BR-2434) which decouple the abun­

dant spins from one another allow for observation of spectra 

dominated by only their chemical shifts. 

2. Averaging out of the chemical shielding anisotropy (CSA). As 
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the solid state chemical shift contains an anisotropic component 

(Equation (1.46», chemical shift spectra of powders are broad 

and may be poorly resolved. Chemical shift powder patterns can 

be transformed to narrow line spectra by: 

a) Choosing to work with single crystals; or, more 

generally, by 

b) Magic angle sample spinning (abbreviated MASS, 

occasionally MAS or MAR).35 Slow spinning breaks the CSA 

powder pattern into a finite (preferably small) number of 

sharp lines. 36 Rapid spinning produces liquid-like 

spectra. 

3. Combinations of (1) and (2). 

In polycrystalline or disordered samples what is ideally accomplished 

is the obliteration of all anisotropic components of the local 

Hamiltonians. The traceless interactions (quadrupolar, dipolar, and 

heteronuclear J couplings) are averaged to zero and become irrelevant 

while the isotropic terms (homonuclear J couplings or isotropic 

chemical shifts) survive and are measured. Rarely, mUltiple-pulse NMR 

is used to isolate small numbers of interacting spins (typically an InS 

system). In favorable cases dipole-dipole couplings can be extracted 

from the resulting powder spectra37 - 39 . Combinations of MAS and 

mUltiple pulse techniques result in high-resolution two-dimensional 

chemical shift-dipole-dipole correlation spectra. 40 

High resolution NMR in solids is reviewed in significantly 

greater detail in texts devoted to the subject. 2 ,8 

2. Deconvolution Methods 

As the quadrupolar coupling constant A(I) often is large neither 
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the high field nor strong rf assumptions need hold. Because to first 

order the \-1/2> ~ \1/2> transition is unshifted by the quadrupo1ar 

Hamiltonian, the spectrum observed in NMR experiments on half-integral 

quadrupo1ar nuclei in asymmetric environments may be due exclusively to 

coherence between these two energy levels. Residual spectral 

broadening is often dominated by the second order quadrupolar frequency 

shift (Equation (1.64)). Correction terms from higher-order 

perturbation theory depend on angular factors which differ from the 

P2(cosO) dependence of either the first order shifts or the chemical 

shift anisotropy, and there is no laboratory axis about which rapid 

spinning simultaneously eliminates both the second-order quadrupo1ar 

broadening and the CSA. Even with MASS, all that is observed is an 

averaged powder pattern which results from a convolution of the 

partially averaged second order quadrupolar and chemical shift 

anisotropy powder patterns. 4l 

Even where only a portion of the quadrupolar spectrum can be 

observed it is possible to accurately measure quadrupolar couplings in 

half-integer spin systems using two-dimensional NMR techniques. The 

central transition spectrum can be observed as a function of the flip 

angle 0 = wlTp' where Tp is the length of the applied rf pulse. 

Fourier transformation with respect to the rate of nutation of the 

observable in the rf field results in characteristic patterns which are 

matched to the fundamental parameters, A(I) and ~.42 Where many such 

patterns overlap, the analysis becomes more difficult. 

In the important case of the spin-1 nucleus (14N or 2D) a third 

possibility exists. Bloom and coworkers use an algorithmic method they 

call "de-Paking" to extract quadrupolar tensors from experimentally 
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observed high field powder patterns. 43 If a specific form for the 

powder lineshape distribution function is assumed, high field spectra 

can be processed so as to separate out the quadrupolar couplings (which 

serve as a scaling constant determining the overall spectral width) 

from the assumed lineshape function. If the assumed lineshape 

(generally, ~=O) is a good approximation to the real form the 

deconvolution results in a sharp line for each distinct quadrupolar 

coupling constant in the sample. 44 ,45 Where the actual lineshape 

function differs from the assumed form, the de-Paked spectra are 

distorted. 

De-Paking is most successfully applied to 2D NMR, where the 

quadrupolar tensor is often axially symmetric and the quadrupole moment 

not so large as to make the spectroscopy prohibitively difficult. This 

is not the case for 14N. As its quadrupole moment is large and its 

magnetogyric ratio is small, solid-state 14N NMR spectra are rarely 

observed. 46 Because high quality high field 14N spectra are so 

difficult to measure, neither de-Paking nor any other high field 

technique is generally useable. 

B. Zero and Low Field NQR Methods 

The motivation for zero- and low-field solid state magnetic 

resonance experiments is clear; in zero field, the local frame 

Hamiltonians are observed directly and at their untruncated values. 

The high field powder methods described above achieve high resolution 

by averaging away the anisotropic terms in the Hamiltonian. Zero field 

methods aim instead to render the anisotropy irrelevant by removing the 



laboratory-based reference axis. 

Experiments in zero field NMR date from the earliest years of 

magnetic resonance. 47 Both theoretical and experimental work on the 

behavior of strongly coupled spin systems in low fields (Hz - Hloc)' 

particularly in connection to the spin temperature hypothesis, is 

extensive. ll ,24,25 Nonetheless, zero field NQR experiments are far 

more common. 14 For pure NQR, there are two experimentally very 

different cases which need be treated separately: 

1. Local Fields> 1 MHz and Isotopic Abundance High 
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At high frequencies and nuclear densities, direct observation of 

the pure NQR spectrum is possible using straightforward techniques. 

For 35cl , the zero field resonance frequency is often -30 MHz, and as 

this isotope appears at relatively high natural abundance (-75%) the 

expected signal amplitudes are comparable to many high field NMR 

experiments done at similar frequencies. In analogy to NMR experiments 

rf pulses applied at resonance to an NQR line result in a free 

induction signal whose transform is the spectrum of that transition48 

or a continuous wave (CW) sweep may reveal the spectrum more directly. 

Experimental complications arise because the NQR lines may appear at 

widely separated frequencies; or, for spin-3/2 nuclei, a small Zeeman 

field is required to lift some degeneracies and provide complete 

information about the quadrupolar tensor. These techniques are well­

known and relatively unrelated to the work described in the rest of 

this thesis. Standard reference works provide a deeper treatment. 13 ,14 

2. Local Fields ~ 1 MHz or Isotopic Abundance Low 

Where the local fields are small and/or the interesting magnetic 

nuclei appear at low density, direct detection of pure NQR is difficult 
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due to the low frequencies and/or small numb~rs of nuclei which 

contribute to the signal. In most direct detection schemes the signal 

available for detection is _O(w2 ). In extraordinary circumstances (low 

T, high density of spins, and/or large sample volumes)49 or with non­

Faraday law SQUID detectors,SO zero field signals can be detected at 

these low frequenci~s but such opportune circumstances are rare. Often 

the low sensitivity of pure NQR necessitates more elaborate experiments 

with higher sensitivity. 

Most high-sensitivity methods use field cycling techniques of the 

sort introduced by Ramsey and PoundSl to probe the zero field 

frequencies indirectly. Preparation of polarization and observation of 

the signal take place in as large an applied field as is available so 

as to maximize the detected signal. In between these two phases of the 

experiment, the spin system is brought to low or zero field and its 

behavior monitored as a function of the evolution in these low fields. 

Because nuclear spin-lattice relaxation times (Tl ) in solids may be 

rather long (anywhere from 100 ms to 100 hours depending on the 

temperature, nuclear spin species, and the specific compound) the field 

cycle need not be executed particularly rapidly. Unless otherwise 

specified, the nuclear spin Tl's will be assumed much longer than any 

other time interval in the experimental scheme (an assumption which may 

often imply lowered temperatures and inconveniently long polarization 

periods!) and will not be a limiting factor in performing the 

experiments. 

The field cycling and level-crossing experiments of Ramsey and 

Pound, Andersen,S2 Redfield,S3 Hahn,S4 and othersSS - S8 are closely 

related to the Fourier transform zero field experimentsS9 -63 which are 
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the main subject of this thesis, and will be described in some detail. 

Their high sensitivity is inextricably linked to the behavior of spin 

systems under demagnetization. In the presence of large quadrupolar 

splittings, quadrupolar nuclei are not strongly-coupled to one another 

and the demagnetization is not characterized by a spin temperature. 

Therefore, the rest of this chapter will be devoted to some predictions 

about the form of a system of spins after demagnetization from a large 

applied field. 

a. Adiabatic Demagnetization 

1 Isolated Spins 

The simplest case that can be treated is that of an isolated spin 

(for concreteness, S = 1) initially polarized in a large external 

field, BO' For simplicity, HZ in the polarizing field is assumed much 

larger than HQ. Then the initial density operator pS corresponds to a 

magnetization proportional to Sz (Equation (1.83». The applied field 

is slowly reduced from its initial value BO to zero. At the end of the 

demagnetization p has some new form which we wish to make explicit. 

In principle, the time development of p can be solved numerically 

by direct integration of the Von-Neumann time development Equation 

(1.73) through all values of the external field and times. This is, 

however, a tedious operation which results in little physical insight. 

In the limiting case of an adiabatic field sweep a more appealing, 

approximate presentation is possible. 64 

In an adiabatic process and where the Hamiltonian contains no 

degenerate eigenstates for any value of the time-dependent parameter, 

the populations which characterize the final density operator are those 

which characterize the initial density operator. Whatever populations 
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are prepared in high field are taken over smoothly into the zero field 

eigenstates which correlate to the high field eigenstates. The 

problem, then, is reduced to ascertaining the correlations between high 

and zero field eigenstates with particular attention to values of the 

field where eigenstates may become degenerate. At most values of the 

field, the correlations are obvious. Certainly as long as HZ » HQ, 

the eigenstates are always approximately equal to the eigenstates of 

the high field Hamiltonian HZ' Similarly, at low values of the applied 

field (where HZ « HQ) the true eigenstates are nearly the eigenstates 

of the zero field Hamiltonian HQ. Only for values of the external 

field where HZ - HQ and where eigenstates of the full Hamiltonian 

become degenerate or nearly degenerate are the correlations between 

eigenstates problematic. 

This situation is shown in Figure 2.2. The exact problem is to 

identify the correlations between eigenstates before and after a level­

crossing of the sort illustrated in the figure. Near the level 

crossing field two possibilities exist: first, that the eigenstates 

follow the "trajectories" described by the solid lines in the boxed 

region. For some value of the external field the energies of the two 

eigenstates go through an "accidental degeneracy" where the eigenstates 

are degenerate. At any arbitrarily small distance on either side of 

the crossing the eigenstates are well-defined and correlations can be 

established. But within the framework of the adiabatic approximation, 

no conclusions can be drawn about the transfer of populations. For an 

energy splitting rigorously equal to zero, no finite rate of 

demagnetization can satisfy the conditions of the adiabatic 

approximation. If level crossings are frequent, then only a very 
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Figure 2.2. Level crossing region. As some external parameter 

(e.g. the applied magnetic field) is varied, the energies of 

eigenstates \1'> and \2'> approach one another. In the level 

crossing region (boxed area) the eigenstates may either cross 

(dotted lines) or avoid one another (solid lines). 
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different approach will afford any insight into the nature of the 

demagnetized operator p. 
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The second possibility, of course, is that there is no level 

crossing. This case is shown in the correlation trajectory described 

by the dotted lines in Figure 2.2 and corresponds to an anti-level 

crossing or an avoided crossing. In an avoided crossing and within the 

framework of the adiabatic approximation, the populations are 

maintained in the same energy-ordered sequence before and after the 

avoided crossing. If there are only avoided crossings, then the 

demagnetized operator p is simple to predict. All populations are 

conserved in precisely the same energy level ordering scheme in high 

and low fields. 

Yet again the question appears merely to have been reformulated, 

and in a form that appears no more tractable. Now the task is to 

identify whether allowed or avoided crossings are more likely, and 

whether the level-crossing behavior depends on the details of the spin 

system or not. The solution is surprisingly simple. Pairs of 

eigenstates which far from the level crossing region are uncoupled by 

off-diagonal matrix elements may cross. As no coupling term exists, 

two such energy levels cannot know that there is any crossing to be 

avoided. If, however, the Hamiltonian contains coupling terms which 

are off-diagonal and make no first order contribution to the energies 

far from the level crossing region all crossings are avoided. As the 

difference in energies of the two eigenstates becomes arbitrarily close 

to zero, what was formerly merely a perturbation can no longer be 

treated by perturbation theory, and the effect of the "perturbation" is 

to cause the eigenstates of the system to repel one another. 
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This difference will be made explicit using the specific example 

of a spin-l nucleus. (Explicit expressions for the eigenstates and 

energies of spin-l and spin-3/2 nuclei as a function of field are 

available65 but will not be used because they provide little 

qualitative insight.) The full Hamiltonian consists of a term 

proportional to the Zeeman frequency in the applied field and a 

quadrupolar term, 

H = H + 
Q 

(2.1) 

The Zeeman Hamiltonian is generally represen~ed in the laboratory frame 

of reference as described in Section I.B. As the high field 

approximation need not hold (because the applied field takes on all 

values and the crossing field occurs where HZ - HQ)' it is preferable 

to represent both HQ and HZ in a single consistently defined frame and 

in practice I will use the molecular frame, where the total Hamiltonian 

is 

H (2.2) 

The aj are proportional both to the direction cosines and sines derived 

from R(O) which relate the molecular axis system to the laboratory 

direction along which the external field is applied, and to the 

strength of the applied field. Only the latter changes during the 

demagnetizations. Therefore the eigenstates of H depend both on the 

strength and direction of the applied field. In either of the two 

extreme limits (HZ»HQ or HZ = 0) these eigenstates are readily 

identified as either the high field <II'>, 12'>, and 13'» or zero 

field <II>, 12>, and 13» eigenstates, numbered in order of descending 

energies. At intermediate values of the field, the eigenstates will be 



represented as Ip>, Iq>, and Ir> which correspond in the zero field 

limit to 11>, 12>, and 13>. 

Table 2.1 

A. Eigenstates and Eigenvalues of Spin-l 

12> = Ix> = -i (2)-1/2 [1+1> - 1-1>]; 

11> = Iy> = (2)-1/2 [1+1> + 1-1>]; 

13> = Iz>= 

in Zero Field: 

<2IHQI2> = -A(l-~) 

<lIHQll> ... -A(l+~) 

2A 
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1+1>, 1-1>, and 10> are the projections of I on the molecular z-axis 
z 

B. Matrix Representations of I , I , I x Y z 

Ix> Iy> Iz> Ix> Iy> Iz> Ix> Iy> Iz> 

<x [ ~ 0 n <x [ ~ 0 

g 1 
<x 

[-~ 
i g] .[2I=<y 0 J2 I ... <y 0 .[2 I = <y 0 

x <z 1 Y <z 0 z <z 0 

In the conventional basis set of zero field NQR66 given, along 

with a number of operator representations, in Table 2.1, each angular 

momentum operators couples pairs of eigenstates only, and in matrix 

form the Hamiltonian is 

12> 11> 

H 

<21 

[ 
-A(l-~) ia3 

<11 -ia3 -A(l+~) 

<31 a2 a l 

If any two of the aj's are zero then the external field mixes only 

pairs of the zero field basis vectors. This problem can be 

(2.3) 

diagonalized exactly and the eigenstates and energies written down as a 

function of the Zeeman energy. Choosing only a2 ~ 0 (i.e. the field 

applied along the molecular y axis) 
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H (2.4) 

The energy of state Ip> is independent of the field and 11> is an 

eigenstate for all values of the a2' 11>, Ip>, and 12'> are identical. 

The other two (Iq> and Ir» are mixed states. The eigenvalue equation 

for this pair is 

(-A-(1-~)A)(-A+2A) - a~ 

with eigenvalues 

A(1+~)±JA2(1+~)2 + 8A2(1-~) + 4a~ 
2 

In the limit a2 ~ 0, the eigenvalues are (as might be expected) 

2A, -A(l-~) 

while in the high field limit a2»A the eigenvalues are 

o (2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

The details of the correlation diagram depend on the absolute sign of A 

(and the convention used in defining HQ; NQR and NMR conventions 

generally differ. 65 Consistency with equation (1.54) is intended if 

not maintained). For A positive, 11'> correlates with 11>; for A 

negative, to 13>. In either case, 13'> correlates with 12>. Also in 

either case, there is one level crossing in the correlation diagram for 

demagnetization along the molecular y-axis. The level crossing 

behavior expected for demagnetization precisely along the x, y, and z-



axes respectively is shown in Figure 2.3 for A assumed positive. For 

demagnetization along these axes, level crossings are allowed and the 

adiabatic approximation can not be applied. 

If, however, at least two of the three coefficients aj are 

nonzero, then all level crossings become avoided crossings. Thus as 

any pair of energy levels approach one another they repel and 11> 

always correlates with 11'>, 12> with 12'>, etc. As long as the 

adiabatic condition is satisfied, populations remain ordered as they 

were in high field. 

Consider the Hamiltonian of Equation (2.3) with A positive, 
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a2»al and a3 = O. This corresponds to applying the external field not 

precisely along the molecular y-axis but instead tipped slightly into 

the y-z plane. It is reasonable to treat the component of the field 

along the molecular z-axis (whose magnitude is represented by al) as a 

perturbation and to ignore its effects on the mixing of states 12> and 

13>. It will have important consequences only in the range of values 

of the external field where the level crossing occurs for al = 0 and 

where Iq> and Ir> are nearly degenerate. This corresponds to the range 

of values of fields where the energy of Iq> in the absence of al 

differs by no more than 28 from E = -A(l+~). Then the Ip>, Iq> 

subblock of H is 

Ip> Iq> 

HPq <pi [ E + 2S E ] <ql E E 
(2.10) 

where E is proportional to al. The associated eigenvalue equation is 

(E + 28 - A)(E - A) - E2 2 2 2 
E + 28E - E - 2A(E+8) - A = 0 (2.11) 

whose solutions are 



Figure 2.3. Allowed level crossings for demagnetized spin-l nucleus. 

The externally applied field is oriented along the principle axes of 

the quadrupolar tensor, and A is assumed positive. a). x axis; no 

level crossings occur. b). yaxis; Ir> and Iq> cross. c). z axis; Iq> 

and Ip> cross. 
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J 2 2 
(E+6) ± 6 + E (2.12) 

If E ¢ 0, there is no value of 6 where A+ - A_ and therefore no level 

crossing. For arbitrarily small displacements of the direction of the 

applied field from any of the principle axes of the quadrupo1ar tensor 

and in the adiabatic limit, only the 1eve1-anticrossing behavior is 

exhibited. Therefore, to a very high degree of approximation the 

demagnetized state of an isolated quadrupo1ar spin (with S arbitrary) 

is uniform over the entire powder pattern. Only for demagnetizations 

precisely along each of the axes do eigenstates cross. This fact will 

be used extensively in Chapter VI, where the assumption of a uniformly 

prepared demagnetized density operator will be an important 

simplification. In the absence of spin-lattice relaxation and in the 

adiabatic limit the entire order prepared in high field is transported 

to zero field. 

2 Coupled Spins 

It is rare that isolated spins are found in nature. Occasionally 

crystals may be found which contain only a single type of magnetic 

nucleus (e.g. 1H in gypsum) or magnetic spins of a chemical identity 

which occur only as a low percentage of the total number of similar 

atoms (e.g. 13C, -1% natural abundance). As discussed in the first 

part of this chapter, spins are isolated in high field if their 

magnetogyric ratios differ significantly, or if appropriate sequences 

of rf pulses are used to artificially isolate them. But in 

demagnetizing a sample from high field to low field it is 

experimentally rather more difficult to maintain good isolation of one 

spin type from all others. In zero applied field the Zeeman energies 
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of all nuclei are identical independent of~. In the absence of strong 

quadrupo1ar couplings (i.e. only spin-1/2 nuclei or quadrupo1ar nuclei 

in cubic crystals) all spin types are strongly coup1ed. 50 Even if 

there are strong quadrupo1ar couplings so that I and S spins are not 

matched in zero field, there may be some other value of the field 

intermediate between BO and zero where spin diffusion between the two 

spin species is allowed and efficient. 67 

Often, for example, a spin system contains a quadrupo1ar (S) 

nucleus in addition to some spin-1/2 species (labeled I and most often 

1H). It is in precisely this sort of sy~tem that the indirect, zero 

field level-crossing techniques52 - 57 ,68,69 work best and attain the 

highest sensitivity. This section provides a brief description of the 

basic procedure with particular emphasis on the mechanism by which 

polarization is transferred in the laboratory frame. 

In moderately high laboratory fields as are commonly used in NMR 

spectrometers, the 1H resonance frequency is ~ 60 MHz. Apart from 3T 

and some covalently bound halogen compounds, the resonance frequencies 

(Zeeman plus quadrupo1ar) of all other spin species lie at frequencies 

below that of the 1Hnuc1ei. In zero field, on the other hand, the 1H 

pure dipolar frequencies generally fall in a rather broad band from 

zero to as much as 100 kHz. Quadrupo1ar S spins have zero field 

resonance frequencies which range from zero to several megahertz. 

Inevitably, at some value of field intermediate between the large 

laboratory field BO and zero field the sp1ittings between pairs of S 

spin energy levels equal those between the I spins. 

In some range of fields about the level crossing field, the 

quadrupo1ar spin sublevels are capable of communicating via spin f1ip-
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flops with the network of strongly coupled I spins. If the S spin 

sublevels are less polarized than the I spins and if the rate of 

passage through the level-crossing field is slow compared to the 

inverse of the I-S dipole-dipole couplings, some I spin magnetization 

should appear as order in the S spin system after demagnetization. In 

this section, I will try to give a simple quantitative argument which 

will illustrate the process of I-S polarization transfer and which 

clarify the essential process which lies at the heart of all high 

sensitivity zero field methods. Most of this model is developed in 

greater detail by Blinc68 and Edmonds 69 and the description which 

follows relies heavily on the latter presentation. 69a 

Assume for simplicity that S - 1, and that in high field the S 

spins are unpolarized (as their Tl's may greatly exceed those of the I 

spins). The I spins consist of a set of equally spaced Zeeman levels. 

All level-crossings are assumed to take place in "large" fields Hz»Hn 

for the I spins but in "small" fields HZ<~ for the S spins. A rough 

energy level diagram is given in Figure 2.4. The total number of S 

spins is N' (each assumed uncoupled from all others) and the initial 

density operator describing the S spins is 

o (2.13) 

Because the S spins are uncoupled pS is of dimensionality 2S+1. The 

number of I spins is N (each assumed coupled to all other I spins in a 

system characterized at all times by a single spin temperature) such 

that 

(2.14) 
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Figure 2.4. Polarization transfer from I spins to S spins. I spins 

are in eigenstates of HZ; S spins are in eigenstates of HQ. As the 

external field is decreased to zero, energy splittings in the I spin 

bath successively match S spin quadrupolar splittings. I spins are 

warmed and S spins cooled until a common "spin temperature" is reached. 
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The dimensionality of pI is (2)N. 

The S spins are in contact with the I spins only at fields where 

energy splittings of the S spin quadrupolar (plus Zeeman) Hamiltonian 

are equal to splittings in the I spin Zeeman (plus dipolar) 

Hamiltonian. For S = 1 the pairs of energy levels separated by the 

zero field v+, v_, and Vo lines become sequentially matched to the I 

spin splittings. At each level crossing, the population differences of 

the S spin levels reach a "spin temperature" associated with the 

pseudo-two level system which matches that of the I spin bath. Both 

the number of spins of either type and the energy of the system at a 

level crossing is fixed. These conservation laws are the basis of the 

rest of the analysis. At the first level crossing energy conservation 

requires that 

, , 
2bI (N + N) = 2bIN (2.15) 

, 
where b I is the I spin population coefficient after the first level 

crossing. Rewriting in terms of the initial polarization and a number 

operator, X, 

N --.,...., b
I 

= X b
I N+N 

(2.16) 

The I spins are now characterized by a new density operator 

(2.17) 

and a new spin temperature. Some of the order originally stored in the 

I spins has "leaked out" into the S spin system. Because not all of 

the S spin levels participate in the polarization transfer at anyone 

time pS is not described by a spin temperature. Only diagonal elements 
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are nonzero, and they can be written compactly in terms of the 

eigenvalues of a population operator P where 

(2.18) 

At the end of the first level crossing the diagonal components of pS 

are given by 

pip> 

plq> 

Plr> 

At the second level crossing, the v line of the spin 1 comes in 

contact with the I spin reservoir and reaches equilibrium. The 

(2.19) 

population difference between the Iq> and Ir> states equilibrates with 

the I spin bath (now somewhat warmer than before due to the transfer of 

polarization analyzed above). Subject to the same conservation laws 

and restrictions on numbers of particles, after the second level 

crossing the new populations of pS are given by 

pip> 

plq> 

Plr> 

-XbI Ip> 

_ 1. X2b Iq> 
2 I 
121 (X + "2 X )bI r> 

Finally, the Ip> and Iq> eigenstates become energy matched and 

(2.20) 

equilibrate with the I spin bath. After the final level crossing, the 

populations are 

pip> 3 3 
Ip> - (- X + X)b 4 I 

plq> (1 x3_ 1. X2)b Iq> 
4 2 I 

(2.21) 

Plr> 121 (X + "2 X )bI r> 



57 

Similarly, 

I 
p (2.22) 

During the demagnetization, the norm of pS is increased at the expense 

of pl. 

Reviewing the assumptions of the coupled spin model: 

1. The I spins constitute a strongly coupled spin network 

characterized at all times and for all values of the field by a 

single spin temperature. 

2. The S spins are isolated from one another and interact only 

with the I spins and then only at level crossing fields. 

3. At the level crossing fields only pairs of S spin quadrupolar 

energy levels are matched to the I spin Zeeman energy. 

4. All level crossings occur in fields large compared to the I 

spin dipolar fields. 

If all these conditions hold then the model provides a reasonable 

description of the demagnetization. If the sample is merely returned 

to high field the level crossings described above occur again and in 

reverse order. Even if there is no relaxation and no additional fields 

are applied, the final populations returned to high field are not equal 

to the initial populations of pI and pS.ll,24 No matter how slow the 

field cycle, the polarization transfer process is not reversible. 

In the commonly used frequency sweep methods the zero field 

spectrum is probed by low-frequency irradiation after demagnetization. 

If the irradiation is on-resonance with an S spin NQR transition that 

line is saturated and the populations of two S spin eigenstates are 

equalized. After the irradiation phase, the sample is returned to high 
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field and through the level crossing region where the S spin history is 

communicated to the I spins. The final spin temperature of the I spins 

depends on whether an S spin resonance was found, the populations of 

the S spins after irradiation, which specific line(s) was (were) 

saturated, all the relaxation times which characterized the system, and 

whether the level crossing sequence was repeated many times or only 

once. Detailed predictions as to the observed signal and sensitivity 

for many of these cases and for S>l are given elsewhere in more 

complete reviews of field cycling NQR methods. 68 ,69 

Over a broad range of frequencies and types of spin systems of 

interest, the sensitivity of the technique is relatively frequency­

independent and, to some extent, independent of the actual number of S 

spins in the sample. Higher sensitivity variants exist as well. 69b ,70 

What is common to them all is the idea that the polarization induced in 

the abundant, high ~ I spins in the polarization phase is exploited by 

arranging the experimental parameters such that the S spins share in 

that order. 

s Deuterium-Hydrogen Level Crossings 

For systems where the zero field absorption frequencies appear at 

very low frequencies, the theory presented above requires extensive 

modification. Neither the level-crossing sequence nor the irradiation 

phase proceeds quite as simply as described above. This is 

particularly true for the specific case of deuterium, where the zero 

field splittings generally are less than 200 kHz. As lH pure dipolar 

absorption may extend out to nearly those frequencies, none of the 

assumptions of the coupled spin model need hold. Even when the lH 

dipolar bath frequencies are much lower than the v+ and v_ lines, they 
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almost certainly are as large as the Vo line. In the first level 

crossing both v+ and v lines are likely to be polarized to nearly the 

same extent consistent with the lH Zeeman temperature at the crossing 

field. The Vo line is in resonance with the dipolar bath with its own 

spin temperature. As the Zeeman splittings collapse into the dipolar 

linewidth levels separated by the Vo line approach the new spin 

temperature of the combined Zeeman-dipole-dipole Hamiltonian (warmed 

somewhat by the first stage of polarization transfer). Where level 

crossing to the S spins occurs at such low frequencies, the extent to 

which the lines separated by the Vo line are differentially populated 

will certainly depend on the frequency of the Vo line, and a new spin 

temperature no cooler than that which characterizes the order stored in 

the (v+, v_) pair is established. Where ~ is small the population 

differences between the 11> and 12> states may be negligible. In any 

case, the final populations reached via demagnetization of systems with 

small quadrupolar couplings will differ markedly from those described 

in the above model. Nonetheless, the basic principle (that the order 

stored in the S spins is comparable to that stored in the I spins) is 

still valid. 

A further consequence of this dependence on the polarization 

transfex from and to I spins is that there is a precipitous drop in 

availabl~ signal powers at very low S spin frequencies. The very 

source of the high sensitivity (the bath of lH nuclei) short circuits 

the indirect process by direct absorption of radiation. If the zero 

field lH energy levels are saturated by direct absorption of rf, 

quadrupolar transitions found in the same range of frequencies are not 

observabl~. Because the irradiation phase is non-selective, level 



crossing techniques which monitor only the disappearance of lH signal 

in high field are unable to distinguish between energy absorption by 

the quadrupolar nuclei and direct absorption by the bath. 
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(In principle, the vastly differing linewidths between, say, 

deuteron (20) and proton (lH) resonances might result in observable 

changes in the signal even at the lowest frequencies. Should the 

proton resonance be saturated while a 20 line remains unaffected, 

magnetization transfer back from the rare spins to the lH bath during 

remagnetization would marginally repolarize the 1H bath. Therefore, 

slight decreases in the observed 1H signal should be observed for 

irradiation simultaneously near a 20 resonance and at a bath frequency. 

To my knowledge, such effects have not previously been reported--which 

may be an indication of the small amount of order actually stored in 

the quadrupo1ar system in a single crossing, or the breakdown of the 

assumption that the two types of nuclei are non-interacting at the 

residual fields. In any case, the effect is probably too small to be 

routinely noticed.) 

At the very lowest frequencies, frequency sweep methods suffer 

from another important disadvantage. The rate at which spin 

transitions occur under rf irradiation is proportional to the frequency 

at low frequencies. 51 ,71 The absorption of energy under irradiation 

decreases asymptotically towards zero at the very lowest frequencies. 

Spectral features near zero frequency become increasingly difficult to 

observe, particularly if accurate lineshapes are required. This may be 

the greatest advantage of the Fourier transform methods to be described 

in subsequent chapters; in principle, they are equally sensitive at 

all zero field frequencies (although as a practical matter they perform 
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best at frequencies somewhat lower than 500 kHz). Moreover, the 

lineshapes observed in the absence of all applied fields are reliable. 

This will prove important in any analysis of strongly coupled spins. 

Further comments on level-crossing experiments and possible 

applications of level-crossings in Fourier transform zero field 

experiments with isotopic selectivity will appear in Chapter VI. 

b. Sudden Demagnetization 

In the opposite limit of sudden64 or (ideally) instantaneous 

switching off of BO there is a different and simpler solution to the 

form of the demagnetized density operatorcp. No assumptions need be 

made about the spin system. Beginning from a spin system with a 

Hamiltonian 

H + H loc (2.23) 

and a density operator p. At a time r, the external polarizing field 

responsible for HZ is instantaneously turned off. The spin system is 

unable to follow the change in the applied field, and the state of the 

system (and of p) is unchanged; 

p(r) (2.24) 

(Note that this is not equivalent to the final state reached by 

adiabatic demagnetization of an isolated spin system, where all 

popUlations are unchanged and in the new eigenstates.) Though the 

density operator is unchanged, the Hamiltonian and thus the eigenstates 

are different. Even if p expressed in the eigenbasis of the 

Hamiltonian including the Zeeman term is diagonal, it need not be in 

the zero field eigenbasis. If p contains off-diagonal elements, it 

begins to evolve at the frequencies characteristic of Hloc (cf Equation 
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1.75). 

In principle, the evolution of p might be detected in zero 

field, just as the absorption of energy might be monitored directly in 

the field cycling methods described previously. Experiments based on 

this idea have been performed on liquid samples. 72 ,73 In solids, and 

where the natural frequencies of Hloc are so low that field cycling 

methods are required, high field detection is likely to prove much more 

sensitive. At a time tl' the external field is instantaneously 

reapplied. The time-evolved operator p(r+tl ) can subsequently be 

probed indirectly by measuring the high field free induction decay. 

Such an experiment is shown schematically in Figure 2.5. 

Because the technical requirements for sudden demagnetization are 

experimentally more difficult to fulfill than for adiabatic 

demagnetization, the former approach is more rarely attempted. 53a ,74 

It is, however, the essential component of Fourier transform zero field 

NMR experiments. The basic zero field experiment is described more 

fully in Chapter III. 

C. Summary 

To sum up; if a measurement of the chemical shift tensor proves 

sufficiently informative, high field techniques are capable of 

providing such information. If, however, the chemical, structural, or 

dynamical information required is found most directly in the traceless, 

anisotropic interactions such as the dipolar or quadrupolar tensors, 

high field techniques generally observe only powder pattern lineshapes. 

Such spectra are simply interpretable only under restrictive 
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Figure 2.5. Response of a spin system to a sudden change in the 

strength of the applied field. At top: Strength of the applied 

field vs. time. Bottom: Magnetization vs. time. If the field is 
• switched off rapidly, the magnetization oscillates and decays in a 

zero field. When the field is reapplied, magnetization is stored. 
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assumptions about the numbers of interacting spins and the form of the 

interaction. In the presence of larger numbers of interacting spins, 

or where the response from several different systems overlap, all 

information about these interactions is generally sacrificed in order 

to measure the isotropic interactions with greater precision. 

Where the measurement and interpretation of these anisotropic 

interactions is desired, zero field methods are more promising. For 

systems with large quadrupolar couplings, pure NQR may be employed. At 

lower frequencies, lower concentrations, and at somewhat sacrificed 

resolution, field-cycling techniques utilizing level-crossings become 

essential. And at the lowest frequencies or where maximum resolution 

is required, or where indirect techniques fail due to the absence of a 

suitable bath of spin-I/2 nuclei, Fourier transform zero field 

techniques may be essential. Furthermore, working in the time-domain 

makes possible the extention of these experiments to include 

applications of two-dimensional correlation spectroscopy.18 Some 

extensions using two-dimensional spectroscopy will be covered in 

Chapters VI and VIII. 
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III. Fourier Transform Zero Field NMR and NQR 

Faraday's law (Equation (1.88» gives the voltage induced in an rf 

coil by an oscillating magnetization. This signal is proportional to 

both the size of the initial magnetization and the frequency at which 

it oscillates (i.e. the resonance frequency). In high fields, both 

terms are field-dependent. The equilibrium magnetization given by the 

Curie Law (Equation (1.87» is proportional to the applied field. In 

the high field limit the frequency of oscillation is essentially the 

Larmor precession frequency. The observed signal's strong field 

dependence is the continuing motivation for the purchase of higher 

field (and more expensive) superconducting magnets. Direct detection 

of low frequency magnetic resonance requires large sample volumes and 

extensive signal averaging. The alternative field-cycling methods 

outlined in Chapter II combine the resolution advantage of zero field 

experiments with the sensitivity of high field NMR. I will concentrate 

only on experiments where both polarization and detection phases take 

place in a large static magnetic field (in practice, nearly all of our 

experiments are performed in a persistent superconducting magnet of 

nominal field strength 4.2 Tesla (42 kgauss) where the lH Larmor 

frequency 185.032 MHz). Practical experimental details, and some 

thoughts on alternative instrumentation, are given in Chapter VIII. 75 

A. A Practical Two-Step Field Cycle 

Since it is impractical and expensive to repeatedly energize and 

deenergize the high inductance magnets routinely used in modern NMR 
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spectrometers, in the field cycling experiments described in this 

thesis the field cycle presented in an idealized fashion in Figure 2.5 

is always executed in two distinct steps as illustrated in Figure 3.1. 

In the first step, the sample is removed from the region of 

concentrated flux within the bore of the superconducting magnet and 

mechanically transported through space. This step takes the spin 

system at equilibrium in high field to an intermediate field Bint . 

This intermediate field arises from some combination of the fringe 

fields of the main solenoid, electromagnets, the earth's field, and 

other stray magnetic fields, and is are suff~cient1y reduced in size so 

as to be readily matched by electromagnets which can be rapidly 

switched in times -1 ps. Practical values of the intermediate field 

are ~ 500 gauss. Detailed descriptions of the apparatus are available 

elsewhere. 75 For simplicity I assume that the intermediate field is 

sufficiently large that the high field condition HZ»H10c applies in 

the intermediate field. The eigenstates at high field and at the 

intermediate field are identical. In the absence of significant spin-

lattice relaxation, the total magnetization prepared in high field is 

conserved in Bint and the density operator p which describes the spin 

system is unchanged independent of the rate of demagnetization. 

(Formally, however, p is characterized by a much reduced spin 

temperature; 

T 
s 

where TL is the lattice temperature.) 

(3.1) 

At the intermediate field p corresponds to a bulk magnetization 
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Figure 3.1. Magnetic field vs. time in two-step experimental 

field cycling diagram. In the first step the sample is removed 

from the polarizing field by mechanical means and the field slowly 

falls from BO to Bint . Bint is rapidly turned off. A time tl 

later, Bint is turned back on and the sample mechanically returned 

to BO' 

67 



68 

parallel to Bint . For simplicity I assume that Bint and BO are 

coaxial. At a time t = 0, Bint is suddenly switched off. The density 

operator p is unable to follow the rapid change in the field, becomes 

time-independent, and evolves in zero field. At t = tl' Bint is 

suddenly reapplied and the sample transported back to BO for detection 

of the evolved operator p(tl ). The two-step cycle of Figure 3.1 is 

equivalent to the hypothetical cycle of Figure 2.5 if Bint is large 

enough. This condition is assumed, and from here on I focus on the 

evolution of the magnetization transported to low field. 

B. A Formal Calculation of the Signal 

The central question is the prediction of the signal expected for 

the sequence in Figure 3.1, and its solution will occupy the rest of 

this chapter. Two coordinate systems (the high field frame with z-axis 

parallel to the applied field and some consistently chosen local or 

molecular frame), and the relationship between them, are required. The 

local frame is chosen so that otherwise identical but arbitrarily 

oriented systems have the same expanded form of the Hamiltonians 

(Equations (1.47), (1.54), and (1.68». For simple systems (e.g. 

isolated quadrupolar spins or a pair of dipolar coupled spin-1/2 

nuclei) it will prove convenient to choose the principal axis system of 

the main interactions, but this is neither necessary nor generally 

possible. Where some convenient choice of zero field axis system 

exists which will make subsequent calculations simpler or more 

informative, it will be useful to exploit that option. 

As was described in Chapter I, transformations between axis 
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systems are conventionally described in terms of Euler angles, and in 

most NMR applications only two are required. The transformation which 

takes the laboratory (L) frame into the local or molecular (M) frame is 

1 
-1 -1

1 <lab RR €LRR lab> (3.2) 

The relationship between the laboratory and molecular frames is 

illustrated in Figure 1.1. In a disordered system, where many 

orientations of the local frame are allowed, R will differ for each of 

those orientations and the form of the operator €M of Equation (3.2) 

will differ for each orientation because R does. 

Following the logic of the sudden approximation described at the 

end of chapter II, at a time t = 0 the intermediate field Bint which 

guarantees the high field condition is instantaneously switched off. 

Before the switching of the field, the spin system was in eigenstates 

of the high field Hamiltonian (made up of a Zeeman term and a set of 
, 

truncated local fields Hloc ) 

H (3.3) 

with 

[p, H] o (3.4) 

Except for special cases, in the untruncated fields Hloc 

o (3.5) 

and therefore 



Sp 
Tt o 

that is, there is time evolution under Hloc ' At a time t 

p (t) exp(-iHl t)p(0)exp(iH1 t) oc oc 
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(3.6) 

(3.7) 

At a time t 1 , the evolution implied in Equation (3.7) is interrupted by 

reapplication of Bint . After a time -T2 (which in solids may be as 

short as -10 ~s), coherence in a solid is assumed to disappear and 

(3.8) 

Evolution of the density operator (Equation (3.7» is most conveniently 

described in the molecular frame where the Hamiltonian is identical for 

all orientations and reached by a tranformation of variables as given 

in Equation (3.2). Because all measurements are made in the laboratory 

frame of reference, the calculation of observables must include the 

reexpression of p in that frame. This is followed by an integration 

over the known or assumed distribution of orientations, R(O). Starting 

from p expressed in the laboratory (L) frame of reference, the sequence 

of transformations resulting in the evolved density operator is 

(3.9) 

where the subscript L identifies p as being expressed in the laboratory 

frame of reference and the angle brackets <> imply an averaging over 

all R(O) = R(O,p,a). If the initial density operator prepared in the 

high field polarization interval is 

L 1. L 
j JZ 

(3.10) 
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then p reexpressed in the molecular frame is 

exp(-iaI )exp(-ifiI )1 Lexp(ifiI )exp(iaI ) z y z y z 

(3.11) 

Ignoring the details of the zero field Hamiltonian H1oc ' a general 

time-evolved zero field operator e(t) can be defined by 

exp(-iH1 t)eexp(iH1 t) oc·· oc 
(3.12) 

and 

(3.13) 

Following the logic of Equation (3.9) the lab frame operator PL(t1) is 

calculated by rotating the time-evolved form (Equation (3.13» back to 

the laboratory frame. This is precisely the strategy adopted at the 

end of this chapter. Here, a different approach is used which 

simplifies subsequent algebraic manipulations. What is measured is 

never the density operator itself, but only the expectation value of 

some observable (Equation (1.73». The theory is simplified if the 

observable is assumed to be IzL (although in practice an rf pulse is 

required to transform longitudinal magnetization like IzL into the 

observable transverse magnetizations IxL and I yL)' and the actual 

quantity to be calculated is the signal function 

Using the general rule that 

(3.14) 
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Tr [ABC] Tr [CAB] Tr [BCA] (3.15) 

and, substituting for PL from Equation (3.9), 

(3.16) 

This is equivalent to calculating the signal function with the 

observable defined in the molecular frame rather than in the laboratory 

frame. The required transformation of IzL is given in Equation (3.10). 

The signal G(t1 , 0) for a given orientation, R, is 

G(t
1

, 0) Tr[(IzMcos~ - IxMsin~cosa + IYMsin~sina) 

(IzM(t1)cos~ - IxM(t1)sin~cosa + IyM(t1)sin~sina)](3.17) 

Integrating the signal function G(t1 ,0) over the known or assumed 

distribution of local frame orientations, P(O), the observable G(t1) is 

I G(t1 , 0) P(O) dO (3.18) 

In high field, the distribution of orientations P(O) is convoluted with 

orientation-dependent absorption frequencies to produce high field 

powder patterns. 26 In zero field, the distribution of orientations 

P(O) is convoluted instead with an orientation dependent intensity 

distribution. Where in high field R(O) is revealed by the shifts in 

frequency as a function of orientation, in zero field it is the 

intensities of the various absorption lines which change. This 

comparison is shown in Figure 3.2. For the common case where the 

probability distribution is uniform (e.g. a powder distribution where 

all orientations are equally probable) 
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crystals of Ba(C103)2·H20. Three orientations ·of the crys~al are 

shown. As the crystal's orientation with respect to BO is 

rotated, the splitting of the high field doublet moves. In zero 

field, only amplitude variations are observed. 
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P(O)dn 
1 

41C d(cosP)da (3.19) 

Over the entire sphere, the orthogonality of the rotation matrices7 

restricts the signal function to only auto-correlations of the angular 

momenta. The orientation dependence of the zero field signal is easily 

integrated over 0 and yields 

(3.20) 

1 
~3 ~ 

j ,k 
(3.21) 

Equation (3.21) provides a general prescription for the calculation of 

zero field spectra acquired by the sequence of Figure 3.1. It is also 

the heart of the program DBZINT.FOR which we commonly use for the 

simulation of zero field spectra of dipolar coupled spin-1/2 nuclei. 

From an assumed geometry the molecular frame Hamiltonian H10c is 

calculated and diagona1ized. The operators I xM , I yM ' and IzM are 

expressed in the eigenbasis of the zero field Hamiltonian. The zero 

field frequencies correspond to the difference in energy between pairs 

of eigenstates connected by nonzero elements of these operators, and 

the line intensities are the squares of the individual matrix elements. 

For simple systems (i.e. quadrupo1ar nuclei with ~=O or some 

special cases of dipolar coupled systems where a molecular axis of 

quantization exists) simple selection rules may exist and components of 

the molecular frame operators may be diagonal, i.e. non-evolving. In 

more general systems, no choice of basis set results in particularly 

simple evolution operators and non-zero matrix elements exist between 
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any pair of eigenstates. 

In the remainder of this chapter, I present solutions to Equation 

(3.21) for a number of examples of spin systems where the Liouville 

space of eigenstates is sufficiently small (and/or enough selection 

rules exist) so that the operations suggested in this section are 

conveniently made explicit. 

C. Coupled Spin-l/2 Systems 

1. Two Identical Dipole-Dipole Coupled Nuclei 

A natural choice for the molecular frame z-axis is along the 

internuclear vector r12 connecting spins 1 and 2. Expressed in this 

frame of reference, Equation (1.47) becomes 

where, as before, 

WD 

The initial condition is assumed to be magnetization, i.e. 

p(O) I z 

(3.22) 

(3.23) 

(3.24) 

As described in Subsection I.B.2.b, the eigenstates of this Hamiltonian 

are traditionally given as the triplet (symmetric with respect to 

interchange of the two spin labels) and the singlet (antisymmetric with 

respect to exchange). Table 3.1 provides explicit forms for the 

eigenstates and eigenvalues of Equation (3.22). The matrix 

representations of the angular momentum operators I xM , I yM ' and IzM are 
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identical to those given in Table 2.1 Table 3.1 adds matrix 

representations for the second rank tensors UkM . No matrix elements of 

these operators couple the singlet state to the triplet manifold and 

Table 3.1 

A. Eigenstates of Two Coupled Spin-1/2 Nuclei in Zero Field 

-i (2)1/2 [Iaa> - I~~>] 

(2)1/2 [Ia~> + I~a>] 

(2)1/2 [Iaa> + I~~>] 

(2)1/2 [Ia~> _ I~a>] 
where a and ~ correspond to <I > = 1/2 or -1/2, respectively z 

B. Matrix Representations of Uk 

Matrix elements between Sand T states are zero; within the T manifold 

1-> 1+> 

<- [ 0 0 
J2 U = <+ 0 0 1- <0 -i 0 

1-> 1+> 

<- [ 0 1 
J2 U = <+ 1 0 2- <0 0 0 

For 1-> = lx>, 1+> = Iy>, 

10> 

i 
0 
0 

10> 

0 
0 
0 

<­
<+ 
<0 

1 

1 

1-> 1+> 

o 
1 
o 

10>. 

j 1 

J2 U = .1+ 

J2 U = 2+ 

<- [ <+ 
<0 

<- [ <+ 
<0 

and 10> = Iz> this same set 

describes an isolated spin-1 system. 

1-> 1+> 10> 

0 0 0 

1 0 0 -i 
0 i 0 

1-> 1+> 10> 

-1 0 0 

1 0 1 0 
0 0 0 

of operators 

the singlet has no effect on the spectrum. The singlet is not included 

in any of the matrix representations of Table 3.1. Time evolution 

under the Hamiltonian can be described using Equation (1.75), and 
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+ (3.25) 

and 

(3.26) 

This describes time evolution for six of the eight operators first and 

second rank tensors necessary to describe the evolution of the three 

level system. The remaining two operators (proportional to Uo and U2+) 

are diagonal in the zero field basis set and undergo no evolution. The 

trace of Equation (3.20) is easily performed once a few general rules 

are described; 

(3.27) 

and 

o for all j,k,l (3.28) 

Therefore, 

1 
- Tr[ ~ 
3 . 

(3.29) 
J=x,y,z 

For two coupled spin-1/2 nuclei, and in the basis set of Table 3.1 

(3.30) 

and 

o (3.31) 

Normalizing to unity at zero time, the zero field free induction decay 

from two identical spin-1/2 nuclei is 
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(3.32) 

An experimental example of this prediction is shown in Figure 3.3, 

where the zero field NMR spectrum of the IH nuclei in Ba(CI03)2·H20 is 

presented. Crystalline water molecules are well isolated one from 

another, and the spectrum corresponds closely to the case of two 

coupled identical spin-1/2 nuclei. In the absence of molecular motion 

which may average the observed couplings, the observed line splitting 

(42.4 kHz) corresponds to a IH_IH distance of 1.62±.02A. Single 

crystal spectra of this same compound have already appeared in Figure 

3.2. As this two-spin system is convenient for experiments, 

theoretical modeling and easy interpretation of results I will return 

to this compound and spectrum repeatedly in subsequent sections. 

2. Two Distinguishable Dipole-Dipole Coupled Nuclei 

The singular difference between the heteronuclear (I-S) spin pair 

(e.g. 13C_IH) and the homonuclear (I-I) spin pair described above is 

that for two spin species the high field density operator can no longer 

be written as IzL alone. Rather, 

(3.33) 

where the coefficients bI and bS differ in general because the 

magnetogyric ratios of the two spin species do. The density operator 

of Equation (3.33) corresponds to an unequal division of the initial 

magnetizations between the two spins in high field. Even though the 

zero field Hamiltonian for the two spin systems is independent (to 

within a scaling constant) of the chemical identity of the two spins, 



Figure 3.3. 

single crystal spectrum. Middle: High field powder spectrum. Bottom: 

Zero field powder spectrum. The splitting in the zero field spectrum 

corresponds, in the absence of motion, to r = 1.62±.02 A. 
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the high field preparation sequence can discriminate between the two 

spin species. Rewriting Equation (3.33) in a form which emphasizes the 

difference between it and the density operator of Equation (3.24) 

b (I L + S L) + b (I L - S L) + z z - z z 
(3.34) 

with 

b+ 
bI+bS 

2 
(3.35) 

and 

b 
bI-bS 

2 
(3.36) 

In this form I emphasize the existence of two distinct high field 

components of the initial density operator p with very differing 

symmetries. The first term corresponds to the average magnetization 

shared between the two spins, is symmetric with respect to interchange 

of the spin labels, and has the same characteristics as the 

magnetization in Equation (3.24). The second term in Equation (3.34) 

corresponds to the difference between the initial magnetizations at the 

two spins, is antisymmetric with respect to exchange of the two spin 

labels, and has no counterpart in the homonuc1ear problem. It couples 

the singlet state of the zero field Hamiltonian to the triplet 

manifold. It is responsible for new transition frequencies not allowed 

in the homonuc1ear case. 

Both types of operators are first rank tensors. The symmetric 

combination behaves precisely as does the operator IzL for two 

identical spin-1/2 nuclei as described immediately above. Under the 

influence of Hn' these operators evolve into second rank tensor 
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operators. The antisymmetric combination transforms under the rotation 

operator R- 1 (O) into first rank antisymmetric molecular-frame operators 

proportional to (IxM-SxM), (IyM-SyM), and (IzM-SzM)' The only nonzero 

matrix elements of these operators are <-IIxM-sxMls>, <+1 IyM-SyMI S>, 

and <OIIzM-SzMls>. These operators evolve into a new set of first rank 

tensor operators (of the general form (IjSk-IkSj » at frequencies 

characteristic of transitions between the singlet and triplet 

manifolds. Because of the differing symmetry characteristics of the 

two types of operators, no cross terms between these two sets can ever 

contribute to the trace of Equation (3.20) . 'In the laboratory frame, 

PL always consists of two orthogonal pieces, and 

(3.37) 

where 

(3.38) 

(3.39) 

The zero field signal G(t1 ) depends on which nuclear spin reservoir is 

observed in high field. If the S spin system is observed, 

(3.40) 

(3.41) 

or, if the I spins are observed, 
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(3.42) 

(3.43) 

Because the high field resonance frequencies wI and Ws differ, it is 

possible to selectively irradiate either spin species in high field and 

alter the initial condition. In particular, if either b+ or b_ is made 

equal to zero by an appropriate preparation sequence the observed 

spectrum is simplified by the disappearance of one set of lines. These 

predictions are confirmed by the zero field NMR spectra of the 13C_lH 

pair in p-Ca(H13COO)2 shown in Figure 3.4. The observed spectra 

precisely follow the predictions of Equation~ (3.41) and (3.43). 

Assuming no motion, the observed dipole-dipole coupling corresponds to 

a 13C_lH distance of 1.11A. Figure 3.5 is a comparison of the high and 

zero field NMR spectra observed for I-I and.I-S two-spin systems. 

The signal function G(tl ) corresponds to the magnetization stored 

in the I or S spins after a zero field evolution period t l . Most 

frequently, it is the frequency-domain spectrum (the Fourier transform 

of G(tI)) which is of interest. Where it is difficult to attain useful 

polarization levels in high field (either because the equilibrium S 

spin magnetization is small or where the S spin TI is inconveniently 

long), zero field evolution could conceivably be of use as a method of 

polarization transfer between spin species. As b+ and b_ evolve 

differently in time, there exist values of tl which maximize the 

evolved S spin magnetization. The maximum in SzL(tI ) occurs when 



Figure 3.4. 1H detected zero field NMR spectra of 1H_13C pair in 

p-Ca(H13COO)2. 13C spins are polarized by field-cycling preparation 

sequence. The sample is depolarized in zero field, then returned to 

high field for -10 s (approximately TIH). A complete field cycle is 

executed with fixed time t1 - 32 ~s. This strongly magnetizes the 13C 

nuclei to 160% of their equilibrium value. TIC is several minutes. In 

high field the 1H nuclei are repolarized. Prior to executing the field 

cycle with variable time t 1 , a resonant rf pulse is applied to the IH 

spins of length, from top: 0°, 66°, 90°, 114°, and 180°. This 

generates the zero field initial conditions indicated in the plot. The 

spectra closely follow the predictions of the text. The observed wD 

corresponds to <r- 3>1/3 - 1.11 A. 
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Figure 3.5. Summary of the high field and zero field Hamiltonians, 

eigenstates, and spectra for homonuclear (I-I) and heteronuclear (I-S) 

dipole coupled spin pairs. Transitions are indicated by the arrows. 

In high field the transition energies are orientation dependent and the 

spectrum is continuous absorption band. The zero field energy levels 

are orientation independent, and the zero field spectrum consists of a 

finite number of absorption lines. In I-I systems, only transitions 

within the triplet manifold are allowed. 
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c5t
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o 

[3sin3x b+ - (sin2x + sin x)b_1 - 0 

Solutions to Equation (3.44) include wnt1 = O,2~,4~, ... , where 

Tr [pSzL1 = O. A second set of solutions is given by 

cos x 
2b ± (4b~ + 144b:+ 48b+b_)1/2 

24b+ 

b + 3b+ 

6b+ 

In the limit bS = 0, then b+ - b_ - b I and 

cos x 

Choosing cos x = -(1/2), 

2 ± 14 
24 

1 2· 
-"2'3 

88 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

which corresponds to a very significant transfer of polarization from 

the I to the S spin. In this two spin system, and for an initially 

depolarized S spin, 75% of the total order in the sample can be 

transferred from I to S. A derivation of the actual value of SzL is 

more complicated for the last root of Equation (3.43) and only the 

results are given here; 
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(3.50) 

In the limit b+ = b (i.e. no initial polarization on the S spins), 

Equation (3.49) simplifies to give 

(3.51) 

In the limit b = 0 (i.e. a homonuc1ear spin system) then this solution 

corresponds to a minimum at -1/3 of the originally prepared 

magnetization, precisely as is found in the homonuc1ear zero field free 

induction decay of Equation (3.32). 

3. Heteronuc1ear J Spectroscopy in Liquids 

The antisymmetric operators which allow transitions between the 

singlet and triplet manifold to take place provide a mechanism for the 

observation of pure J spectra in the zero field NMR of heteronuc1ear 

liquids. Ordinarily, one does not expect to observe oscillating 

magnetization from J couplings between pairs of nuclei in a liquid 

because the J coupling is isotropic in space. No spatial truncation 

occurs when a magnetic field is applied to a liquid. Thus, the removal 

of the field results in no discernab1e change in the density operator. 

In a residual field perpendicular to the polarizing field, oscillations 

corresponding to the Larmor frequency in the residual field may be 

observed. This is the basis of the Varian magnetometer experiment for 

the measurement of the earth's magnetic fie1d. 72 ,73 In heteronuc1ear 

systems, the application of a magnetic field truncates the J coupling 

in the spin variables rather than the spatial variables. In a large 

field, the flip-flop terms in the J coupling tensor are rejected 
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because of the difference in Larmor frequencies (Equation (1.71». The 

initial spin polarizations are also different (consistent with the 

magnetogyric ratios ~I and ~S)' 

The transitions within the triplet manifold of the two spin-1/2 

system all appear at zero frequency because the J coupling shifts all 

energy levels within the triplet by the same amount in the same 

direction (Equation (1.70». It is only the transition between the 

triplet and the singlet which carries any information and it appears at 

a frequency equal to the J coupling itself. Skipping the intermediate 

steps (which are similar to those in dipolar coupled systems as 

discussed above), and noting that without loss of generality R(O) = 1, 

the zero field free induction decay from a heteronuclear J coupled pair 

of spin-1/2 nuclei is 

(3.S2) 

Rapid molecular reorientation in a liquid limits the interactions to 

those within a molecule and T2 's in liquids are usually long. In zero 

field the linewidths in the heteronuclear liquid are dominated by field 

inhomogeneities. Therefore, these systems provide a sensitive test for 

the effects of residual fields on the width of zero field resonance 

lines. Figure 3.6a shows the 31P-detected zero field spectrum of 

diethyl phosphite «C2HSO)2PH). The directly bound lH_3lp coupling is 

very much larger than any of the couplings to methylene lH nuclei 

several bonds away and it is a good approximation to treat this systems 

as a two spin-1/2 system. The triplet of lines predicted by Equation 

(3.S2) is observed and the spacing corresponds reasonably well with 

previously reported values of the J coupling. 76 Now consider the 
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a) 31 P Detection 

b) I H Detection 
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Figure 3.6. Zero field J spectra of diethylphosphite «C2HSO)2PHO). 

Both spin systems equlibrate in high field. Immediately prior to the 

field cycle, a 1800 pulse is applied to the lH spins. This enhances 

the amplitude of the peaks at ±J. The coupling between 3lp and the 

directly bound lH contributes the sharp line at ± 692 Hz. a). 3lp 

detected spectrum. Only signal from the directly bound pair is 

observed. The spectrum is artificially broadened for purposes of 

display. The true 1inewidth is - 1 Hz. b). lH detected spectrum. 

The same line at ± 692 Hz is observed. In addition, broad peaks 

corresponding to the ethyl group lH's are observed at ± 100 Hz. This 

most likely corresponds to their Zeeman frequency and a residual field 

-.02 gauss. 
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effect on the spectrum of a small applied field; 

H (~II. + ~SS.)B + J j·S 
J J res 

(3.53) 

with J »~IBres' The eigenvalues of H are changed from their zero 

field values only to second order in the field, and the Zeeman 

Hamiltonian is truncated by the much larger J coupling. The absence of 

Zeeman-broadened lines in the spectrum of Figure 3.6a indicates the 

quality of the zero field region. (Just how bad the zero field region 

can afford to be is shown in Figure 3.6b. Here, the same experiment is 

performed with IH detection of the high field signal. The same narrow 

three-line spectrum is observed for the P-H pair. In addition, all the 

other IH nuclei appear at approximately their Larmor frequency of -100 

Hz, with a spread of ±20 Hz. At this level of residual field-the 

J-coupled line is still less than 1 Hz wide.) Where broad lines are 

observed in zero field, the source will rarely be imperfections in the 

applied fields which can routinely be adjusted to within several 

hundredths of a gauss of zero. Broad lines are more often the result 

of a distribution in local Hamiltonians. 

D. Quadrupolar Spin Systems 

NQR spectra of integer and half-integer spins differ greatly from 

one another. A general and more detailed presentation of pure NQR is 

given in the standard reference works. 13 ,14 Here I dwell only on those 

aspects which are essential to the remainder of this work. 

As the quadrupolar Hamiltonian HQ is generally much larger than 

HD, in this section I will deal with only those aspects of Fourier 
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transform NQR which apply to isolated quadrupo1ar nuclei. Experimental 

data on coupled spin-1 nuclei, and a discussion of the possible use of 

dipole-dipole couplings in structure determination, appear in Chapters 

V and VI. 

1. Integer Spins: I = 1 

Of the integer spins, only I = 1 (2D and 14N) systems are 

commonly observed. This will be the only case I will discuss. In the 

case of the spin 1 nucleus, operator techniques prove extremely 

powerful and the majority of my discussion will rely heavily on the 

. operator set presented in Tables 2.1 and 3. L 66,77 The spin-1 

quadrupo1ar Hamiltonian (Equation 1.68) consists of two commuting 

terms, one proportional to the spin operator UO' and a second 

proportional to the spin operator U2+; it and its three eigenstates 

(with ~=O) are formally identical to the triplet manifold of two 

spins-1/2, and therefore the problem of the homonuc1ear pair. For 

nonzero ~, the term in HQ proportional to ~ breaks the degeneracy of 

the two states (1x>,ly» and requires that the eigenstates be chosen 

proportional to what otherwise would appear to be the rather awkward 

linear combination of the tables. 

a. The Signal Function 

All of the algebraic machinery established in the calculation of 

G(t1) for the homonuc1ear pair is directly applicable to the problem of 

the spin-l nucleus in zero field. As there are three distinct energy 

levels there are also three distinct transition frequencies. In direct 

analogy to Equation (3.32), the zero field free induction decay from a 

po1ycrystalline sample for I = 1 is 
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(3.54) 

with 

W3l = (3-n)A (3.55) 

In keeping with the convention long established in zero field NQR, only 

positive frequencies will be displayed and therefore three lines will 

be observed (where the same signal function G(tl ) would result in three 

pairs of lines as we have chosen to display the spin-1/2 spectra). A 

number of illustrative examples of typica~ spin-l zero field NMR 

spectra appear in Chapter V. Figure 3.7 shows a comparison between the 

zero field spectra of I-I and I-S dipole-dipole coupled spin systems 

and of a spin-l quadrupolar nucleus. 

b. Explicit Calculation of p 

In this section, I take a somewhat different approach to the 

calculation of the signal function of Equation (3.54). Rather than 

calculating G(tl ) as in Section B, I obtain an explicit expression for 

the lab frame representation of the density operator for a specific 

. . O() or1entat1on, PL tl . This corresponds to following the evolution of 

the lab frame magnetization at each orientation of the powder for all 

times t l . 

While it is always possible to represent P as a matrix of 

numbers, somewhat greater insight is gained if instead p is represented 

in an operator basis set. This approach has gained popularity in the 

use of fictitious spin-1/2 operator bases in the analysis of multiple­

quantum NMR77 - 80 but its use in NQR is older. 8l Generally, a traceless 

NXN Hermitian matrix is represented by N2_l independent traceless 
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Figure 3.7. Comparison of spectra and Hamiltonians for two 

dipole-coupled spin-1/2 nuclei, and for a spin-1 quadrupo1ar 

nucleus. a). Summary of zero field eigenstates and transition 

frequencies of dipole-coupled pair. Transition frequencies allowed 

in both I-I and I-S systems are shown in bold lines; allowed only 

in I-S, dashed. For comparison to quadrupo1ar spins, onl¥ positive 

frequencies are shown. b). Eigenstates and energy levels of 

spin-1 system in the notation of Table 3.1. A non-zero value of ~ 

splits the 1+> and 1-> eigenstates. For ~ - 0, the spectrum is 

identical to that of the I-I pair. 
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operators. The operators in Tables 2.1 and 3.1 provide a convenient 

basis set for the discussion of spin-l nuclei in zero field. The 

transformations of the first rank tensors under rotations are given by 

Equation (1.25); the second rahk tensors Uk' in Table 1.2. Time 

evolution is summarized in Equations (3.25) and (3.26). 

Until Equation (3.13) the treatment of Section III.B is adequate. 

At a time tl the density operator pO(tl ) is 

cos~(IzMcosw12tl + (IxMlyM+lyMlxM)sinw12tl) 

-sin~cosa(IxMcosw23tl + (IYMI~M+lzMlYM)sinw23tl) 

+sin~sina(IyMcosw3ltl + (IxMlzM+lzMlxM)sinw3ltl) 

or, in slightly more compact notation, 

(3.56) 

cos~(IzMcosw12tl + U2+Msinw12tl) - sin~cosa(IxMcosw23tl + 

Ul+Msinw23tl) + sin~sina(IyMcosw3ltl + Ul_Msinw3ltl) (3.57) 

(1 0 -1 (1 Finally, PM must be rexpressed in the laboratory frame PL = R PMR, and 

(3.58) 

where 
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(3.59) 

Normally when the external field is reapplied only IzL and Uo are 

stored as diagonal elements of PL' but suitable detection sequences can 

be designed to transform any of these lab-based tensor operators into 

an observable transverse magnetization. In the most general ordered 

system all of these coefficients may be non-zero. Magnetization 

initially aligned in the laboratory frame may appear as any other type 

of operator. If ~ = 0, a2' as' a7' and as vanish and the magnetization 

is limited to excursions in the plane defined by the laboratory and 

molecular z-axes. Where the sample contains a distribution of 

orientations P(O), the ak coefficients must be integrated over that 

distribution function. In powders where P(O) is a constant, only a3 

has non-zero integral over all space, and is responsible for the free 

induction signal of Equation (3.54). In powders there are no 

observables orthogonal to the initially prepared operator. I return to 

this point in Chapter VI. 

2. Half-Integer Spins: I = 3/2, 5/2 

Kramer's theorem (which will be introduced and explained more 
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rigorously in Chapter VII) states that each energy level of a zero 

field Hamiltonian with half-integral spin must be at least doubly 

degenerate. An isolated spin i nucleus has 21+1 eigenstates but because 

of this degeneracy there are no more than (21+1)/2 distinct energy 

levels. If each energy level were coupled to all others, the number of 

lines which would be expected to be observed (ignoring the inevitable 

line at zero frequency which corresponds to coupling between degenerate 

pairs of eigenstates) would be (21+1)(21-1)/8 = (412-1)/8. Generally 

far fewer lines are observed. In contrast to the integer spin, the 

Hamiltonian of a half-integer spin nucleus consists of two non­

commuting pieces. The asymmetry parameter ~ couples only eigenstates 

with vastly differing quadrupolar energies and perturbs their energies 

only to second order in perturbation theory. In the basis set where 

lzM is a good quantum number, corrections to the zeroth order 

eigenstates are small. Particularly for small values of ~, but even 

for larger values, the eigenstates of the quadrupolar Hamiltonian can 

be identified as being almost eigenstates of 11zMI. Were lzM a 

rigorously good quantum number, then in the molecular frame the dipole 

selection rule 

~~ = ±l (3.60) 

would hold and only 1-1/2 distinct non-zero frequency lines can be 

observed by the experimental scheme developed in this chapter. Even 

where the asymmetry parameter ~ breaks this selection rule, the 

amplitudes of the "forbidden" lines are small and they are rarely 

observed. 82 

The spectrum observed in high field is generally not the entire 
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powder pattern but instead only that portion which is unshifted to 

first order by the quadrupole coupling (for spin systems where the 

second order quadrupo1ar broadening in not too severe. For other 

systems, no high field technique is well suited and only zero field 

methods with direction detection in low field, or with indirect 

detection via level crossings are applicable.) As long as some portion 

of the high field powder pattern is uniformly observed, it can be shown 

(see Appendix A) that the intensities of the zero field spectra are 

uniformly scaled by the detection sequence. Calculation of the 

spectrum in this chapter will therefore be based on the assumption of 

uniform and, implicitly, complete detection. 

The simplest case is for I = 3/2. By either of the counting 

schemes outlined above, only a single non-zero line can be observed and 

the two components of the electric field gradient tensor cannot be 

individually determined. On the other hand, each unique line must 

correspond to a unique site. Performing the calculation indicated in 

Section III.B, the zero field free induction decay is 

G(t1) 1 
2coswQt1) - (3 + 

5 
(3.61) 

with 

2 

J 
e qQ 1 

1 2 
w

Q ~2fl +-'1 3 
(3.62) 

The existence of only a single nonzero frequency line is from the 

counting arguments discussed above. It is less obvious that the 

relative intensities of the nonevo1ving and evolving components should 

also be independent of e 2qQ and '1. It can be shown, independent of the 

size of '1, that this is generally true. 
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An illustration of the zero field NQR spectrum of a system of 

spin-3/2 nuclei is shown in Figure 3.8, in the 7Li spectrum of 

Li2S04 ·H20. Diffraction studies reveal two sites, and they are clearly 

resolved in the zero field spectrum at frequencies consistent with the 

values of e 2qQ and ~ derived from high field single crystal studies of 

the same compound. 83 The broad lines are presumably due to dipolar 

couplings to lH nuclei in nearby H20 molecules and should be 

considerably narrowed by replacement of the lH atoms with 2D.84 

For I = 5/2 no closed form solution to ~he eigenvalue equation 

can be given. For any given value of ~,the eigenvalue equation can be 

reduced to a pair of identical cubic equations which can be solved 

analytically. Tables of the eigenvalues for spin-5/2 nuclei in zero 

field have been given;82 most often, the eigenvalue equation is given 

as an expansion in~. For ~ = 0 and where IzM is a good quantum 

number, the form of the zero field signal is 

for 

2 
3e qQ 
l~ 

(3.63) 

(3.64) 

Slightly more than half of the magnetization fails to evolve (either 

because it originally corresponds to IzM or because it corresponds to 

matrix elements of IxM or IyM which couple degenerate eigenstates). Of 

the rest, nearly twice as much evolves in the coherence associated with 

the transitions 11/2> ~ 13/2> than at transitions of the form 

13/2> ~ 15/2>. Unlike the spin 3/2 case, and in common with all larger 

half-integer spin systems, as ~ grows both the spacing between lines 
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Figure 3.8. Zero field 7Li NQR spectrum of po1ycrysta11ine 

Li2S04 ·H20. The lithium zero field evolution was sampled at 10 ~s 

intervals for a total of 630 ~s. One line (in addition to non­

evolving signal which appears at zero frequency in the spectrum) 

is expected for each site and two such sites are resolved. The 

zero frequency line is partially truncated. 
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and their relative intensities will vary in a regular fashion. For 

I = 5/2 and larger values of ~, a third line may appear at the sum of 

the two "allowed" lines but even for ~ - 1 its amplitude is less than 

7% of that of either of the two other lines. Tables of dipole-allowed 

intensities and normalized frequencies as a function of ~ are given for 

I = 5/2, 7/2, and 9/2 elsewhere. 82 For I 5/2 and to order ~2, the 

transition frequencies arell 

3/2,5/2 w = 
2 

A (12 _ 22~ ) 
9 

(3.65) 

for the line between the states which for ~ - 0 can be associated with 

IIzMI = 3/2 and 5/2, and 

wl / 2 ,3/2 = A (6 
2 

+ 59~ ) 
9 

for the line between the 1/2 and 3/2 eigenstates. Where it is 

(3.66) 

observed, the transition frequency between the 1/2 and 5/2 eigenstates 

appears at the sum of these two frequencies. 

Figure 3.9 shows an example of a typical zero field NQR spectrum 

for I = 5/2. It shows the 27Al spectrum of polycrystalline potassium 

alum (KAl(S04)2·l2H20). Using Equations (3.65) and (3.66), the 

quadrupolar tensor elements e2qQ/h = 39l±2 kHz and ~ = .17±.05 can be 

derived. Presumably, the abundant lH nuclei in the lattice are 

responsible for the breadth of the observed spectral lines. 

.... 
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Figure 3.9. Zero field 27Al NQR spectrum of polycrystalline 

KAl(S04)2· l2H20 . Each distinct spin-S/2 nucleus has two zero 

field frequencies in addition to some non-evolving magnetization. 

Only one site is observed. 
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IV. Experimental Results: Dipolar Coupled Systems 

Both high and zero field NMR are sensitive to structure and 

geometry in disordered solids. The spectrum of the local nuclear spin 

Hamiltonians detailed in Section I.B reflect the crystalline or 

molecular characteristics which are the source of these Hamiltonians. 

In the presence of motion, NMR spectra are averaged in a fashion 

characteristic of the dynamic processes and an analysis of the spectrum 

may reveal these processes. High field magnetic resonance yields 

information whose fundamental content is identical to that of zero 

field spectra but whose analysis is considerably more difficult because 

of the superposition of orientational broadening on top of the useful 

structural information in the spectrum. Because the evolution of the 

nuclear spin systems is observed (ideally) in the absence of all 

perturbing fields (dc or rf) the only limitation on the observed 

1inewidths is that imposed by the nature of the spin system itself, 

rather than by orientationa1 broadening, field inhomogenetty, or 

saturation. The spectral 1inewidths correspond to the minimum allowed 

for that system (sample and T) and consistent with the Hamiltonians 

being observed. Multiple pulse sequences have the potential to modify 

the information content of zero field spectra,85-87 but no applications 

to zero field dipolar spectra have appeared. In this chapter and the 

next, what is intended is a critical review of the current experimental 

situation. 

Since an understanding of many of the results of this and 

subsequent chapters requires an appreciation of the effects of motion 

on nuclear spin interactions a brief review is given in Appendix B. 

, 
\ 
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More complete treatments using more sophisticated models are available 

throughout the literature of modern NMR. 88 The focus in this work has 

been not on a deep understanding of the dynamics themselves but rather 

on the interpretation of the spectra. Motional averaging will be 

discussed on an ad hoc basis and only where necessary. 

All spectra which appear in this thesis are of polycrystalline 

samples at room temperature. 

A. Two and Three Coupled Spin-l/2 Nuclei 

In Chapter III the simple case of two coupled spin-l/2 nuclei was 

discussed. Still, a number of minor but interesting points remain 

undiscussed. The gross features of Figure 3.2 (three lines of equal 

intensity) are explained by the exact treatment of the two-spin system. 

In this section, I confront some of the finer details which arise, for 

the most part, from the breakdown of the static two-spin model. In 

this chapter I hope to explore some of the current capabilities and 

limitations of the technique of zero field NMR. 

Two details in Figure 3.2 merit further discussion: 

contributions to the zero field linewidth (as the "high resolution" 

zero field NMR lines are still -4 kHz full width at half maximum and 

are significantly broader than would be acceptable in most other high 

resolution applications), and the low intensity absorption bands at 

roughly double the frequency of the main bands. (These latter are 

almost certainly not due to instrumental artifacts. While an obvious 

source for lines at multiples of some fundamental frequency is non­

linearity in the receiver section of the spectrometer, the relative 
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amplitudes of these lines show little or no dependence on the strength 

of the input signal.) 

1. Contributions to the Linewidth 

a. Residual Fields 

One possible source for contributions to the 1inewidths observed 

in zero field NMR spectra is the effect of residual dc fields. In 

routine operation the zero field region is shimmed using a Hall effect 

gaussmeter and the residual dc field is certainly less than 100 

mi11igauss. For isolated 1H nuclei, 100 mgauss corresponds to a Larmor 

frequency of -400 Hz. Dipole-dipole couplings in a solid truncate the 

Zeeman interaction just as the J coupling truncates the effects of 

residual fields in diethy1phosphite (Figure 3.6). The anisotropy of 

the dipole-dipole coupling introduces a directional dependence; 

additionally, the zero field spectrum must depend on whether the 

residual field is primarily parallel or perpendicular to the prepared 

magnetization. (In the limit of exceedingly large longitudinal fields 

HZ»H1oc ' there is no signal ina "zero field" experiment as the 

polarizing field is never turned off!) In Figure 4.1 the powder 

pattern 1ineshape is simulated for a pair of coupled spin-1/2 nuclei in 

the presence of small residual dc fields. The resulting Zeeman­

perturbed dipolar spectra bear no close resemblance to the experimental 

results of Figure 3.2 even for applied fields much larger than might 

actually be expected to be present. 

b. Other Dipole-dipole Couplings 

In any real solid, small numbers of spins are isolated only to 

the extent that the dipole-dipole couplings between clusters have not 

had sufficient time to act; roughly, for a time r such that 



Figure 4.1. Simulations of low field NMR spectra. The sample is 

assumed composed of two-spin 1H systems with r = 1.60 A. Spectra are 

calculated for transverse (a,c,e) and longitudinal (b,d,f) residual 

fields of: 

a, b). 0.35 gauss (1.5 kHz). 

c, d). 1.17 gauss (5.0 kHz). 

e. f). 2.34 gauss (10.0 kHz). 

The spectra are seen to broaden and acquire structure but none of these 

simulations closely reproduces the observed features. The residual 

fields are almost certainly smaller than 0.35 gauss. 
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IIHoccllr < 1 where IIHOccl1 is a "mean" dipole-dipole coupling 

constant characteristic of the distance between clusters. Oipo1e­

dipole couplings are zero only for two magnetic nuclei infinitely far 

apart. In most high field solid state techniques high resolution is 

achieved by causing the time-average of the dipole couplings to become 

vanishingly small and observing only those components of the total 

spin-Hamiltonian which survive the averaging process. 2 ,8 The approach 

in this work is instead to emphasize these couplings and at their full 

values. Where these mUlti-spin couplings are emphasized and no active 

effort is made to discriminate between large and small coup1ings,40 

"clusters" and thus well-resolved zero field dipole-dipole spectra may 

be observed only in carefully chosen real-world systems. 

Traditionally, 1inewidths in solids are expressed (and 

calculated) in terms of moments of the lineshape, where the nth moment 

of the 1ineshape is given by 

~(w - <w»n f(w)dw / ~ few) dw (4.1) 

and few) is the lineshape of the specific line or band of interest. 

The moments can be calculated from first principles and without 

reference to exact dynamical calculations or numerical diagona1ization 

of multi-spin Hami1tonians. 9 ,ll (Note that in this section I refer not 

to the more usual second moment of an entire high field spectrum 

referenced to its center at w = wO' the Larmor frequency, but rather to 

the second moment of an isolated line referenced to its center of 

gravity.) Several authors have treated the moments of the 1ineshapes 

for pure NQR 1ines. 66 ,84,89 Two coupled spin-1/2 nuclei closely 

resemble a spin-1 nucleus, and few modifications to the theories for 
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NQR 1inewidths are necessary to accomodate pairs of 1H nuclei. In an 

attempt to explain the observed zero field 1inewidth, the experimental 

moment of the spectral line at -42 kHz was calculated from the spectrum 

for comparison to theoretical results. The experimentally observed 

second moment is 

2 2 
~w > - (2.82 ±.OS kHz) (4.2) 

The 1H_1H dipole-dipole tensor trivially substitutes for the spin-1 

quadrupo1ar tensor. The only necessary modification to the theory for 

spin-1 nuclei is that only the contribution £rom 3/4 of the total 

number of crystalline H20 molecules is included. Two coupled spin-1/2 

nuclei comprise a four-level system. The triplet mainfo1d (3/4 of the 

total number of pairs) mimics a spin-1 three level system while the 

singlet (the other 1/4) corresponds to a nonmagnetic spin-O particle. 

In the theoretical calculation of ~w2> the numerical constants 

tabulated by Vega were used. 66 Based on the neutron diffraction 

data,90 all 1H_1H vectors in the unit cell are parallel. Using the 

single-crystal neutron diffraction coordinates, the theoretical second 

moment is 

(4.3) 

If the angle between the crystalline axis system and the internuclear 

vector is changed, the theoretical value takes on values as large as 

the observed but only for severe and improbable deviations from those 

of the diffraction study. Therefore other dipole-dipole couplings 

appear unlikely to explain the entire 1inewidth. More complicated 

calculations which might include not only the dipole-dipole couplings 



but also small residual fields might be attempted but were not. 

c. Dilution Studies 

In order to observe at higher resolution the line at 42 kHz, 
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samples of Ba(Cl03)2·H20 were recrystallized from D20 solution. In the 

recrystallization, most of the crystalline lH atoms were replaced by 2D 

atoms. This greatly reduces the dipole-dipole couplings between sites 

as the 2D quadrupolar tensor is known to have a large motionally­

induced asymmetry parameter at room temperature9l and couplings between 

integer spins with large ~ and half-integer spins are quenched in zero 

field66 ,84. Simultaneously, the number of lH_lH pairs decreases as the 

square of the percentage of residual lH nuclei in the lattice. lH_lH 

pairs within a single water molecule should still have nearly unchanged 

resonance frequencies. lH nuclei which share an oxygen atom with a 2D 

nucleus are coupled only much more weakly to far distant lH's and 

appear near zero frequency. Pairs of 2D nuclei are not expected to be 

observed in the lH spectrum. 

The second moment calculation suggests a significant percentage of 

the linewidth is due to unresolved couplings to other molecules in the 

lattice. This contribution to the linewidth decreases approximately 

linearly with the decrease in lH concentration. Figure 4.2 shows zero 

field NMR spectra observed as a function of the lH concentration. 

Removing IH from the lattice decreases the width of the lines in the 

spectrum of the residual pairs. As these lines narrow it becomes 

apparent (Figure 4.2c,d) that two distinct resonance frequencies were 

hidden beneath the single peak observed in the completely protonated 

form. (Whatever is happening to the spectral features of the line at 

zero frequency is unfortunately masked by the spectra of all the 
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Figure 4.2. IH zero field NMR spectra of 

partially deuterated Ba(C103)2·H20. 
1 a). 100% H. 

b). 60% IH. 

c). 31% 1H. 

d). 10% 1H. 
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unpaired sites, which is concentrated in a broad blob characteristic of 

the range of local fields in the crystal about zero frequency.) This 

splitting is similar to that expected for quadrupolar spin-l nuclei 

with an asymmetric tensor V. Residual fields, which cause the entire 

absorption pattern to broaden and move to higher frequencies, cannot be 

the source of this splitting. 

Motionally induced asymmetries in l3C_lH dipole-dipole 

couplings,92 in carboxylic aCids,93 and in hydrate crystals94 have 

previously been observed in high field. It is known from 2D NMR 

studies9l that the water molecules in this and many other hydrates 

execute jumps which interchange the two nuclear sites. If the flips 

occur rapidly, this sort of motion cannot be observed in pure NMR 

because the dipolar tensor is unaffected by the interchange of the two 

nuclear positions. The dipolar tensor is, however, modified if these 

flips are not precisely rotations by ~ but instead have a mean value of 

~. Small angle librations superposed on the flipping motion should be 

observable in the NMR spectrum. Section C of Appendix B treats the 

effect of small amplitude librations on quadrupolar tensors (relying on 

the presentation by Abragamll of the results of Bayer95 ). These 

results are equally relevant to the problem of two spins-l/2. Assuming 

the rather unphysical but eminently tractable picture that only rocking 

modes in the plane defined by the internuclear vector and normals to 

the bisector of the HOH bond are allowed, the motionally averaged zero 

field dipolar Hamiltonian <HD(t» is 

(4.4) 

where 
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(4.5) 

To first order in ~, the high frequency transitions are shifted by -~wD 

and -2~wD from the static value of 3wD/2. Solving for ~ and wD' 

.052 (4.6) 

and 

29.87 kHz (4.7) 

In terms of the mo1cu1ar parameters, 

.19 (4.8) 

and, corrected for the 1ibration, 

1.59 ±.01 A (4.9) 

in closer agreement with neutron diffraction resu1ts. 90 

d. Double Frequency Lines and More Water 

The high frequency lines at multiples of the fundamental dipolar 

frequency conclusive argue for the breakdown of either the zero field 

or two-spin approximations. Two coupled spins in zero field cannot 

support the observed energy splitting. It is we11_known51 ,71,96 that 

in low applied fields overtone lines at multiples of the fundamental 

absorption frequency are allowed. Figure 4.3 shows simulated low field 

spectra of Ba(C103)2·H20 as a function of the strength of the applied 

Zeeman field. At fields HZ - HD a rather complicated pattern is 

observed and for applied fields -2HD lines appear at roughly twice the 

Zeeman energy. For larger fields these lines grow progressively 

weaker. But no double-frequency lines are observed in the range of 



Figure 4.3. Low field NMR simulations, showing the transition from 

zero field spectrum to high field spectrum as a function of the applied 

field in two-spin system. The assumed spin system is two lH nuclei 

1.60 A apart (wD/2~ = 29.3 kHz). The magnetic field is assumed 

perpendicular to the magnetization so that precession occurs. a). 

2.94 gauss (12.5 kHz). b). 5.87 gauss (25 kHz). c). 11.74 gauss (50 

kHz). 

d). 23.5 gauss (100 kHz). e). 47.0 gauss (200 kHz). f). 93.9 gauss 

(400 kHz). In (d-f) the horizontal scale is changing. These 

simulations show the source and decay of the allowed transitions at 

twice the Larmor frequency in addition to the transformation of the 

zero field spectrum into the high field Pake pattern. 
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fields where the dipolar spectrum is still sharp. 

In dilution studies of Ba(C103)2·H20 the double frequency lines 

disappear, which suggest that near-neighbors are involved. Simulations 

of small numbers of interacting pairs (~ 3) fail to reproduce these 

features. For many more than six interacting spin-1/2 nuclei, an exact 

calculation of the spectrum using the formalism of Section III.B is 

difficult. 

Even allowing for an enlarged nuclear spin system the double 

frequency lines remain mysterious. For pairs of pairs, lines at this 

frequency appear at vanishingly small intensities if the prepared and 

detected operator is I zL . The amplitudes of these lines vary with 

changes in an as-yet unidentified variable. Figure 4.4 shows two 

spectra of Ba(C103)2·H20 taken with all routinely set experimental 

parameters identical and separated in time by two days. In the first 

spectrum, the amplitude of the high frequency satellite lines is -5% 

that of the main lines; in the second, nearly zero. Often, these high 

frequency lines appear badly phased with respect to the main lines in 

the spectrum. 

All of these observations are consistent with the possible 

preparation and detection of interpair dipolar order created at some 

point in the field cycle and detected in high field. Dipolar order 

between two pairs has been observed in high field studies of gypsum, 

caso4·2H20.97 The amount of such order prepared during the field cycle 

might depend on factors which are not routinely well-regulated, such as 

the precise rate of demagnetization. Were such a state prepared before 

the field Bint is quenched it would evolve at the observed frequencies. 

Transported back to high field, this type of dipolar order can be 
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Figure 4.4. lH zero field NMR spectra of polycrystalline 

Ba(Cl03)2·H20. All experimental parameters which the 

experimentalist routinely sets were identical. In a) little 

evidence appears of the double frequency lines. In b), these 

lines are of relatively large amplitude. 
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converted into an observable by any pair of pulses and would appear in 

quadrature with the signals due to the evolution of Zeeman order. This 

may serve as a warning as to the complexity of the demagnetization 

process in systems of discrete energy levels and where the spin 

temperature hypothesis does not hold. 

Other two spin systems exhibit spectra similar to that of 

Ba(C103)2·H20. Two spin systems differ from one another only to the 

extent that they really are two spin systems and therefore to the 

extent that the ideal three-line spectrum is broadened and ultimately 

split by dipolar couplings to other magnetic nuclei. In Figure 4.5, 

two zero field NMR spectra of other two spin systems are shown. The 

spectrum of the first (K2C204 ·H20) is nearly indistinguishable from 

that of our model hydrate, Ba(C103)2·H20 and even reproduces the weak 

double frequency transitions. In other systems (Li2S04 ·H20 and 

CaC12 ·H20, shown in Figure 4.6) the ideal triplet is significantly 

broadened. Couplings to other high ~ nuclei (either the 7Li or other 

water molecules in the lattice) contribute to the linewidths. 

Nonetheless, these weaker interactions are insufficient to produce any 

radically new features. 

2. Beyond Water: the Methyl Group 

In search of new and different zero field NMR spectra, Figure 4.7 

shows a series of spectra of sodium acetate trihydrate. Each sample 

was recrystallized from D20 and the only lH nuclei in the sample are 

found in the methyl groups of the acetate anion. Despite this 

dilution, the zero field NMR spectrum of the network of -CH3 groups, 

whose spectrum is shown at the top of the figure, is basically 

unstructured. Couplings between methyl groups are strong and the 



a) 
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Figure 4.5. 1H zero field NMR spectra of po1ycrysta11ine a). 

K2C204 ·H20 and b). Li2S04 ·H20. In both the three-line spectrum is 

observed. In a). the spectrum is stiking1y similar to that bf 

Ba(C103)2·H20; even the double frequency lines are reproduced. In 

b). the lines are significantly broadened by nearby H20 sites and 

the 7Li spectrum. 
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Figure 4.6. High field and zero field 1H NMR spectra of 

po1ycrysta11ine CaC12 ·2H20, acquired after a two-pulse solid echo 

sequence. The high field Pake pattern is significantly broadened 

and the singularities ill-defined. The zero field lines are broad 

yet well-resolved. 
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Figure 4.7. Zero field NMR spectra of po1ycrysta11ine -CH3 group in 

sodium acetate (NaOAc.3D20) as a function of concentration of the -CH3 

groups. At top, the spectrum of the system with 100% -CH3 groups. 

Middle and bottom, -CH3 groups have been replaced by -CD3 groups. At 

low concentrations the spectrum shows the features characteristic of 

isolated methyl groups. Assuming rapid rotation about the C3 axis the 

splitting observed in the spectrum at bottom corresponds to 

<r3>-1/3 = 1.89 A. 
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system closely resembles a dense lattice of coupled spins (discussed in 

more detail below) rather than a collection of isolated groupings of 

three spins. Replacing a large percentage of the remaining lH's with 

2D previously was shown to greatly increase the resolution in zero 

field NMR. To avoid complications which might arise from mixtures of 

isomers (and because of the extremely small number of three spin 

systems found in a statistical distribution at low concentrations), 

three samples were recrystallized from solution as mixtures of 

NaOAc·3D20 containing only perdeuterated -CD3 and perprotonated -CH3 

groups. At low concentrations (-10% or less protons) the spectrum of 

the isolated methyl groups appears. It, like the spectrum of the 

dipolar coupled pair, consists of a triplet of lines. Unlike the two 

spin systems, most of the integrated intensity appears at zero 

frequency. 

Using the formalism of Chapter III and the results of Appendix B 

it is simple to numerically calculate the spectrum of the isolated -CH3 

group. In this section, I attempt less formalism if no less rigor. 

The simulation of the spectrum in the fast motion limit consists of two 

nearly distinct problems: first, the calculation of the eigenstates 

and energies of the zero field Hamiltonian, and second, a calculation 

of the relative intensities of the observed lines. First, the 

Hamiltonian: 

At high temperature the -CH3 group undergoes rapid rotation about 

its C3 axis and the zero field molecular frame will be referenced to 

this symmetry axis. (None of the conclusions which follow depend in 

any way on any assumptions about that motion except that it is rapid 

and that, over a time period comparable to the inverse of the dipolar 
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couplings, the methyl group rotational potential well is at least 

three-fold symmetric.) The Hamiltonian can be written 

(4.10) 

where all the rjk are assumed equal in length. HO can be expanded and 

wo defined as in Chapter I. Because of the assumption of rapid motion 

-about the molecular z axis, the averaged Hamiltonian <HO(t» is most 

readily calculated in an interaction frame where the spatial variables 

are changing with time. This is in contrast to the more familiar high 

field picture where the spin variables are accelerated with respect to 

the spatial and laboratory frames. (A somewhat more formal treatment is 

given in Appendix B.) In this accelerated frame of reference, and as 

long as the methyl group motion is rapid, the Hamiltonian observed in 

an NMR experiment is Equation (4.10) averaged over many periods of the 

rotation. This corresponds to truncating all terms in the Hamiltonian 

which do not commute with rotations about the axis of rotation, and if 

the spin Hamiltonian is expanded with its z-axis chosen as above 

The eigenstates of Heff are 

(4.12) 

and 
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(4.13) 

The bar over an eigenstate is a symbol I will occasionally use to 

indicate the inversion of all spin operators (i.e. la> is changed to 

\p> and vice versa). No particular significance can be attributed to 

any specific choice of eigenstates, as any linear combinations of 

degenerate levels are also eigenstates. Because of the rapid motion 

about the C3 axis, molecular quantum numbers J (the total angular 

momentum) and IMI (the projection of J on the quantization axis) can be 

defined and are good quantum numbers. Eigenstates 1~1>-1~4> comprise a 

quartet with J=3/2 which is functionally equivalent to a pseudospin-3/2 

particle. Eigenstates 1~5>-1~8> correspond to a pair of J = 1/2 two-

level systems and can be treated as two isolated pseudo spin-1/2 

- E 3 

o 

(4.14) 

(4.15) 

Formally, the normalized signal averaged over a powder distribution 

function is given by 

L Tr[I.I.] 
j=x,y,z J J 

(4.16) 

The operators I j are block-diagonal in the expectation values of J. 

The sums over'the traces can be separated into traces over each of the 

pseudo-particles, and 



~ (2Tr [Ij 1/2I j 1/2] + Tr [Ij3/2Ij3/2(t1)]} 

~ {2Tr [Ij1/2Ij1/2] + Tr [Ij3/2Ij3/2]} 
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(4.17) 

The zero field Hamiltonians H10c vanish for a spin-1/2 particle and 

magnetization associated with these two pseudo particles is 

nonevo1ving. Only I X3/ 2 and Iy3/2 contain off-diagonal matrix elements 

between nondegenerate states. All other operators are non-evolving. 

For the spin-1/2 submatrices, Tr [Ij1/2Ij1/2] = 1/2 and 

Tr [Iz3/2Iz3/2] - 5. For each of I X3/ 2 and Iy3/2' 

Substituting back into Equation (4.17), 

3 + 4 + 6 + 5 

(4.18) 

(4.19) 

In the frequency domain this produces a triplet of relative intensities 

1:4:1 and is closely reproduced by the spectrum of the most dilute 

system shown at the bottom of Figure 4.7. The observed dipole-dipole 

coupling corresponds to a 1H.1H distance of 1.89A. 

B. Heteronuclear Spin Systems 

The basic differences between hetero- and homonuclear spin 

systems have been covered in Chapter III. In this section, I present 

simulations of spectra for larger heteronuclear spin networks and 
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comment on the possible use of field-cycling NMR as a means for 

inducing polarization transfer from abundant, high 7 spins to lower 

sensitivity spin-l/2 nuclei. Some aspects of this problem were covered 

in detail in Section C of Chapter III. These are really the same 

problem because the magnetization function, Tr [SzP(tl)], and the 

spectrum, f(w), are a Fourier-conjugate pair. 

In Section III.C I showed that in an I-S pair tl might be chosen 

so that the final transfer of polarization from I to S spin is more 

efficient than by any other technique. The final value of the S spin 

magnetization is much larger than might be observed if the two spins 

were brought into equilibrium in high field via standard techniques 

like cross-polarization. 98 ,99 The complete undamped time evolution of 

the magnetization function for the I-S pair is shown in Figure 4.8a. 

This technique is not, unfortunately, of general utility. As the 

number of interacting spins becomes larger (Figures 4.8b,c,d), 

magnetization tends to wander rather more chaotically from site to 

site. Maxima in the function SzL(tl ) are not as well defined nor as 

dramatic as in larger spin systems. Where small numbers of spins are 

not well-isolated, couplings to other spins rapidly damp out the 

oscillations and the theoretical maxima may not be achieved. In the 

experiments illustrated in Figure 3.4 the maximum observed transfer of 

order to the l3C nuclei in l3C-calcium formate was -40% of the initial 

lH order. This is only about half the maximum predicted in Figure 

4.8a. Figures 4.9 and 4.10 illustrate the zero field spectra predicted 

for the other common spin groupings occurring in organic compounds, 

l3CH2 and a rapidly spinning l3cH3 . The spectra observed for Sz(O) = 0 

are in fact the Fourier transforms of the magnetization functions 



Figure 4.8. Simulated polarization transfer functions Sz(t1 ) for InS 

spin systems for I = 1H and S = 13C. In each simulation, the S spins 

are assumed initially depolarized. The y~axis is in units of the 

equilibrium 1H magnetization. a.)- c). Common groupings of spins in 

organic compounds. Realistic bond lengths (1.095 A) and angles 

(109.5 0
) are used. 

a). I-S dipole-dipole coupled pair. At its peak, Sz = .75. An 

equilibrium distribution would correspond to I z = Sz = .5. 

b). 13CH2 group. Peaks are well-defined but the maximum value (-.55) 

is somewhat less than equilibrium (.67). 
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Figure 4.9. Simulated zero field spectra of l3CH2 groups as a 

function of the high field initial condition. Tetrahedral bond 

angles and rC_H - 1.095 A assumed. The stick spectra are shown in 

the insets; superposed, spectrum convoluted with a 6 kHz 

Lorentzian line. For the initial condition where the 

magnetization is shared equally between sites, several of the 

allowed transitions have nearly vanishing intensity. 
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Figure 4.10. Simulated zero field spectra of rapidly spinning 

l3CH3 group as a function of high field initial condition. 

Tetrahedral bond angles and rC_H - 1.095 A assumed. The sticK 

spectra are shown in the insets; superposed, spectrum convoluted 

with a 6 kHz Lorentzian line. 
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plotted in Figure 4.8b and 4.8c and are calculated with the simulation 

program HETZF.FOR, which is similar to DBZINT.FOR but also accepts 

heteronuc1ear spins. 

A more general approach to the problem of transferring order from 

one spin species to a second in low field is to use the level-crossings 

described in Chapter II; or, in systems of spin-1/2 nuclei, adiabatic 

demagnetization. In a coupled spin system demagnetized to zero field, 

polarization stored in the I nuclei is transferred to the S nuclei 

consistent with equilibrium in the the untruncated Hamiltonian HD. As 

the remagnetization reestablishes Zeeman order, the magnetization 

stored in the S spins while in zero field remains there. 1l ,24 

c. More Complicated Spin Systems 

As the number of strongly coupled spins increases, the number of 

discrete transition frequencies present in the spectrum multiplies 

rapidly. A treatment based on considerations of symmetry will be given 

in Chapter VII. For the present, these comments aim to establish a 

framework for the understanding of subsequent zero field NMR spectra 

presented in this chapter. 

Depending upon which Hamiltonians dominate the spectrum, 

predictions about the numbers of lines expected from systems of coupled 

spin-l/2 nuclei vary greatly. In high field and if there are no 

couplings between spins, then N spins produce N transition frequencies, 

and each line is characteristic of the chemical shift a at a specific 

site. This situation is common in high field, high resolution dilute 

spin spectroscopy (often l3C). In the weak coupling limit (6a » J) 



134 

the energy levels of isolated spin-1/2 nuclei are split by the secular 

component of the J coupling (Equation (1.71» and each chemical shift 

line breaks up into a number of lines roughly equal to the number of 

near neighbors. There are certainly no more than N such neighbors and 

often far fewer. This is commonly the situation for IH high resolution 

NMR in liquids. A gross overestimate of the number of allowed lines is 

N2 . More often, the number of spectral lines increases only linearly 

with N. 

In strongly coupled spin systems, the eigenstates of the 

Hamiltonian can no longer be identified as belonging to a single spin 

but rather are characteristic of the system of N spins in concert. 

Excitation under an rf pulse corresponds to the flipping of a single 

spin and each eigenstate is excited simultaneously. In high field and 

the rotating frame where I z is a good quantum number a single pulse can 

only excite coherences where ~ = 1. This dipole selection rule for ~m 

can be manipulated so .that different values of ~m = n are 

excited. 100, 101 Fewer lines are observed in these higher order spectra 

and these lines are presumably more readily interpreted. In strongly 

coupled systems in high fie1d,102 

(2N)! for n ¢ 0 (4.20) (N+n)!(N-n)! 

where W is an upper bound to the number of allowed lines per order. 

As described in Section 4 of Chapter III, the zero field spectrum 

acquired by the sequence of Figure 3.1 is also the product of dipolar 

selection rules (although the alteration of these selection rules is 

one of the topics covered in Chapter VI). In the absence of uniaxial 

molecular motion (as in the CH3 group above) where zero field molecular 
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frame selection rules exist, or other unusual circumstances, all energy 

levels are coupled to all others by the three angular momentum 

operators. The number of eigenstates in an N spin-l/2 system is 2N; 

therefore, the maximum number of lines which might be expected to be 

observed is 

(4.21) 

As was shown by explicit calculation for I = 1 and will be generalized 

in Chapter VI, in a powder sample the only observables are proportional 

to those operators which appear in the pr~pared density operator p(O). 

For p(O) = I zL ' only a single oscillating component of the 

magnetization is detected and there is no distinction between positive 

and negative frequencies. To facilitate comparison to high field 

spectra, we have chosen in dipolar coupled spin systems to treat the 

real data set G(tl ) as if it were a complex function and a Fourier 

transformation yields a symmetrized spectrum f(w) = f(-w). Only half 

the lines enumerated in Equation (4.21) contain independent 

information. 

There is one coupling constant for each pair of nuclei in the sum 

of Equation (1.49), and only N(N-l)/2 couplings provide all available 

structural information. Even for small spin systems, the geometrical 

problem is grossly overdetermined as there are far more lines than 

couplings. If individual lines are not well-resolved because too many 

lines appear in the spectrum, this may prove to be a crippling 

difficulty which renders any analysis difficult or impossible. The 

technique of multiple quantum NMR is designed specifically to overcome 

this difficulty.103 



136 

Equation (4.21) overcounts the actual number of lines which 

appear in the spectrum if there are symmetries in the Hamiltonian. A 

more detailed treatment is given in Chapter VII. One symmetry 

operation in particular plays a sufficiently important role to be 

mentioned here. Time reversal symmetryl04,lOS has a profound effect on 

the spectra of systems where the total spin angular momentum is half­

integral. Time reversal symmetry guarantees that for N odd, all 

eigenstates are at least doubly degenerate. W is really equal to the 

number of coupled pairs of energy levels (rather than eigenstates). For 

N odd Equation (4.21) overcounts the number of allowed lines by a 

factor of four. (An additional line appears at zero frequency; as in 

half-integer quadrupolar nuclei, this corresponds to magnetization 

shared between degenerate pairs of eigenstates.) For strongly coupled 

spin systems in zero applied field, 

W N even 
(4.22) 

N odd 

In any case, for N ~ 4 the number of allowed transitions becomes 

large and lines corresponding to individual transitions are rare. 

Dipolar couplings to distant spins (for two lH nuclei loA apart the 

dipolar coupling constant is still - 100Hz) may fail to split lines but 

still contribute significantly to the linewidths. (The near-neighbors 

in Ba(Cl03)2·H20 are> 5 A away). Given a large number of inherently 

broad lines it is rare that any will be well resolved. Geometric 

information in larger spins networks will rarely be derived by solving 

for observed line frequencies and extracting the dipole-dipole 

couplings. Instead, this information is most conveniently derived by 
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computer simulation. 

1. Structure Determination: N = 4 

In this section, two examples of spectra of isolated groupings of 

four coupled lH nuclei will be shown. Distances within a "spin system" 

are, for the most part, short compared to the distances between "spin 

systems." The evolution in zero field is determined primarily by the 

near-range couplings, and if there are few enough of these couplings 

sufficient structure might be observed in the spectrum to characterize 

the configuration and geometry of these isolated groups. 

Figure 4.11 shows the zero field powder NMR spectrum of 1,2,3,4-

tetrachloronaphthalene bis(hexachlorocyclopentadiene) adduct. The high 

field spectrum was shown in Figure 2.1. To our knowledge, no structure 

determination has been performed on this compound. The geometric 

question of interest is the configuration of the lH nuclei situated 

about the central ring. These course details are readily modeled. 

Figure 4.12 shows spectra predicted to arise from six possible 

conformations. Only one of the predicted zero field spectra bears a 

close resemblance to the observed spectrum. 

A sketch of the molecular structure of di(J.'-hydrido) decacarbonyl 

triosmium «J.'-H)20s3(CO)10) is shown in Figure 4.l3a. (J.'-H)20s3(CO)10 

is a metal carbonyl cluster complex whose crystal structure has been .. 
studied both by single crystal neutron and x-ray diffraction. l06 Two 

molecules share one unit cell whose volume is -800 A3. The carbonyl 

groups contain only a negligible number of magnetic nuclei; neither are 

the heavy metal nuclei likely to complicate the observed spectrum. In 

zero field the more abundant magnetic isotope, l890s (I = 3/2), evolves 

independently of the spin-1/2 nuclei due to its large quadrupole 



Figure 4.11. Top: the molecule 1.2.3.4-tetrach1oronaphtha1ene 

bis(hexach1orocyc1opentadiene) adduct. The configuration of the four 

1H atoms about the central ring is unknown. All other ring positions 

are chlorinated. The high field spectrum of this compound is shown in 

Figure 2.1. 

Bottom: Zero field NMR spectrum. The sharp peak at zero frequency is 

truncated for purposes of display. The evolved zero field 

magnetization is sampled at 5 ~s intervals giving an effective zero 

field bandwidth of ±100 kHz. Only half that spectral width is shown. 

The magnetization is sampled once every minute. Twelve 256-point zero 

field FID's were summed and Fourier transformed to yield this spectrum. 

Figure 4.12. Simulated zero field spectra for six possible 

configurations of the 1H nuclei about the central ring in the molecule 

1,2,3,4-tetrach1oronaphtha1ene bis(hexach1orocyc1opentadiene) 

adduct. For clarity, only the configuration of the central ring is 

shown, to the left of the associated spectrum. For each configuration, 

the zero field spectrum is calculated, broadened to match the 

experimentally observed 1inewidths. and plotted. The simulation at 

bottom right closely resembles the observed spectrum (Figure 4.11). A 

C2 axis of symmetry which interconverts the two innermost (1 and 1') 

and two outermost (2 and 2') sites is assumed. Because of the assumed 

symmetry, only four distances characterize the simulation; 

r11' = 2.83 A; r12 = 2.22 A, r 12' = 4.34 A, and r22' = 5.01 A. 
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Os (CO)4 

Figure 4.13. Structure of (~-H)20s3(CO)10 in 

the solid state. Top: Approximate molecular 

geometry. Bottom: Simplified representations 

showing only the arrangement of the 1H atoms 

within a single unit cell. Positions 1 and 1/ 

and 2 and 2/ are related by an inversion 

center. 
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moment. The spin 1/2 isotope, 1870s, has a low magnetogyric ratio and 

appears at low natural abundance. 

The four 1H nuclei in one unit cell are relatively isolated from 

all other magnetic spins. The approximate arrangement of the four 1H 

nuclei is shown if Figure 4.13b. The spin lattice relaxation time T1 

for the 1H nuclei is long (z 1 minute) and there appears to be little 

motion which might complicate the interpretation of the spectrum. An 

early powder NMR study of the high field spectrum of this compound 

(shown in Figure 4.14) which assumed only two protons interacted 

strongly was unable to reproduce the observed spectrum. 107 Thus 

(~-H)20s3(CO)10 makes a good test case for the applicability of zero 

field NMR to the location of 1H nuclei in moderately large spin 

systems. 

Figure 4.15 (top) shows the experimentally obtained zero field 

NMR spectrum of (~-H)20s3(CO)10. The zero field spectrum proves 

unequivocally that the two-spin interpretation is incorrect. In 

comparison with the H20 spectra of section A, far too many features are 

resolved to allow for the possibility that the coupling between only 

two spins dominates the spectrum. To reasonably approximate the 

spectrum requires that the spin network be treated as (minimally) four 

interacting spins; i.e. considering both sets of 1H pairs in the unit 

cell. 

Figure 4.15 (bottom) shows a simulated zero field spectrum based 

on the neutron diffraction study done at low (110 K) temperature. 

While some similarities are evident, the match between the observed 

zero field NMR powder spectrum and that predicted by the coordinates of 

the diffraction study is not particularly good. Attempting to improve 



Figure 4.14. High field NMR spectra of po1ycrysta11ine 

(~-H)20s3(CO)10' Upper: Experimental spectrum obtained by solid echo 

sequence, with polarizing period between successive shots of 2 minutes. 

Center and below: computer simulations of the high field spectrum 

ignoring chemical shifts based on a "best fit" to the room temperature 

zero field NMR results (r11' = 2.81 A, r12 - 2.38 A, and r12' = 5.17 A) 
and the low temperature neutron diffraction data (r11' 2.94 A, 

r12 = 2.38 A, and r12' = 5.28 A). The simulations are convoluted with 

a Gaussian lineshape function to account for the finite number of 

orientations sampled in the simulations. 

Figure 4.15. Zero field NMR spectrum of polycrysta11ine 

(~-H)20s3(CO)10' Upper: Experimental spectrum. Eleven zero field 

FID's 256 points long were summed and Fourier transformed. The zero 

field signal was sampled at 5 ~s intervals; only half the full 

bandwidth is shown. Center and below: computer simulations of the 

zero field spectrum based on the distances given in Figure 4.14. The 

stick spectra of the simulations are broadened with a Lorentzian 

lineshape function of -2.8 kHz to more closely match the observed 

features. A sharp line at zero frequency has been truncated. 
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the fit, an iterative brute force three step process (simulation, plot, 

and comparison to the experimental results by the graduate student 

eyeball) was developed. Assuming that the equilibrium positions of the 

lH nuclei are consistent with the known inversion symmetry of the unit 

cell, all four lH nuclei lie in one plane, and only three distinct 

distances (rll" r12" and r12 in the notation of Figure 4.13) are 

independent. One of these distances serves as a scaling constant which 

determines only the absolute width of the zero field spectrum. The 

other two parameters determine the spectral appearance and were 

exhaustingly varied until an acceptable fit was achieved. (In 

practice, it was simpler to choose r12 and the angle between r12 and 

rll' as the two parameters.) Finally, the spectrum was scaled so that 

the strongest bands appeared at identical frequencies in the 

experimental and simulated spectra. Small variations in the remaining 

parameters lead to noticeable changes in the shape of the spectral 

bands, as is shown in Figure 4.16. In favorable cases, distances 

derived from zero field NMR experiments appear reliable to -.o2A, even 

in larger spin systems where individual lines may not be resolved. 

Small deviations remain between the observed and calculated 

spectra even for the four-spin geometry which gives the "best fit" 

within the assumed constraints. One disturbing element is that there 

are comparatively short inter-IH contacts between 2 and 2' sites in 

different unit cells; in fact, shorter than the 2-2' distance within a 

given cell. This may call into question the appropriateness of 

considering only a four-spin network rather than eight, twelve, or 

Avogadro's number. Practical constraints on computer memory make it 

infeasible to model larger (>8) spin networks. In cases such as this, 



Figure 4.16. Simulations of the zero field NMR spectrum of 

polycrystalline (~-H)20s3(CO)10' e) corresponds to Simulation A of 

Figure 4.15 with slightly less broadening (-2.6 kHz). By columns, r12 

varies by -0.03, 0.00, and +0.03 A from that of simulation e). By 

rows, the angle between rll' and r12 varies by _5°, 0°, +5° from that 

of simulation e). 
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it should also be unnecessary. The assumed Lorentzian linewidth of 2.8 

kHz is much broader than whatever additional features might be 

introduced by a new coupling constant wD/2~-700Hz. More importantly 

(and generally), the effect of an isolated spin at a distance r is very 

different from that of a cluster whose closest approach is r. In the 

former case, the main interaction of the isolated spin is with the 

nearby cluster. In the latter case, the main interaction is with its 

nearest neighbors, and the dipole-dipole coupling to nearby spins will 

partially truncate the interactions with more distant neighbors. 

2. Comparison of Zero and High Field NMR in Model Systems 

Figures 4.17 and 4.18 show the simulated zero and high field NMR 

spectra for ten model groupings of identical nuclear spins (all 

chemical shifts equal and chosen equal to zero). The zero field 

spectra are calculated using the program DBZINT.FOR (largely written by 

Dr. James B. Murdoch). The simulated powder patterns were calculated 

using the program PAT6.FOR. The powder patterns are calculated by 

formulating HD as in DBZINT.FOR and performing a numerical truncation 

by adding on a large Zeeman interaction. In order to simulate the 

powder, the effective field is applied over a large number of 

directions relative to the arbitrarily chosen "molecular frame". The 

number of orientations depends primarily on the patience of the 

programmer and the expense of computer time, and ranged from -14400 

(for the 3 spin systems) to 400 (for the six spin systems). The 

spectrum for each orientation is summed with all others, and the 

resulting powder pattern convoluted with a Gaussian 1ineshape to 

account for "residual couplings" and all unsampled orientations. 

Although a Lorentzian more accurately reproduces observed zero field 



Figures 4.17, 4.18. Calculated high field and zero field NMR spectra 

for systems of small numbers of static, equivalent coupled lH spins and 

for a variety of geometries as illustrated. Internuclear distances 

were chosen so that all the spectra appear to fit in the same frequency 

range. The base distance is that of the two-spin Pake pattern where 

rij = 1.60 A. Each of the high field spectra is calculated by summing 

the simulated spectra over a large number of orientations of the spin 

system in an externally applied field (varying from as many as 14,400 

orientations for the three-spin systems to as few as 400 for the six­

spin systems. The resulting spectra (see insets) .are then convoluted 

with a Gaussian lineshape to account for the finite sampling intervals 

and the effects of all other spins. The zero field spectra are 

calculated using the procedure indicated in Chapter III. The delta 

function simulations (the insets) are convoluted with the same Gaussian 

as the high field spectra for comparison, although a Lorentzian line 

seems to more accurately reproduce experimental results. In most of 

the odd-spin systems, a sharp zero frequency peak has been truncated in 

the unbroadened spectra; occasionally, in the broadened spectra as 

well. 
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1ineshapes, the same Gaussian 1ineshape was used to broaden the zero 

field spectra so these figures are a worst-case estimate of the 

resolution advantage of zero field NMR for the observation of dipo1e­

dipole couplings in solids. In all systems the zero field spectrum is 

more structured, but for large N neither spectrum need contain many 

resolved features. 

3. Zero Field NMR for N ~ Avogadro's Number 

As the number of coupled spins grows large, the zero field 

spectrum rapidly becomes too complex to be modeled exactly. Exact 

dynamical approaches require that a density matrix with _22N matrix 

elements, and corresponding angular momentum operators of equivalent 

size, be multiplied, diagonalized, and otherwise manipulated. Even for 

relatively large machines, for N > 10 it will be impossible for the 

program to remain core-resident and execution times will become 

intolerably long. Moreover, it is in precisely these cases that the 

result of an exact spectral simulation are least meaningful. For these 

large N systems, the spectrum merges slowly into a broad, continuous 

absorption band where individual dipole-dipole couplings are 

unmeasureable and only a statistical model of the lattice as a whole 

can be extracted. 

The model for zero field NMR lineshapes in dense spin-l/2 systems 

is due to Kubo and Toyabe. 96 For dipolar fields which are stationary, 

Gaussian, and Markoffian a simple form can be derived for the decay of 

an initial polarization. In zero field, these assumptions lead to a 

polarization function 



12212 2 3 [1 + 2(1 - A t 1 )(exp(- 2A t 1)] 
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(4.23) 

where A2 is one half of the second moment of the resonance line. This 

polarization decay function is identical to PL(t1) if PL(O) = I z . The 

Fourier transform of this decay function is shown in Figure 4.19, along 

with the same decay function multiplied by a Lorentzian decay to 

account for finite T1 . This theory has found its primary application 

to the analysis of muon polarization dec~y.108 Further modifications 

can be introd~ced account for motional effects109 but these corrections 

are not large. The Kubo-Toyabe form provides a convenient model for 

comparison to experimental results in densely coupled lattices. Even 

in sparse spin systems, the prediction that 1/3 of the total 

magnetization fails to evolve corresponds closely to what is observed. 

Figure 4.20 shows the zero field spectrum of squaric acid. 110 

This system does not strictly satisfy the conditions of the Kubo-Toyabe 

model. The magnetic nuclei in squaric acid correspond more closely to 

a linear distribution than to the isotropic distribution assumed in the 

model. Nonetheless, the general shape of the spectrum is similar to 

that predicted in the statistical approach. 

Figure 4.21 is the zero field NMR spectrum of lauric acid 

(CH3(CH2)10COOH). The proton zero field spectrum at natural abundance 

(Figure 4.19a) is broad and virtually featureless, and characteristic 

of most "off-the-shelf" organic compounds. An attempt was made to 

increase the resolution by observation of the residual 1H nuclei in a 

highly enriched randomly deuterated samples (>90% 2D) of lauric acid 

(Figures 4.19b,c). While the spectrum is considerably narrowed little 

structure other than that predicted in Equation (4.23) is resolved. 



a) 

b) 

c) 

-40 -~ 0 ~ 40 

Frequency (kHz) 
Figure 4.19. Fourier transform "spectrum" of the Kubo-Toyabe 

magnetization decay function (Equation (4.23», with h,2 -,3900 Hz2. 

a). With no Lorentzian decay superposed; central line is truncated. 

b). With 2 kHz Lorentzian decay superposed; central line is 

truncated. c). With 4 kHz Lorentzian decay superposed. 
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Figure 4.20. 
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XBL B53-1571 

Zero field lH NMR spectrum of polycrystalline 

squaric acid. The flat wings and sharp central spike correspond 

closely to the spectrum of Figure 4.l9c. 
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Figure 4.21. Zero field 1H NMR spectra of po1ycrysta11ine lauric acid 

(CH3(CH2)10COOH). a). Spectrum of completely protonated material. 

Sharp features centered at zero frequency are distorted due to 

truncation of the decay function. b). Spectrum of 93% randomly 

deuterated lauric acid. Relatively sharp peaks at -±35 kHz may be due 

to residual pairs. Continuing to replace residual 1H,s by 2D,s results 

in c). Spectrum of > 96% deuterated randomly deuterated lauric acid and 

little improvement in resolution. 
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Figures 4.22-4.24 show the zero field spectra of amorphous Si:H, 

>90% randomly deuterated palmitic acid, and l,4-dimethoxybenzene 

(CH2DOC6D40CH2D). In each sample, the magnetic spin-1/2 nuclei are 

reasonably dilute and reasonably uniformly distributed throughout the 

sample volume. Each resembles the spectrum of the Kubo-Toyabe theory, 

with a broad, occasionally structured central band. In addition, and 

at much lower intensity, absorption lines appear at relatively higher 

frequency which may be due to small numbers of strongly coupled pairs 

or triplets. At extremely high dilution (>99% 2D) these sharper 

features might begin to dominate the spectrum (but at significantly 

lowered signa1-to-noise). 



a) 

b) 

c) 

-80 a 
Frequency 

aSi:H 

80 

(kHz) 
Figure 4.22. lH NMR spectra of materials-grade amorphous 

silicon hydride. a). High field spectrum after solid echo 

sequence. 

b). Zero field spectrum. c). Zero field spectrum X 6. Broad, 

low intensity lines at -45 kHz are presumably due to tightly bound 

species. 
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50 

(kHz) 
Figure 4.23. a). 1H zero field NMR spectrum of >90% randomly 

deuterated palmitic acid (CH3(CH2)14COOH), closely matc~ing the 

Kubo-Toyabe form. b). The same spectrum X16. Small peaks at - 30 

kHz may be due to isolated pairs. 
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b) 

-80 o 
Frequency (kHz) 

Figure 4.24. a). 1H zero field NMR spectrum of d6-

80 

dimethoxybenzene (CH2DOC6H40CH2D). The spectrum appears much like 

the Kubo-Toyabe form, although the observed structure at ±lS kHz 

probably reflects the pair-wise dipole-dip1e couplings within the 

methyl group, instead. 
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V. Experimental Results: Quadrupo1ar Spin Systems 

The interactions between the local electric field gradients and 

quadrupo1ar moments of nuclear spin systems with I ~ 1 often give a 

more detailed picture of the local electronic environment than do the 

chemical shifts observed in the same systems. Yet the chemical shifts 

are far more frequently measured. In no small part, this is because 

experimental techniques for the sensitive and accurate measurment of 

quadrupo1ar couplings are less well developed. 

A. Comparison of Chemical Shifts and Quadrupolar Couplings 

As a comparison of the chemical sensitivity of chemical shifts 

and quadrupo1ar couplings, Figures 5.1 and 5.2 show experimental 27A1 

MASS and zero field NQR spectra of two inorganic aluminum salts, 

potassium and ammonium alum (KA1(S04)2·12H20 and (NH4)A1(S04)2·12H20). 

The high field (7.05 Tes1a) MASS spectra were graciously provided by 

Dr. Steven W. Sinton of the Exxon Corporation. The high resolution, 

high field spectra of these two compounds are essentially identical. 

Isotropic shifts in these two compounds are nearly the same and the 

chemical shift is insufficiently sensitive to distinguish between the 

two. In the MASS spectrum of a mixture of the two salts, only a single 

main line appears. This is a common limitation of high field studies 

of 27 A1. MASS studies of 27 A1 reve'a1 the isotropic chemical shifts 

only where the second order quadrupo1ar broadening (and thus the 

quadrupo1ar coupling itself) is small. Except in rare cases and at 

very high fie1ds110 the chemical shift differences between similarly 



Figure 5.1. From top to bottom: 27Al magic angle sample spinning 

(MASS) NMR spectra of potassium alum (KA1(S04)2·12H20), ammonium alum 

(NH4Al(S04)2·12H20), and a 1.3:1 mole ratio mix of the two. Spectra 

are observed at 78.2 MHz with a spinning speed of 4 kHz. Chemical 

shifts are referenced to A1(H20)~+. 

Figure 5.2. From top to bottom: 27Al zero field NQR spectra. Each 

site conributes two lines to the zero field spectrum. For potassium 

alum, e2qQ/h = 391±2 kHz; for ammonium alum, e2qQ/h = 438±2 kHz. In 

each compound ~ = O.17±.OS. The pair of high frequency lines in the 

spectrum at bottom clearly indicates the presence of two distinct 

sites. 

163 



164 

Magic Angle Spinning NMR 

Potassium Alum 

Ammonium Alum 

Mixed Alums 

I I I I I I 
60 30 0 -30 -60 -90 

ppm 

XBL 844-1461 
Figure 5.1 
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coordinated aluminum sites are too small to be resolved. Only the 

difference between tetrahedral (at -60 ppm from the chemical shift 

reference, AI(H20)~+) and octahedral coordination (-0 ppm) is routinely 

resolved. lll 

Figure 5.2 shows the zero field spectra of these same two 

compounds obtained by the experimental technique described in Chapter 

III. In the pure NQR spectrum and for I = 5/2, two lines are predicted 

for each type of site, and the predicted pair is indeed observed for 

each pure compound. Even though the zero field resonance lines are 

broad, the mixture at bottom certainly contains at least two chemically 

distinct aluminum nuclei. The broader peaks at -50 kHz merge into a 

single line in the spectrum of the mix, but the pair of lines at high 

frequency remain distinct and clearly indicate the presence of two 

identifiable components. 

Because both the chemical shift and quadrupolar contributions to 

the nuclear spin Hamiltonian result from interactions of the nucleus 

with the surrounding electron cloud (rather than with other magnetic 

nuclei like the dipole-dipole coupling) spectra dominated by these 

single-spin interactions are more simply interpreted than those which 

primarily reflect the correlations between multiple spins. Spectral 

lines in quadrupolar systems are generally associated with specific 

crystalline or molecular sites. The assignment of lines is often 

automatic because sum rules relate the frequencies of the allowed 

transitions at a given site. This is in contrast to the dipole-dipole 

coupled systems presented in Chapter IV where modeling the interactions 

of more than two or three spins requires a computer modeling. The high 
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resolution achieved in 20 Fourier transform NQR spectra, the 

observation of dipole-dipole couplings between sites is routine. As 

they appear only as a perturbation to the main Hamiltonian, the rate of 

increase in the number of lines is far slower than in systems where the 

dipole-dipole coupling dominates the spectrum. 

The existence of small couplings between chemically 

distinguishable sites is analogous to the common "weak-coupling" limit 

in liquid state high resolution NMR, and suggests possible two­

dimensional applications of time-domain NQR to the problems of 

structure determination and crystallography in disordered solids. 

Oouble-transition spectroscopy69a,112 in 20 NQR is a frequency domain 

approach. Some time-domain experiments with the same goal are 

described in Chapter VI. 

The rest of this chapter will focus on studies of spin I systems-­

specifically, 20--where field cycling Fourier transform zero field NQR 

is most powerful and generally applicable. The local fields 

characteristic of quadrupolar spin systems are generally larger than is 

pure spin-I/2 networks and necessitate the use of switched fields 

larger than are required to satisfy the high field condition in systems 

of dipole-dipole coupled spins. All experiments in this chapter used 

switched fields of -300 gauss (three times larger than was used in 

obtaining the spectra of dipolar coupled systems shown in Chapter IV). 

B. High field NMR of Deuterium 

High field quadrupole perturbed NMR studies of integer spin 

nuclei (realistically, 2D and occasionally 14N) are among the most 
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demanding of solid state experiments. The sensitivity of 2D NMR to 

dynamical processes in molecules has accelerated the development of new 

techniques for efficient broadband excitationl13 and interpretation of 

the observed spectra. 114 Even in highly enriched samples high quality 

high field spectra are far from routine: its magnetogyric ratio is low, 

the quadrupole moment results in high field spectra often 250 kHz wide, 

and relaxation times may be inconveniently long. Magic angle spinning 

of integer spin nuclei requires extremely careful adjustment of the 

spinning axis1l5 and the range of isotropic shifts is small. While 

cross polarization revolutionized high fie1d'NMR of low ~ spin-1/2 

nuclei it is not generally applicable to quadrupo1ar nuclei. Even with 

high power rf transmitters (-1 kwatt) experimentally observed spectra 

are distorted by incomplete excitation of the entire powder pattern. 116 

This may be particularly serious if the derivation of important 

information depends on a comparison of the observed 1ineshape function 

f(w) to that predicted by a particular model. 

For comparison to the zero field spectra of the remainder of this 

chapter, Figures 5.3-5.5 show high field powder spectra of four of the 

perdeuterated compounds to be discussed in this and the next chapter. 

All spectra were acquired using the 5-pu1se low power composite 

quadrupolar echo sequence introduced by Levittl13 (-200 watts of rf 

power and 5.0 ps 900 pulses) and phase cycling. The spectrometer data 

acquisition system (see Chapter VIII) is incapable of sampling the FID 

at the required rate (> 300 kHz). The bandwidth of the spectrometer 

was artificially doubled by accumulating two transients in succession 

with their sampling periods offset by one-half of a sampling period. 

These two FID's were subsequently interwoven to provide a single data 
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set with an effective sampling rate twice that of either data set 

individually. Prior to Fourier transformation the out-of-phase 

component of the detected magnetization was zeroed to eliminate 

contributions from non-echoed signa1sl16 and to facilitate comparison 

to the zero field spectra where a similar procedure is routine. 

Figure 5.3 shows high field spectra of perdeuterated 

1,4-dimethoxybenzene (DMB) and 1,4-dimethy1terephtha1ate (DMT). In 

both compounds, only high field signals from the -CD3 groups are 

observed. T1 relaxation times differ greatly between the methyl group 

and sites on the aromatic ring. Even when the spins are allowed to 

polarize for several minutes between successive shots, little 

additional signal is observed. The ratio of the integrated signals 

arising from the ring sites to that of the methyl groups is much less 

than the stoichiometric ratio of 3:2. Moreover, whatever ring site 

signal exists is spread over a frequency range more than three times as 

large. 

Figure 5.4 shows high field spectra of perdeuterated 

1,8-dimethy1naptha1ene. From top to bottom I illustrate the effect of 

the length of the high field polarization period on the observed 

spectrum. For very short polarization periods (-200 ms) only signal 

from the -CD3 groups is observed. At longer times, signals from the 

aromatic ring sites begin to grow but at different rates. (There is 

also evidence for anisotropic relaxation within the -CD3 group. For 

very short times the central singularities in the Pake pattern are less 

pronounced than at longer times.) Finally, for polarization periods as 

long as minutes little additional signal is observed. 

The spectrum of perdeuterated lauric acid (CD3(CD2)10COOD) in 
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Figure 5.3. High field 2D powder pattern spectra. The 5-pulse 

quadrupo1ar echo sequence {(~/2)0(~)~(~/2)0(3~/4)~(~/4)0 replaces each 

of the ~/2 pulses of the normal quadrupolar echo sequence) is applied 
I 

and the echo sampled until no signal dan be observed. Rf pulse 

strength was wl/2~ 50 kHz and the dephasing period 'T between sets of 

pulses was 30 J1.S. a). Spectrum of perdeuterated 1,4-dimethoxybenzene 

(DMB). Spectrum is result of 1034 sc~ns with 30 s between scans. 

b). Spectrum of perdeuterated 1,4-dimethylterephthalate (DMT). 

Spectrum is the result of 800 scans with 10 s between scans. No 

additional signals were observed with recycle rates as long as 2 m. 
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Frequency (kHz) 
Figure 5.4. High field 2D powder pattern spectra of perdeuterated 

l,8-dimethylnaphthalene (DMN) acquired with the five-pulse 

quadrupolar echo sequence, as a function of the polarization 

period between scans. 

a). 200 ms/shot, 1710 shots. b). 3 slshot, 616 shots. 

c). 6 slshot, 2000 shots. d). 15 slshot, 1436 shots. 

172 



173 

Figure 5.5 shows a similar progression. For short times, only signal 

from the methyl groups is observed. At longer times, the deuterons on 

the alkane chain contribute more and more significantly to the overall 

intensity of the signal. These spectra illustrate some of the 

difficulties associated with high field NMR studies of 2D. In none of 

the experimental spectra of these samples is the entire powder pattern 

corresponding to the static sites be observed. 

c. Zero field NQR of Deuterium 

These technical difficulties associated with high field NMR of 2D 

make zero field NQR studies attractive. Instead of a powder pattern 

hundreds of kilohertz wide, all of the magnetization which evolves in 

zero field is concentrated in a small number of lines which can be 

individually as narrow as -100 Hz. All the signal energy is 

concentrated in a comparatively small bandwidth. Because the signal­

to-noise ratio is generally referenced to a unit bandwidth, this 

provides a significant signal-to-noise advantage in the zero field 

experiment which may more than compensate for the disadvantage of 

having to observe the evolving magnetization indirectly in a point-by­

point manner. The high field spectra of Figures 5.3-5.5 and the zero 

field spectra which follow are acquired in comparable amounts of time. 

Many of the most powerful applications of 2D NMR spectroscopy are 

in systems which are motionally averaged and it is the dynamic process 

itself which is interesting. 117 In this chapter, only systems which 

are static or where the motion is rapid will appear and the results of 

Appendix B will generally be adequate for an interpretation of the 
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Figure 5.5. High field 20 powder pattern spectra of perdeuterated 

lauric acid (C03 (C02)10COOO) acquired with the five-pulse quadrupolar 

echo sequence, as a function of the polarization period between scans. 

a). 200 ms/shot, 6454 shots. 

b). 1 s/shot, 4324 shots. 

c). 15 s/shot, 1146 shots. 

d). 1 m/shot, 444 shots. 

l74a 
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experimental results which follow. 

In Section III.C the zero field free induction decay for an 

isolated spin-l nucleus evolving under HQ was shown to be (in slightly 

different form) 

(5.1) 

where for I ~ 1, A = e2qQ/4~. Each isolated deuteron contributes three 

lines of equal intensity to the zero field spectrum. The principle 

axis of the quadrupolar tensor eQ = Vzz often lies along the bond axis 

and the electron cloud distribution in c~o bonds is nearly 

cylindrically symmetric about that axis. 57a In the absence of motion, 

~ is generally small. In deuterated systems, one line generally 

appears at a very low frequency and the other two at higher 

frequencies. For static c-o bonds, typical values are A S 50 kHz and 

~ S .1. Two lines are predicted to appear near or below 150 kHz and 

the third at somewhat less than 10 kHz. (Following the convention 

established in other pure NQR studies, all zero field quadrupolar 

spectra are presented with positive frequencies only displayed.) 

If at least two of the three lines can be assigned to a 

particular site, then the field gradient parameters A and ~ are 

determined. Observation of the third, low frequency lines becomes 

important when the sample contains multiple sites. Pairs of high 

frequency v_, v+ lines are identified if a third line can be found at 

the difference frequency 

(5.2) 

The Vo lines are rarely accessible in any 20 level-crossing experiments 
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because they appear well within the band of direct 1H dipolar 

absorption. When strong couplings (wD = ~A) exist between sites with 

similar values of their quadrupo1ar tensors, then the spectral pattern 

may require a detailed and presumably iterative simulation. Dipolar 

structure between spin-1 nuclei in zero field NQR spectra have 

previously been observed and explained in N2 , -ND2 , and D20 

groups.69,l18,l19 

The 2D spectrum of perdeuterated dimethy1terephtha1ate (DMT) in 

Figure 5.6 illustrates many of the general features of zero field 2D 

NQR. The intense band at -38 kHz is assignable to the methyl groups. 

The treatment of rapid rotation given in Appendix B explains why the 

-CD3 group appears at this relatively low frequency. Assuming the 

methyl group configuration is nearly tetrahedral, Equation (B.3) 

applies with 9 the complement of the tetrahedral angle, or 9 = 70.50
. 

The principle component of the quadrupo1ar tensor Vzz is averaged to 

the value 

1 2 
VZZ - 2 (3cos 9 - 1) Vzz = -.33 (5.3) 

where Z is the principal axis of the motiona11y averaged tensor <V(t» 

and 9 is the angle between the axis of rotation and the C-D bond. The 

experimentally observed quadrupo1ar frequency is very nearly 1/3 that 

which characterizes other chemically similar C-D bonds. No lines are 

observed near zero frequency and therefore ~ = 0. The high frequency 

region of Figure 5.6 shows four resolved lines and indicates two 

distinct aromatic ring sites exist. These presumably correspond to 

those sites "near to" and "far from" the methyl groups which are locked 

in the trans configuration in the solid state. Whatever Vo lines might 
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Zero field 2D NQR spectrum of 

DMT, with polarization period of 2 

minutes/shot. Sampling increment was 3 ~s. A 

total of 334 points were sampled, and two zero 

field free induction decays were added 

together. The methyl group signal is 
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exist should appear at very low frequencies. Oue to their low 

intensity and frequency, these lines are undoubtedly buried under the 

tail of the methyl group zero frequency line. In high field (Figure 

5.3b) no trace of these sites is observed. Oespite the fact that these 

sites never approach equilibrium during the. high field polarization 

period, the signal intensity associated with these sites appears in 

such a narrow bandwidth that while the zero field signal is weak it is 

also clearly visible. 

Figure 5.7 is an expanded view of the methyl group region of OMT 

(observed in a different experiment than that shown in Figure 5.6). 

Much additional structure is resolved. Oipo1e-dipo1e couplings between 

methyl deuterons are the source of these sp1ittings. The motion of the 

methyl group rapidly interchanges the spatial locations of the three 

individual deuterons. They therefore have identical (and, in this 

case, axially symmetric) quadrupole coupling tensors. Where HQ is 

highly degenerate small perturbations like the dipole-dipole couplings 

dramatically affect the spectrum. Similar spectra are observed for 

ordered -C03 groups in nematic phases of liquid crystals in high 

fie1d. 120 The precise value of the dipolar coupling constant wo' and 

therefore the distance between deuteron nuclei, is found by computer 

simulation of both <HQ(t» and <HO(t». 

A simulation of the spectrum produced for wo/2~ = 540 Hz is 

indicated in the stick spectrum inset in Figure 5.7. The 20_ 20 

internuclear distance (1.79 A) agrees within experimental limits with 

the value previously observed for the distance between methyl group 

sites in the protonated form of this molecule as derived by zero field 

NMR. 58 It is a curious and as yet unexplained fact that an accurate 
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Figure 5.7. 
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Zero field 2D NQR of the -CD3 

group of DMT. Cycle time: lOs; sampling 

increment: 3 ~s; number of points: 1001. At 

this recycle rate no signal from the ring 

sites could be observed. Splittings within 

the methyl group line correspond to the 

dipole-dipole couplings between methyl group 

deuterons; the stick spectrum inset is a 

simulation of the motionally averaged system 

with wD/2~ - 490 Hz, or <r3>-1/3 - 1.79 ±.03 
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simulation of this spectrum (and all other similar solid state axially 

symmetric -CD3 groups measured to date) requires that the dipolar and 

quadrupolar couplings have the same sign. This is in direct conflict 

with the conclusion drawn from all the liquid crystal studies, where 

the dipolar pattern of Figure 5.7 appears inverted about the center of 

the unperturbed quadrupolar line and the two couplings have opposite 

signs. 

The spectrum of 1,4-dimethoxybenzene (DMB) in Figure 5.8 shows 

similar gross features. Four lines appear at frequencies 

characteristic of the v+ and v_ lines of the- aromatic ring sites. A 

complex absorption band centered at -36 kHz is the spectrum of the 

spinning -CD3 group. In addition, a large number of low frequency Vo 

lines are observed; a broad, structured band centered at -2 kHz, and 

two other single lines at 4 and 6 kHz. These latter two lines appear 

at precisely the splittings between pairs of lines centered at -135 kHz 

and satisfy the sum rule Equation 5.2. Even the 1ineshapes in the 

triplets of lines indicated by the letters "A" and "B" match and 

conclusively determine which sets of lines correspond to a single site. 

It is likely that the site nearest to the methyl group corresponds to 

the broader triplet of lines labeled "B". The inequivalence of the two 

ring sites has previously been observed in 2D and 13C chemical 

shifts. 121 

The -CD3 methyl group spectrum, however, is significantly more 

complicated than either the ring sites or the -CD3 group in DMT. The 

structured band at -2 kHz indicates that the quadrupo1ar tensor in the 

CD3 group is non-axially symmetric. The dipole-dipole couplings are 

superposed on this asymmetry. Even if the methyl group rotation lies 



Figure 5.8. Zero field 2D NQR spectrum of DMB. Top: Cycle time: 

7 s; sampling increment: 3 ps; number of points; 1001. Signals from 

both methyl and ring sites are observed, in addition to Vo lines at 

frequencies less than 10 kHz. Bottom: Blow-ups of the three regions 

where peaks are observed. From 0-9 kHz,- Vo lines for both methyl and 

ring sites. From 32-41 kHz, methyl group lines. From 130-139 kHz, v+ 

and /I lines of the ring sites. Lines "B1" and "B2" are split by 

exactly the frequency of the line "BO"; similarly, AO' AI' and A2 . The 

"A" lines presumably correspond to the ring site far from the methyl 

group, and the "B" lines those near to the methyl group. 

2 2 
(e qQ) 178.5 kHz (e qQ) 179.1 kHz h A h B 

"A .045 "B .067 

Cf. the high field spectrum, Figure 5.3a. 
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in a potential well of at least three-fold symmetry such that each 

methyl group deuteron has an identical quadrupolar tensor '1 need not'lbe 

zero. One model for the introduction of an asymmetry into <V(t» is to 

assume that the motion is in a three-fold well where in one orientation 

(site 1) the unaveraged tensor differs from the other two. 122 For 

-simplicity, assume that each of the instantaneous values of V is 

axially symmetric and that the methyl group motion corresponds to jumps 

through 1200
• In the molecular frame XYZ rotating with the methyl 

group, 

2 
(IXIZ+IZIX)dOl]) (5.4) 

(IXIZ+IZIX)d~l]}]p-l 

where 3~ is the difference between the coupling constant at site 1 and 

that at sites 2 and 3, and P = exp(2i~IZ/3). Averaging over the motion 

corresponds to summing the time-averaged contributions from each of the 

three sites, and 

In this frame the Hamiltonian is no longer diagonal. The terms in 

(IXIZ + IZIX) contribute only to second order, however, and the 

effective asymmetry parameter is approximately 



2 3 M sin 9 
"eff 2 

(A + M)(3cos 9-1) 

In a methyl group where 9 z 70.50 

4M 
A + M 
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(5.6) 

(5.7) 

Motionally averaged methyl group field gradient tensors are axially 

symmetric if the instantaneous values of V have at least three-fold 

symmetry over the rotational cycle The methyl group in DMB lies very 

close to one hydrogen atom on the ring and there is no reason to expect 

such symmetry. The nearness of the methyl group to one of the ring 

sites is also reflected in the breadth (due tounresolved dipole-dipole 

couplings) of the set of ring site lines marked A, and it is on this 

basis that we suggest that the A sites are those near to the methyl 

group. Other types of motion superposed on the pure rotational modes 

of the -CD3 group (e.g. "rocking" as it attempts to avoid the ring 2D) 

further complicate the analysis. 

Precisely because the resolution in this spectrum is exceedingly 

high these smaller features (dipole-dipole couplings -500 Hz and small 

asymmetry parameters) which no other technique could detect appear and 

complicate the analysis. De-Paking43 of the spectrum of Figure 5.3a 

would allow for the extraction of only the average value of the 

(assumed) axially symmetric quadrupolar tensor and perhaps a hint that 

V was not quite axially symmetric. Values for the motionally averaged 

quadrupolar tensor alone can be extracted from the spectrum even in the 

absence of a complete simulation of the observed pattern. Vega has 

shown that dipolar couplings between spin-l nuclei leave the first 
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moment of the resonance line unshifted. 66 As long as the zero field 

NQR intensities are undistorted by different TI relaxation rates during 

transit, the first moment can be measured by integrating over the band. 

From the measured centers of gravity of the (v+, v_) and Vo regions, 

the .tensor components 

2 
e qQ 
h 

47.9 kHz 
(5.8) 

~ .096 

can be derived. 

Figure 5.9 compares the spectrum of the methyl group region of 

monodeuteromethyl (-CH2D) DMB to that of perdeuterated DMB. One might 

think that observation of the methyl group in the absence of dipole-

dipole couplings (or, at least quenched to the order that they are 

quenched) would afford more accurate measurement of <v(t». In the 

partially deuterated compound only a pair of lines are observed and it 

would be tempting to assign them as the v+ and v_ lines associated with 

<V(t». Unfortunately, the first moment of the absorption lines is 

shifted to much higher frequency in the -CH2D group. This is neither 

an indication of experimental error nor a counterproof of the effect of 

dipolar couplings on the first moment. Rather, it serves as a warning 

about attempts to extrapolate results from one system to other closely 

related systems. In replacing two of three methyl group deuteron 

nuclei with protons only half as massive, the moment of inertia of the 

methyl group is significantly perturbed. There is certainly reason to 

expect that the details of the motion are similarly perturbed. While 

the static value of V may be no more than marginally changed by the 

isotope effect, this is almost certainly not the case for motionally 



0) 

b) 

20 40 60 
Frequency (kHz) 

Figure 5.9. Comparison of 20 zero field NQR spectra of me~hy1 group 

regions in a). partially deuterated (CH20) OMB and b). perdeuterated 

OMB. While only a pair of lines appear in the former, they are 

shifted to much higher frequency and considerably broader than the 

lines in the latter. 
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averaged systems. 84 

The 1inewidths in the partially protonated methyl group of 

Figure 5.9 are broader than those in the perdeuterated molecule. With 

only small asymmetry parameters, the quenching of the dipole-dipole 

coupling between integer and half-integer spins may become ineffective. 

Unless ~A » WD(lH_2D) , the heteronuc1ear couplings may be more 

effective in broadening zero field NQR lines than homonuc1ear couplings 

between nuclei the same distance apart. 

Figure 5.10 shows the zero field spectrum of perdeuterated 1,8-

dimethy1naphtha1ene (DMN). As might by now be expected, absorption 

lines appear in the traditional three regions of the spectrum. The 

methyl group spectrum is surprisingly similar to those observed in DMT 

and show no asymmetry. As the two neighboring methyl groups are 

extremely close to one another, it might be expected that the field 

gradient for sites pointing nearly at the neighboring -CD3 group should 

differ from that observed for sites pointing away. Dipole-dipole 

couplings between groups are not much smaller than those within a group 

and might be expected to contribute to the observed features. 

Nonetheless, except for a small frequency shift its spectrum appears 

nearly identical to that of the -CD3 group in DMT. 

Despite the high resolution and good signa1-to-noise ratio in the 

spectrum of Figure 5.10 the complete set of ring site tensors cannot 

yet be assigned. Not all of the high frequency v+, v_ lines can be 

assigned to mates in the Vo which satisfy the sum rule of Equation 

(5.2). The source of the intensity variations in the ring site region 

lines is also unclear. There is evidence for differing T1 's, which is 

an explanation for the small intensity of the ring site lines in DMT 



Figure 5.10. Zero field 2D NQR of DMN. Lines appear in Vo region, 

-CD3 region, and at the ring sites. The methyl group shows the same 

structure observed in DMB. Cf. Figure 5.4. 
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and DMB, in the high field spectra of Figure 5.4. Some sets of lines 

might coincidentally overlap and dipole-dipole couplings between sites 

might split some lines. The coupling between the equivalent 4 and 5 

sites, opposite to the methyl groups, should be -200 Hz and may well 

spread signal from these two deuterons over a relatively broad range. 

Some of these possibilities might be experimentally resolved using some 

of the two-dimensional correlation experiments described in Chapter VI. 

Not all 2D NQR spectra are as simple and well-resolved as the 

rest of the examples given in this chapter. Figure 5.11 shows the zero 

field NQR spectrum of po1ycrysta11ine perdeuterated lauric acid, 

(CD3(CD2)10COOD). Again the same three traditional regions of the 

spectrum appear. The methyl group region (-35 kHz) resembles no other 

methyl group yet observed. The region where the methylene groups 

appear is unusually broad and few resolved features appear anywhere in 

the spectrum. There are two reasonable explanations: first, 

unresolved dipole-dipole couplings between sites may broaden out the 

structural features. This possibility might explain the lack of 

resoved features but cannot account for the broad range of quadrupole 

couplings. Theoretical studies of 2D quadrupo1ar couplings in simple 

alkanes predict that A should range from only -42-45 kHz,123 and thus 

that the high frequency band should appear at -130 kHz. A more likely 

source of such a distribution of quadrupo1ar absorption frequencies is 

a distribution of motional modes. In zero field spectroscopy, spectral 

features are broadened primarily by terms inherent to the observed 

Hamiltonian. Instrumental or experimental contibutions to the 

1inewidths are negligible. Broad zero field lines reflect the 

intrinsic breadth of the nuclear interactions. 
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Figure 5.11. Zero field 2D NQR of lauric acid. Lines appear in Vo 
region, -CD3 region, and at the alkane sites "(>100 kHz). The methylene 

absorption region is unusually broad and probably reflects a range of 

1ibrationa1 modes in the sample. Cf. Figure 5.5. 
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The resolution advantage of zero field NMR can be used to assist 

in the study of high field parameters of nuclear spin systems. 

Figure 5.12 shows an experiment which affords an experimental method of 

differentiating between the high field T1 's of different types of 

deuterons. The experimental strategy is to obtain the zero field 

spectrum by whatever means possible. Normally it is advantageous to 

sample the evolved magnetization as quickly as possible after the 

return to the magnet to minimize its decay via spin-lattice relaxation. 

In the experiment of Figure 5.12 the sample is allowed to sit in high 

field a time T comparable to that of a spin-lattice relaxation time. 

If spin diffusion between all sites is allowed, then the amplitude of 

all lines in the zero field spectrum disappear with a uniform time 

constant T1 . If spin diffusion is allowed only between some subset of 

spins, then the lines in the spectrum disappear with different rates at 

the different sites. 

Figure 5.13 shows the results of such an experiment on DMN. At 

the top, at the end of the zero field period t1 the sample is returned 

to high field and the evolved magnetization is sampled as soon after 

the sample is safely lodged in the high field detection coil as was 

deemed possible (probably within -35 ms of the actual return to the rf 

probehead). In the middle and below, the experiment was repeated with 

longer values of T. Over the space of -500ms, the methyl group 

spectrum disappears into the noise while the spectra of the ring sites 

are virtually unaffected in either amplitude, phase, or any other 

readily observed experimental parameter. This suggests that the -CD3 

group high field T1 is -200 ms. As the cycle time of the zero field 

experiment is -250 ms, it is also virtually field independent. (If T1 



B 

Bo 1---_ 

o~-----------~--~--------------~--~ 

Figure 5.12. Zero field-high field relaxation 

rate correlation experiment. The zero field 

spectrum is observed as a function of T, where 

T - Tl . If different parts of the sample have 

very different relaxation times, the zero 

field spectrum will disappear nonuniformly 

with T. 
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Figure 5.13. Example of zero field-high field 

relaxation rate correlation experiment. The 

sample is DMN. a). T - T' - 35 ms (i.e. the 

signal is measured as soon as possible after 

the sample is securely within the bore of the 

magnet. b). T - T' + 115 ms; c). T - T' + 

315 ms. Over the space of 315 ms the methyl 

group signal largely disappears; no change is 

observed in the ring site signals. 

150 
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is field dependent, it generally increases with increasing field. If 

at any field strength between BO and zero TI were significantly shorter 

than 200 ms, it would be surprising to observe any -CD3 group signal 

after returning to high field. In Chapter VI I present some 

experiments which give an approximate upper bound to T1Q in very low 

fields.) No decay in signal amplitude at the ring sites is observed 

over these short times. This is consistent with the interpretation of 

the TI data contained in Figure 5.4. 



196 

VI. Variant Experiments 

In this chapter, I apply some of the principles of zero field NMR 

established in previous chapters to a variety of possible variant 

experiments whose merits (if they exist) will be described along with 

their interpretation. Section A covers the possibility of changing the 

selection rules which govern the zero field evolution period. In 

Section B several of the experiments suggested by the discussion of 

Section A are analyzed. Section C discusses an approach to high-

sensitivity zero field NQR via level crossin~s. Finally, Section D 

presents some two-dimensional applications. 

A. Other Initial Conditions 

1. Initial Conditions Prepared in High Field 

Among the simplest variants are experiments where different high 

field conditions are prepared or detected in combination with the 

experimental field cycle of Figure 3.1. Throughout this section, 

comments about the prepared operator apply equally to the detected 

operator, and should really read prepared and/or detected. Examples of 

possible operators include time dependent states (such as transverse 

magnetization, 1+ or 1_) or non-equilibrium longitudinal order (such as 

dipolar or quadrupolar order). To within a proportionality constant, a 

dipolar or quadrupolar ordered spin system is described by a density 

operator 

[31
2 

- 1(1+1)] zL (6.1) 
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which is time independent (at least for times short compared to T1). 

In this section I repeat the calculation of Section III.B. All 

experimental conditions are assumed unchanged except for the 

possibility of a more general initial condition. The initial density 

operator p(O) is most generally a sum over operators of arbitrary 

tensor rank and order rather than just the first rank tensor operator 

corresponding to Zeeman order (Equation (3.10)). Steps in the analysis 

of the signal function include reexpressing p in the local frame, 

allowing evolution under R10c for a time t 1 , returning to high field, 

taking the trace of p with the detected operator and finally 

integrating over the orientationa1 distribution function P(O) to give 

the signal function G(tl ). Well-known properties of the rotation 

matrices7 are used to simplify the calculations. Two of the more 

important relationships are 

and the orthogonality condition 

(_l)p-m oj (a,p,~) 
-I'-m 

So., S , S , 
JJ I'P rom 

For simplicity I assume that the initial operator PL(O) and the 

detected operator (which I will call A) are each proportional to a 

(6.2) 

(6.3) 

single spherical tensor operator. The generalization to cases where p 

is a sum over such tensors is trivial. Assuming that 

(6.4) 

p reexpressed in terms of molecular frame operators is 
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(6.5) 

Time-evolution is appended formally, and 

(6.6) 

At a time tl' the intermediate field Bint is reapplied and in a short 

time p commutes with the high field Zeeman Hamiltonian. As in Chapter 

III, the signal function is the trace of the detected operator with the 

evolved operator integrated over all orientations; 

fTr [p(tl)A] P(O) dO (6.7) 

The trace is invariant to unitary transformations and it will again 

prove convenient to transform the observed operator A to the molecular 

frame rather than reexpressing the evolved density operator p(tl ) in 

the laboratory frame (cf Equations (3.15) and (3.16». If A is 

proportional to another laboratory frame spherical tensor, T!L' then in 

the molecular frame 

and the signal function is 

A 
G(tl ) = f Tr [{ ~ 

J.'=-A 

(6.8) 

(6.9) 

Rearranging Equation (6.9) so as to separate the integration over 0 

from the trace over the operators, 



199 

A j j oj OA G(t1 ) = Tr [{ ~ TA ~ .TICM (t1 } f P(O) dn)] 
JLM ICk JLm 

JL=-A IC=- J 
(6.10) 

Substituting for A 
°JLm from Equation (6.2), 

Tr [{ 
A j 
~ TA ~ Tj (t )}(_l)lC-k f oj* OA P(O) dn)](6.11) 

JLM . ICM 1 -IC-k JLm 
JL=-A IC=- J 

For P(O) uniform over the sphere the integration over 0 is given by 

Equation (6.3) and 

r(_l)lC-k 
[ 2j + 1 

(6.12) 

Equation (6.12) states that in a powder sample for the field-cycle of 

Figure 3.1 and a uniformly prepared p(O), G(t1) = 0 if the initial and 

detected operators are orthogonal, and the signal is maximized if 

A = p(O). As long as this latter condition is satisfied all A of a 

given tensor rank result in identical selection rules and identical 

spectra independent of order. For p(O) = I+ or I_, the signal function 

is identical to that for p(O) I z . Practically it will always be 

easier to work with populations operators such as I z than with 

coherences of the same rank. 

Initial conditions of higher rank (e.g. dipolar or quadrupolar 

order) result in spectra where the selection rules governing line 

frequencies and intensities are derived from these higher rank tensors 

(e.g. the five second rank tensors if the initial condition is 

quadrupo1ar order). Time development of the second rank tensor 

operators (j = 2) in a spin-1 system is given in Section III.C 

(Equations (3.25) and (3.26». Two of the five second rank tensors 
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(U2+ and UO) are time-independent. Each of the others evolves at one 

of the frequencies corresponding to the vO' v+, or v lines. If 

quadrupolar order is uniformly prepared and detected with unit 

efficiency in high field the zero field spectrum is the same three-line 

spectrum observed starting from Zeeman order except that 40% of the 

total order stored in the initial density operator does not evolve. 

Techniques which prepare high field dipolarl24 and higher order 

operators (such as multiple quantumIOO,IOI) are known. If a spin 

temperature can be defined, then adiabatic demagnetization in the 

rotating frame 21 - 23 (ADRF) creates a state corresponding to pure 

truncated dipolar order. But when a spin temperature exists and 

dipolar order can be uniformly prepared the zero field spectrum is 

virtually guaranteed to be unstructured. The spin temperature 

hypothesis holds only in the limit of a large number of tightly coupled 

spins. For these "infinite" spin systems the zero field spectrum 

acquires the characteristic Kubo-Toyabe form discussed in Section 

IV.C.3. For isolated quadrupolar systems or where small groups of 

coupled spins are isolated from all others, p can be calculated for 

arbitrary high field preparation sequences but this requires 

foreknowledge of precisely those coupling constants which presumably 

are the goal of the experiment. Perhaps more troubling, it is the 

orientation-dependent values of the truncated Hamiltonians which 

determine the initial condition. 

In disordered systems, few techniques exist for the uniform 

preparation of any type of orderl25 other than Zeeman order (which 

nature provides). If the density operator prepared in high field is 

orientation-dependent it depends on the Euler angles Q and p and the 
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same transformation R(O) which takes the spin system between the 

molecular and laboratory frames. If the initial condition is 

orientation-dependent then 

(6.13) 

and Equations «6.10)-(6.12») no longer follow because the integration 

over 0 must include the (often rather involved) dependence of p on Q 

and ft. There is no general analytic solution of the form of Equations 

(3.21) or (6.12) to the intensities of zero field lines. This is a 

serious (in fact, fatal) handicap in the analysis of all but the 

simplest dipolar-coupled spin systems. For more than three coupled 

spins, the zero field spectrum f(w) is often a nearly continuous 

absorption band. Then the intensities as well as the frequencies must 

be modeled if useful information is to be derived from the spectrum. 

In spectra of isolated quadrupo1ar spins this is less of an 

objection. Complete information about V can often be derived from the 

frequencies alone. (It will, of course, make modeling of any small 

dipolar couplings superposed on the quadrupo1ar spectrum virtually 

impossible.) In many quadrupo1ar systems, the existence of new 

selection rules associated with higher rank tensor operators may prove 

essential to a complete assignment of the quadrupo1ar tensors. Under 

dipole selection rules not all possible transition frequencies can be 

observed in spectra of half-integer quadrupo1ar spins with I ~ 5/2 (as 

explained in Section III.C). These dipole selection rules are overcome 

when p(O) corresponds to a higher rank tensor. When a sample contains 

several inequivalent sites, the observation of these new lines may 

prove as important as the observation of the Vo line is in NQR studies 
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of spin-l nuclei. 

Generation of high field initial conditions proportional to 

higher rank tensors will not generally prove worth the effort. In any 

disordered system pulsed methods for the transformation of Zeeman order 

into other forms of order are inefficient precisely because sequences 

which uniformly prepare any given initial condition are unknown. Only 

populations survive the time it takes to travel between high and low 

fields; oherences prepared in p dephase and are lost. Thus, the 

prepared density operator is "smaller" than after equilibration in BO 

and results in correspondingly smaller signals. Any non-adiabatic 

preparation sequence suffers from this same objection. In the next 

section, I describe techniques which achieve the same end (non-dipole 

selection rules) with greater efficiency, in that the norm of p is more 

nearly conserved during the preparation sequence. 

2. Demagnetization to Zero Field 

This process has been described in detail in Chapter II. In this 

section I aim not to repeat that discussion but rather to approach it 

from a slightly different perspective. If a polarized sample is 

removed from the polarizing field so that the rate of change in H is 

slow compared to all the frequency differences between eigenstates the 

demagnetization is said to be adiabatic. 64 In the absence of spin­

lattice relaxation, the full order prepared in high field is conserved 

and transported as populations to zero field and the norm of p is 

conserved during demagnetization. Depending upon the details of the 

spin system and the demagnetization that order can be distributed in p 

in many different ways but for isolated spins populations remain 

ordered according to energy level. 
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In the thermodynamic limit of'large numbers of coupled spins 

evolution of p under adiabatic demagnetization in the laboratory frame 

(ADLF) is treated by invoking the spin temperature hypothesis. 24 ,25 At 

all times the density operator is described by a single spin 

temperature and at all fields remains proportional to the instantaneous 

Hamiltonian. If a spin temperature exists, then for B = 0 the 

demagnetized density operator is (to within a proportionality constant) 

H loc 
(6.14) 

Again, where the spin-temperature hypothe.sis holds the zero field 

spectrum tends to be uninteresting. It is in precisely those systems 

where the spin temperature hypothesis does not apply that the zero 

field spectrum contains resolved structure. In the general case there 

may be a different "spin temperature" associated with each degree of 

freedom in the zero field Hamiltonian. The most general statement 

about the density operator after slow demagnetization to zero field is 

o (6.15) 

and the slower the rate of demagnetization the larger the ratio between 

the norm of p in high and zero fields. Except for the isotropic 

component of the J coupling tensor, the zero field Hamiltonians are 

exclusively second rank tensor operators. I choose to expand p as a 

sum over operators rj such that 

o (6.16) 

where the rj constitute an orthonormal basis set 
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(6.17) 

and 

(6.18) 

For mUltispin Hamiltonians, the set of all operators rj may be 

difficult to enumerate. Some general guiding principles exist. For 

any spin system and its Hamiltonian, H, the number of orthogonal 

operators which commute with H is one less than the number of different 

energy levels (the sum over all the populat~ons being just the total 

number of spins and is fixed). As the Hamiltonians themselves consist 

of terms proportional to sums of spherical tensors, the rj will also be 

proportional to sums of spherical tensors. The details of these 

operators rj depend on the specifics of the spin system and the 

Hamiltonians. Two general cases can be specified: 

1. The Hamiltonian is composed of two (or more) commuting 

operators. In high field the Zeeman Hamiltonian and the secular 

component of the dipole-dipole Hamiltonian comprise such a set. 

In zero field, the quadrupolar Hamiltonian is the sum of two 

terms: one proportional to the spin operator (3I~-I(I+l)) and the 

second proportional to ~(Ii-I~). For a spin-l system, these 

terms commute. (For what should be obvious reasons I refer to 

the first term as "quadrupolar order" and the second as "eta 

order.") In either case, a set of operators which commute with H 

is given by either of these commuting operators and their powers 

and/or products. The set generated by this method will form a 

basis set of operators but will not generally be the orthonormal 
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basis set of the rj' For example, quadrupo1ar order is a second 

rank tensor. Its square is a reducible fourth rank tensor which 

need not be orthogonal to it. 

2. The Hamiltonian contains only non-commuting operators. An 

example is the zero field quadrupo1ar Hamiltonian of a ha1f-

integer spin nucleus. Then the only operators which commute with 

H are the powers of H. H2, H3 , ... are a basis set but, as in 

(1), not generally the orthonormal basis set of the rj' 

In either case, if the Hamiltonian contains only second rank tensor 

operators, the demagnetized operator p can only contain even rank 

operators. For isolated quadrupo1ar nuclei, the maximum rank spherical 

tensor operator in p is 21, and for N coupled spin I nuclei no larger 

than 2NI. 

Table 6.1: Operator Representations of Spin Density Matrices 

Spin Szstem Dimension of p Ranks of Operators in p 

I = 1/2 2 1, 0 
1=1 3 2, 1, 0 

2 x (I = 1/2) 4 2, 3x1, 2xO 
I = 3/2 4 3, 2, 1, 0 
1=2 5 4, 3, 2, 1, 0 

I = 5/2 6 5, 4, 3, 2, 1, 0 
1=3 7 6, 5, 4, 3, 2, 1, 0 

I = 7/2 8 7, 6, 5, 4, 3, 2, 1, 0 
3 x (I = 1/2) 8 3, 5x2, 9x1, 5xO 

In the column "Rank of Operators", nxq means there are n orthogonal 

sets of qth rank tensors in an operator representation of p 

Table 6.1 enumerates the number and rank of operators required to 

completely describe the density operator for various spin systems. 

Even though there are only three distinct energy levels in both I = 1 
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and I = 5/2 spin systems, the sets of operators rj which describe these 

two systems are very different. For isolated spin-1 nuclei, the 

constants of the motion are precisely quadrupo1ar and eta order, two 

second rank tensors which are interconverted by rotations. For ha1f-

integer quadrupo1ar spins, only powers of HQ itself commute with HQ. 

For I = 5/2 the constants of the motion are not quadrupo1ar and eta 

order, but instead (in the limit of vanishing ~) quadrupo1ar and 

hexadecapo1ar order, a fourth rank spherical tensor operator given 

(3514 + 5[5-61(1+1)]12 + 3[(1(1+1»2_21(1+1)]} 
z z 

(6.19) 

Figure 6.1 illustrates the difference between the two population 

operators which describe I = 1 and I = 5/2 spin systems in zero field. 

What is the relevance of these rather arcane discussions? After 

demagnetization the norm of p is (ideally) not very different from its 

high field value and p contains only even rank tensor operators. It 

is, however, in eigenstates of Hloc and therefore time-independent; in 

the absence of any intercession by the experimentalist no useable 

signals emanate. If p can be perturbed so at to create coherence, 

transition frequencies might be observed which are determined by the 

selection rules corresponding to the matrix elements of the higher rank 

tensors created in p during the demagnetization. The next two sections 

deal with methods of creating and monitoring such coherence. 

B. Zero Field NMR with Pulsed de Fields 

Two alternative zero field experiments are illustrated in Figure 
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1= 1 

No Order Quadrupolar Order Eta Order 

1+> 0000 000 000 

1-> 0000 000 00000 

10> 0000 00000o 0000 

1= 5/2 

No Order Quadrupolar Order Hexadecapolar Order 

I + 5/2> 000000 0 00000oo 

I + 3/2> 000000 0000000 000 

I ± 1/2> 000000 0000000000 00000000 

Figure 6.1. Population operators for I = 1 

and I = 5/2 (~ - 0) in zero field. If all 

populations are equal, no order exists. I = 1 

quadrupo1ar order corresponds to a difference 

in population between \0> and the average of 

the populations of \+> and \->; eta order, to 

the difference between \+> and \-> as shown at 

top. I = 5/2 quadrupo1ar order and 

hexadecapo1ar order correspond to the 

population ratios shown at bottom. 
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6.2. In these variants, the system is demagnetized not to some low 

field Bint but instead all the way to zero field. After 

demagnetization, a strong dc pulse (~B »Hloc) is applied to the spin 

system. This transforms some of the nuclear spin order stored during 

demagnetization into coherences. (Similar narrowband behavior can be 

observed after application of a resonant rf pulse. 127 ) At a time t l , 

the intermediate field Bint may be suddenly turned on, trapping any 

coherence which has evolved into laboratory frame magnetization (as in 

Figure 6.2a); or, a second pulse may be applied which stores some of 

the evolved magnetization as population diff~rences. Remagnetization 

to high field transforms these population differences into Zeeman order 

for observation (Figure 6.2b). The demagnetization process has been 

discussed in Chapter II. Some of the results of that discussion will 

be exploited below. For the moment, I concentrate instead on the zero 

field evolution period, tl' instead. 

Throughout this section, all operators are consistently expressed 

in the local (M) frame. The dc pulses, however, are inexorably tied to 

the laboratory (L) frame. A Oz pulse applied in the laboratory frame 

will in fact correspond to a different pulse direction and effective 

nutation angle for each orientation of the local frame in the sample. 

Its effects are more simply described if the pulse is reformulated in 

the local frame. Assuming that laboratory frame pulses of only a 

single phase are applied, subsequent operations are marginally 

simplified if the pulse is applied along the laboratory z axis. 

Furthermore, it is convenient to express the transformation R which 

mediates between the two frames not in terms of rotations fixed in the 

laboratory frame but instead referenced to the local frame. In terms 
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Figure 6.2. Zero field NQR experiments using pulsed field to create 

and possibly store coherence. a). Sample is demagnetized to zero 

field. A dc pulse of length 0 7 j Br applied to the sample creates 

coherence. A time t1 later. the intermediate field is reapplied. This 

stores any magnetization which may have appeared along the axis defined 

by Bint for observation in high field as G(tl.O). b). A dc pulse of 

length 0 creates coherence. and a time tl later a second dc pulse of 

length ¢ stores coherence as populations. The sample is remagnetized 

to high field where the signal G(tl.O.¢) is observed. 
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of lab-based axes, I have defined 

1M> (6.20) 

The same rotations about fixed molecular frame axes effect the same 

transformation 

(6.21) 

Wherever explicit forms for R are required in this chapter, the 

convenient if non-conventional representation of Equation (6.21) will 

be used. Transformed into the local frame, 

<L!exp(iOI ) II> z I -1 -11 <L RR exp(iOI)RR I> z . 

<Mlexp(-iaI )exp(-i~I )exp(iOI )exp(i~I )exp(iaI )IM> z y z y z 
(6.22) 

where the pulse flip angle 0 is defined for a field strength Bl , pulse 

length T, and magnetogyric ratio ~ by 

(6.23) 

The generalization to pulses applied along more than a single axis in 

the laboratory frame is tedious but straightforward. 

The advantage of expressing p as a sum over spherical tensors 

should now be clear: under any number of frame transformations and/or 

strong dc pulses about whatever axis, order originally proportional to 

an nth rank tensor is transformed only into order associated with other 

nth rank tensors. Only time evolution transforms tensors of one rank 

into a second. Evolved order can be stored as a magnetization by a 

trapping field (as in Figure 6.2a) only if it corresponds to a first 

rank tensor; or, as a population difference by a second dc pulse (as in 
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Figure 6.2b) only if it corresponds to a tensor of the same rank as one 

of the rj operators of Equation (6.18). Where the zero field NMR 

experiment described in Chapter III corresponds to autocorre1ations of 

first rank tensors only, the one-pulse zero field experiment shown 

schematically in Figure 6.2a and described more fully below yields 

cross correlations between even rank r tensors and the first rank 

tensors (1+, 1_, or 10); the two-pulse zero field experiment of Figure 

6.2b, auto- and cross-correlations of the rj operators. The transition 

frequencies observed in this latter experiment are governed by the 

matrix elements of the even rank tensors rj. The dipole selection 

rules of zero field NMR with sudden switching with p(O) proportional to 

Zeeman order are overcome just as surely as they would be if high field 

initial conditions corresponding to higher forms of order could be 

created. One distinct advantage of zero field NMR or NQR with dc 

pulses is that there is less loss of signal intensity than might be 

achieved in any high field preparation schemes. Another possible 

advantage is discussed below in Section C. 

The goal of the rest of this section is the calculation of the 

signal function G(tl ) for the sequences of Figure 6.2. I specialize to 

the case I = 1 where these calculations are long and unwieldy but not 

undoab1e. Some experimental spectra derived by these two sequences are 

presented and briefly compared to theory. In either sequence the heart 

of the calculation is the transformation of the diagonal second-rank 

tensor operators Uo and U2+, corresponding to quadrupolar and eta 

order, under a dc pulse. 

1. Transformation and Evolution of Quadrupolar Order 

The first task is to find the form of the molecular frame 
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operator Uo after the application of a 0 pulse along the laboratory 

z-axis. A molecular frame form for the pulse is given in Equation 

(6.22). The transformed operator, UO(O), is 

(6.24) 

Explicit and lengthy calculations making liberal use of the relations 

in Table 3.2 give for a specific orientation 0 

(6.25) 

with 

1 2 2 .2 2 3 4 
aO = 4 [(3cos P-l) + 3s~n pcos pcosO + 2 sin pcos20] 

(6.26) 

-sin2a c3 + cos2a c4 

a = 
2- sin2a c4 + cos2a c 3 

where the coefficients cl-c4 are 

c3 = JI sin2pcosp sin2a(2sinO-sin20) (6.27) 
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J3 2 2 2 2 c4 - T sin p cos2a[(1+cos P)cos29-4cos pcos9+(3cos P-1)] 

At a time t 1 , the transformed operator UO(9,O) evolves into 

(6.2S) 

2. Transformation and Evolution of Eta Order 

In analogy to Equations (6.24) and (6.2S), 

(6.29) 

and 

(6.30) 

where 

sin2a 2 
+ 2 sin Pcosp[sin29-2sin9]} 

b1+ = cosacos2a Cs + cosasin2a c 6 + sinacos2a c7 + sinasin2a Cs 

b1 _ = cosacos2a c
7 

+ cosasin2a Cs - sinacos2a Cs - sinasin2a c6 

sin4a 4 2 1 2 b 2_ = S sin P[cos29-4cos9+3]-cosp[sin psin9+ 2(1+cos p)sin29] 

where 
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sin~cos~(cos20-cosO) (6.32) 

sin~cos~ 2 2 2 2 c
7 

= 2 [3sin ~ + (cos ~-sin ~)cosO - (l+cos ~)cos20] 

As previously (Equation (6.28» at a time tl 

(6.33) 

These compact forms (Equations (6.29) and (6.33» show what operators 

are created after a pulse is applied to a demagnetized spin-l nucleus. 

The signal observed in either of the experiments of Figure 6.2 depends 

on the distribution of initial conditions p(O, 0). Most generally, 

and the initially prepared operator is a function of O. In Chapter II 

I showed that, ignoring the singular points which exist for 

demagnetization along any of the molecular frame principal axes, after 

adiabatic demagnetization of an isolated spin-l nucleus the initial 

condition is independent of o. This is a particularly fortuitous 

result and all subsequent calculations of signals G(tl) are based on 

this assumption. The demagnetized density operator is then 
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(6.35) 

independent of O. (Depending upon the sign of the quadrupo1ar coupling 

constant, there may be an overall sign change in p.) Similarly, 

(6.36) 

3. Calculation of Signals 

Two cases need be treated, corresponding to the two experimental 

sequences of Figure 6.2. 

a. Sudden switching of B 

Evolution is terminated by the rapid reapplication of a large 

static magnetic field Bint . Just as in Chapters III-V, the observable 

is I zL ' or, in the molecular frame where the density operator is 

expressed 

cosPlzM - cosQsinp IxM + sinasinplyM (6.37) 

and the signal function for a particular orientation is 

(6.38) 

As usual, the signal function is 

(6.39) 

Useful angular averages of the trigonometric functions appear in Table 

6.2. In combination with the orthogonality conditions of Equations 

(3.27) and (3.28) only a small number of terms contribute to the 

integral of Equation (6.39). The signal function integrated over a 

uniform powder distribution for that portion of p proportional to 

quadrupolar order is 
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(6.40) 

and for that portion of p proportional to ~ order 

(6.41) 

Table 6.2: Averages of Trigonometric Functions 

A. Functions of Polar Angle p 

2 1 <sin2p> 2 2p . 2p 2 4p . 2p 2 
<cos p> = 3" 3" <cos s~n > 15 <cos s~n > 35 

4 1 . 4p 8 <cos 2psin4p> 8 4p . 4p 8 <cos p> = "5 <s~n > 15 = 
105 <cos s~n > 315 

6 1 . 6p 16 6p . 2p 2 2p . 6p 
16 <cos p> 7" <s~n > 35 <cos s~n > = 63 <cos s~n > = 315 

8 1 <sin6p> 128 n 1 . np n(n-2) ... 2 <cos p> 9 = 315 <cos p> n+l <s~n > (n+l)(n-l) ... 3 
for n even 

B. Functions of Azimuthal Angle a 

. 2 2 1 . 4 
<s~n na>,= <cos na> = 2 <s~n na> 

4 3 
<cos na> = 8 2 . 2 1 

<cos nas~n na> = 8 

2 2 .22 1 <cos acos a> = -<s~n acos a> = 4 6 6 5 
<cos na> = <sin na> = 16 

Predictions as to the flip angle dependence of the signal intensities 

for each of these contributions separately are shown in Figure 6.3a and 

b. The total signal is the sum over these two terms weighted by the kj 

coefficients. For the initial condition described in Equation (6.36), 

the predicted signal intensities are shown in Figure 6.3c. Some 

experimental results are shown in Figure 6.4. It is reasonable to 

compare theoretical calculations for isolated spins only to the 



Figure 6.3. Coefficients from Equations (6.40) and (6.41) as a 

function of 0 corresponding to the production and detection of signals 

proportional to sin wt for initial conditions corresponding to 

uniformly prepared and detected a). quadrupo1ar order; b). eta order; 

and c). the density operator of Equation (6.35). 
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Figure 6.4. Experimental one-pulse spectra (sine Fourier transforms) 

of DMB for a). 0 - 40°; b). 0 = 60°; c). 0 = 90°; d). 0 = 120°; e). 0 

= 135°; f). 0 - 180°. For small flip angles, the spectra are 

relatively undistorted. As predicted, the v+ lines grow in much more 

rapidly than v_ or vO. 
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intensities of the aromatic ring sites, which are much more isolated 

than are the the methyl group deuterons. The agreement between the 

theoretical predictions of Equations (6.40) and (6.41) and the observed 

spectra is not particularly striking. As predicted by theory, the v+ 

lines grow in somewhat more rapidly and are always stronger than either 

the Vo or v_ lines, but the precise flip-angle dependence of Figure 6.3 

is not reproduced. It is gratifying to observe that for flip angles 

= ~, a minimum in the signal intensity is observed. This, at least, is 

consistent with theory. 

Along axes other than that of the pulse, no signal should be 

observed in polycrystalline samples. The integration over a and P 

guarantees that magnetization can only appear along the axis of the 

applied field. This result is well-known in more traditional pulsed 

NQR48 applications. Equivalent spectra are expected whether the the 

field cycle is executed as in Figure 6.1, or inverted (i.e. the 

intermediate field is suddenly turning off and a time t1 later, order 

is stored with a short pulse). 

b. Two-Pulse Experiments 

Evolving coherence can also be stored for later observation by a 

second dc field pulse with flip angle ~ and62 ,128 

Rexp(-i~I )R- 1exp(-iHt)Rexp(-i8I )R-
1
p(0) z z 

Rexp(i8I )R-lexp(iHt)Rexp(i~I )R-1 
z z (6.42) 

Remagnetization to high field restores that part of P(t1,8,~) which is 

proportional to p(O) as Zeeman order suitable for detection. (The 

remainder of the diagonal elements of P(t1,8,~) remagnetize to 

quadrupolar order in high field. I will not concern myself with this 
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potential complication.) The detected operator is therefore identical 

to the initial operator, and the signal function is 

G(tl,8,~) - f G(tl,8,~,O) P(O) dO - fTr[p(O)p(tl,8,~,O)] P(O) dO(6.43) 

Playing at old tricks (Equations (3.15» again, the signal function is 

more readily calculated if the second pulse is treated as if it 

operated on the detected operator (with a negative flip angle) rather 

than on the evolved operator, and 

[ 
-1 -1 

G(tl,8,~,O) - Tr Rexp(-i~I)R exp(-iHt)Rexp(-i8I)R p(O) z z 

-1 -1 ] Rexp(i8I)R exp(iHt)Rexp(i~I)R p(O) z z 

[ 
-1 -1 - Tr (exp(-iHt)Rexp(-i8I)R p(O)Rexp(i8I)R exp(iHt)} z z 

-1 -1 ] {Rexp(i~I)R p(O)Rexp(-i~I)R } z z 

- Tr [p(tl ,8,O) p(O,-~,O)] (6.44) 

and 

(6.45) 

Substituting for p from Equation (6.34), 

G(tl,8,~) - f Tr [(klUO(tl,8,O)+k2U2+(tl,8,O)} (6.46) 

(klUO(O,-~,O)+k2U2+(O,-~,O)}] P(O) dO 

The components of Equation (6.46) can be found elsewhere in this 

chapter (Equations (6.28),(6.33), (6.35), and Table 6.2). Three types 

of terms contribute to the signal. First, terms which originate as 

quadrupolar order in the initial condition and which are detected as 
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quadrupolar order in the detected operator. Second, terms which 

originate as eta order in the initial condition and which are detected 

as eta order in the detected operator. And last, terms which originate 

as quadrupolar order and are detected as eta order, or vice versa. Any 

pair of pulses will prepare and store some component of the total spin 

order, and no pair of pulses can force all of the initially prepared 

spin order to evolve. The signal amplitude is maximized for 0 + ¢ 

2n~ (thus guaranteeing that for tl = 0, G(tl ) - 1; the first point in 

the free induction decay corresponds to the area under the spectrum). 

A general solution to Equation (6.43) is' 

where 

d. 
J 

«a.(O)+b.(O»(a.(-¢)+b.(-¢»> 
J J J J 

(6.48) 

and the angle brackets < > indicate an averaging over all orientations, 

o. For uniformly prepared initial conditions all autocorrelations 

«ajaj> or <bjbj » contribute to the signal but the only non-zero 

cross-correlations are <al+bl +> = -<al_bl _>. All the correlation 

coefficients are given in Table 6.3. Figure 6.5 shows graphically the 

correlation coefficients for ¢ = -0, where the total evolving signal 

intensity is maximized. As field pulses of only a single polarity are 

currently available, this sequence is mimicked by a (0, 2~-0) sequence 

of pulses. Figure 6.6 plots the predicted line intensities for the 

same two-pulse sequence assuming the initial condition of Equation 

(6.33). The entries in Table 6.3 predict that the spectrum is 

independent of which pulse comes first. Figure 6.7 compares the 
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Figure 6.5. Coefficients from Table 6.3 for ~ = 2~ - n, corresponding 

to the production and detection of signals proportional to cos wt for 

initial conditions corresponding to uniformly prepared and detected a). 

quadrupolar order; b). eta order; c). cross terms between quadrupolar 

and eta order. Heavy lines correspond to order stored as non-evolving 

D2+ or DO operators after the pulse. The amount of non-evolving order 

is independent of the relative amounts of quadrupolar and eta order. 

Only coefficients of v+ and v terms are effected by the cross terms. 
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Figure 6.6. Theoretical intensities observed in (8, 2~ - 8) two-pulse 

zero field experiment for the initial density operator and the detected 

operator proportional to p of Equation (6.35). The minimum in the 

nonevolving component of the stored order is observed for 8 - 550
. 
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a) 

b) 

o 

c) 

d) 

50 100 150 a 50 100 150 

Frequency (kHz) 

Figure 6.7. Experimental demonstration of the equivalence between 

(8, 2~ - 8) sequence and (2~-8, 8) sequence for the two-pulse 

experiment on DMB. a). (45°, 315°) sequence. b). (315°, 45°) 

sequence. c). (90°, 270°) sequence. d). (270°, 90°) sequence. 
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experimentally observed spectra of perdeuterated DMB observed with a 

two-pulse (0, 2~-0) sequence and with a (2~-O,O) sequence. As 

predicted, the spectra are virtually identical. 

The maximum evolving magnetization, integrated over the powder 

distribution, appears for 0 - 550
, and approximately 70% of the 

prepared order is transformed into time-dependent eigenstates (as 

Table 6.3: Correlation Coefficients for Two-Pulse Experiments 

Term n m1 m2 m3 m4 ms m6 m7 m8 m9 

<aO(O)aO(-q,» 9 3 2 2 8 8 4 0 0 0 

<a1 + ( 0 ) a1 + ( - q, ) > 3 3 -3 0 5 2 -2 -9 -18 6 

<a2+(0)a2+(-q,» 3 3 0 -3 4 7 -4 -12 -3 -6 

<bO(O)bO(-q,» 1 9 0 -9 12 21 -12 -36 -9 36 

<b1+ (0 )b1+ (-q,» 1 9 -3 -6 13 16 -10 -33 -12 6 

<b2+(0)b2+(-q,» 9 3 2 2 8 8 4 0 0 0 

<b2 _(0)b2_(-q,» 1 9 -12 3 16 1 -4 -24 -69 -30 

<b1+(0)a1+(-q,» .[3/4 0 -23 23 16 -80 32 -72 -120 -12 

Expectation values of the coefficients are given by 

3~s [ m1 + m2 (cosO+cosq,) + m3(cos20+cos2q,) + m4cosOcosq,+ 

mscos20cos2q, + m6(cosOcos2q,+cosq,cos20) + m7sinOsinq, 

m8sin20sin2q, + m9 (sinOsin2q,+sin20sinq,) ] 

Correlation coefficients not listed are zero except 

<a1_(0)a1_(-q,» = <a1+(0)a1+(-q,»; <b1 _(0)b1 _(-q,» = <b1+(0)b1+(-q,» 

<a1 _(0)b1 _(-q,» = - <a1+(0)b1+(-q,»; <a2_(0)a2_(-q,» = <a2+(0)a2+(-q,» 

compared to 60% starting from a high field quadrupolar ordered state 

and suddenly shutting off and on the external field). Figures 6.8-6.10 
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give some experimental data obtained by the (9,2~-9) sequence 

described above. Figure 6.8 is a rather complete set of experiments on 

DMB as a function of 9. As predicted in Figure 6.6, the intensity of 

the v+ line approaches its maximum intensity very much more rapidly 

than the v or Vo lines at the same site. For 9<~/2, the agreement is 

qualitatively good. At larger flip angles, however, phase distortions 

appear in the spectrum which are not predicted by the theoretical 

treatment, and which are exacerbated as 9 approaches ~. 

The spectra of the -CD3 group are quite complex. In this very 

strongly coupled spin system, it is not surprising that a treatment 

based on the assumption of an isolated spin has little predictive 

quality. Overall, the signal-to-noise ratio in this two-pulse 

experiment appears not very different from the signal-to-noise ratio of 

the experiment described in Chapter III. It is surprising, and may 

provide some explanation for why the model calculations fail to 

reproduce the observed spectra, that the signal intensity at the ring 

sites is somewhat higher than in the direct, sudden-switching 

experiments of all previous chapters. This is almost certainly a 

signal that homonuclear level-crossings during the demagnetization 

transfer order back and forth between the rapidly-relaxing methyl group 

deuterons and their more sluggish ring-site neighbors. In the presence 

of such cross-relaxation during the demagnetization-remagnetization 

sequence, and because the extent of cross-relaxation is almost 

certainly orientation dependent, the calculations of Equations (6.28)­

(6.43) cannot be expected to correspond too closely to experimental 

reality. 



Figure 6.8. Sequence of two-pulse 2D NQR spectra of DMB as a function 

of flip angle 8 in (8, 2'11" - 8) sequence. a). 8 = 300
; b) . 8 45 0

; 

c). 8 = 750
; d). 8 = 900

; e). 8 = 1200
; f). 8 = 1350

; g) . 8 = 1500
; 

h). 8 1800
. For small flip angles, the intensities of the ring sites 

lines follow roughly the predictions of Figure 6.6 but for larger flip 

angles the agreement is less good. Most spectra are a the sum over a 

pair of zero field FID's with each setting of the flip angle, repeated 

at 7.5 s intervals for a total of 512 points separated by 3 ps in t l . 
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Figure 6.9 shows two-pulse zero field NQR spectra of 

perdeuterated DMN. Compared to the spectrum of Figure 5.10, the signal 

intensity from the -CD3 group is greatly depressed. This is almost 

certainly due to low field relaxation. In order to better satisfy the 

conditions for adiabaticity, the decay of the field from -100 gauss to 

zero was purposely slowed form -lOms to -40ms. During this longer time 

in applied fields no larger than the local fields, magnetization (or 

whatever type of order it corresponds to at low field) stored in the 

-CD3 group in high field largely disappears. The low field Tl is 

-25-40 ms. As in the spectra of DMB, the high frequency v+ lines grow 

in quite rapidly while the lower frequency v_ and Vo lines reach the 

full intensity only for much longer pulses. For long pulses (8-~) some 

of the high frequency lines invert, while others seem unaffected in 

intensity over a broad range of flip angles. The large 8 behavior is 

very different from that of either the theory or DMB. 

Finally, in Figure 6.10 I show two two-pulse spectra of 

perdeuterated malonic acid (CD2(COOD)2). In malonic acid, there 

appears to be little of the distortion or line inversion observed in 

either DMB or DMN for large flip angles. Splittings are observed in 

nearly every high frequency line. As there are only four distinct 

deuterium quadrupolar coupling constants in malonic acidl29 these 

splittings are almost certainly due to dipole-dipole couplings between 

sites which have not been incorporated into the model for the 

intensities. 

4. Summary 

Summarizing the results of this discursion into the land of the 

spin-I: experiments using pulsed dc fields to coherently excite 



Figure 6.9. Sequence of two-pulse 2D NQR spectra of DMN as a function 

of flip angle 0 in (0, 2~ - 0) sequence. To better satisfy the 

conditions for applicability of the adiabatic approximation, the 

transition from -100 gauss to zero field w~s slowed to -40 ms. The low 

field relaxation time of the -CD3 group is apparently rather shorter 

than the 80 ms it takes to demagnetize from and remagnetize to 100 

gauss as almost no -CD3 signal is observed. a). 0 = 450
; b). 0 = 600

; 

c). 0 = 80 0
; d). 0 = 1300

; e). 0 = 1500
; f). 1800

. Some of the 

features of the qualitative pulse-length behavior of DMB are repeated 

in this spectrum but the response to the two-pulse sequence seems 

highly system-dependent. 

235 



236 

d) 

b) e) 

c) f) 

a 50 100 150 a 50 100 150 

Frequency (kHz) 

XBL 858-3506 



0) 

b) 

a 50 100 150 

Frequency (k Hz) 
Figure 6.10. Zero field 20 NQR of perdeuterated malonic acid 

(C02(COOO)2) acquired by the two-pulse experiment for a). e -
180°; 

b). e - 90°. Each of the lines is split by dipole-dipole 

couplings. 

The flip angle dependence of the lines for e - 180° is very 

different from either that of Figure 6.8 or 6.9. 
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demagnetized spin systems are feasible, and for deuterated systems 

these pulsed experiments result in signal-to-noise ratios not very 

different from those observed in the more traditional experiment. 
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Exact modeling of intensities appears difficult, presumably because the 

dynamics of the demagnetization and remagnetization are quite 

complicated. Nevertheless, as long as only quadrupolar couplings are 

desired there is no strong objection to a technique capable of 

uncovering frequencies only. For systems characterized by very 

different TI spin-lattice relaxation times or where the high field 

detection sequence is more sensitive to some~sites than others, the 

level-crossings which complicate the exact intensity calculation may 

result in higher sensitivity in the two-pulse experiment than would be 

observed in zero field NMR experiments which use suddenly switched 

fields to develop coherence. Finally, the two-pulse experiment (and 

variants thereof, some of which follow directly) may be technically 

simpler to execute. Whereas the experiment of Chapter III requires 

that a large rapidly switchable field Bint be applied to the sample for 

times - ms (see Chapter VIII), in the two-pulse experiment fields large 

compared to the local field need only be applied for times - ~s. This 

may significantly simplify the design of the necessary hardware. 75 

For larger spin systems similar calculations are possible and may 

be most simply performed following the general outline of this section. 

For large I systems, or more complicated pulse sequences than the 

examples of this section, experience leads me to believe that paper and 

pencil calculations have only a small chance of fortuitously converging 

on correct answers in a finite amount of time. Brute force numerical 

integration over a powder distribution is an idea I find aesthetically 
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displeasing as well as expensive. These more complicated experiments 

will almost certainly benefit from the use of advanced artificial 

intelligence routines like Macsyma or SMP. But where the spin system 

is prepared by demagnetization to zero field, I believe it will be a 

rare case when calculations can accurately reproduce experimental 

intensities. In cyclic sequences, an analysis exploiting the machinery 

of average Hamiltonian theory2,8,130 is highly to be recommended. 

One might question the wisdom of worrying in great detail about an 

experiment whose interpretation is difficult and which seems to provide 

new information in only a limited number 'of experimental cases, 

particularly when zero field studies using the idea of suddenly 

switched fields prvovides much cleaner experimental results. In the 

next section, I will discuss some of the motivation for developing this 

new technique. 

C. Indirect Detection 

During the course of some studies of 1H zero field NMR, we 

investigated the spectrum of lauric acid as a function of the 1H_2D 

ratio in randomly deuterated samples (see Figure 4.21). During one of 

these experiments a puzzling set of lines were observed (Figure 6.11). 

In addition to the normal broad spectrum centered about zero frequency, 

some relatively sharper lines at frequencies -35 kHz and as high as 

-120 kHz were observed. These line clearly fall outside the range of 

normal 1H_1H dipole-dipole couplings and were remarkably narrow by the 

standards of zero field NMR. Some time later, when the 2D NQR spectrum 

of highly deuterated lauric acid was measured (Figure 5.11) the 



Lauric Acid 
-.j7%1H 

I ' I 
100 o 

Frequency (kHz) 

Figure 6.11. Indirectly detected 2D NQR 

spectrum of lauric acid is randomly deuterated 

sample. This is the same sample whose 

spectrum was shown in Figure 4.21. It is 

unclear what experimental parameters differed 

so that the 2D spectrum might be so clearly 

detected from the 1H spectrum. 

100 

XBL 857-8936 
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identity of these lines became clear; the 2D NQR spectral frequencies 

were indirectly observed through the residual lH spins. Level 

crossings between 2D and lH are not expected to occur in fields as 

large as 100 gauss, the nominal intermediate field for lH zero field 

NMR experiments. Soon thereafter these lines disappeared and at the 

time no attempt was made to recover them. 

As was outlined in Chapter II, extremely high sensitivity 

measurements of zero field NQR are possible when level crossings 

between spin-1/2 and quadrupolar spin systems can be used to transfer 

polarization to the quadrupolar nuclei during the demagnetization, and 

information imprinted in the zero field period can then be detected by 

observing the effect of the reverse process. One might wonder whether 

it is possible to exploit level crossings (where they exist) to enhance 

the sensitivity of time domain zero field experiments where direct 

detection experiments are insufficiently sensitive. Low sensitivity 

may be due to a low equilibrium value of the Curie constant, because 

the high field Tl is inconveniently long, the low field TI is too 

short, or because the high field spectrum is difficult to observe with 

high sensitivity. 

In the previous section examples of polarization transfer between 

inequivalent quadrupolar nuclei were presented. Level crossings in 

homonuclear systems probably occur only for specific orientations and 

values of the quadrupolar tensors involved, and there need be no field 

where the splittings between energy levels of neighboring nuclei are 

matched and polarization transfer is allowed. At high field, the 

difference in quadrupolar couplings slow cross relaxation between 

nuclei with different local quadrupolar couplings. In zero field, this 
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quenching effect is exacerbated because there are no diagonal elements 

of the dipole-dipole coupling between inequivalent 20 nuc1ei. 66 

Nonetheless, significant signal enhancement at sites with long T1 's due 

to the transfer of polarization between homonuc1ear 20 spin sites in 

perdeuterated spin systems has been observed. 

In mixed 1H_ 20 systems, level crossings certainly occur when the 

sample is demagnetized. But the simple argument of Chapter II probably 

does not apply to these systems. Where the sp1ittings between 

quadrupo1ar energy levels are as small as in 20 the level crossings do 

not occur in the simple sequence described in Chapter II. The 1H 

dipolar bath is sufficiently broad so that all quadrupo1ar energy 

sp1ittings may simultaneously be resonant with some energy-conserving 

spin-flip in the 1H bath. One possible level-crossing scheme is shown 

in Figure 6.12. The levels connected by the v+ and v lines are 

simultaneously matched to tha Zeeman-split spin-1/2 levels to within 

the energy spread of the dipolar bath. As long as HZ > HO' the dipolar 

and Zeeman baths may have very different spin temperatures and the 

demagnetized Zeeman reservoir is much colder. Both v+ and v lines 

equilibrate to the 1H Zeeman temperature. This establishes a state of 

pure quadrupo1ar order in the 20 spins. If the ratio of 20 to 1H is 

low, then the amount of quadrupo1ar order is nearly independent of the 

size of the quadrupo1ar coupling constant. If significant warming of 

the 1H bath occurs, successive level crossings transfer less order to 

sites with smaller couplings. At very low fields HZ - HO the va 

splitting becomes resonant with the pure dipolar bath and may be 

further cooled. This establishes eta order consistent with the size of 

the va splitting and the extent to which polarization remains in the 



Figure 6.12. Level crossing sequence for 1H_ 20 system of coupled 

spins. The 1H energy levels are broadened by the homonuc1ear dipo1e­

dipole couplings. The 20 spins are nearly in their zero field energy 

levels. If ~ is small, then transitions which pump pure quadrupo1ar 

order <Ip> ~ Ir> and Iq> ~ Ir> are simultaneously allowed to within the 

dipolar 1inewidth of the Zeeman levels. Eta order may also be pumped 

by the Ip> ~ Iq> transition, but in moderately high fields the Zeeman 

spin temperature after demagnetiation is much colder than the dipolar 

spin temperature, so little eta order is prepared. Only at low fields 

where the 1H dipolar and Zeeman levels merge can significant amounts of 

eta order be prepared via level crossings. 
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dipolar bath. The relative amounts of quadrupolar and eta order depend 

on concentration and the size of~. In systems with relatively few 2D 

nuclei and small asymmetry parameters this may well correspond very 

nearly to a state of spin temperature, where 

D 
p (0) = HQ (6.49) 

Where ~ is small, this may not be very different from pure quadrupolar 

order. 

The excitation of the spins proceeds as above. A 0 pulse applied 

to the sample transforms some of the diagonal order in pinto 

coherences. The density operator for the sample as a whole corresponds 

to separate contributions from pD and pH, which describes the lH bath. 

A 0 pulse applied to the 2D spins is a 0' pulse applied to the lH 

spins, where 

o (6.50) 

Because the flip angles differ even for the same applied field and 

pulse length, the evolution of different types of nuclei can be 

separated out based on the selectivity of the applied dc pulses. 62 At 

the end of t l , a second pulse stores evolved order. Remagnetization 

through the level crossing region encodes some of the information about 

the zero field evolution frequencies in the lH bath for detection 

through the amplitude of the high field lH free induction decay. 

This selectivity is an important advantage in any experiment 

where the zero field frequencies of the "interesting" spins (2D) are 

mapped out through its effect on the "uninteresting" spins (lH). If 

the lH spins evolve during t 1 , then the transfer of polarization back 
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from 20 to 1H during remagnetization will depend not only on the 

evolution of the 20 spins in zero field but also on the evolution of 

the 1H spins. More formally, this implies that the observable in any 

density matrix calculation is changing with t1. This will certainly 

distort the signal function G(t1). If, however, 8' 2n~, then the 1H 

evolution is suppressed and this distortion is minimized. (In some 

systems, it might prove more sensitive to initially destroy all 1H 

order before t1 by applying a sequence of 8 = 2n~ pulses. Then only 

order which is developed after polarization transfer back from the 

colder 20 spins is observed in high field.)·· 

Initial work exploiting time domain level-crossing spectroscopy 

confirms the basic principles discussed in this section. 62 Both 

transfers of order, during the demagnetization and remagnetization, are 

highly dependent on experimental parameters and no simple model for the 

intensities appear to have much predictive power. While some amplitude 

and/or phase distortions appear in the spectra, the theoretical 

difficulties associated with a complete and convincing analysis do not 

preclude the extraction of useful information from systems which are 

not amenable to techniques which rely on direct detection. 

o. Zero Field-Zero Field Correlation Experiments 

Among the most powerful of modern NMR techniques are the two-

dimensional correlation experiments; i.e. experiments where the 

spectrum is observed as a function of two independent time variables 

(see Section I.B.l.a) in order to uncover the correlations between the 

evolution frequencies in the two time domains. 18 Many examples of 
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experiments applicable to weakly coupled liquids exist. These include 

COSy,131 which maps out through-bond (J) coupling networks, and 

NOESyl32 which identifies through-space (dipole-dipole) couplings. 

Solid state analogs of these experiments are rare. My goal is to 

descibe such experiments for use in the structural analysis of complex 

systems of solid states spin systems in zero applied field. As usual, 

I focus on techniques applicable to the case of spin-I. 

1. Correlation between Zero Field Lines 

Figure 6.13a shows a two-dimensional zero field NMR experiment 

which correlates between lines arising from a single type of 2D site. 

The spins are brought to an intermediate field which is suddenly turned 

off. Evolution continues for a time tl' At t = t l , a short pulse (for 

simplicity, aligned along the laboratory z-axis) is applied. Then the 

spins are allowed to evolve for a time t 2 . ,At the end of this time 

period, the intermediate field is suddenly reapplied and the sample 

transported to high field for detection. The two time intervals are 

incremented independently, and a signal function G(tl ,O,t2) is measured 

in high field. The 0 pulse transfers coherence between different lines 

in the three-level spin-l system. Fourier transformation with respect 

to both t1 and t2 shows the correlations between, for example, the v+ 

and v lines of a single 2D site. (In the presence of couplings to 

other sites, correlations to other coupled spins may also be observed. 

I concentrate instead on cases where individual lines can be associated 

with individual sites and the couplings between sites are negligible.) 

As usual, the problem is to calculate 



Figure 6.13. Two dimensional zero field-zero field correlation 

experiments. a). Sample is demagnetized to Bint , which is suddenly 

switched off. Evolution under the zero field quadrupolar Hamiltonian 

occurs for a time t l . Then the intermediate field is pulsed on again. 

For short pulses, the field can be considered to be a rotation in spin 

space, and should reveal correlations betweenv+, v_, and Vo lines at 

the same site. For longer pulses, coherence which does not correspond 

to magnetization decays away. If the field pulse is long, spin 

diffusion between sites may occur. Bint is suddenly switched off and 

on again, and t2 is encoded with new frequency information. b). 

Similar to a). except that the long field pulse is preceded by a short 

pulse to store coherence as population differences. Slow 

remagnetization to Bint and demagnetization back to zero field 

guarantees that if there is a field where spin diffusion between 2D,s 

is rapid, it can occur. A second pulse initiates t 2 . 
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with 

Rexp(-iHt2)R-lexP(-i8IZ)ReXP(-iHtl)R-l IzL 

ReXP(iHtl)R-lexP(i8Iz)ReXP(iHt2)R-l 

By judicious rearrangement of Equation (6.51) and (6.52), G is 

rewritten in a form much simplified for calculation; 

G(tl ,8,t2) = Tr[{ReXp(iHt2)R-lIzLReXp(-i~t2)R-l} 

(exp(-i8Iz)eXP(-iHtl)R-llzLRexP(iHtl)R-lexP(i8Iz)} ] 
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(6.51) 

(6.52) 

(6.53) 

(6.54) 

The advantage of rewriting Equation (6.51) in the form of Equation 

(6.53) is that IzL(t,O) is given in Equation (3.58). What remains is 

to apply a pulse to I zL(-t2 ,0), take the trace, and integrate over the 

assumed powder distribution. In terms of the aj coefficients defined 

in Equation (3.59), the rotated form IzL(t, 8) is 

(6.55) 

where all the coefficients are time dependent. Taking the trace as 

indicated in Equation (6.55) and integrating over P(O), 
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1 
G(tl,9,t2)~ l05([j;~2l+l4COS9) Kjk,jk - (3+l0cos9+22cos9) Jjk,jk 

+[ ~ (7-7cos9)K· k 1 + 3(1+cos9-2cos29) JJ·k,lm]} (6.56) 
. k 1 . 1 1.~ J , m J~ , ~m,J~ ,~m 

where 

and 

K· k 1 & coswJ·ktlcoswlmt2 J , m 

J· k 1 e siuwJ·ktlsiuwlmt2 J , m 

(6.57) 

(6.58) 

and the indices run from 1 to 3. Maximum intensity is transformed into 

correlations between peaks within a manifold (as opposed to the 

redundant diagonal peaks wl = w2 which tell nothing about the 

correlations) for 9 =~. This experiment (or close relatives which 

develop polarization at many sites by starting from a demagnetized 

state) should assist in the interpretation of zero field spectra where 

the one-dimensional spectrum is too cluttered with overlapping lines to 

provide for an unambiguous assignment of the full quadrupolar tensor. 

A similar experimental sequence would be analogous to a zero field COSY 

experiment, where the quadrupolar couplings identify sites while the 

dipole-dipole couplings give the correlations between sites. The 

transfer of coherence between coupled spins occurs only on the time 

scale of spin diffusion which may be quite slow for inequivalent sites 

in zero field. 66 ,84 COSY-type experiments will probably show few 

cross-correlations other than those between equivalent sites. 

2. Cross Relaxation Through Dipole-Dipole Couplings 

Cross relaxation between dipole-dipole coupled deuterons occurs 

at a rate comparable to the inverse of the coupling constant wD only if 



252 

the quadrupo1ar plus Zeeman energies of neighboring deuterons are 

closely matched. Therefore, even in the best of circumstances roughly 

500 ~s must pass before magnetization originally localized on one spin 

might reasonably be expected to appear at a second, and perhaps much 

longer in zero field. As 500 ~s is roughly equal to the inverse of the 

average zero field 1inewidth, coherence transfer experiments may never 

be capable of revealing the spin-spin correlations between 2D in zero 

field. The time domain analog of the "double transition" 2D NQR 

experimentsl18 would be a "multiple quantum" experiment which, in 

analogy to high field experiments, would require both a preparation and 

mixing period again comparable to the inverse of the dipole couplings. 

Unless time-reversible pulse sequences133 can be developed for spins in 

zero field, multiple quantum experiments suffer from the same problem; 

the multiple spin-correlations grow in at a rate comparable to the 

decay of the observable. In fact, they may be one and the same 

process. 

A more generally applicable approach is indicated in the 

sequences of Figure 6.13. As the flip angle in Equations (6.51-57) 

becomes large (»2~), transverse magnetization or other coherence (i.e. 

order in the density matrix p which does not commute with IjL' where j 

is the axis along which the field pulse is applied) will decay in a 

time given roughly by the inverse of the quadrupole coupling constant. 

For pulses long compared to the inverse of the quadrupo1ar frequencies, 

the evolution under the truncated quadrupo1ar Hamiltonian cannot be 

ignored, and the frequency of evolution varies from orientation to 

orientation over the sample. (In fact, the sample is in high field 

with all the associated consequences.) For long pulses and where no 
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pulse sequences designed to elicit spin echoes134 are applied the norm 

of p decreases with time. In return for this loss of signal power, 

some portion of p is diagonal in the high field basis set and 

disappears only with a time constant Tl , which is generally many 

milliseconds long and may be seconds long. If spin diffusion occurs 

during this rather longer period of time, and the field is again 

suddenly switched off and on again, the signal G(tl ,t2) will be 

imprinted with frequency information from both sites. 

One serious objection to this experiment has already been 

discussed. Spin diffusion between inequivalent sites is fast only at 

specific values of the externally applied field which are almost 

certainly orientation dependent. Then unless by happenstance the 

intermediate field is one generally good value little transfer of 

magnetization will occur except within those spins systems which are 

strongly coupled, anyway. 

The sequence of Figure 6.l3b should prove vastly superior. It 

takes advantage of the fact that during an "adiabatic" change of the 

field one necessarily passes through whatever value of the field is 

optimal for spin diffusion between neighbors independent of orientation 

unless no good value exists. Order is stored in eigenstates of the 

zero field Hamiltonian (e.g. as second rank tensor operators 

proportional to Uo or U2+ in a spin-l system) by a short, strong dc 

pulse. This order is again characterized by a decay constant 

proportional to Tl . By slowly restoring the intermediate field, 

quadrupolar and eta order stored by the pulse is conserved and slowly 

transformed into Zeeman and quadrupolar order appropriate to high 

field. All values of the field where spin diffusion is likely to be 
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efficient are sampled. The evolution period t2 can then be initiated 

either by demagnetization followed by a short pulse, or by sudden 

switching of the intermediate field. Finally, t2 is ended and the 

system returned to high field for detection. 

Numerous other variations on these simple correlation experiments 

which take advantage of incoherent, NOESY-like spin diffusion are 

possible. 
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VII. Considerations of Symmetry 

In this chapter I address some rather obscure but interesting 

problems associated with the symmetry properties of the zero field 

Hamiltonian (H). An understanding of these properties is useful in 

explaining spectra of systems of coupled nuclear spins in zero applied 

field. Predictions of such gross spectral features as the numbers of 

allowed transitions (which was treated in a fairly general fashion in 

Chapter IV) become exact only if the symmetries of H are properly 

incorporated. Furthermore, this understanding of the limits nature has 

set may provide a basis for a reasoned evaluation of the usefulness of 

complicated pulse sequences designed to simplify the spectra of spin 

systems in zero field. 

In Chapter I, the general approach to problems of high field NMR 

was presented. Formally: 

1. An axis system is established fixed in the laboratory frame 

and defined by the direction of the applied magnetic field. 

Conventionally, the z-axis is chosen parallel to the applied 

field. 

2. The elements of the spin Hamiltonian are organized. As the 

Zeeman interaction, HZ' is much larger than the local 

Hamiltonians a basis of states is chosen which diagonalizes HZ. 

3. The internal Hamiltonians, Hloc ' are expressed in the basis 

set defined in step 2 above. To first order in perturbation 

theory, only the truncated (diagonal) components of the local 

fields are observed. This is treated formally by entering a 

rotating reference frame where the orientation of the spin 
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reference frame is continuously changing with respect to the 

fixed spatial frame of reference. Only the value of the internal 

Hamiltonians averaged over the period of the rotation (i.e. at 

the windows where the spin and spatial reference frames coincide) 

is observed. 

Selection rules are established based on the symmetry operations of the 

Hamiltonian H = HZ + Hloc ' Because the spin reference frame is rapidly 

rotating about its and the spatial frame's z-axis, all rotations about 

that axis commute with H and are symmetry operations of H. The 

projection of the angular momentum along the z-axis, <Iz>, is quantized 

and transitions between states are allowed under dipole selection rules 

(i.e. the application of an oscillating rf field) only if 

<I >f- <I >. z z 1. 
± 1 (7.1) 

where f labels the final state and i the initial state. Further 

averaging may take place in the spatial coordinates. In simple cases 

(e.g. MASS 35 ) this can be treated by entering a second rotating frame 

which relates the axis of spatial rotation of the sample to the 

laboratory frame where measurements are made. A spatially rotating 

frame was also used in the analysis of the zero field NMR spectrum of 

the methyl group (Section IV.A.2). 

Other symmetries of H (permutations of "identical" nuclei, i.e. 

nuclei with identical Larmor frequencies and the same set of couplings 

to other nuclei) may provide further selection rules. Where these 

additional selection rules exist they assist in the assignment of lines 

and the analysis of complex spectra. 135 

In this chapter, I present a related approach to an understanding 
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of the use of symmetry characteristics in the analysis of zero field 

NMR spectra. Formally: 

1. An axis system is established fixed in a molecular coordinate 

system such that the Hamiltonian for all similar spin systems 

share an identical description independent of orientation. 

2. The spin Hamiltonian is expanded in a basis set of spin 

operators referenced to this fixed spatial system and 

parameterized by the spatial variables. In the absence of 

motion, spin and spatial frames coincide. 

In the absence of rapid rotation about a molecular axis (again as in 

-CH3) there need be no axis along which any component of the angular 

momentum is quantized. If <I j > is not a good quantum number then there 

exists no selection rule for ~m analogous to that of Equation (7.1). 

If there are selection rules they are imposed by other symmetry 

operations. These selection rules, where they exist, are determined by 

the set of operators which permute identical nuclei (again, spins which 

share the same set of coupling constants to all other spins). 

In analogy to the analysis of symmetry constraints in high field 

(and because it is difficult to derive the effect of permutations on 

spinors), the set of permutations of identical spins will be assumed 

isomorphic to a set of symmetry operations comprised of rotations, 

inversions and reflections which act upon the spin degrees of freedom 

only. Symmetry operations of H are those which take the Hamiltonian (a 

contraction of spin and spatial degrees of freedom) and transform it 

into an identical Hamiltonian except for the possible permutation of 

spin labels between identical spins. The spin-space rotations which 

commute with H can be thought of (in homonuclear spins systems) as 
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corresponding to a set of dc pulses which (if applied in the molecular 

frame) would leave the Hamiltonian (and thus the density operator p) 

unchanged. 

Application of a symmetry operation to an eigenstate ~ effects 

two distinct types of changes. First is a permutation of spin labels 

consistent with the interchange of symmetry-related spins where the 

spin reference frame is reoriented with respect to the spatial 

coordinate system. Second is the alteration of ~ because the spinors 

themselves (the single-spin bras or kets) are transformed under 

rotations and reflections. The first step is essentially the standard 

process of ordinary group theory.136 The second is unique to problems 

of spins in zero applied field. Section A is entirely devoted to the 

clarification of this second effect. 

It may seem strange that the symmetry operations are defined with 

respect to the transformation of the spin variables alone. Yet this 

must be the proper perspective. Simultaneous transformation of both 

spatial and spin variables through the same coordinate transformation 

yields an equivalent Hamiltonian with identical eigenvalues independent 

of the transformation as H is merely reexpressed in a different 

reference system. While the invariance of zero field Hamiltonians to 

coordinate transformations is the raison d'~tre of zero field NMR, the 

simultaneous transformation of spin and spatial frames in the sense of 

Equation (1.14) is uninteresting. 

The goal of this chapter is to identify and characterize the 

symmetry operations characteristic of the zero field Hamiltonian and to 

describe their influence on the observable, the zero field spectrum. 

In the presence of molecular motion, the spatial degrees of freedom 



become time-dependent and the Hamiltonian again separates into two 

reference frames which only intermittently coincide. Then the 

arguments and conclusions of this chapter require significant 

modification. 
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In the first section which follows, the types of symmetry 

operations are summarized and rules are established to describe their 

effect on eigenstates. In the second section, I present several 

illustrative examples which demonstrate the use of these rules in the 

classification of zero field Hamiltonians and the prediction of zero 

field spectra. 

A. Formal Aspects 

1. Symmetry Operations 

An operator e is a symmetry operator for the Hamiltonian H if 

H (7.2) 

If e is a symmetry operation, then for I~j> an eigenstate of H 

(7.3) 

where lal 2 
= I and if j ~ k then I~j> and I~k> are degenerate. 

2. Operations in Spin Space 

The set of possible symmetry operations for isolated spin systems 

are described in standard texts on the theory of point groups.136,137 

These are: rotations about a fixed axis, reflections in a plane, 

simultaneous inversion of all coordinates through the origin of the 

reference frame, and the improper rotations. Following standard 
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notation, the symmetry operations are represented by the symbols Cn' G, 

i, and Sn' Due to an unavoidable overlap of notation, G is used in 

other chapters to represent the chemical shift. In this chapter the 

chemical shift will not appear and some confusion is avoided. The 

symbol i, however, will be used to represent both the inversion 

operation and to represent (_1)1/2. Caveat emptor! 

Products of only two operations generate both others. I choose 

to treat Cn and G as the fundamental operations. The form of these 

symmetry operations can be derived from the requirement that all 

observables (e.g. angular momenta) are unaffected by the spinor 

behavior of the eigenstates, and therefore spin and spatial angular 

momenta (which as operators correspond to observab1es) must transform 

identically under any of the operations of the group. 

a. Rotations about a Fixed Axis 

Rotations about a fixed axis are described by the Euler angles of 

Chapter I and the various relations summarized in Equation (1.25). A 

Cnj symmetry operation is equivalent to a rotation of 2~/n about the j 

axis, and 

if j ~ k 

if j k (7.4) 

and any representation of the C2j operation must be consistent with 

understanding. For j = x, y, or z the rotation operators for spins-1/2 

are 

4> cos "2 + 1.·s S1.°n f 
j 2 

where the Sj are the Pauli spin matrices. Therefore, for j 

(7.5) 

x, y, or 
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z, C2j = iSj . 

More generally the spinor transformation associated with a Cnj 

operation is the product of rotations about the y and z axes and is 

described by a sequence of transformations of the form of 

Equation (7.5). This net transformation is precisely equivalent to a 

Wigner rotation matrix. Rotations about the z-axis through ~ append a 

phase factor exp(i~/2) for each la> spinor and exp(-i~/2) for each I~> 

spinor. The net effect on a typical wavefunction I~> = lal>I~2>" . Ian> 

is to mUltiply it by the product of the phase factors for each of the 

individual spinors. 

Rotations about the x- or y-axes additionally may change the 

projection of the spin angular momentum along the z-axis. Under a C2y 

rotation all spinors in a spin-l/2 system are transformed from 

la> ~ -I~> and I~> ~ la>. Applied to a system of n identical spins in 

a plane, the Cnj operation interchanges the spin labels referenced to 

the fixed spatial axes of all spins not on the axis of rotation (e.g. 

takes the spin initially labeled 1 into 2, 2 into 3, ... , and n into 

1). Therefore, the net effect of a C2z operation on four identical 

spins in the arrangement of a square is 

(7.6) 

In particular a 2~ rotation about any axis transforms a spin-l/2 

spinor into its negative. The eigenstates of H are products of the 

spinors describing each individual spin. In systems,of odd numbers of 

spins-l/2 a 2~ rotation and the identity operation, E, are not 

equivalent. A 2~ rotation corresponds instead to the symmetry 

operation denoted E where E2 = E and, for all e, Ee = -eE. A 4~ 



rotation transforms a spinor into itself and is equivalent to E. 

Because 2~ and 4~ rotations are distinct symmetry operations, odd 

numbers of half-integer spin nuclei can only be treated using the 

formalism of the double groups.138,139 In the double group 
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representations, the order of all classes of rotations is doubled (i.e. 

only after 2n applications of a Cn operation does the system return to 

its original state). 

b. Reflections Through a Plane 

The spin-space reflection operators are required to be similar in 

effect to to the operators which generate the improper rotations on 

spatial angular momenta. Where OJ is a symmetry plane perpendicular to 

the j axis, 

-1 
o. Iko. 

J J 
if j k 

if j ¢ k (7.7) 

By comparison to Equation (7.4) the spin-space component of OJ is 

o. 
J 

-is. 
J 

(7.8) 

(The equivalence is Equation (7.8) is not meant to suggest that C2} and 

OJ are identical operations. These two operations act similarly on the 

spinors themselves; this is, however, only the second of the 

consequences of the symmetry operation. They differ with respect to 

the relationship between the transformed spin and spatial frames.) The 

operation of spin reflection interchanges spin labels for spins which 

do not lie in the plane of reflection, turn la> into Ip> and vice versa 

if j ¢ Z, and appends phase factors as derived from Equation (7.8). 

Applied to the same four-spin wavefunction as before, and where Z lies 



in the plane of the square, 

c. Inversion 

o lapaa> z 
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- lapaa> (7.9) 

The inversion operator, represented by i, is constructed by a 

succession of improper rotations 

i 
.3 

000 1 S S S x y z x y z 

.4 2 E 1 S 
Z 

(7.10) 

Under inversion, all coordinate are interchanged with their negative 

and all spinors are multiplied by -1. For even numbers of spins, the 

inversion operation merely interchanges labels on spins related by the 

inversion; for odd numbers, also multiplies all wavefunctions by 2~. 

Applied to the same four~spin eigenstate 

i lapaa> laaap> (7.11) 

d. Improper Rotation Axis 

The composite operations Sn are derived by applying sequentially 

the component symmetry operations, and 

S2 lapaa> = 0 C2 lapaa> = - 0 laaap> z z z z laaap> (7.12) 

The S2 operation is identical to the inversion operation. More 

3. Operations in Time 

In the absence of an external field the zero field Hamiltonians 

of Chapter I exhibit time reversal symmetry. Because each element of 

the Hamiltonian contains only products of pairs of angular momentum 

operators, time reversal (which corresponds to taking all velocities 
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and angular momenta into their negative) is an explicit symmetry 

operation of H. While the fundamental properties of the time reversal 

operator T are explained in detail elsewhere,104,lOS I provide a brief 

review here. 

The relation which serves to define T is 

TI~> - exp(iHt)Texp(iHt)I~> (7.13) 

In words, applying the operator T to an eigenstate I~> leaves it in the 

same state as if the eigenstate evolved under the Hamiltonian H for a 

time t, the time reversal operator is applied, and evolution continues 

for a time t. An equivalent formulation is given in the operator 

equations 
exp( -iHt) 

-1 . 
T exp(iHt)T (7.14) 

or 

-iHt (7.15) 

The solutions to Equation (7.15) are constrained by the requirements 

that 

[T, H] o (7.16 ) 

because T is a symmetry operation of Hand 

[T, t] o (7.17) 

because the time (t) enters the problem only parametrically. Then 

iT - Ti (7.18) 

and 

Tla~> * a TI~> (7.19) 
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In analogy to spatial angular momenta (which are the vector cross 

product of direction vector and a velocity, and therefore reverse sign 

under time reversal), it is further required that all spin angular 

momenta anticommute with T; that is, 

- I 
j 

Traditionally, T is factored into two components; 

T e K 

(7.20) 

(7.21) 

where K is the operation of complex conjugation, and e is chosen so 

that T satisfies Equation (7.17). Then 

I .K-le- l * -1 (7.22) e K e I. e I. 
J J J 

Choosing the Pauli representation for the spin-l/2 particle, Equation 

(7.18) suggests 

e a[ 
0 -~ ] (7.23) a s 
i y 

and the proportionality constant a is conventionally chosen to equal 1. 

For a spin-l/2 particle, 

T2 eKe K [ 0 -~ ] K [ 0 -i ] K i i 0 

[ 0 -~ ] [ 0 ~ ] [ -1 0 ] E 
i -i 0 -1 

(7.24) 

and for N coupled spins-l/2 

N 
T IT T. 

j=l J 
(7.25) 

Since T is a symmetry operation of the Hamiltonian H, for each I~> an 



eigenstate of H, TI~> is also an eigenstate. But 

Two cases need be considered: 

<T~IT2~>* 

<T2~IT~> 
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(7.26) 

-1 (i.e. an odd number of half-integer spin nuclei). 

Then 

o. (7.27) 

I~> and IT~> are different, and necessarily degenerate, 

eigenstates of H. This is known as Kramer's degeneracy. For 

spin systems which exhibit Kramer's degeneracy, the standard 

point groups covered in most texts on group theory are 

inadequate. The less familiar double group representations, 

which incorporate the double-valued nature of the half-integral 

spins, are required. 139 

2. T2 - 1 (i.e. an even number of half-integral spins, or only 

integer spins). Then T introduces no necessary degeneracy. Its 

existence, however, does lead to other conclusions; to wit, 

<~II.I~> 
J 

- <~IT-lI.TI~> 
J 

- <~IIjl~> 0 

-<T~II. IT~> 
J 

(7.28) 

and the expectation values of all angular momentum operators are 

quenched for nondegenerate eigenstates of the zero field 

Hamiltonian. In the presence of degeneracies mandated by other 

symmetries, the expectation values of I j summed over all 

degenerate states must vanish. 
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B. Examples 

1. Two Coupled Spin-l/2 Nuclei 

a. Identical Pair 

A convenient choice of reference system is to align the 

internuclear vector with the molecular z axis. Independent of the 

identity of the two spins, the zero field Hamiltonian has the symmetry 

of the point group D~h. As the number of spins is even, there is no 

need to resort to the double group representations. Based on the 

discussion in the previous section of the point group operations, the 

transformation table for representative operations in each class of the 

point group D~h is given in Table 7.1, below. 

Table 7.1 

Operations of the group D~h 

D~h E 2Cq, ~O' i 2Sq, ~C2 
~ v ~ 

aa aa exp(iq,)aa -{J{J aa -exp(iq,)aa -{J{J 
a{J a{J a{J a{J {Ja {Ja {Ja 
{Ja {Ja {Ja {Ja a{J a{J a{J 
{J/3 {J{J exp(-iq,){J{J -aa {J/3 -exp(-iq,){J{J -aa 

~X 4 2+2cosq, 2 2 -2cosq, 0 

Using the grand orthogonality theorem, the eigenstates of H transform 

as the ~~, ~~, and ITg representations of the group D~h. Where r is the 

representation, selection rules are governed by the requirement that 

for initial state ~i' final state ~f' and transition operator T the 

product 

(7.29) 
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contains the totally symmetric representation (generally labeled Al but 

in this group ~;). For the sudden switching experiment of Chapter III, 

the transition operators whose selection rules are required are 

proportional to the angular momentum operators. Ix and Iy transform as 

ITg and connect the ~; representation to the degenerate ITg 

representation (that is, the m = 0 state of the triplet manifold to the 

pair of triplet states with Iml = 1). I z , which transforms according 

to the representation IT~, connects the degenerate pair of eigenstates 

one to another. None of these operators connects the ungerade 

(antisymmetric) representations to the gerade (symmetric) 

representations. Therefore the observed spectrum is a single line at 

zero frequency and a pair symmetrically placed about zero. 

b. Heteronuclear Pair 

The same group classification applies, because for two dipole-

coupled spins H is the same (as usual, to within a scaling constant) 

independent of whether the spins are identical. The four eigenstates 

of the heteronuclear pair transform as the same set of irreducible 

representations as the eigenstates of the homonuclear pair. The 

transition moment operators, T, differ because the initial condition 

does. As was previously discussed in Chapter III, the initial 

condition is the sum of a symmetric first rank tensor (the high field 

operator I z + Sz) and an antisymmetric first rank tensor (Iz - Sz). 

The molecular frame tensors derived from the symmetric combination 

transform as the normal angular momenta described above. Molecular 

frame tensors derived from the second term are of opposite symmetry 

with respect to all the symmetry operations which exchange spin labels. 

They belong only to the ungerade representations of the group, and 
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transform as ~~ and flu' These operators connect the ungerade to gerade 

states (i.e. the singlet to the triplet). Spectra of the two spin 

system in p-Ca(H13COO)2 which demonstrate these selection rules are 

shown in Figure 7.1. The full complement of six allowed pairs of lines 

predicted by Equation (4.22) might only be observed if the cylindrical 

symmetry of H were broken, e.g. by an asymmetric dipolar tensor, in 

addition to both the symmetric and antisymmetric components in the 

initially prepared density operator. 

2. Four Spin Systems 

a. The Square 

The simplest arrangement of four identical spins is in the 

spatial arrangement of a square. The group of symmetry operations is 

D4h . As the number of spin-1/2 nuclei is even, the double group is not 

needed. Furthermore, only classification according to the group D4 is 

necessary, as D~h is a product group. The effect of the additional 

operation uh (where the local reference frame is chosen so that the 

square lies flat in the x-y plane) is to transform a state into itself 

(if there are an even number of spins up) or its negative (if there are 

an odd number of spins up). To save space, only transformation rules 

for the combined spin and space symmetry operations are given rather 

than the complete correlation table. Furthermore, only a single 

specific operation from each class is treated. Operations are 

represented in the shorthand notation 

€(1234) (WXYZ) (7.30) 

to indicate that after the operation, spin W is in the position in the 

spatial reference frame that 1 previously occupied, X where '2 was, and 
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Figure 7.1 Zero field NMR spectra of two-coupled spin-l/2 nuclei. 

At the top, initial condition corresponding to equal magnetization 

at two sites (the pure symmetric operator); in the middle, at one 

site only (equal amounts of symmetric and antisymmetric transition 

moment operators); at the bottom, equal and opposite amounts of 

magnetization at the two sites (only the antisymmetric operator). 

At left, theoretial stick spectra and broadened spectra; at right, 

experimental spectra. The number of observed lines follows the 

argument in the text. 
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so on. Furthermore, W = 2 implies that, as a result of the operation, 

the spinor originally located at 2 has flipped from 10> to Ip> or vice 

versa. Finally, phase factors are given as multiplicative constants 

preceding the resultant. In this form, and with m - ~ I . in the zJ 

initial state, Table 7.2 gives the transformations of I~> for a typical 

element in each class of D4 . D4h is the product of D4 and the 

reflection through the plane containing these spins. The latter takes 

states with m odd into their negative and has no effect on states with 

m even. Odd m states belong only to the ungerade representations of 

the group and even m states only to the gerade representations. 

(Beware! This is an unconventional definition of the product group, 

D4h . In most applications D4h is given as the product of D4 and the 

inversion operator, i. The product groups are identical but the 

notation is not. One-dimensional representations are identical, but 

t~o dimensional representations gerade referenced to the uh are 

ungerade referenced to i, and vice versa.) Using these rules and the 

Table 7.2 

Operations of the Group D4h 

c2 , , , 
Operation: E C

4z 
C

2 
C

2 4z 

Resultant: (1234) (i)m(4123) (-1)m(3412) (-1)m(2i43) e(5m~i/4)(32i4) 

results of Table 7.2, the sum of the characters, X, for the gerade 

(even m) and ungerade (odd m) representations separately is 
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C2 , , , 
E 2C4z 

2C2 2C2 4z 

~ x 8 -2 4 4 0 (7.31) 
g 

~ Xu 8 0 0 0 0 

The eigenstates partition into the representations 

(7.32) 

I z belongs to the irreducible representation A2g , and (Ix' Iy) to Eu 

(again, referenced to the uh operation and not i). Summarizing the 

allowed transitions, (Ix' Iy) couple the degenerate E representations 

to all one-dimensional states with the opposite u-g symmetry for a 

total of 16 pairs of lines. I z connects E ~ E, Al ~ A2 , and Bl ~ B2 if 

both initial and final states have the same u-g symmetry. In the 

gerade manifold, I z is responsible for 3 pairs of lines and a singlet 

at zero frequency; in the ungerade manifold, for an additional 3 pairs 

and a singlet at zero frequency. The spectrum is predicted to consist 

of 22 pairs of lines and a singlet at zero frequency. Computer 

simulation reveals 21 pairs and a singlet, and is illustrated in the 

simulation in Figure 7.2a. In small systems of spins, it is not 

unusual for some transition frequencies to be accidentally d~generate 

and coincide. 

b. The Rectangle 

Starting from the analysis of the symmetry properties of four 

spins arranged in a-square makes other four spins systems easier. In 

the rectangular array of four spins the appropriate point group (D2h) 

is a subgroup of D4h and contains only eight one-dimensional 

representations. Correlations between the representations of D4h and 



Figure 7.2 Theoretical stick spectra simulations for identical four 

spins in the configuration corresponding to a). a square; b). a 

rectangle; c). a general, asymmetric grouping. Although some allowed 

lines have very low intensity, the number of allowed pairs follows 

closely the predictions of the argument in the text (respectively 22 

pairs, 46 pairs, and 120 pairs). 
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its subgroup D2h are given in Table 7.3. (where gerade states correlate 

only to gerade and ungerade to ungerade) 137 

Table 7.3 

Correlations Between D4h and D2h 

Class in D4h E 

Class in D2h A 

and the states partition into the classes 

(7.33) 

Selection rules can be summarized as: 

Operator I I I _____________ _ _________ z_______ Y x 
(7.34) 

Correlations (A~Bl)'(B2~B3) (A~B2)'(Bl~B3) (A~B3)'(Bl~B2) 

where, in my unconventional group notation, (again, g and u are defined 

with respect to the Gz operation and not the inversion center) Ix and 

Iy belong to the ungerade representations and connect u~g and g~u, and 

I z is gerade and connects u~u and g~g. Each ungeradeoperator 

transition operator is responsible for 16 pairs of lines, and I z 

contributes 14 more. Computer simulations agree with these 

predictions. The spectrum of a rectangular array of four spins is 

shown in Figure 7.2b. Most of the predicted lines are observed. Some 

lines have very low intensities, and others overlap (within the 

resolution of the plot) or coincide so the full complement of lines is 

not observed in the simulation. 

c. General Four-Spin Systems 

Finally, Figure 7.2c shows the spectrum of a four spin system 
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with no symmetry. Equation (4.22) predicts 120 pairs of lines. The 

number of lines which appear in the computer simulation is exactly 120 

pairs. The experimental spectra of Figures 4.11 and 4.15 with 

experimentally achievable 1inewidths show little structure due to 

isolated lines. 

3. Three Spins 1/2 

The highest symmetry in three spin systems is the arrangement 

corresponding to the spatial arrangement of an equilateral triangle. 

where all internuclear distance (and therefore coupling constants) are 

alike in homonuclear spin systems. Naively we would classify this 

group this set as belonging to the symmetry group D3h . Because T2 = -1 

for odd numbers of spins-1/2, a 2~ rotation does not correspond to the 

identity operation and the number of operations in the point group is 

twice as large as are in D3h (consisting of E times all of the normal 

point group operations). The double group is not, however, a product 

group in that the new classes and representations are not direct 

products of the new operation E with all of the previous operations. 
, 

For D3h the character table for the double group representations is 

given in Table 7.4. 139 In the notation introduced above, the effect of 

Table 7.4 
, 

Extra Characters of the Double Group Representations for D3h 

E E 2C3 2C3 3CZ,3CZ uh,uh 
2S 3 2S 3 

3u ,3u v v 
r1 2 -2 1 -1 0 0 ~ -~ 0 
r2 2 -2 1 -1 0 0 -~ ~ 0 
r3 2 -2 -2 2 0 0 0 0 0 

the symmetry operations (only for one member in each class and only for 
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unbarred operations, as the barred operations are identical except for 

a factor of -1) is given in Table 7.5. Summing over the characters, 

the grand orthogonality theorem predicts that the eigenstates partition 

into the classes 

(7.35) 

The angular momentum operators, like all observables, must belong to 

the single valued representations (otherwise, observables would exhibit 

, " 
spinor behavior directly). I z belongs to A2 and (Ix,Iy ) to E Given 

these transition operators, eigenstates a.re coupled if they belong to 

representations for r j ~ r j , and rl, r2 ~ r3. Transitions between rl 

and r2 are forbidden. This corresponds to a 'total of five pairs of 

lines and a singlet at zero frequency. An example is shown in Figure 

7.3a which is a computer simulation of the spectrum of three lH spins 

in the configuration of an equilateral triangle. 

Table 7.5 

, 
Operations of the Double Group D3h 

E C3z C2 
uh S3 u v 

(123) e2i~m/3(3l2) (-1)(i32) (-1)-m(i23) e(-m~i/3)(3l2) (i)2m-l(i32) 

In three-spin systems of lower symmetry, it is simple to derive 

the appropriate representations by working with the appropriate 
, 

subgroups of D3h in the same manner used in the comparison of the three 

four-spin 
\ 

systems in the previous subsection. First the equilateral 

triangle is transformed into an isosceles triangle by moving spin 3 
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Figure 7.3 Simulated stick spectra for 3 identical spins in the 

configuration corresponding to a). an equilateral triangle; b). an 

isosceles triangle; c). a scalene triangle. In a). only 5 'pairs 

are observed; in b). a sixth pair appears but with very low 

intensity. In c). the intensity of the new pair is somewhat 

larger. 
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along the perpendicular bisector of r12' The C3 and S3 symmetry axes 

are lost, as well as 2 each of the C2 and ah operations. The remaining 

classes of double group operations are E, E, {C2 ,C2}, {av ' uv }' and 
, - , , 

{av ' av } and the group is C2v (after a slight redefinition of axes; 

previously, the z axis was chosen along the C3 axis; here, it lies 

along the perpendicular bisector of r12' Only one spinor 

representation of the double group exists and all eigenstates fall into 

this one class. Transitions are allowed between all four degenerate 

pairs and also between pairs of degenerate states. Thus, six pairs of 

lines and a singlet are predicted, and are shown in the simulation of 

Figure 7.3b. 

This is, in fact, the maximum number of lines allowed for a three 

spin system and the number predicted in Equation (4.22). The scalene 

triangle (no symmetry elements except for the necessary inversion plane 

corresponding to the plane defined by the three nuclear sites) belongs 

, --
to the double group Cs with operations E,E, a, and a. There are two 

spinor representations. Each is one-dimensional but the two 

representations are degenerate according to the conditions of the 

Frobenius-Schur test. lOS All transitions are allowed and the maximum 

of six pairs and a singlet at zero frequency are again observed 

(Figure 7.3c). 

4. Heteronuclear Spins 

As I mentioned near the beginning of this chapter identical spins 

are those which share identical sets of coupling constants to all other 

spins. In a two-spin system, spins are identical independent of their 

precise nature as the system supports only one coupling constant. In 

larger spin systems, this need not be so. Figure 7.4 compares the 
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Figure 7.4 Simulations for three spin groupings in equila~eral 

triangle. a). Identical spins; and b). One heteronuclear spin 

(i.e. different ~) and two identical spins. b). shows the number 

of lines predicted for the asymmetric systems. 
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computer-simulated spectra for the array of three identical spins in 

the configuration corresponding to an equilateral triangle as discussed 

above to the spectrum of a heteronuclear I 2S triplet with the same 

geometric configuration. Figure 7.4b clearly shows all six pairs of 

allowed lines. The symmetry is determined not by the spatial 

orientation, but by the coupling constants. In homonuclear spin 

systems only these parameters are proportional to one another. This 

correspondance between the coupling constants and the geometrical form 

is convenient as it affords a simple treatment of the symmetry 

operations based on the isomorphism between the permutations of spins 

and the exchange of spatial positions. Where this isomorphism no 

longer holds, it is not obvious how best to proceed. 

C. Conclusions 

The techniques of this chapter can be extended to cover systems 

of coupled quadrupolar spins (I ~ 1). Because the quadrupolar 

interaction dominates the spectrum and the dipole-dipole coupling is 

usually only a small perturbations, these methods will rarely be 

necessary or even particularly useful. But for coupled spins-l/2 in 

zero field, the symmetry properties are the only source of selection 

rules and may have a marked simplifying effect on the zero field 

spectrum. It is straightforward to extend the principles discussed in 

this chapter to higher rank operator initial conditions. 
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VIII. Experimental Details 

This chapter summarizes the design criteria and the experimental 

apparatus used in field cycling Fourier transform zero field NMR and 

NQR experiments. A more complete technical description is given 

elsewhere. 75 First, I describe the general experimental approach to 

the creation of the zero field region. Second, I provide a brief 

overview of the solid state high field NMR spectrometer used in the 

polarization and detection periods. Zero field NMR experiments have 

been performed on two very similar machines in the Pines laboratory. 

Most of the work presented in this thesis was executed on the p 

spectrometer, and some machine-specific characteristics are mentioned. 

Finally, I conclude with some thoughts on alternative solutions to the 

problem of high sensitivity zero field magnetic resonance. 

A. Zero Field Region 

The distinctive aspect of the field cycling scheme described in 

Chapter III is that the evolution of coherence is initiated and 

terminated by the sudden removal and reapplication, respectively, of a 

large static field. Chapter VI introduced the possibility of zero 

field nuclear resonance with demagnetization to zero field and where 

short, strong DC field pulses initiate evolution. Instrumentation 

requirements are similar for these two experiments. For concreteness, 

I specialize the discussion to systems of dipole-dipole coupled spins 

where an intermediate field of 100 gauss is sufficient, and to 

experiments where the field is suddenly switched off and on. Identical 



hardware with only modest modifications serves to provide the larger 

intermediate field required in NQR or where pulsed fields are useful. 

1. Timing Considerations 

There are two practical criteria for the measurement of zero 

field NMR signals by the general scheme of Figure 3.1. First, the 

field cycle must be sufficiently rapid that magnetization created in 

the high field polarization phase survives to be observed in the 
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detection phase; therefore, the total cycle time (TC) can be no longer 

than the high field Tl . In many samples, low field Tl's are 

significantly shorter than high field Tl's and zero field signal may 

not be observed even if TC is much shorter than the high field Tl . 

Second, the actual switching period between the high field condition 

(HZ»Hloc ) to the low field condition (HZ<<Hloc ) must occur 

sufficiently rapidly so that coherence does not decay. This coherence 

is precisely those terms in p which become time-dependent as a 

consequence of the switching itself. The switching time, T s ' should be 

much shorter than T2 , the coherence lifetime. If the spectrum contains 

no resolved lines then its spectral width is characterized by the 

square root of its second moment, and Mil / 2 < T2 . A stringent 

criterion is therefore that TS «Mil / 2 . Then negligible evolution 

occurs under Hloc during the switching off and on of the fields. 

Instantaneous switching in the sense of the sudden approximation64 

would require that TS « l/wO' where Wo is the Larmor frequency in the 

intermediate field. Larmor precession during the field transient does 

not destroy coherence and should be of little consequence. 

2. Field Cycling 

As zero field frequencies range from 1 Hz to 1 GHz, no single 



technique is universally applicable. For nuclear spin systems where 

the zero field frequencies are much larger than -1 MHz, pure NQR is 

sufficiently sensitive. As described in Chapter II, field cycling 
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techniques are normally required only at lower frequencies or where the 

concentration of the interesting spins is low. In our work, we have 

concentrated on spin systems where the natural frequencies are < 1 MHz, 

and TS ~ 1 ~s is adequate. While switching of small electromagnets on 

this time-scale is feasib1e 53a ,74, it is difficult to turn off and on 

the large fields (> 1 Tes1a) routinely used to prepare and detect 

magnetization in NMR spectrometers in such short times. Neither is it 

necessary to do so. Just as two separate timing criteria govern the 

successful execution of the experiment, the field can be brought from a 

large value to zero in two separate stages. 

The field cycle is illustrated in Figure 8.1 and will be 

described using the notation of that figure. In the first stage, the 

sample is removed from the polarizing magnet (BO) by mechanical means 

and the applied field is lowered from the large value appropriate for 

polarizing the spins to an intermediate value (100 gauss) which can be 

easily switched. In the second stage, this intermediate field is 

quenched. The first stage need only be completed in a time -T1 which 

may be as long as minutes. It is conveniently accomplished by 

mechanical shuttling of the sample from the bore of the main magnet BO 

to a point -75 cm below the center of BO and where the fringe field due 

to BO is -100 gauss. Because of the stresses involved in repeated 

acceleration and dece1aration, the sample must be contained in a 

shatter-resistant container. Ke1-f and nylon cylinders have the 

appropriate tensile qualities. The second stage must be completed in 



Figure 8.1 Diagram of the field cycling apparatus and the timing 

sequence of the pulsed fields. BO is the superconducting solenoid 

where the polarization and detection periods occur; Bl and B2 are 

switchable electromagnets positioned -75 cm beneath the bore of BO. A 

glass tube encloses the sample and guides it between the high and low 

field regions. As the sample is removed from BO it travels in the 

fringe field of BO to a field of 100 gauss. Both electromagnets are 

switched on; B2 rapidly causes the field to nearly double, and Bl 

slowly compensates for the fringe field due to BO. Then B2 is rapidly 

switched off and the evolution period tl is initiated. When B2 is 

turned back on tl is ended. Bl is turned off, then B2 and the sample 

returned to high field. 
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the shorter period, TS. 

3. Area of Zero Field 

Below the main solenoid BO lies the zero field region. A pair of 

electromagnets (Bl and B2) are wound which provide a means for applying 

time-varying fields to the sample. The overall goal is to provide a 

mechanism for suddenly switching off the residual field at the sample 

which still arises primarily from the fringe field due to BO. In 

principle, a single precisely-wound magnet coil might be designed to 

simultaneously compensate for the residual magnetic field over the 

volume of the sample and afford rapid switchability. In practice, such 

a unified approach imposes intolerable design requirements and we have 

chosen to separate out the two functions. Bl (in conjunction with a 

number of unswitched shim coils) is designed to accurately negate the 

fringe fields and produce a sizeable volume of zero or near-zero field. 

This coil is referred to as the bucking coil. B2 is a small, low­

homogeneity coil which just barely encloses the sample volume and is 

called the switching coil. It is designed to be rapidly switched on 

and off, and is the source of the "suddenness" in the experiment. This 

two-coil arrangement poses one complication. Bl nulls the fringe 

fields over a large volume of space. Were it energized continuously, 

the sample would pass through a field-free region during transit and 

before feeling the effects of the switching coil. Therefore Bl as well 

as B2 must be switched. This insures that the sample always remains in 

a large applied field until B2 is shut off. The complete field cycle 

is shown in Figure 8.1. 

Adiabatic field cycles can be executed by merely reversing the 

sequence of low field pulsed fields. After mechanical translation of 
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the sample, Bl is turned on and the field slowly (- ms) is reduced from 

100 gauss to zero. Then a short pulse can be applied through B2 to 

initiate coherence or store evolved order. In pulsed experiments, B2 

may be replaced with a more homogeneous small solenoid. 

If the intermediate field does not satisfy the high field 

condition, then order in the intermediate field will be some linear 

combination of Zeeman (high field) order and dipolar or quadrupolar 

(zero field) order. When the applied field is switched off, only the 

Zeeman order evolves. No new frequencies can be observed because the 

Hamiltonian supports no others. The overall intensity of the spectrum, 

and therefore signal-to-noise ratio, will be diminished and relative 

intensities may be distorted. But no frequency distortion will be 

observed. 

4. Details of the Field Cycle 

The complete field cycle is composed of the following steps: 

1. The sample is polarized for a time -Tl in the high field BO. 

2. A three-way gas valve is switched. Negative pressure applied 

to the bottom of the glass tube which contains the sample holder 

causes the sample to move from the bore of the magnet into 

position in the zero field region. Throughout the transit period 

(-150 ms), the sample resides in the fringe field due to BO which 

is always greater than 100 gauss. Marginally faster transport is 

possible (at the expense of significantly more broken glass and 

frayed graduate student nerves). 

3. Both coils (switching and bucking) are simultaneously 

energized. The switching coil B2 adds a field equal and parallel 

to the fringe field of BO and the applied field rapidly (-300 ns) 
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approaches -200 gauss. B1 energizes more slowly (-10 ms) and the 

applied field slowly falls back to the field of B2 alone. If at 

all times the applied fields are large compared to the local 

fields, these additional transients have no effect on the stored 

nuclear magnetization. 

4. The switching coil B2 is quenched. Zero field evolution is 

initiated. At a time t 1 , the switching coil is reenergized. The 

evolved magnetization is stored. 

5. The bucking coil is switched off. The field gradually 

increases. 

6. The three-way gas valve is switched. Pressure applied at the 

sample returns it to high field. 

7. The amplitude of the evolved magnetization is sampled. 

Each time steps (1-7) are executed, a single value of the zero field 

free induction decay is measured. The entire evolution and decay is 

mapped out by incrementing the time interval t1 from zero to some value 

where no further evolution is observed. Nyquist's theorem states that 

any waveform must be sampled at least twice per cycle if aliasing of 

frequencies is to be avoided. The highest frequencies which appear in 

the zero field spectrum are no smaller than the highest frequencies 

observed in the high field spectrum. This determines the proper value 

of the t1 increment. In many dipolar coupled systems, sampling 

increments of 4-10 ~s are adequate (giving bandwidths from ±50 to ±125 

kHz). NQR studies frequently require larger bandwidths and 't1 

increments of 3 ~s or less are common. Figure 8.2 shows a typical zero 

field NQR 2D free induction decay G(t1) for perdeuterated 1,4-

dimethoxybenzene detected by the point-by-point experimental procedure 
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Figure 8.2 20 NQR free induction decay (the signal functi~n G(tl ) 

from polycrystalline perdeuterated dimethoxybenzene and the 

associated spectrum, few). 
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described above. Below is its Fourier transform, the zero field 

spectrum f(w). 

5. Zero Field Homogeneity 
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The homogeneity of the zero field region is determined by the 

care with which the bucking coil is wound and the shim coil currents 

are adjusted. Residual fields no larger than .1 gauss can be measured 

using only a commercial gaussmeter as probe. Because small fields are 

truncated by the larger local fields (see Section 111.0) it is rare 

that much finer adjustment is necessary. Where necessary, further 

improvements can be made by iteratively shimming on the zero field NMR 

signal in liquid samples. 

B. High Field NMR Spectrometer 

The high field portions of our experiments take place in a 

homebui1t solid state NMR spectrometer documented more fully 

e1sewhere. 140 The nominal field strength of the superconducting 

solenoid is 42 kgauss (4.2 Tes1a) corresponding to a lH resonance 

frequency of 185.03 MHz. Without room temperature shims, the 

homogeneity of the field is -1 ppm over 1 cm3 . The field is extremely 

stable and no lock is necessary. A homebui1t microprocessor-based 

programmable pulser14l controls all aspects of spectrometer operation 

and executes all timing-critical operations. It is based on a 10 MHz 

clock and the shortest time increments available are 100 ns. A total 

of 20 logic outputs are available to control the output of rf pulses 

(two sets of six gates each), trigger auxiliary devices (e.g. the 

three-way air valve and current pulsers), and initiate digitization of 
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the data. 

1. Transmitter Section 

The transmitter section is designed to provide spectrally pure rf 

pulses at high power levels and over a broad range of frequencies. Its 

heterodyne design affords maximum convenience in changing the frequency 

of the rf pulses delivered to the probe. The local oscillator (10) 

frequency is 30 MHz. Four phases of 30 MHz rf set 900 apart are 

available. The Larmor frequency is produced by mixing the 10 with the 

intermediate frequency (if) derived from a highly stable frequency 

synthesizer. In high field experiments on 2.n, the Larmor frequency 

(28.4 MHz) is uncomfortably close to the 10 frequency and no 

heterodyning is performed. Instead, four phases of 28.4 MHz rf are 

produced directly. Finally, the filtered Larmor frequency is delivered 

to final stage amplifiers which are capable of delivering more than 100 

watts of rf power at the lH, 7Li , and 3lp Larmor frequencies, and more 

than 1000 watts at the l3C, 2n, and 27Al Larmor frequencies. 

All probes used in the experiments described in Chapters III-VI 

are home-built and employ a gapped-solenoid resonator in series with 

high power capacitors. The gapped-solenoid design suffers from a 

relatively poor filling factor and lowered sensitivity, but was deemed 

necessary to afford access to the probe from below. When air pressure 

is applied from below, the sample is held snugly in place within the rf 

coil by a Kel-f plastic stop. With the rf pulse powers provided by the 

final stage amplifiers, rf fields larger than 50 kHz (~/2 pulse ~ 5 #s) 

can be applied at the Larmor frequency of any of the nuclei listed 

above. 

2. Receiver Section 
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After the application of a strong (~ 100 watt) rf pulse, the 

receiver and tank circuit appear to recover fully in -20 ~s. The 

receiver section has an overall noise figure of 3 dB or better at all 

frequencies of interest. Over most of the Larmor frequencies of 

interest, the receiver is based on a phase-sensitive superheterodyne 

detector which mixes the rf down successively to 30 MHz and finally to 

audio frequencies. The audio frequency signal is equivalent to the 

rotating frame signal. Under control of the pulse programmer, the 

spectrometer data acquisition system is instructed to sample each phase 

of the audio-frequency signal. As it iscacquired, two 10-bit data 

words are delivered to the spectrometer's minicomputer (a Data General 

NOVA model). Data acquisition rates are limited by the rate of direct 

memory transfer. Typical maximum transfer rates are -200 

ki1osamp1es/second, and as many as 2048 complex data points may be 

sampled in a single pass. 

3. High Field Detection Sequences 

The importance of efficient high field detection sequences cannot 

be overemphasized! Because the zero field signal is observed with no 

better signal-to-noise ratio than that of the high field signal, 

improvements in overall experimental performance come most quickly with 

improvements in the high field detection sequence. Because the 

experiments can be rather lengthy and demanding of the spectrometer, it 

is also essential that the detection sequence be phase-cycled. The 

output from some of the very high-power amplifiers seem temperature­

sensitive. Zero field free induction decays in deuterated samples 

which require overnight runs inevitably exhibited very low-frequency 

drift which could be largely suppressed by adding together only a pair 
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of decays with properly cycled detection sequences. 

In the discussions of Chapters III-VI the details of the high 

field detection sequence were ignored. Tacitly, I assumed that the 

amplitude of the evolved magnetization could be sampled directly. In 

practice, any detection sequence must transfer longitudinal 

magnetization into transverse magnetization which can be measured. If 

the entire high field signal is sampled and digitized, then the 

resulting signal function is a two-dimensional data set G(tl ,t2) where 

tl is the zero field interval and t2 is the high field interval. 

This general class of experiment is shown in Figure 8.3. The 

simplest detection sequence is to apply a single rf pulse to the sample 

and immediately begin sampling the transverse magnetization. Because 

the high field signal may decay significantly during the recovery time 

of the receiver it is preferable to record the amplitude of the signal 

after a solid echo sequence. 142 In rigid quadrupolar I = I systems the 

solid echo accurately reproduces the free induction decay. In dipole­

dipole coupled systems, the solid echo is not equivalent to the free 

induction signal following a pulse and the spectrum is distorted. 

Two-dimensional Fourier transformation results in a two-dimensional 

spectrum f(wI' w2) where the projections along the WI and w2 axes 

correspond to each of the one-dimensional spectra and the cross-peaks 

in the two-dimensional plane indicate the correlations between the two 

frequency domains. Figure 8.4 is such a two-dimensional zero field­

high field correlation spectrum. It shows the zero field NMR spectrum 

of Ba(CI03)2·H20. In the zero field domain the triplet of lines 

introduced in Figure 3.3 reappears. In the high field domain, the 

classic Pake powder pattern is observed. Lines which appear at zero 
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Figure 8.3 Two dimensional zero field-high field correlation 

experiment. After the sample is returned to BO' its high field free 

induction decay is measured after a resonant rf pulse. Fourier 

transformation of G(tl , t2) with respect to both tl and t2 produces the 

two dimensional spectrum f(wI' w2)' 

Figure 8.4 Two dimensional zero field-high field correlation 

spectrum of polycrystalline Ba(Cl03)2·H20. For each of 64 values of 

t l , the zero field interval, the high field signal after a solid echo 

is accumulated and stored. A double real Fourier transformation is 

applied to the signal function G(tl,t2). At the left and at top are 

the projections of the zero and high field spectra. In the center, the 

correlations between the two frequency domains. Signals which appear 

at zero frequency in the wI domain correlate most strongly with signals 

from orientations of the two-spin system which are nearly at the edges 

of the high field powder pattern. Zero field signals which appear at 

±42 kHz correlate to orientations which appear near the peaks of the 

high field powder pattern. 
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frequency in the wI (zero field) dimension correlate most strongly to 

the highest frequency components of the w2 (high field) dimension (i.e. 

those portions of the powder which are least truncated by the Zeeman 

field), and vice versa. This agrees with the treatment of the zero 

field intensities given in Chapter III and contains essentially the 

same information as the single~crystal ·high field-zero field 

experiments in Figure 3.2. 

As the motivation for performing the zero field experiment is 

that the highfield dipolar and quadrupolar powder patterns are broad, 

often featureless, and largely devoid of useful information it will 

rarely prove interesting to accumulate a normal high field free 

induction decay in t 2 . As long as the same Hamiltonians govern the 

dynamics of both tl and t2' w2 contains the same information as WI 

except at significantly lower resolution. Two options, then, are 

available: first, the high field evolution can be made more interesting 

by selectively averaging away the second-rank tensor interactions,2,8 

or second, information about the high field evolution can be sacrificed 

in order to maximize the sensitivity with which the zero field signals 

are mapped out. Almost without exception, we have chosen this latter 

alternative. By applying a simple sequence of a large number of 

closely-spaced pulses, evolution under the high-field Hamiltonians can 

be eliminated and the transverse magnetization observed to decay with a 

time constant more nearly that characteristic of high field Tl's than 

of high field T2 's. Using pulsed spin-lock143 detection sequences in 

t 2 , the signal can be sampled repeatedly at very nearly its initial 

value. Integrating over the signal sampled in the windows of the 

detection sequence results in large gains (anywhere from 5-50) in the 



signal-to-noise ratio of the zero field experiment. Detection 

sequences used in the high-field observation of zero field NMR are 

summarized in Figure 8.5. 
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In many systems, spin-lock detection sequences may not be 

possible to execute. Transverse magnetization cannot be preserved 

longer than the time constant known as Tlp . 21 TIp is short for systems 

where the local Hamiltonian is time-dependent (i.e. motionally 

averaged). Heteronuclear dipole-dipole couplings (e.g. in organic 

solids where the IH nuclei are dilute in 2D) seem not to be efficiently 

averaged away by the spin-Icoking sequence. No sequences seem 

available which significantly extend the decay time of half-integer 

quadrupolar nuclei where only the central transition is observed. In 

these systems, the inefficiency of the high field detection sequence 

may severely limit the sensitivity of the zero field method, and argues 

strongly for the continued development of the time domain indirect 

detection methods briefly explored in Chapter VI. 62 Zero field NQR 

studies are particularly hampered by the difficulty of designing 

efficient high field detection sequences. 

Ideally, one would like to incorporate high resolution chemical 

shift measurements in the high field time-interval t2 to provide 

correlations between the geometric factors derived from the dipolar 

spectra in wI with site identification via chemical shifts in w2 by 

magic angle spinning. Practical considerations make such an experiment 

difficult. Rotation about a laboratory-fixed axis during the zero 

field interval reintroduces powder broadening even in zero field (see 

Appendix B). High speed spinning inserts (~ 3 kHz) are not readily 

started and stopped. In homonuclear spin systems, one can compensate 



Figure B.s Pulse sequences for use in zero field NMR experiments. 

a). 900 pulse initiates evolution. The high field free induction 

decay is sampled as soon as possible after the pulse. 

b). Solid echo sequence. The second pulse causes the magnetization to 

refocus and form an echo. This allows for the magnetization to be 

sampled many ~s after the pulse and alleviates experimental 

difficulties associated with the dead time of the receiver. 

c). Multiple pulse sequence (WAHUHA). Sampling in the windows after 

every fourth pulse yields the high field chemical shift spectrum./ 

d). Pulsed spin locking (or mUltiple echoes). After each pulse, the 

magnetization can be sampled. For dipole-dipole coupled spin systems, 

e = 45 0 minimizes the decay. For quadrupolar systems e is chosen 

empirically; in 2D NQR, e - BOo often appears optimal. 
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for the spinning by cycling not to zero field but to some small field 

whose amplitude and direction are precisely adjusted to null the 

effects of the spatial rotation. No such adjustment can be made in 

heteronuclear spin systems where magic angle spinning in combination 

with high power heteronuclear decoupling proves most powerful. Magic 

angle hopping in t2l44 may prove more feasible. 

C. Extensions and Improvements 

1. Electronically Switched Main Coil 
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For systems whose Tl's are so short that all prepared 

magnetization disappears during the mechanical shuttling between high 

and intermediate fields. the entire field cycle may be executed in a 

sequence of two electronic steps. Variable field Tl spectrometers145 

are designed to allow for rapid (-ms) variations of large fields (-1 

Tesla). In other applications. the feasibility of rapid switching of 

extremely large fields (-40 T in -5 ms) has been demonstrated. 146 

While the initial polarization amplitude and the detection sensitivity 

may suffer due to the lower values of BO' for samples with short Tl's 

the decrease in cycle time should more than compensate for the smaller 

signals predicted if Tl were sufficiently long. 

2. Direct Detection in Zero .Field 

One of the most exciting and promising of new technological 

advances in the sensitive detection of low frequency rf signals is the 

dc SQUID (Superconducting QUantum Interference Device). It is an 

ultra-low noise rf flux detector (where normal Faraday-law detectors 

are sensitive to the derivative of the flux). As such. it is equally 
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sensitive over a broad range of rf frequencies. Recent experiments 

have demonstrated its sensitivity in the detection of fluctuations in 

the macroscopic polarization of an ensemble of nuclear spinsl47 and 

other experiments have demonstrated its sensitivity in the direct 

observation of oscillating magnetizations in zero fieldl48 and even to 

the very lowest frequencies. 49 , SQUID detectors in a zero field 

spectrometer would make realistic the direct observation of signals at 

the low frequencies characteristic of the local fields themselves. 

Their high sensitivity may even alleviate the need for a large 

polarizing field. Use of SQUIDs to sample the evolving signal directly 

in zero field-zero field correlation experiments (see Section VI.C) 

will turn three-dimensional (and therefore often intolerably long) 

investigations into more routine two-dimensional work. 
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Appendix A 

In this appendix I treat the case where the high field spectrum 

is sufficiently broad that pulsed NMR techniques are incapable of 

exciting and detecting the signal from the entire high field powder 

pattern, but where some portion of the high field spectrum is uniformly 

observed. These conditions are fulfilled if 

2 
3e qQ 

21(21-1) » 
2 3 e qQ . 2 

> 4wO (21(21-1)) (A.1) 

that is, the first order quadrupo1ar shifts are larger than the rf 

field which is larger than the second order shifts. This is commonly 

the case for half-integral quadrupo1ar nuclei, where the central 

transition between the high field eigenstates 11/2> and 1-1/2> is 

unshifted to first order by the quadrupo1ar coupling, and the only 

significant signal after a resonant rf pulse of realistic strength 

arises from the coherence between these two levels. 

The approach in this appendix is to repeat the calculation of 

Section 111.B but to use as the observable not lzL but instead the 

actual observable 

i e 1(-1/2 ~ 1/2) 
xL 

(A.2) 

i.e. transverse magnetization corresponding only to coherence between 

these two levels. For small flip angles, it has been shown that the 

excitation of this coherence is independent of the orientation of the 

particular crystallite in any lab-based frame. 149 Then 
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= Tr [ 1 exp(-iOI )p(tl)exp(iOI )] 
y y 

(A.3) 

where the evolved longitudinal order stored in p(tl) is transformed 

into an observable by an rf pulse of 0 radians about the y-axis. For 

the initial density operator p(O) = I zL ' 

= Tr [ 1 exp(-iOI )1 Lexp(iOI )] 
y z y 

(A.4) 

It will be convenient to express all operators in a spherical tensor 

basis set. In the lab frame, 

where j 2n-l, and 

and 

1+1/2 
}:; 

n=l 

j j 
an ( T_1L - T1L ) (A.5) 

(A.6) 

(A.7) 

It will also prove convenient to permute the operators in Equation 

(A.3) so that the rf excitation is formally applied to the observed 

operator, which is orientation independent, rather than the evolved 

operator, where its effects are strongly orientation-dependent42 and 

Focusing on the transformed operator 

1+1/2 
exp(iOIyL)lexp(-iOIyL) = ~ 

n=l 
a 

n 

(A.8) 
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(A.9) 

Because the evolved operator 1zL(t1) corresponds to longitudinal order, 

only terms in the sum of Equation (A.9) where m = 0 can contribute to 

the trace of Equation (A.S). Defining 

and 

b 
n 

1+1/2 
~ 

n=l 

(A.10) 

(A.11) 

Equation (A.11) is most readily evaluated in the molecular frame where 

the Hamiltonian is homogeneous. The laboratory and molecular frames 

are related by a coordinated transformation R(O). The signal function 

is calculated for a single orientation 0 and integrated over a powder 

distribution function (all 0 equally probable), and 

1+1/2 
f Tr [R{ ~ 

n=l 

1+1/2 j 
~ b f ~ 

n=l n 1<:=- j 
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The only angular dependence in Equation (A.12) lies in the rotation 

matrices (because it has been assumed that the detected ?perator can be 

uniformly excited). Using the well-known rotation matrix properties 

exploited in Chapter VI, 7 

and 

] <in 

the normalized, integrated signal intensity is 

1+1/2 
~ b 

n=l n 

1 
~ 

1C=-1 

j 1 
~ ~ 

IC=- j k=-l 

.* 1· f D~O(O) DkO(O) <in 

] <in 

(A.13) 

(A.14) 

(A.1S) 

All other terms have zero integrated intensity due to the orthogonality 

condition Equation (A.14). The signal detected in high field is 

identical to that observed if the entire powder pattern were observed 

to within a scaling constant 

3 
7":-:-=--:--:- sinO 41(1+1) 

For large flip angles 0, the details of the excitation and 

(A.16) 

detection period t2 become important because the amount of the operator 

I zL(t1 ) transformed into an observable transverse magnetization becomes 



308 

orientation dependent. In this case the integration in Equation (A.1S) 

includes an additional 0 dependence in the detected operator. Both the 

effective nutation frequency under the influence of an applied rf field 

and the subsequent signal amplitude of the central transition depend on 

the magnitude of the high field value of the quadrupolar coupling and 

therefore on 0. 42 Only for small flip angle excitation is uniform 

excitation of the central transition possible. Quantifying this last 

statement, field cycling zero field spectra of half-integral 

quadrupo1ar nuclei can be observed without intensity distortion if the 

high field signal is measured immediately after a 0 pulse for 

o < 2(21+1) (A.17) 

where T is the length of the applied pulse and Brf the strength of the 

rf fie1d. 149 



Appendix B 

Where molecules or portions of molecules are non-rigid, the spin 

Hamiltonians described in Chapter I are insufficient to provide a 

complete description of the spectral features observed in NMR 

experiments. In the presence of motion, the spatial terms in these 

Hamiltonians become time-dependent and only a motionally averaged 

tensor is observed. This fact is well known from high field studies, 

and is the basis for lineshape studies of chemical exchange in 

solutionl50 and studies o·f restricted motion in solids l51 . For motions 

which are either fast or slow (as compared to the strength of the 

interaction being observed) it is easy to predict the result: fast 

motions yield zero field spectra with sharp lines at the time-averaged 

value of the tensor, while very slow motions show up as discrete zero 

field lines at each possible value of the tensor. The intermediate 

case (motion or exchange at rates comparable to the magnitude of the 

NMR Hamiltonian) affects the lineshapes, and a detailed analysis is 

required to solve the problem completely. Methods applicable to high 

field NMR are well known, and are presented by others in detail 

elsewhere. Some consideration has been given to the intermediate 

regime in pure NQRl52 . In this appendix, I present an approach to the 

analysis of a few representative cases in the fast motion limit where a 

simple solution is available and which are relevant to the experimental 

results of the main portion of this thesis. The treatment in this 

section closely follows the results of Bayer,95 Abragam,ll and 

Barnes. l22 In the intermediate motion limit, the prediction of 

spectral features is considerably more complicated. l53 ,l54 
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Where rapid motion occurs about a single axis its effects can be 

simply incorporated into the expressions for the NMR and NQR 

Hamiltonians. As a model for these concepts I consider an axially 

symmetric quadrupolar Hamiltonian where the magnitude of the 

quadrupolar tensor V is unchanged during the motion. A formally 

equivalent example is the dipolar coupling between two spin-l/2 nuclei. 

Four categories of motion are treated. Three occur in a 

molecular frame: rapid, isotropic rotation about an axis; two-fold 

jumps: and small librational modes. The last takes place in a lab 

frame: physical rotation of the sample. I start with a common approach 

to these types of motion. First, the static Hamiltonian is transformed 

from its principal axis system (xyz) to a frame where the motion is 

described more simply (XYZ). For clarity, I assume this transformation 

can be accomplished by a single rotation by a 0 degrees about the Y 

axis. In this new frame, the expanded form of the quadrupolar 

Hamiltonian (Equation (1.54) (where ~ = 0) is 

For rapid motion, the time average of this Hamiltonian is responsible 

for the observed features. It will be analyzed for each of the four 

motional models. 

A. Rotations about a Molecular Axis 

Allowing the molecule or molecular unit to undergo rapid rotation 

about the new Z axis introduces a time dependence into HQ (or Hn). As 

the rotation frequency is assumed large compared to our Hamiltonian, 
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what is actually observed is HQ averaged over a rotational cycle. 

Entering an interaction frame which follows the motion of the spatial 

angular momentum, J Z' at a frequency w 

<exp(-iwJ t)HQexp(iwJ t» z z (B.2) 

Only the first term in Equation (B.l) is time independent. All other 

terms have zero time average over a rotational cycle. The averaged 

Hamiltonian which gives rise to the observed spectrum is then 

2 
HQ = - A (3cos 0-1) (312 - 1(1+1)) 

2 Z (B.3) 

and the averaged Hamiltonian retains the axial symmetry of the static 

Hamiltonian with an effective quadrupolar tensor scaled by 

(3cos 20-l)/2. If the local environment of the quadrupole varies during 

a rotational period, and therefore the instantaneous value of the 

quadrupolar tensor takes on different values during that period, the 

averaged tensor need not be axially symmetric. 45 

Similar effects of motional averaging are required in zero field 

NMR studies of dipolar systems undergoing rapid reorientation. For 

many coupled spins computer simulations are required. DBZINT.FOR is 

designed to simulate systems with a single axis of rotation. Two 

common examples of rapidly reorienting systems in the solid state are 

methyl groups and benzene, which spins rapidly about its hexad axis. 

Figure B.l compares simulated zero field and high field spectra of 

isolated groupings of these two spin systems. Averaging any rigid 

structure over a classical rotation about a molecule-fixed axis results 

in a zero field Hamiltonian isomorphic with a high field Hamiltonian 

with all the molecular rotation axes aligned along the field. The fast 
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Figure B.1 High field and zero field NMR simulations for static 

and rapidly spinning -CH3 groups and benzene rings, showing the 

effects of motional averaging on pure dipolar spectra. 
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molecular rotation performs the same truncation of terms as a large 

Zeeman energy. 

B. Discrete Jumps 

For jumps about the Z axis through discrete angles, the 

instantaneous electric field gradient tensor is calculated for each 

discrete orientation and a time-weighted average derived by summing 

over all allowed orientations. 9l ,93 For a two site jump (as executed 

by D20 in many inorganic. crystals at high·' temperature9l ) I assume the 

individual sites have identical tensors related by a symmetry plane. 

The (XYZ) reference frame is chosen so that the Z-axis is along a 

vector which bisects the D-O-D bond angle, 20, and lies in the plane 

defined by the three nuclei. The first site is related to this frame 

via a rotation about the Y-axis of 0 degrees (Ry(O»; the second, via 

Ry(-O). Time averaging Equation (B.l) is equivalent to taking the 

average value of these two tensors; 

Even if the tensors of the static sites are equivalent and axially 

symmetric, the coefficient of the term (liM + I~M) in the averaged 

tensor need not vanish and the motion appears to shrink the norm of HQ. 

Depending on 0, and the number of sites. the jumping motion also may 

introduce a marked departure from axial symmetry. (For specific values 

of 0, the axis system in the new frame may need to be relabeled to 

conform with the conventional notation of Equation (1.57).) In a two 

site jump where 20 - 109.5° (the tetrahedral angle), ~ - 1. 
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c. Torsion and Small Librations 

As a final simple example of molecular motion in zero field, we 

consider the effect of small amplitude torsional or librational 

modes. 95 These are modeled by allowing Z to represent the equilibrium 

or average orientation of the tensor, and introducing small rotations 

about the y axis of 0 radians. For small 0 and to lowest non-vanishing 

order in 0 we can expand Equation (B.1) in powers of 0 as 

Averaging over 0 to get the time-averaged Hamiltonian, HQ, for harmonic 

modes this last term disappears and HQ can be rewritten as 

2"" 
+1.7 (12 I~)] HQ - A[ (1 - ~)(3I2 - 1(1+1» ... 

2 Z 4 + 
(B.6) 

where 

7 <02(t» (B.7) 

This corresponds to a scaled quadrupo1ar coupling constant and an 

asymmetry parameter of ~ = 3<0 2>/2. By a similar treatment, dipolar 

tensors can develop an asymmetry.92 In two-spin heteronuc1ear spin-1/2 

systems with such an asymmetric dipolar tensor (and therefore no 

degenerate energy levels) all 12 lines predicted by Equation (4.22) 

should be observed. 

For each of these molecular frame motions, the averaged tensor 

may have different value and symmetry than the static tensor. Under 

any of these types of motion the Hamiltonian remains homogeneous, if 
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all sites or crystallites undergo the same type of motion independent 

of their orientation in the lab frame. As long as the motion is rapid, 

spectra of the motiona11y averaged systems retain the sharp features of 

zero field NMR of static samples; no broadening is introduced unless 

the motional behavior is itself inhomogeneous over the sample. This is 

similar to the case of high field single crystal NMR. The Hamiltonian 

at equivalent orientations is truncated by the field but the spectrum 

remains sharp because all sites are truncated identically. 

D. Sample Rotation 

As a final example of the effects of motion on zero field 

spectra, we consider the effects of bulk sample rotation on zero field 

spectra. This type of motion differs from those described above in 

that the axis of rotation differs for each crystallite orientation in a 

fixed lab-based frame of reference. Proceeding as above, H is 

transformed into a lab based frame (XYZ) as in Equation (B.l), where 

the angle 6 is now orientation dependent. For fast rotation and only 

homonuclear couplings, the averaging in Equation (B.2) is formally 

equivalent to entering the rotating frame of high field NMR studies; 

this is a consequence of Larmor's theorem, and 

2 
_ A(3cos 6-1)(312 _ 1(1+1)) 

2 Z (B.8) 

where 6 is now referenced to a laboratory frame. With sufficiently 

fast sample rotation the zero field spectrum of an isolated deuteron or 

two spin-l/2 system will broaden into a Pake pattern exactly as if it 

were in a large externally applied field. For most systems, practical 
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sample rotation rates will be too slow for this simple treatment to 

apply. The primary effect of the rotation will be to cause some 

broadening in the observed line features. A combination of sample 

spinning at frequency wr and a magnetic field B such that wr = ~jB will 

produce an untruncated Hamiltonian HD or HQ, and thus a normal zero 

field spectrum, in rough analogy to the cancellation of nutation and 

sample rotation in high field. 



Appendix C 

Source Listings of Zero, Low, and High Field Dipole-dipole simulation 

programs DBZINT.FOR, HETZF.FOR, LOFIELD.FOR, and PAT6.FOR 
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progru dbzint 
c 

cOlputes intensities ior the dz/tb field-cycling fxperilent on 
c coupled proton svstels 

c 
c 

c 

c 

this one is set up to generate spectra to dbz '5 specifiCitions 

dilll!nsion nUlb 12,64) ,15t(2,64) ,isp (6) ,coor516,3) ,ddWil ,theh(5) 
dilll!nsi on phi (15), vv (4096) ,pp (4096) ,e(64) ,55 (1024) ,vr 110241, i fli P (2) 
cOlplex h (4096) ,u(4096) ,n (4096) ,yy(4096) ,n (4096) ,wvecIM) 
chuachrt64 title 
cOllon/etl titie,e 
COlion n,nst,lst 
equivilence IhIU,u(l)) 

indx Ii ,j)= Ij-ll t nst + 

tfunklil,i2)=12t n - iIltlil - ll/2 - il + i2 

dconst=120.067 
pi=4.0 t atanH.O) 
rad57=IBO. I pi 

np=1024 

10 tvpe 501 
501 forlat I 'I' ,II,' enter the type of svstel: ' ,1,51, '0 = generil' , 

c 
c 

I 1,51,'1 = tllO flipping water 10Iecules',1,51, 
2 '2 = a planar pol ygon of spins ' ,$) 

accept t, i sys 

iflisys .eq. I) go to 30 

c questions for the generil and planar-polygon casrs ..... 
c 

type 502 
502 forut(II,' hOIl liny spins? 1.1t. 7) ',$) 

accept t ,n 

iflisys .eq. 2) go to 15 

type 503 
503 forutill/,' enter the x, y, and z coordinates of each nucleus 

'lin Angstrolsl :' ,Il 

do 12 i=l,n 
type 504,i 

504 forutl51,'nucleus ',ii,': ',$1 
accept t,lcoorsli,jl, i=I,31 

12 continue 

go to 18 

c 
15 type 505 
505 forut I II " enter the nearest -nei ghbor separ ati on in Angs. ' ,f) 

iccept t,side 

rr=side I 12 t sinlpi/nll 
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angle=O.O 
dangle=2tpifn 

do Ib i=I,n 
coorsli,U=rr t cos(anglel 
coorsli ,21=rr t sin (anglel 
CODrsli ,31=0.0 

Ib angle=angle + dangle 
C 

c 
18 k=O 

do 20 i=l,n-1 
do 20 j=i+l,n 
k=k+1 
xxx=coors(j,1I - coors Ii ,II 
yyy=cODrs(j,21 - cDOrsH ,21 
zzz=coors(j,31 - coorsH ,31 
rrr=sqrt (xxx'ux + yyytyyy + zzz.zzz) 
dd(k)=dconst 1 r"tt3 
costh=zzz 1 rtr 
sinth=sqrt (xxxtxxx + yyytyyy) I rrr 
theta(kl=sign (pi 12,sinthl 
if (costh .ne. 0.0) theta(k)=atan2(sinth,costhl 
phi (kl =sign (pi 12,ux) 
if(xxx .ne. 0.01 phi (kl=atan2(yyy,xxx) 

20 continue 

702 

705 

print 501 
print b02, isys 
print 702, n 
for.atUI,i4,· SPINS ...... ) 
if(isys .eq. 0) go to 22 
print 70S, side 
for.aUII,· enter the nearest-neighbor separation in Angs. 
f9.31 

22 print 503 
do 25 i=I,n 
print 708, i,(coors(i,jl, j=I,31 

708 for.atU,5I,·nucleus ',il,': ·,3f10.31 
25 continue 
c 

go to 35 

questions lor tMO flipping Maters ..... 

c 
30 type 511 

. , 

511 foraaUIII,' NOTE: Mater-I is located at the origin Mi th its', 
I,' H-H vector along the z-axis.') 

type 512 
512 loraat (II,' enter theintralolecular H-H distance in Angs. . ,$) 

accept f ,rhh 

type 513 
513 forlat!! " enter the inter-Mater separation in Angs. . ,$) 

accept f ,rMM 

type 514 
514 loraat!l,' enter polar angles theta and phi (in degs.) describing', 

I,' the position of Mater-2 relative to uter-I : . ,$) 

accept f,thetaw,phiM 
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type 515 
515 forut (/,' enter polar angles theta ind phi (in degs.1 describing', 

c 

c 

I,' the orientation of the H-H vector in uter-2 : ',$1 
accept I, theta2,phi2 

0=4 

dd (II =dconst I rhhff3 
dd (2) =dconst I rllllff3 
ddl3l=dd(2) 
dd(4)=ddI2) 
dd 151=dd (2) 
dd (6) =dd III 

thetalll=O.O 
theta(21=thetall I radS7 
theta (3) =theta (2) 
theta(4) =theta (2) 
theta (5) =theta (2) 
theta(6)=theta2 I radS7 

phi 111=0.0 
phi (2)=phill I rad57 
phi (3)=phi (2) 
phi (4)=phil2) 
phi (5) =phi (2) 

phi (6) =phi2 I rad57 

print 501 
pri nt 602, i sys 
print 511 
print 512 
print SIB, rhh 

SIB for.aUf 10. 3) 
print 513 
print 518, rlill 
print 514 

hetall,phill 
519 forutl2f10.3) 

print 515 
print 519, theta2,phi2 

c 
35 type 555 
555 forutlll,' is there rapid lotion around the z axis ?' ,I, 

, lO=no,l=yesl ',$1 
accept I, i lot 

type 573 
573 forut (' for no vi sual output of utrices, enter -I here') 

accept f,lview 

type 520 
520 forutlll,' in IIhich 'spec' file should data be stashed ?', 

I,' Ifor no spectrul storage, enter -II ',$1 
accept I,ifl 

iflilot .ne. 01 print 556 
S56 forutlll,' THERE BE RAPID "OTlON AROUND THE Z AXIS, "ATEV'I 
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print 520 
print 602, i fl 

nst=2tfn 
nll=n-I 
npl=n+1 
nep=n t nlll I 2 
do 38 k=l,nep 

38 dd(kl=dd(k) I 4 

e 
e generate and arrange the spin-product shtes ..... 

c 
call nUlsort(nulb,n,nstl 

k=O 
do 45 is=l,npl 
is=npl - is 
do 40 i=I,nst 
if(nulb(2,jI .ne. isl go to 40 
k=k+1 
lst U,kl=nulb(I';1 
Ist<2,kl=is 

40 continue 
45 continue 
c 
c 

c 

e 

set up the untruncated dipolar Hasiltonian ..... 

do 100 1=I,nst 
do 100 1=1,1 
II=indxU ,II 
h<lII=O.O 

if(l .ne. II go to 60 

di agonal 'A' terls .... 

Isk=1 
do 50 k=l,n 
isp(kI=-1 
if«(lst<l,lI .and. Iskl .ne. 01 isp(kl=1 

50 ISk=ISk + 15k 

kk=O 
do 55 i=l,nll 
do 55 i=i+l,n 
kk=kk+1 
costh=cos(theta!kkll 
p2=3tcosthtcosth - I 
hUII=hUII - dd!kkl t p2 t isp(il t isp(il 

55 continue 
go to 100 

off -di agonal terls .... 
c 
bO jll=1 

isp=O 
Isk=1 
do 75 k=l,n 
if«(Jst(I,11 .and. Iskl - (lst(I,.1 .and. Iskll 70,75,70 

70 isp= jsp + I 
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ifliplj.l=k 
j.=2 

75 Isk=lsk + 15k 

e 

e 

e 

if I jsp • gt. 21 go to 95 
if Ijsp .eq. II go 
kd=kfunk Ii fl ip III, if lip 1211 
ifllstl2,11 .ne. Ist!2,11I go to 78 

'8' flip-flop hrls .... 

eosth=eoslthetalkdll 
hllll=ddlkdl f 13feosthteosth - II 
go to 95 

'E' terts •••• 

78 iHilOt .ne. 01 go to 95 
sinth2=sinlthetalkdll If 2 
hllll= -ddlkdl f 3 t sinth2 t eexplctpIxI0.0,-2tphi Ikdlll 
go to '15 

e 'C' terls .... 
e 
80 i Hilot .ne. 01 go to 95 

kfl=ifliplll 
Isk=1 
do 8S k=l,n 
if Ik-kfll 81,85,82 

81 kd=kfunk I k, kfll 
go to 84 

82 kd=kfunklkfl ,kl 
84 sineos=3 t sinlthetalkdll t eoslthetalkdll 

kspin=-1 
iHlIstl1,lI .and. Iskl .ne. 01 kspin=1 
hllll=hllil - ddlkdl t kspin t sineos t cexplclplxIO.O,-phi(kdlll 

a5 Isk=lsk + 15k 
c 
c 
95 II=indxll,1I 

h 1111 =con;g Ih 11111 
c 
100 continue 
c 
c 

if In .gt. 4 .or. Iview .It. 01 go to lOS 
ti tle=' THE HA"ILTONIAM ...... 
call hardball (h,OI 

c nOli di agonali ze the sucker 
c 
105 call heigenlh,u,nstl 

do 110 i=l,nst 
i i=indx Ii ,i I 

110 eli I=reallhli i II 

print 521 
521 forlat! 'I' ,/I,' ENERSIES IN KHZ ...... , III 

print 522, (elil, i=I,nstl 
S22 forlat Ifl5.41 
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C 

if In .gt. 4 .or. Iviell .1 t. 01 go to 120 
title='EI6ENYECTORS ..... ' 
call hardbilll! u ,-II 

generatE! lx, Iy, and Iz in the spin-product bui s ..... 

120 do 150 i=I,nst 
do ISO i=I,nst 
ij=indK Ii ,iI 
IX liil=O.O 
yylijl=O.O 

C 

C 

zz 1ij)=O.O 
ifli .ne. jl go to 130 

zzlij)=1st!2,iI - n/2.0 
go to 150 

130 ifliabsllst!2,i) - Ist!2,j)) .ne. 11 go to ISO 
ksp=O 
Isk=l 
do 140 k=I,n 
iflllst!l,i) .and. Iskl .1!11. Ilst!l,j) .and. 15k)) go to 140 
ksp=ksp + 1 

140 Isk=lsk + 15k 

C 

iflksp .ne. 11 xxlij)=O.S 
if!j .gt. iI yyliil=clplx(O.O,-O.S) 
if Ii .gt. jI yylij)=clph(O.O,O.S) 

150 conti nue 
C 

C 

C 

c 

convert Ix, I y, and Iz to the basi s set of the full di polar Hali! tonian 

call ualulu,xx,nst,lIvecl 
call ualu(u,yv,nst,lIvecl 
call ualulu,zz,nst,lIVI!cl 

if In .gt. 4 .or. Iviell .It. 01 go to 160 
title='1x in the dipolar basis ..... ' 
call hardballlxx,ll 
title='ly in the dipolar basis ..... ' 
call hardball!yy,lI 
ti tle=' Iz in the dipolar basi s ..... ' 
call hardball (zz ,ll 

calculah frequencies and intensities ..... 

160 dink=O.OOOI 
pO=n f 2.ffln-21 

k=O 
do 180 i=I,nst 
do 180 i=l,nst 
ii=indxli ,il 
ji=indx Ij ,i I 
vvv=e(jl - eli) 
ppp=reall xxlijltxxlji) + yylijltyy(jil + zzliiltzz(jil I I 3 
iflppp .It. dink) go to 180 
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k=t+1 
iflk .eq. 40'17) go to 1'10 
vvlk)=vvv 
pplk)=ppp/pO 

180 continue 

c 
sort frequencies and intensities ..... 

c 
1'10 iover=O 

ifIk .gt. 40'11.) iover=1 
kux=.inO Ik ,40'1b) 
do 200 i=l,klax-1 
do 200 j=i+1,klax 
if Ivv(j) .ge. vv(i)) go to 200 
call sMitchlvv(iI,vvlj)) 
call sliitch(ppli),pp(j)) 

200 continue 

vllide = 2.0.(abs(vv(I))) 
type 534, VIIi de 

534 forlat!' Full scale lIidth of spectrul is ',f10.4,' kHz') 
type 532 

532 forut(' HOI! big should the spectrul lie dUlp into be ?') 

accept ., v2ux 

c 

c 

c 

i:f (vllide .ge. v2lax) v2ux = 1.2tvllide 

gener ate a spectrul ..... 

dv=I024. I v21ax 
hzppt=1000./dv 
vlix=v2Iax/2.0 

do 210 i=l,np 
210 ssti)=O.O 

do 220 k=l, kux 
iv=513 + nint(vv(k)tdv) 
if liv .eq. 1025) go to 220 
ss(iv)=ssliv) + p vrtiv)=vv(k) 

220 continue 

output resul ts , ••• , 
c 

print 530 
530 foraat ( 'I' ,II, lOx, 'frequency (kHz)' ,bx, 'intensi tv' ,bx, 

'point t',I,IOx,15('-'),bx,'1('-'),bx,7('-'),1l 

k=O 
do 230 iv=l,np 
iflss(iv) ,It. dink) go to 230 
k=k+1 
print 531, k,vr(iv),ss(iv),iv 

531 forlatti4,f1B.4,f1B,b,ill) 
230 continue 
c 

ifliover ,eq. I) print 533 
533 foraatllll,' NOTE: there are over 40'1b allowed transitions--

'lines lissing in the table and in the plot') 
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C 

c 
c 
c 

C 

i 

\ 
subroutine sllitch(i,bl 
C=i 
i=b 
b=c 
return 
end 

subroutine hirdbill (p,ibasis) 

C displays cOIpltx latrict!s (up to Ibxlb) on one page 
C 

C 

C 

ibasis=O spin-product basis 
i basi 5= I othtr 
ibasis=-I half and half 

cOlplex p(25bl 
diHnsion la911bl ,iphIl6) ,1st (2, 16), idp(4, 16) ,t1l61 
charactert 64 t i tI e 
cOHonletl ti tle,t! 
COHon n,nst,lst 

indx(i,j)=(j-Ilfnst + i 

pi =4.0tatan 11. 01 

do 10 t=I,4 
do 10 j=I,16 

10 idp(k ,il=' , 

print 101, title 
101 forlatl'l',1I,5x,b4a) 

print 102 
102 foraat ifill 

sis .eq. !l go to 20 

st!t up +'5 and -'5 to describe direct product states ..... 

Isk=nst I 2 
do IS k=l,n 
do 14 j=l,nst 
ifllstll,j) .and. 15k) 12,13,12 

12 idplk,jl=lh+ 
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go to 14 
13 idplk,H=lh-
14 continue 

Hk=ISk I 2 
15 continue 

iflibasis .eq. 01 print 105, Ilidplk,jl, k=I,41, j=I,nstl 
105 IOfiatUlx,lbl' :',4al,,},I) 
c 
20 illibasis .ne. 01 print lOb, lelH, j=I,nstl 
lOb lorlat 11 Ix ,lb17. 21 

calculate phase and ugni tudt for each latrix I!leltnt, then print .... 
c 
30 print 112 
112 lorlat! lx, 1301lh-1 I 

do 50 i=I,nst 
do 40 j=l,nst 
ij=indx Ii ,jl 
xx=rtallplijl I 
yy=ailag(plijll 
zz=cabslplijll 
iflzz .It. 0.00011 go to 35 
iflnl 34,31,34 

31 if Iyyl 33,32,32 
32 iph (j I ='10 

go to 40 
33 iphIH=-90 

go to 40 
34 ph=atan2Iyy,xxl t rad57 

iphljl:zph + signI0.5,phl 
go to 40 

35 iphljl=O 
40 ugljl=IOOO. t zz + signI0.5,zzl 

iflibasis .It. 0) print 114, lidplk,i), k=I,4I,lugljl, j=l,nstl 
114 10rutllhO,' <',4al,':',lbi71 

iflibasis .tq. II print 115, elil,(lag(j), j=l,nstl 
115 lorutllhO,f7.2,':' ,lbi71 

print lib, (iph(jl, j=l,nstl 
lib forlat 11 Ox ,lbi71 

50 continue 

return 
end 
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c 

progru HETlF 

cOlputes intensities for the dz/tb field-cycling eKperilent an 
coup I ed proton systels IIi th one sp i n all owed to be a heteronucl eus 

dilensi an nUlb 12,/,41,1 st 12,/,41, i sp I/,) ,coorslb, 31 ,dd (151, theti I IS) 
di lensi on phi (15) ,vv (600) ,pp (600 I, e (641 ,ss (1001) ,vr (1 0011 ,i fl ip (21 
cOlplex h (4096) ,u I 4096) ,.xx 140961. yy I 4096) ,z z I 409bl ,Mvec Ib41 
cOlplex xxl,yyl,zzl, Kd(409b), ydI409b), zd(4096) 
equivalence (h(lI,ulll) 

indxli,jl= (j-II I nst t i 

kfunklil,i2)=(2In - illilil - 11/2 - il t i2 

dconst=120.0/'7 
pi=4.0 I atan<l.OI 
rad57=180. I pi 

np=IOOI 

10 type 501 
501 forut<'I' ,II,' enter the type of systel: ',1,5K, '0 = general', 

1,5K, '2 = a planar polygon of spins ',$1 
accept I, i sys 

iHisys .eq. II go to 10 

c questions for the general and planar-pol,ygon cases ..... 
c 

type 502 
502 forlat(II,' haM lany spins? (,It. ]) ',S) 

accept I,n 

type 514 
514 forut(ll,' enter the guu of the heteronuke (spin II ',SI 

accept f, grat 

if(isys .eq. 21 go to 15 

type S03 
503 forut<1I I,' enter the x, y, and z coordinates of each nucleus 

, (in Angstrolsl :', /I 

do 12 i=I,n 
type 504,i 

504 forut(Sx,'nucleus ',ii,': ',$1 
accept f,(coors(i,jl, j=I,3) 

12 continue 

go to IB 

15 type 505 
5('5 iOrlat(lI,' enter the nearest-neighbor separation In Angs, ',SI 

accept ',slde 

rr=slde I (2 f sin(pllnll 
angle=O,O 
danqle=2.plln 
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do Ib i=l,n 
coors(i,l1=rr + cos(anglel 
coors(i,21=rr + sin(anglel 
coors(i,ll=O.O 

Ib angle=angle + dangle 

c 
IB k=O 

do 20 i=l,n-1 
do 20 j=i+l,n 
k=k+\ 
xxx=coorslj,11 - coors(i,11 
yyy=coors(j,21 - coors(i,21 
zzz=coors(j,3) - coors(i ,3) 
rrr=sqrt (xxxtxxx + yyytyyy + zzztzzz) 
dd(k)=dconst I rrrtt3 
if (i .eq. I) dd(k) = dd(k)tgrat 
costh=zzz 1 rrr 
sinth=sqrt(xxxtxxx + yyytyyyl 1 rrr 
theta (k 1 =sign (pi 12, si nth) 
if(costh .ne. 0.01 theta(k)=atan2(sinth,costhl 
phi (k)=sign(pil2,xxx) 
if(xxx .ne. 0.01 phi(k)=atan2(yyy,xxxl 

20 continue 

print SOl 
print b02, isys 
print 502 
print b02, n 
if(isys .eq. 0) go to 22 
print 505 
print SIB, side 

22 print 503 
do 25 i=l,n 
print 504, i 
print 50B, (coors(i,jl, j=l,l) 

508 fornt(3f9.3) 
25 continue 

go to 35 
518 forutlfl0.3i 

35 type 513 
513 forullll,' is there rapid lotIon around the ~ axis ,. 

I,' <O=no,l=yes) ',SI 

accept t, ilot 
type 52Q 

520 lorullll, in Mhich 'spec' file should data be stashed ~' 

I,' (for no spectrul storage, enter -II ',SI 
accept t,ifl 

print 520 
print b02, if! 

nst=2ttn 
nil =n-I 
npl=n'l 
ncp=n + nil I 
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do 38 k=l,ncp 
38 ddtkl=ddtU / 4 

generate and arrange the spin-product states 

call nUlsort!nulb,n,nsti 

k=O 
do 45 js=l,npl 
\s=npl - js 
do ~O j=l,nst 
iftnulbt2,il .ne. is) go to ~O 
k=t+J 
1st! I ,kl=nulb (\, j I 
istt2,kl=is 

40 continue 
45 continue 

c 
set up the untruncated di pol ar Hali \toni an 

do 100 1=I,nst 
do 100 1=1,1 
II=indK (I ,II 
hnll=O.O 

if tl .ne. II go to bO 

diagonal 'A' tens .... 

Isk=1 
do SO k=l,n 
ispttl=-I 
ifttlst!I,1l .and. Iskl .ne. 01 isptkl=1 

~ Isk=lsk + 15k 

kk=O 
do 55 i=l,nll 
do 55 j=i+l,n 
kk=kh I 
costh=cos tthetatkk) I 
p2=3 l costhtcosth - I 
hnll=hn.l - ddtkk) I p2 I isptj) t ispti) 

SS continue 
go to 100 

off-diagonal terls .... 
c 
60 )w=1 

jsp=O 
ISto 75 k=J,n 
ifttlsttl,1l .and. 15k) - tlsttl,ll .and. nk») 70,75,70 

70 JSp= jsp • I 
lfiiptjw)=k 
jw=2 

75 ISk=ISI + 15k 

if!jsp .gt. 2) go to 95 
Iftjsp .eq. \) go to 8(1 
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c 

kd=kfunkiifl ip II i ,ill ip(21) 
if(\st!2,11 .ne. Ist(2,1" go to 78 

'9' flip-flop terls ...• 

(osth=(os!theta(kdl I 
h(lll=dd(kdl f !3tcosthfcosth - II 
go to 95 

'E' terls 

78 if (ilot .eq. II go to 95 
sinth2=sin(theta(kd)) If 2 
hUI)= -dd(kdl f 3 f sinth2 f cexp(clplx(O.O,-2fphi(kdlll 
go to 95 

'C' terls 

80 if (ilot .eq. II go to 95 
kfl=iflip(1) 
Ist=1 
do 85 t=l,n 
if (k-tfl) BI,85,82 

81 kd=kfunk(k,kfL) 
go to B4 

82 kd=kfunt (kfL, kI 
84 sincos=3 f sin(theta(kdll t cos(theta(kd)) 

kspin=-I 
if«(\sUI,ll .and. Iskl .ne. 0) kspin=1 
h(II)=h(\l) - dd(kd) t kspin t sincos f cexp(clplX(O.O,-phi(kdlll 

85 ISk=ISk + 15k 
c 
c 
95 II=indx(I,11 

h(all=conjg(h(111 I 

100 continue 

( 

now diagonalize the sucker 

cal! heigen(h,u,nsti 

do 110 i=l,nst 
i i=i ndx (i ,II 

110 e(il=real(h(iill 

print 521 
521 foraaUIIIII,' ENERGIES IN KHZ •••••• ,III 

print 522, ie!ll, i=I,nsti 
522 forlat!f15.41 

generate lx, lv, and II in "the spin-product basis ..... 

doISOI=I,r.st 
do ISO j=I,nst 
ij=indx(I,)1 
xx( i J I =0.0 
yy I i JI =0.0 
11 Ii i 1=0.0 
xdlijl=O.O 
ydIIJ'=O.O 
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c 

zd Ii j I =0. 0 
H=O 
ifli .ne. jl go to 130 
nOM calculate Sz utrixlzdl and lz + gratlSz (zzl 

i z ax =Iod lis til , ii, 21 
jzu=lst 12, i I - izax 
zdlijl=0.5 t grattl2tizax - II 
zzlijl=jzax-(n-I)/2.0 + zd(ijl 
go to 150 

no if(iabsllstl2,il - Istl2,J)1 .ne. II go to Isp'O 
Isk=1 
do 140 k=l,n 
if(llstll,il .and. 15k) .eq. Ilstll,j) .and. 15k)) go to 140 
kk=k 
ksp=ksp + I 

140 ISk=ISk + 15k 

C 

iflksp .ne. 1) go to ISO 
zax=0.5 
if (kk .eq. II zax=gratl2 
xx (ij)=zax 
iflj .gt. i) yy(ij)=clplx(O.O,-zax) 
if(i .gt. j) yy(ij)=clplx(O.O,zax) 
if (kk .ne. II go to ISO 
xd (i j) =zax 
if Ii. gt. i) yd(ijl=clplxIO.O,-ax) 
if Ii. It. i) ydlij)=clpIxIO.O,zax) 

150 continue 

convert lx, Iy, and II to the basis set of the full dipolar Hatiltonian 

call ualu(u,xx,nst,Mvecl 
call ualu(u,yy,nst,Mvecl 
call ualu(u,zz,nst,wvecl 
call ualu(u,xd,nst,Mvecl 
call ualu(u,yd,nst,Mvec) 
call ualu(u,zd,nst,Mvecl 

calculate frequencies and intensities ..... 

dink=O.OOOI 

if lif! .gt. 01 call defile('spec',ifl,OI 

do 235 irep=I,2 

loop over detection by the heteronucleu5 and the abundant spin 

dlirep .eq. II pO=3 t grat t grat t 2.I+(n-21 
if(ireD .eQ. 21 pO=3 t (n-II t 2.ft(n-2) 

k=O 
do IBO i=l,nst 
do 180 j=l,nst 
iFindxli ,jl 
j I =1 ndx I J, i I 
vvv=e(ji - eli I 
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ul,yyl,111 contain the detection latrices. first hie thru, we 
assule the detection is via grattiS~,Sy,S/li next tile around, 
via ([~,Jy,lzl 

rxl=~diji ) 
yyl=ydlji I 
IZ 1=/d (ji) 
if iirep .eq. 11 go to 175 
xxl=uljil-xdijil 
yyl=yyiji) -ydlji I 
Izl=/zijil-zdlji) 

175 ppp=reaJi uiij)lxx! + yylij)tyyl + zzlijl1zzl ) I pO 
ifiabsipppl .It. dink) go to 180 
k=t+l 
ifik .eq. bOll go to 190 
vvlt)=vvv 
pp i k I =ppp 

180 continue 

c sort frequencies and intensit 
190 iover=O 

ifit .gt. bOO) iover=1 
klax=li nO ik ,bOOI 
do 200 i=l,kux-1 
do 200 j=i + I, klax 
ifivvijl .ge. vvii)) go to 200 
call s"itchlvviil,wijil 
call switchippii),ppl)ll 

200 cont i nue 

c , 
gener ate a spectrul ••..• 

vux=aeax1i1.2 + absivvilll,dink~ 
dv=500 I VIaX 

hzppt=2 + VIaX 

do 210 i=l,np 
210 ssii)=O.O 

do 220 k=l,kla~ 
iv=501 + ninttvviki + dvi 
ssiivl=sslivl + pplkl 
vr livl=vvlki 

220 continue 
if iirep .eq. 21 go to 223 
print 550, grat 

550 foreaUlI,' the heteronucleus nas a gaua = ,i6.41 
If (ilot .eq. II Print 555 

555 ior.alill, spectrul calculated assullng rapid rotation about I 'I 

output r~sul ts 

O~lnt 528 
:.:8 iorlaU'I',!I,\(I,. irequenc~ ikh,I',bk, intensity ,b" 

pOint ",b,,'ln S spin spectrul',I,IOk,15('-'I,bk, 
9 ( , - ' I , 6x .7 ( , - ' ) • II 

~o 1.0 225 
ns pnnt 530 
531} ioruUII,IO" 'frequency (kHzI ,6x. 'intensity' ,b" 

'po i nt ".1,1 (Ix .15 ( '-' ) .0' .9 ( '- ' I • ox ,7 ( '-' I • II 
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225 k=O 
do 230 iv=l,np 
iflabslsslivll .It. dinkl go to 23(1 
k=ktl 
print 531, k,vr(ivl,sslivl,iv 

531 lorlat!i4,f18.4,fI8.6,illl 
230 (anti nue 

ifliover .eq. II print 533 
533 lariat 11/1, . NOTE: there are over 600 alloNed transitions --

'Iines lissing in the table and in the plot·) 

iflifl .It. 0) go to 235 

vlin=-vlax 
print 535, Vlin,vlax,hzppt 

535 forlatU/I,3x,'spectral range: ',fI0.4,' kHz to ',110.4,' kHz', 
5x,'(',19.4,· Hz per pointl'l 

writell,602) np 
IIrite<l,603) hzppt 
IIrite<l,603) Iss(i), i=l,np) 

235 cant i nue 

close(unit=OIl 

240 type 539 
539 lorlitlll/,' another systel ?? (O'no,l=yes) . ,f) 

accept f, i an 
.ne. 0) go to 10 

print 540 
540 lorlat! '1' ,II) 

602 forlat li6) 
603 lorlit!eI4.61 

end 

subroutine sllitch(a,bl 
(=a 
a=b 
b=c 
return 
end 
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proqrallolleld 

cOlputes Intensi ties lor. gener.1 pONder pattern of 
coupled protons lup to 4) 
in a slall applied de field in non-rotating frale 
otherNise, this one is euctly like pat4 
this one is set up to generate spectra to db! 's specifications 

dilension nUlbI2,lb),lsU2,lb),ispI4), coorsI4,3) 
dilension ddlb),thehlb),ifiipI2) 
diaension phi (10) ,ellb) ,55(1024) 
COlP I ex hO (256) ,h (256) ,u (250) ,xx 125") ,yyO 125bi 
cOlplex xxOl25bl ,yy125bl ,!Z 125101 ,Nvec 1161, nOI2S"1 
charaeter'15 gnate 
char aeter'64 ti tl e 
cOlaon/et! title ,e 
callan n,nst,lst 

indx Ii ,j): Ij-II • nst t i 

kfunklil,i21:(2'n - il)t(il - 11/2 - il t i2 

dconst:120.0b7 
pi=4.0 I atan(1.01 
rad57=IBO. I pi 
bad = O. 
np: I 024 
initialize the spectrul utrix ss 
do 1553 j:I,np 

1553 ss!jl = 0.0 

set up the spectral width as 250 kHz full Nidth centered about 
point 513 

v21ax = 250. 
hzppt = 125. /511. 
vaax = 125. 

bad holds all the intensity that fall outside of the chosen band 
Ni dth for our spectrul 

bad: O. 

10 type 501 
50! lorut! '!' ,1/ " enter the type 01 systel: ' ,/ ,5x, '0 = general', 

!,5x, 'I = a planar polygon 01 spins ',$I 
accept t, ISYS 

ques t ions lor the gener a I and pi anu-pol vgon cases ..... 

c 
447: type 5e'2 
S(,? iorlatll/,' hON liny spins' l.Ie. 61 ',SI 

accept. ,n 

If (In .It. 21 .or. In ,gt. loll go to 4477 
type 598 

598 iorutl' hON .any steps along beta In Interval 0-90 " I 
accept I, 12 
type 5910 
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59b forut (' and how uny along the equator J 'I 
accept t, n2 

type 554 
554 forut(' enter the value of the shtic held in kHz 'I 

accept t, fl d 

type 556 
556 forlat(' enter the angle olega beheen lab z-axis and residual 

I field: 'I 
accept t, oaega 
ole2 = oaega/rad57 
COl = cos(oae2) 
SOl = sin(ole2) 

if(isys .eq. I) go to 15 

type 503 
503 forlat(III,' enter the x, V, and z coordinates of each nucleus 

'(in Angstrolsl :' ,II 

do 12 i=l,n 
type S04,i 

504 foraat(5x, 'nucleus' ,ii,': ',f) 

accept " (coors(i ,i), i=I,3) 
12 continue 

go to 18 

IS type 50S 
505 forut(II,' enter the nearest-neighbor separation in Angs. ',SI 

accept t, si de 

rr=side 1 (2' sin(pilnl) 
angle=O.O 
dangle=2tpiln 

do 16 i=l,n 
coors(i,ll=rr t cos(angle) 
coors(i ,21=rr t sin(anqlel 
coors(i, 3) =0.0 

Ib angle=angle + dangle 

c' 
18 k=O 

do 20 i=l,n-1 
do 20 j=i+I,n 
k=k+ I 
IXx=coors(),11 - coorS(i,1l 
yvy=coDfs(i,2) - cDors(i,21 
zzz=coors(),3) - coors(i,3) 
rrr=sqrtlxxxtxxx + YYVtyyy + ZlltzU) 
ddlk)=dconst 1 rrrtt3 
costh=zzz 1 rrr 
sinth=sqrt luxfln + YVytyyyl 1 rrr 
theta (k I =si gn (pi 12, sinth) 
dlcosth .ne. 0.0) thHalk)=atan2Islnth,costhl 
phi Ikl =signlpil2 ,xxx I 
dlxxx .ne. 0.01 phllkl=atan2tyyy",,1 

20 continue 
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print 501 
print 602, ISYS 
print 702, n 

702 tor.at(lI,i~,· SPINS ..... ') 
\fllsys .eq. oj) go to 22 
print 70S, side 

705 forlatlll,' enter the nearest-neighbor separation in Angs. 
f9.31 

22 print 503 
do 25 i=I,n 
print 708, i,(coors(i,jl, j=I,31 

708 forlatll,5x,'nucleus ',ii,': ',3110.31 
25 conti nue 

type 520 
520 foraat I' enter Ii I e nue for spectrUi dUlp' I, 

, for no spec spectrul storage, enter -I 'I 
accept 5202, jnp, gnale(l:jnp) 

5202 forlatlq,al 
if (gnale(I:21 .eq. '-I' I if! -I 

if (if I .ne. -I) then 

print 520 
print 5202, inp, gnale(l:jnpl 

else 
end if 
nst=2ttn 
nll=n-I 
npl=ntl 
ncp=n I nil 

38 ddlkl=dd(k) I 4 

generate and arrange the spin-product states, .... 

call nUlsort(nulb,n,nst) 

k=O 
do 45 js=l,npl 
is=npl - js 
do 40 j=l,nst 
iflnulb(Z,j) .ne. IS) go to 40 
k=ktl 
1st II ,k)=nU8b(1 ,j) 
Ist<2,k)=is 

4(1 continue 
45 continue 

set up the untruncated dipolar Haailtonian ' .... 
store It in utrix hO 
latrix h will represent the cOlbined dipolar' lee.an Ha.lItonians 

do 100 1=I,nst 
do 100 1=1,1 
II=inddl,.1 
hOII.)=O.O 
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d (I .ne. II go to 60 

di agonal 'A' terls •••• 

Isk= I 
do 50 k=l,n 
isp<kl=-I 
jj((lst!I,11 .and. Iskl .ne. 01 isp<kI=1 

50 ISk=ISk + 15k 

H=O 
do 55 i=l,nll 
do 55 j=i+l,n 
H=kk+l 
(osth=(os(theta!kkll 
p2=3fcostht(osth - I 
hO(JII=hO(l11 - dd(kkl I p2 I isp(jl I isp(il 

55 (ont inue 
go to 100 

off-di agonal tH"IS .••• 

60 jN=1 
jsp=O 
Isk=1 
do 75 k=l,n 
if«lst!I,11 .and. Iskl - (lst!I,11 .and. Iskll 70,75,70 

70 jsp= jsp + I 
iflip(jNI=k 
j.=2 

75 ISk=ISk + 15k 

if(jsp .gt. 21 go to 95 
if {Jsp .eq. II go to 80 

kd=kfunk (if) ipHl,ifl ip (21 I 
ifllst!2,11 .ne. Ist(2,111 go to 78 

'S' f II p-f1op terls •••• 

(osth=cos (theta (kdll 
hOIlII=dd(kdl I (3lcosthfcosth - II 
go to 95 

'E' terls 

78 sinth2=sin!theta(kdl) If 2 

( 

hOIlII= -dd(kd) I 3 t sinth2 I cexp(clplx (0.O,-2fphi !kd))) 
go to 95 

'C' teras 

80 kfl=iflip(1I 
Isk=1 
do 85 k=I,n 
i Hk-kfl) 81,85,82 

SI kd=kfunk(k,kfl) 
go to 84 

82 kd=kiunktkfl,kl 
8~ sineos=.) t sin!thetaheta<kdIJ 

kspln=-I 
d!tlst(I,I) .and. Iskl .ne. 0) kspin=l 
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hO II II =110 II II - dd (kd I tk spi ntsi ncostce.p (Clp II (0.0, -phi (kd II i 
85 Isk=lsk + 15k 

c 
95 II=inddl,11 

hO IIII =conjg IhOIlII) 
c 
100 continue 

c 

generate lx, [y, or [z In the spin-product basis •• '" 
calculate the value of the zeeun field Mhen rotated into the 
lolecular Ir .. e of reference 

do 1500 i=l,nst 
do 1500 i=l,nst 
ij=indxli,jl 
ulijl=O.O 
yylijl=O.O 
zz Ii il=O.O 
ifli .ne. jl go to 130 

zzlijl=lstl2,i) - n/2.0 
go to ISO 

130 ifliabsl1stl2,i) - Istl2,jll .ne. II go to 150 
ksp=O 
Isk=1 
do 140 k=l,n 
ifll1stll,ii .and. Iskl .eq. IIst(l,jl .and. 15k)) go to 140 
ksp=ksp + I 

140 ISk=ISk + 15k 

illksp .ne. II go to 150 
ulijl=O.5 
il(j .gt. il yylijl=clplxIO.O,-O.S) 
if!i .gt. il yyli il=clplx (0.0,0.5) 

ISO continue 

15()l) centinue 

nOM add in a zenan terl for the rotated field, that is, 
the field vector nOli expressed in the lolecular Irile 
the truncation is nOM done nUleflcally, because the coefficient 
applied to the field is luch larger than the unit 01 the dipolar 
coupl i ngs 

the coefficients on each part of the field represent the effect 
of having rotated it through (galla, betal in the 2 angles 

nOM loop over orientations 01 the values 01 galla and ccs!beta) 
for each field orientation, calculate states and energies 

/tn( " 2./floatl.2-1) 
qinc " pl / float!n2-11 
do 2700 .1 = l,12 

ioop ever '/alues 01 cos!betal frOI -I to I 

cl " -\. • finctfloatlil-I) 
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beti = acos(cl! 

loop over ,values 01 galla Irol 0 to PI 

n do 2bOO II : l,n2 
II oat (J I-II fgine 

51 = sin lbeta! 
e2 : coslgula! 
52 = sin 19a1la! 
sls2 = slt52 
sle2 = sltc2 
clc2 = e!te2 
cls2 = elfs2 

do 444 i = I,nst 
do 444 j = I,nst 
ij : indxli,j! 
zzOlij! = H.tsle2txdij! + sls2fyylij! + cltzzliil! 

while we're looping, set up lx, Iy llib-based! in the lolecular Ir .. e 

yyOlij! = 52txdij! + c2tyylij! 
xxO(i)! = clc2fxxlij! + sltzzlij! - cls2tyy(jj! 

hlij! : hOlij! + fldt(lZOlij!tCOI+XXOliJ!fSO.! 

444 cont i nue 

no. di agonali ze the sucker 

call heigenlh,u,nstl 

do 110 i=l,nst 
i i=indx Ii, i I 
eli! = reallhlii)) 

110 continue 

convert lab based Iz to the basis set 01 the cOlplete Haliltoniin 

call uilulu,zzO,nst,.vecl 

calculate frequencies and intensi ties •.• ,. 

pO=n t 2.tt(n-21 

da 180 i=I,nst 
do 180 j=I,nst 
VVY = O. 
i)=ind,(J,JI 
ji=lnddj,ll 
v .. =el)1 - elil 
ppp=reall:zOljil':zOII)I) 
slot = vvv/hzppt 
Jkl = nlnt (slot! + 513 
If Ilj~l .ge, II .and. ',)11 .Ie. 102411 go to 1705 
bad = bad + pppipO 

go to 18'" 
1705 ssl)kll = SSljtl1 + ppp/p') 
1 ~IJ cont I nue 

339 



21.00 {anti nue 
c 
2700 {ant i nue 

c output resul ts 

vlin=-vlax 
print 535, vlin,vIiX,hzppt 

535 lorlat(II/,3x,'spectral range ',flO.4,· kHz to ',110.4,' kHz', 
Sx, '(' ,19.4,' Hz per pointl'l 

il (ill .ne. -II then 
open(unit=l, nale=gnale(l:jnpl, status = 'new'l 
write(l,b021 np 
wri te(1 ,1.03) hzppt 
write(l,b031 (ss(il, i=l,npl 
close{unit=OII 

else 
end i I 

2~0 type 539 
539 lorut(III,' another systel ?? (O=no,l=yes) . ,., 

accept f,ian 
iI(jan .ne. 0) go to print 540 

S~O lorlat( 'I' ,I n 

c 
1.02 lorut(ib) 
1.03 lorlat (el~.bl 

end 

c 

c 
subrout i ne s.i tch (a ,b I 
c=a 
a=b 
b={ 
return 
end 
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progral pata 

(OIPUte, i ntensi ties for a generil powder pattern of 
coupled protons lup to II) 

this one is set up to generate spectra to dbz '5 specifiutions 
third atteapt ilt calculating powders; 10/12184 
designed to be cOlpiled with ilsl routines eigch et al 

diaension nUlb(2,a4),lstI2,b4),isplb), coorslb,3) 
dilension dd (15), theta (15), if lip (2) 
dillension phi (15) ,l!lb4) ,ss(\0241 
cOlplea h0(4096) ,hI409b) ,u140'/6) ,u1409b) 
caapi ea xx0(4096), yy (4096) ,ll (4096) ,.VI!( (114) 

real workll92) 
character'64 title 
couon/et! title,e 
couon n,nst,lst 

inda Ii ,jl= Ii-II' nst + i 

khnklil,i2)=12'n - ill'lil - 11/2 - il + i2 

dconst=120.067 
pi=4.0 • atanll.OI 
rad57=IBO. 1 pi 
bad = O. 
np=1024 
initialize the spedrul .. trix ss 
do 1553 j=l,np 

1553 sslj) = 0.0 

set up the spectral width as 250 kHz full width centered about 
c point 513 

10 
501 

( 

v21ax = 250. 
hzppt = 125./511. 
vlaa = 125. 

bad holds all the intensi ty that fall outside of the chosen band 
width for our spectrul 

bad = O. 

type 501 
foraat 1 'I' ,II I' enter the type of systel 

1,5a, 'I = a planar polygon of spins 
accept f, i sys 

:',1,5x,'O = general', 
, ,fl 

questions for the general and planar-polygon cases ..... 

4477 type 502 
502 forut"I,' hOIf lany spins? (.Ie. 61 ',SI 

accept f,n 

if lin ,It. 21 .or. (n .gt. 611 go to 4477 
type 598 

S9B forut(' how lany steps ilong beta in interval 0-90 l' I 
accept f, 12 
type 596 
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S9b forut I' and hON uny d eng the equtor ? 'I 
iccept t, n2 

iflisys .eq. 11 go to 15 

type 503 
503 forutllll,' enter the x, y, and z coordinites of each nucleus 

'lin AngstrOtls) :',11 

do 12 i=l,n 
type S04,i 

S04 forutISx,'nucleus ',ii,': ',f) 
accept t,lcoorsh,il, j=I,3) 

12 continue 

c 
C 

go to IB 

IS type SOS 
50S forutlll,' enter the nearest-neighbor separation in Angs. ' ,f) 

accept t ,side 

rr=side I 12 t sinlpi/n)) 
ingle=O.O 
dangle=2tpi In 

do II> i=l,n 
coorsh ,1)9'"r t coslanglel 
CODrsli ,2)=rr t sinlanglel 
coorsh ,31 =0. 0 

II> angle=angle + dangle 

IB k=O 
do 20 i=l,n-1 
do 20 j=i+l,n 
k=k+1 
ux=coorslj,1I - coorsli,1I 
yyy=coDl'slj,2) - coorsli,2) 
lzz=coorslj,31 - coorsli ,3) 
rrr=sqrtlxutxxx + yyylyyy + ZllllZZ) 

ddlk)=dconst I rrrll3 
costh=zzz I rrr 
sinth=sqrtlxu1xxx + yyylyyy) I rrr 
theta Ik I =sign Ipi 12,si nth) 
iflcosth .ne. 0.01 thetalk)=atan2Isinth,costh) 
phi Ik)=signlpi/2,xxxl 
iflxxx .ne. 0.01 pllilkl=atan2Iyyy,xxxl 

20 conti nul' 

print 501 
print 602, i sys 
print 702, n 

702 foruUII,i4,' SPINS ••••• 'I 
iflisys .eq. 0) go to 22 
print 70S, side 

70S for.aUII,' enter the nearest-neighbor separation in Angs. 
19.31 

22 pr int S03 
do 2S i=I,n 
print 70B, i,lcoorsli,jl, j=I,31 

70B lorutl/,SI,'nucleus ',il,': ',3110.31 
25 continue 
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type 520 
520 forlattll,' in Mhich 'spec' file should data be stashed ?', 

I,' Ifor no spectrul storage, enter -II ',SI 
accept t, i II 

print 520 
print 602, i It 

nst=2ttn 
nll=n-I 
npl=n+1 
ncp=n t nil I 2 
do 38 k=l,ncp 

38 ddlkl=ddlkl I 4 

gener ate and arrange the spi n-product states ••••• 

(all nUlsorUnulb,n,nstl 

k=O 
do 45 is=l,npl 
is=npl - is 
do 40 i=l,nst 
iflnulbl2,il .ne. isl go to 40 
k=k+1 
Istt I, k I =nulb (\, i I 
IstI2,kl=is 

40 continue 
45 continue 

set up the untruncated dipol if Haai !toni an ••••• 
store it in latrix hO 
latrix h Mille cOlbined dipolar + leetan HlIiltonians 

do 100 1=I,nst 
do 100 1=1,1 
II=indx n ,II 
hOnll=O.O 

il(l . ne. II go to 60 

diagonal 'A' terls .••• 

Isk=1 
do 50 k=l,n 
isplkl=-I 
ifl(\stll,11 .and. Iskl .ne. 01 isplkl=1 

50 Isk=lsk + Isk 

kk=O 
do 5S i=l,nal 
do 5S i=i +1 ,n 
kk=U+1 
costh=cos Itheta IU II 
p2=3tcosth+(osth - I 
hOlhl=hO<l11 - ddlkkl t p2 + ispiil I ispiil 

SS continue 
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go to 100 

off-diagonal terls .... 
c 
60 i.:1 

isp:O 
Isk:1 

do 7S k:I,n 

H(lIst(I,1l .and. Iskl - (\sttl,11 .and. askll 70,75,70 
70 isp= isp + I 

iflip(i.l=k 

i.=2 
7S ISk=ISk + 15k 

c 

if(isp .gt. 21 go to 95 
if(isp .eq. II go to 80 

kd=kfunk Ii fl ip (II, i fl ip (211 

iftlstt2,ll .ne. Ist(2,111 go to 78 

'S' fli p-flop terls •••. 

costh=cos(theta(kdll 
hOtllf=dd(kdl t (ltcosthtcosth - II 
go to 95 

c 'E' terls •••• 
c 
78 sinth2=sin(theta(kdll tf 2 

c 

c 

hOtlll= -dd(kd) t l t sinth2 f cexp(clplx(0.O,-2tphi(kdl)1 
go to 95 

'C' terls •••• 

80 kfl=iflip(l) 
Isk=1 
do 85 k=I,n 
iftk-kfl) 81,85,82 

81 kd:kfunk(k,kfll 
go to 84 

82 kd=kfunk(kfl,kl 
84 sincos=l t sin(theta(kd)) t cos(theta(kd)) 

kspin=-I 
if((\st(I,1l .and. Iskl .ne. 0) kspin=1 
hO lIl) =h0 tl I) - dd (kd I tkspintsi ncostcup <Clpix (0.0 ,-phi (kd)) ) 

85 ISk=ISk + 15k 

c 
9S II = indx(I,1l 

hO(II) : coniq(hO(\I)1 

100 continue 

c 
c generatr h, Iy, or Iz in the spin-product basis ••••• 
c calculate the value of the zeuan field when rotated into the 

eoleculu frile of reference 

i,i) 

do 1500 i=I,nst 
do 1500 i=I,nst 
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e 

xxlij)=O.O 
yylij)=O.O 
zzlij)=O.O 
if Ii .ne. J) go to 130 

zzlij)=lstl2,i) - n/2.0 
go to ISO 

130 ifliabs(istl2,i) - Istl2,j)) .ne. II go to ISO 
ksp=O 
.sk=1 
do 140 k=l,n 
ifl(ist(l,i) .and •• sk) .eq. (istll,j) .ilnd •• sk)) go to 140 
ksp=ksp t 1 

140 8Sk=.sk t 8Sk 

if Iksp .ne. II go to ISO 
IX Ii j) =0.5 
if Ii .gt. i) yy Ii j)=c.plx 10.0,-0.5) 
if (i .gt. j) yylij)=c8plxI0.O,O.5) 

150 continue 

1500 conti nue 

now add in a lee.an ter. for the rotilted field, thilt is, 
the field vector nOM expressed in the IOlecular fra.e 
the truncation is now done nu.erically, beciluse the coefficient 
applied to the field is .ueh larger than the unit of the dipolar 
coupl ings 

the coefficients on each part of the field represent the effect 
of having rotated it through Iga .. a, beta) in the 2 angles 

now loop over orientations of the values of gnu and cos(beta) 
for each field orientation, ealeuhte states and energies 

fine = 2.lfloatl.2-1l 
ginc = pilfioatl02-11 
do 2700 .1 = 1,.2 

loop over values of cos (beta) fro. -I to I 

cl = -1. t fiocffioatl.l-ll 
beta = acos Ie Il 

loop over values of ga..a fra. 0 to pi 

32 do 2600 11 = 1,02 
gnu = fioatlll-I)fgioc 
51 = sin I betil I 
c2 = eoslgil8u) 
s2 = sinlga .. a) 
5152 = slts2 
51e2 = sltc2 
ele2 = el t e2 
c152 = clts2 

do 444 i = I,nst 
do 444 j = l,nst 
i j = i ndx (i ,J I 
hlijl = hOlijl t IOOOO,tl-l,tsle2txxliJI t sls2tyylijl + cltzzlij)) 
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IIhile lIe're looping, nt up Ix (\ab-bisedl in the lalecular Irile 

xxO(ijl = clc2txx (ij) + sltzz(ij) - cls2tyy(ijl 

444 cant i nue 

nOli di igonal i ze the sucker 

cst, II ,e,u,nst ,lIork, ierl 
if <ier .ne. 0) type 577, ier 

577 lorut (' eigch error code = " il.l 

c 

convert Ix to the biSis set of the cOlplete Haliltonian 

call latraai(u,uO,nst ,lIvecl 

call utal (uO,u,nst ,lIvec I 

calculate frequencies and intensities ..... 

pO=n t 2."(n-21 

do 180 i=l,nst 
do 180 j=l,nst 
vvv = O. 
ij = indl(i,jl 
ii = indl(j,il 
ppp= xxOlijltxIO(ji) 
if (abs(ppp) .Ie. l.e-41 go to 180 
vvvi=e(j) - eli 1 
if (vvvi .gt. 0.01 vvv = vvvi - 10000. 
if (vvvi .It. 0.01 vvv = vvvi + 10000. 
510t = vvv Ihzppt 
jk\ = nint(slotl + 511 
if «jkl .ge. I) .ind. (jk\ .Ie. 102411 go to 1705 
bad = bad + ppp/pO 
go to 180 

1705 ss(jkll = ss(jkll + ppp/pO 
180 continue 

21000 continue 
c 
2700 continue 

c output resul ts ..... 
c 
c 

Vii n=-vlax 
print 535, vlin,vlax ,hzppt 

535 lorutllll,3x,'spectral range: ',f10.4,' kHz to ',flO.4,' kHz', 

c 

5x,'<',19.4,' Hz per pointl'l 

call defile('spec' ,ifi,OI 
IIrite<t,10021 np 
IIri te(l ,1003) hzppt 
IIrite(l,b03) (ssli), i=l,npl 
close(uni t=OII 

240 type 539 
539 farlat"",' another systea 11 to=no,l=yes) ',SI 

accept t, i an 
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iflian .ne. 01 go to 10 
c 

print 540 
540 foruU'l' ,III 

c 
602 forlat libl 
603 for.atleI4.o1 

end 
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