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ABSTRACT 

HALL CONDUCTIVITY AND LORENTZ FORCE LAW FOR 
TWO-BAND SEMICONDUCTORS 

• 111: Dean L. !btchell 
University of California, Berkeley 

Lawrence Berkeley Laboratory+ 
Berkeley, CA 94720 

The intraband and interband contributions to the Hall conductivity are 

calculated for a two-band semiconductor. The interband contributions to the 

conductivity include a residual term at frequencies less than the band gap. 

The residual conductivity can be related to a spin-orbit component of the 

Lorentz force law. analogous to the relativistic case for electrons and 

positrons. The conductivity is shown to satisfy the proper sum rule. 

Introduction 

The free-carrier Hall effect and its related high frequency counterpart, 

free-carrier Faraday rotation, are regularly used in semiconductors to 

determine free-carrier concentrations and effective masses. The Hall effect 

is particularly useful since it normally provides a direct measure of the 

free-carrier concentration provided that the magnetic field is sufficiently 

large to satisfy the condition ~ T»1, where ~ is the cyclotron frequency c . c 

and T the appropriate lifetime. This "high-field limit" has been 

demonstrated experimentally and theoretically to give correct results over an 

extremely wide range of physical conditions, provided the carriers are able to 

execute closed orbits as would be the case for closed and simply connected 

Fermi surfaces. 1 The theoretical treatments of the free-carrier Hall effect 

normally do not include relativistic corrections such as spin-orbit corrections 

111: Visiting Scientist. 
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to the velocity. In most cases such effects are negligible. However, in 

small gap semiconductors the spin-orbit correction to the Lorentz force law 

can be appreciable. 

A direct calculation of the Hall conductivity ~ (w) in a simple two-band 
xy 

model shows that interband terms are present which arise from the unequal 

blockage of left-circularly-polarized (lcp) and right-circularly- polarized 

(rcp) transitions by the free-carrier population. This is the magnetic analog 

of the Burstein-Moss effect. 2 The use of a simple two-band model allows these 

terms to be evaluated directly and to show that the residual conductivity at 

low frequencies can be described phenomenologically by a spin-orbit term in 

the Lorentz force law. 

The relativistic band model and quantum-mechanical calculation of the Hall 

conductivity are discussed in section I. A semiclassical calculation is given 

in section II together with a discussion of the phenomenology. Relevant 

experimental results for the Hall constant, Faraday rotation and 

magneto-plasma dielectric anomalies are discussed in section III. 

I. Hall Conductivity: Quantum-Mechanical 

The two-band model is illustrated in figure 1. In this model, the 

one-electron energy levels in the presence of magnetic field can be calculated 

by using a ~.p formulation based on the Luttinger-Kohn representation.
3 

The momentum operator in this representation is of the form: 

1) 
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where the spin-orbit interaction is included in the second term and the vector 
~ 

potential A includes both the static magnetic field and the radiation field. 

For the purposes of the calculations that follow, the magnetic susceptibility 

is taken to be unity and only electric-dipole transitions are considered. 

Errors introduced by these approximations are neglible for narrow gap 

semiconductors . 

The eigenvalues for relativistic electrons in the presence of a static 

magnetic field have been derived by Johnson and Lippmann4 using a cylindrical 

gauge. This gauge is particularly useful in deriving selection rules for 

transitions between Landau levels. 

For relativistic electrons, the g-factor is related to the effective mass 

by g=2mO,m where mO is the "free-space" mass of the electron, g is the energy 

dependent g-factor and m the energy dependent mass. This equivalence leads to 

spin-splittings in a magnetic field that are equal to the cyclotron frequency 

for all values of kinetic energy. Therefore. the lowest level in the 

conduction band Landau ladder is a non-degenerate "spin-down" level and all 

higher levels are doubly degenerate. The electronic states in the "valence·' 

band are a mirror image of the "conduction" band levels. 5 Cohen and Blount 

have shown that the same energy level system is applicable in periodic solids 

provided the free-space electron effective mass and g-factor are replaced by 

an appropriate effective mass m* and effective g-factor g* and provided that 

the contributions from the free-space electronic masses and g-factors can be 

neglected. The neglect of the free-space electronic mass and g-factor is a 

good approximation in narrow-gap semiconductors. 

-3-



In the one-electron effective mass approximation the conduction band 
6 . 

energy levels are given by: 

where E is the energy gap, ~ = eH/m*c is the cyclotron frequency, m* is g c 

the energy dependent effective mass, n is the Landau-index and k is the, 
z 

..1> 
wavevector for motion along the z axis. The magnetic field H is also along 

the z axis. The valence levels are the negative of the conduction levels. 

The ±l refers to the "spin-up", "spin-down" splitting of a given Landau level 

of index n. This splitting is equal to the cyclotron frequency in the 

two-band model. 

The labels 0, • .8 are used for the "spin-up" and "spin-down" eigenvalues of 

the spin operator since these states are spin-orbit mixtures of the spin-up 

and spin-down components of the spin angular momentum. The 0, and 8 satisfy 

time reversal symmetry in the absence of a magnetic field (i.e., all states 

are two-fold degenerate) and therefore satisfy the rule for Kramer's 

. t' 3 conJuga 10n. 

The frequency dependent Hall conductivity a (~) has both intraband xy 

(cyclotron resonance) and interband contributions. 

can be written: 7 

The real part of a (~) . xy 

where K is the number 0'£ equivalent band-pairs (four in the case of the lead 

salts), V is the volume and the final state (f) is restricted to be higher in 

-4-
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energy than the initial state (i) in the sum-over-states. At finite 

temperatures it is necessary to include the full Fermi function F if( E, ,T) 

which gives the difference in probability for occupation of initial and final 

states. At low temperatures such that kT<~w all states below the Fermi c 

level E f are occupied and those above are empty. 

The selection rules for the <fI1l'±li> matrix elements are given by:6 

for intraband (cyclotron resonance) and: 

5) 

~'&. 
for interband transitions.The unit of magnetic lengthAis equal to (~c/eH). 

These selection rules are for electric-dipole allowed transitions. All other 

matrix elements are of higher order and may be neglected. 

with the selection rules given above, Equation (3) can be evaluated directly! 

6) 

where nand na are the carrier densities in the ~ and a sub-bands and ~o 
~ cv 

is the band-edge momentum matrix element. The sum-over-states gives 

contributions only in the vicinity of the Burstein-Moss energy gap which is 
I 

def ined by £ g = Eg + e t
f 

where E
f 

is the. Fermi energy measured 
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relative to the conduction-band edge. Thus. the second term in Equation (6) 

is the magnetic analog of the Burstein-Koss effect. Both effects are due to 

partially occupied bands. The Burstein-Koss shift arises from blockage of 

interband transitions which contribute terms proportional to (n~ + nS) to the 

diagonal component of conductivity d • The effect calculated here appear, s . xx 

in dxy and is proportional to (n~-ns)' 

The appearance of an interbandterm in the Hall conductivity aris~ng from 

band population effects is somewhat unusual since it given rise to a residual 

conductivity at frequencies less than the band gap. This conductivity affects 

both the real part of the dielectric constant and the d.c. Hall constant. 

Because of this seemingly "unphysical'· result. past work has tended to argue 

that the residual term at zero frequency should be cancelled by other 

interband transitions8 or by magnetic resonance transitions at lower 

9' 7 
frequency. Bennett and Stern have derived the appropriate sum rule for 

d (Equation (71) in reference (7» and have shown that the sum rule gives 
xy 

the correct value for the Hall constant for intraband transitions (cyclotron 

'resonance). The calculation given in Equation (6) satisfies their sum rule 

and includes all the interband terms that would appear for a two-band 

semiconductor. 

The physical significance of this interband contribution to the low 

frequency conductivity can be made evident by rewriting Equation (6) with ~ = 

o in an alternate form: 

7) 
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* * ~ * where ~ is the effective Bohr magneton (~ = "e/2m c) and <0 > is the 
z 

expectation value of the z component of "spin" angular momentum <0 > = 
i: z 

(n«-n~)/no· In going from Equation (6) to Equation (7)~omentum matrix 

element is replaced according to: 

8) 

~~ 

which follows from k.p theory for a two-band model. 

The Hall conductivity given in Equation (7) follows directly if the 

Lorentz force law is written: 

~ ~ 

" X H ... 
c 

~ 

+E 9) 

~ ~ 
where q is the charge, v is the velocity neglecting spin-orbit effects and 0 

is the "spin" of the charged particle. 

The form of Equation (9) is the same as for relativistic electrons with 

...a - 22..)'" the velocity operator ~/m = v + (~/4m c )0 x VV. Therefore, the interband o 0 

term which appears in Equation (7) is the semiconductor analog to the case for 

relativistic electrons. 

* replaced by 13 
2 and 2m c 

o 

The analogy is effected with the Bohr magneton ~o 

replaced by £. The two-band analogy with 
g 

. 10 
relativistic electrons and positrons has been frequently noted. The effect 

discussed here is another manifestation of this analogy. 
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II. Hall Conductivity: Semi-Classical 

The calculation carried out in Section I did not include the effects of 

temperature or finite relaxation times and therefore is limited to 

intermediate values of the magnetic field such that the conditions kT<~w' and 
c 

w T»1 are both satisfied. The effects of temperature, relaxation time and c 

non-parabolicity can be treated by an extension of the usual semiclassical 

calculation for the Hall conductivity where it is assumed that a single 

relaxation time T exists which may depend on magnetic field and that the 

non-parabolicity is included through a field dependent effective mass. To 

avoid undue complications, the low-frequency limit (Hall effect) and 

high-frequency case (w « w «w ) are treated separately. c g 

A. Hall Effect 

The d.c. Hall effect is normally measured in a configuration that gives 

values for the;oxx and~xy components of the resistivity tensor. Therefore 

it is necessary to invert the measured resistivity tensor for comparison with 

the calculations:
7 

10) 

11) 
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The semiclassical equations for the real part of the free-carrier Hall 

conductivity a and the transverse conductivity a are given by:7 
xy xx 

01()( - 00 12) 

[ , + (Wc'i')t] 

6;~ - 6;.. (We'1') 13) 

( I + (We '"rfJ 
where a 2 * It is convenient to rewrite Equations = n e TIm . (12) and (13) in 0 0 

another form for inclusion of the interband contributions and for analyses of 

experimental data to follow in Section III. 

12a) 

nQec.[ I +~< 6L>]CWc'rt.. ::'l1QeC(h~<:6i5J(~'r) f(cJ{113a) 

H . E~ (It(~'flJ H f1 (1 ... (!4:'1') J 
where few T) = (w T) 1[1+(w T)2]. The inclusion of the interband term follows c c c 

after Equation (7). 

The diagonal component of the conductivity only includes terms proportional 

to (n + no) in lowest order while a is dominated by effects proportional to 
a ... xy 

(na - np). From Equations (12a) and (13a) it follows that the interband 

spin-orbit term in a may be obtained from an analysis of experimental values 
xy 

for the magnetic field dependent conductivities a and a by taking the' 
xx xy 

ratio: 

14) 
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and by u~ing the measured values for WeT. To carry out this analysis it is 

necessary to invert the measured values Oft'xx and~xy according to Equations 

(10) and (11). 

The temperature and magnetic field dependences of the spin-orbit correction 

to the d.c. Hall constant differ from the corresponding dependences for the 

usual free-carrier Hall constant and therefore provide signatures for the 

effect. At intermediate magnetic fields such that 1«wcT and ~*H«t;~ the 

expectation value for <0 > z can be approximated by: 

15) 

where the "spillage from sub-band ~ to sub-band ~ is proportional to the 

splitting between sub-bands (~w = 2~*H). Hon-parabolicity is taken into c 

account by using the magnetic field or energy dependent effective mass m*. The 

d.c. Hall conductivity in this regime is therefore given by: 

~~ CO) :: 16) 

It is seen from the form of Equation (16) that de Haas-Van Alphen (dHvA) type 

oscillations will result from the spin-orbit contribution. The dHvA 

contribution to 0 has been calculated and observed in the low temperature xy 

F d t t · f .. to t PbS· 12 ara ay ro a 10~ or n - ype . The paramagnetic temperature dependence 

resulting from Equation (16) also has been calculated and observed for Faraday 

relation13 but has not been reported for the d.c. Hall effect. 

-10-
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B. Faraday Rotation 

Faraday rotation provides a convenient probe for determination of the 

frequency dependent Hall conductivity in semiconductors. In regions of low 

absorption, the Faraday rotation is given by:8 

17) 

where n(~) is the frequency dependent index of refraction, e(~) is the 

rotation of the plane of polarization per unit path and a (~) is the real part 
xy 

of the frequency dependent Hall conductivity. For a two-band semiconductor with 

carriers in the conduction band, the rotation is given by: 

18) 

where the high frequency limit 1«(~ )T has been used for the free carrier c 

(cyclotron resonance) contrib~tion and the low frequency limit 

been used for the interband contribution. 

c. Dielectric Anomalies 

~< (,.) has 
g 

The presence of a residual conductivity for frequencies less than the band 

gap also modifies the dielectric "constant" £ which is used in calculating 
CD 

the position of dielectric anomalies in the Faraday geometry (propagation 

parallel to the magnetic field). Ignoring the effect of partially occupied 

) • 6 bands on axx(~ , we can wr1te: 

E-.r" <c..» -
) 

19) 
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where &:J,r(w) is the real part of the frequency dependent dielectric "constant" 

for lcp and rcp. & (w) is the total interband contribution to the diagonal 
CD 

component of the dielectric "constant" for frequencies less than the band gap 

and a (w) is given by Equation (18). The effect of the spin-orbit term has xy 

been calculated and observed for the splitting of the lep and rcp magneto-plasma 

12 edges in "n" type PbS. 

-12-
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III. Hall Conductivity: Experimental 

The calculations carried out in Sections I and II apply strictly only to 

the case of two-band semiconductors with spherical Fermi surfaces. There are 

several narrow-gap semiconductor compounds and alloys that approximate this 

model which may be used to test the validity of the calculations. 

The binary compounds PbS, PbSe and PbTe as well as the "zero-gap" ternary 

alloy Pb sn1 Te provide the closest analog to the idealized model. These x -x 

IV-VI semiconductors have "mirror-type" band edges located at L-point of the 

Brillouin zone with approximately equal effective masses in the valence and 

conduction bands. Also, the effective g-factors are approximately equal in 

* * magnitude but opposite in sign and satisfy the relation g =2m 1m . 
o 

A recent review of the band structure, band parameters and energy levels in 

14 magnetic field has been given by Bauer. 

The III-V and II-VI semiconductors with direct band gaps at the r-point 

of the Brillouin zone have a more complicated valence band structure with 

degenerate "light" and "heavy" hole bands at the band edge. However, for very 

small energy gaps the conduction band and "light" hole valence band provide a 

good approximation to the two-band modellS with the important distinction that 

'* '* g = - m 1m ,i.e. the spin splitting in a magnetic field is one-half the 
o 

cyclotron frequency and the g-factor for conduction electrons is negative. 

The "zero-gap" ternary alloy Hg Cd'l Te is the best studied narrow-gap 
x -x 

16 semiconductor with this band structure. 

-13-



A. d.c. Hall Effect 

Anomalies in the low temperature and high field Hall effect have been 

17· 17 18 reported for "n"-type PbTe. Pbxsn1_xTe and Hg
x

Cd
1

_
x

Te. Typically. the 

measured Hall constant ~. exhibits dHvA type oscillations at moderate fields 

and a decrease with increasing field in the quantum limit when only the lowest 

Landau level is occupied. 

The highfield measurements reported to date on narrow-gap semiconductors 

have been carried out in the "bar" geometry rather than Corbino disc 

geometry. Therefore. resistivity componentsjOxx and jOxy are measured and 

the conductivity components a and a must be calculated. The published xx xy 

data for PbTe and Pb sn1 Te are not sufficiently complete to carry out the x -x 

inversion. More complete data extending to 30T has been published for 

HgO. 8CdO. 2Te which does permit the conductivities to be calculated. 

18 The data of De Vos and Herlach for the Hall constant ~ and the 

transverse resistivity t'xx have been analyzed using Equations (10) and (11) 

for the inversion and assuming that the conductivity components axx and axy 

are correctly described by Equations (12a) and (13a). It was necessary to 

normalize the values for flxx since De Vos and Herlach only report relative 

values. The normalization was done by choosing W T = 1 at ST. c This choice 

is not arbitrary since the function f(~ T) has a maximum value one-half when . c 

weT=l. Sueh a maximum was observed in a plot of ;oxx H obtained from this 

analysis. 

The results of the analysis are presented in Figure 2 together with the 

-14-



calculated values for the spin-orbit parameter n. 

~ - eo) 

The, values for n were calculated using measured values for the g-factor to 

16 
1ST, extrapolated values to 30T and by taking 

taken to be 70meV as reported for this sample. lS 

<~ > =1. The energy gap was z 

The values for n calculated 

in his manner agree in magnitude and sign (negative) with the values derived 

from the measurements of De Vos and Herlach. However, the correction 

introduced by n is only of the ordersO~ and it would be desirable to repeat 

the experiments in Pb snl Te where the effects are expected to be much x -x 

larger. 

It is interesting to note that the values of W T derived from this c 

analysis decrease with increasing magnetic field in the quantum limit. This 

is not too surprising since the effective mass increases with magnetic field 

and T is expected to decrease with field due to the increase in the DOS at 

the Fermi level with increasing field. 

B. Free-Carrier Faraday Rotation 

The free-carrier Faraday rotation has been measured and anomalous low 

- ", 13 9 19 
frequency residues noted in PbS ,PbSe and PbTe . The measured values of 

the residual Hall ~onductivity in PbS were shown to agree with values 

calculated along the lines of Equations (6) and (17) using known band 

parameters. The values measured for the residual rotation in PbSe and PbTe 

are of the correct magnitude and sign to be attributed to the spin-orbit 

parameter n. However, the authors attribute the residual rotation to a high 

-15-



frequency polarization current proportional to the paramagnetic 

susceptibility. They suggest that this term disappears for frequencies below 

the spin-resonance transition. 

The possibility has been investigated that either magnetic-dipole or 

electric-dipole induced spin resonance transitions could cancel the interband 

contributions to the d.c Hall conductivity. The magnitudes are too small to 

provide sU,ch cancellation e ~! 

The oscillatory dHvA effect also has been observed in the Faraday rotation 

for PbS. 12 The measured period of the oscill,ations was in good agreement with 

the value calculated using the carrier concentration determined by Hall effect 

measurements. 

C Dielectric Anomalies 

Dielectric anomalies occur when the index of refraction switches from real 

to imaginary at a plasma frequency,. The resulting step in the reflectivity is 

called the plasma edge. The separation of the lcp and rcp free-carrier plasma 

edges in semiconductors is just equal to the cyclotron frequency w if the c 
, 6 d background dielectric constant is the same for lcp and rcp. The measure 

, 12 
separation of the magneto-plasma edges in 'PbS has been measured and shown to 

be smaller that the cyclotron frequency. The difference is 'accounted for by 

including the second term of Equation (19) in the analysis. 

-16-



IV. Summary and Conclusions 

The frequency dependent Hall conductivity axy(~) has been calculated for 

a two-band model with energy levels analogous to those for relativistic 

electrons and positYons. The real part of a (~) was shown to have a residue 
xy 

at low frequencies which arises from the unequal blockage of 

left-circularly-polarized (lcp) and right-circularly-polarized (rcp) 

transitions in partially occupied bands. The value of the residual term was 

shown to be the same as would be obtained by including the relativistic 

correction to the velocity operator in the Lorentz force law with the Bohr 
. 2 

magneton and energy gap (2m c ) replaced by their solid state analogs. The o 

calculated conductivity satisfies the appropriate sum rule. The effects of 

finite temperature and relaxation time were included in a semi-classical 

calculation of the Hall conductivity and transverse conductivity a to allow xx 

comparison with experiments. 

The effects of the spin-orbit parameter n in the Lorentz force law were 

shown to provide good agreement with experiments which measured the Faraday 

rotation in PbS, PbSe and PbTe as well as experimental measurements of the 

magneto-plasma dielectric anomalies in PbS. 

The appearance of the spin-orbit parameter in the Lorentz force is less 

well supported by experimental studies of the d.c. Hall effect. Anomalies at 

high fields have been noted for PbTe, Pb snI Te and Hg Cd1 Te however, the x . -x x-x 

published results are not sufficiently complete to carry out an unambiguous 

analysis. Experiments on HgO. SCdO. 2Te carried out in fields extending to 30T 

at 4.2K were analyzed to show that the high field behavior is consistent with 

a spin-orbit correction term of the magnitude and sign 

-17-



calculated using known experimental parameters. 

The addition of a spin-orbit correction term to the Lorentz force law in 

periodic solids has a number of implications that need to be explored and 

verified. A critical experiment is the careful measurement of the high field 

Hall conductivity and transverse conductivity in PbSe, PbTe and Pb snl Te 
x -x 

since these systems most closely approximate the conditions for the simple 

two-band model. Measurements in "n"-type PbSe would be particularly valuable 

since the valance and conduction bands are nearly sphericai. 

Also, theoretical calculations and experiments are indicated for systems 

that cannot be described by a simple two-band model. An obvious extension is 

the case of the Quantum Hall Effect in quasi-two-demensional systems with 

large spin-orbit interactions such as PbTe or Pb snl Te. x -x 
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Figure 1: 

Figure 2: 

Figure Captions 

Landau levels in the presence of a 

magnetic field. The levels are 

separated by~w ~ 2~*H •. The c 

intraband (cyclotron resonance) 

transitions are for lcp radiation. 

The interband transitions are lcp for 

the valence band "spin-down" to 

conduction band "spin-up" levels and 

rcp for the other sub-band pair. All 

states in the conduction band are 

occupied for energies less than the 

Fermi energy ef at T = o. 

Plots of the experimental and 

calculated valuesoof tbe spin-orbit 

parameter ~ for HgO. SCdo•2Te at 4.2K 

after Oe Vos and Herlach (reference 

1S). Experimental values for ~ ~ 
xy xx 

and W T as a function of magnetic 
c 

field also are given. The analysis is 

described in the text. 
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