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A simple geometrical method has been developed to calculate grain boundary trans
lations that preserve first- and second-nearest neighbor coordination acroSs the inter
face. These translations form interlocking polyhedral groups of atoms that define a 
mechanically stable boundary. Further individual atom relaxations can be easily 
recognized from the geometry of the atom arrangements. The description of boun
dary structure that results from this model is equivalent to a soft sphere description 
where a range of interatomic distances between the first and second-nearest neigh
bors exist at the grain boundary. A number of possible structures exist for each 
boundary; the relationship between these structures and the implications on grain 
boundary phenomena are discussed. A structural unit description results for particu
lar sets of translations. 

In trodu ction 

The mechanical behavior of a grain boundary and the mechanics and kinetics of the 
movement of atomic species through and to the boundary can be predicted if a detailed 
atomic description of the boundary is available. The experimental problem in studying the 
atomic structure of grain boundaries are many, so experiments have been carried out on 
boundaries of well defined geometry. Diffraction l11 and high-resolution electron microscopy 
(HREM) techniq~es have been applied to this problem.l21 Most experiments were carried out 
in FCC crystal boundaries; only a near E41 BCC boundary has been studied at atomic reso
lu tion by HREM.l31 

Alternatively, atomistic calculations were carried ou t which give the atom positions at 
the minimum energy configuration. 1·1 In particular, the calculations for BCC metals use 
interatomic potentials that are generated by fitting functional forms to experimental data. 
Typical of these is the Johnson potential for iron which shows a wide well between the first 
and second nearest neighbor distances. Under these conditions, in which the interactions 
with the first- and second-nearest neighbor are equally important, the body-centered cubic 
structure is stable.l51 These potentials are valid only when the coordination of the atoms in 
the calculation set is the same as that in the crystal. As is expected, the results of these 
calculations show that the boundary is composed of groups of atoms which are separated by 
distances between the first- and second-nearest neighbor distance and which retain the coor
dination of the crystal. That is, the atoms in the calculation volume obey the force law 
used. Although the principle of the atomistic calculations is simple, the implications of 
some of the characteristics of the calculation procedures (such as constant volume calcula
tions and starting configuration) are still being reviewed. 
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The model presented here is a geometrical soft sphere model ba.sed on the a.ssumption 
that the structure of the boundary in BCC materials is such that first- and second-nearest 
neighbor interatomic distances and coordination are preserved in the boundary region. The 
mathematical procedure to study boundary structure is developed in the next section. 
Examples of the structures of a ~17 boundary are discussed in the third section and the 
implications on grain boundary phenomena are discussed in the la.st section. 

Calculation Procedure 

The procedure starts by calculating a grain boundary translation away from the coin
cidence relative position of the grains. This translation results in a group of atoms that 
defines a mechanically stable boundary. This is achieved in the following manner. The 
structure of a ~17 [100]/(014) boundary is illustrated in Figure 1. Because of the mirror 
symmetry, the arrangement that an atom of the lower crystal sees in the upper crystal is 
the same a.s the arrangement that an atom in the upper crystal sees in the lower crystal. 
The full problem for a general boundary would require consideration of the relation between 
atoms of the lower crystal and the upper crystal after the translation. However, in the ca.se 
of symmetrical tilt boundaries a simplification is possible. This arises because the displace
ments t and -t are symmetry related and thus the resulting structures are equivalent. The 
set of atoms used in the calculations is developed a.s follows. The atomic arrangement of 
the first layer of the upper crystal remains a.s is and the first layer of the lower crystal ha.s 
been redrawn a.s seen by an atom of the upper crystal. Notice that the atoms that mark 
the period of the boundary coincide a.s in the CSL orientation. The problem then has been 
reduced to the problem of positioning an atom sphere 'relative to a superposed arrangement 

of atoms. A similar procedure ha.s been used by Koiwa et.al. 161 The atoms numbered in Fig
ure 1 are the atom positions used in the calculations. The problem of interest is then to 
place an atom in the surface composed of the atom positions numbered. The position of the 
new atom defines a possible translation at the grain boundary. Thus, the position of the new 
atom is written as (tz ,til ,tz ). The coordinate frame is such that x is parallel to the tilt axis, 
y is normal to the tilt axis and contained in the boundary plane, and z is normal to the 
boundary plane and pointing towards the upper crystal. This implies that all possible 
translations have tz negative. ' 
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Fig. 1 The Eli boundary at the CSL position 
and atoms used in the calcula.tions 

Fig, 2 Solutions for a two sphere problem t 

If two atoms in the calculation surface are selected then a new sphere can be fitted 
within an arc of circle with radius r equal to the required interatomic distance. This situa
tion is illustrated in Figure 2. The arc is part of a circle that lies on a plane normal to the 
vector that joins both spheres at the contact point. The circle of solutions is limited to an 
arc bec~Luse of the presence of other layers of atom planes normal to the tilt axis, Because 

rAB 
of the mirror symmetry of the problem only translations with 0 < tz < are studied. 

2 
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The first nearest-neighbor distance is indicated as D 1 and the second-nearest neighbor 
distance as D 2 and similarly for the corresponding radius. Consider first the FCC case 
where all atoms are equidistant. As it has been discussed above, the two-sphere problem 
has an infinite set of solutions (all contained in the arc of possible solutions). This implies 
that any given solution is mechanically unstable since there are other possible solutions in 
the immediate vicinity. A mechanically stable solution requires at least three contacts 
across the boundary per repeat unit of the boundary. A third atom is chosen and the 
center of a new sphere circumscribing simultaneously the other three is calculated. Of 
course, the new sphere can not overlap with any of the atom positions in the calculation 
surface. For each set of three atoms the coordinate frame is translated such that the origin 
coincides with the center of the circle in Fig. 2 and the y axis is along the vector that joins 
any two of the positions in the set of three. In this coordinate frame the new sphere center 
is given by 

{t% ')2 + {tz ')2 + d 2 = 4R 12 

(x l' - tz')2 + (z l' - tz ')2 + (y 1')2 = 4R 12 
(1) 

where the prime indicates the new reference frame, and the third atom In the set, not 
shown in Fig. 2, is indicated by (x vy V Z 1)' 

The solutions to Eqns. 1 are discussed briefly. The displacement in the primed x 
direction is given by 

(2) 

where 

(3) 

The displacement in the primed z direction is given by the negative solution to the qua
dratic equation 

[
(ZI')2 + 1] (t ')2 + 
(x 1')2 . z 

(4) 

Special cases occurr of which the most important is when two of the atom positions 
coincide. Consider the set of atoms 1,2,7 in Fig. 1. Atoms 1 and 7 coincide but they are 
two different objects, and upon translation they exist as two different atom positions. How
ever, from a mathematical point of view, we are back to the two-sphere problem. In order 
to solve this problem the displacement in the direction of the tilt axis is set arbitrarily to be 
equal to r AB /2. This distance is indicated in the equations as m%. With the origin of the 
coordinate system at the coinciding atoms, a set of equations similar to Eqns. 1 can be set
up. The solutions to these equations are 

where 

and 

t ' z 

] 
t ' + [m 2 + ~ - 4R 2] = 0 

Z % (z t')2 1 

(5) 

(6) 

(7) 

This particular choice of the displacement in the direction of the tilt axis mmlmlzes the 
excess volume and conserves the ordinary mirror symmetry. 
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The considerations of geometry and symmetry in the discussion presented here have 
reduced a problem with infinite solutions to a problem with analytical solutions. Up until 
now the discussion has been limited to the FCC case; the extension to the BCC case is 
straightforward and is discussed next. 

Consider again the form of Equations 1. There are no restrictions on the values of the 
required distances which are given by the right hand side of the equations. In particular' it 
is easy to require that the first-nearest neighbor distance be satisfied with two of the atoms 
in the set of three and that the second-nearest neighbor distance be satisfied with the 
remaining atom position. 

( t: ,)2 + (tz ')2 + d 2 = 4R 12 

(Xi' - (/)2 + (ZI' _-t/)2 + (Yl,)2 = 4R22 
(8) 

There are 8 cases for BCC calculations which are equivalent to Eqns. 8. These occur 

because for a given set of three atoms, there are (;) = 3 combinations of the three atoms 

taken R 1 at a time, and an equal number for R 2. In addition the new atom might be 
equidistant to all three in the set by either R 1 or R 2. These 8 cases are tabulated as pro
grariuned in Table 1 The solutions marked standard are the ones that have already been 
discussed in this section. All other solutions are just variations of these solutions and are 
discussed here. The solutions for case 5 are marked Standardt because the only 
modification necessary is to replace R 1 by R 2 in every equation. The solutions marked 
Modifyt have for the regular cases 

m = (;1:1')2 + (yx')2 + (z!,)2 - d 2 + 4R? - 4R 22 (9) 

or for the coinciding cases 

p = ~ [(Yl,)2+(zt')2+(m:-Xl,)2_m:2+4RI2 -4R 2
2] (10) 

The solutions for the regular case are given as before by Eqns. 2 and 4, and the solutions for 
the coinciding case are given by Eqns. 5 and 7. For the solutions marked Modify§, m and 
p are given by Eqns. 9 and 10 except that R 1 changes to R 2 and viceversa. The solutions 
for the regular cases and coinciding case are given by Eqns. 2,4 .and 5 and 7 with the same 
change in subscript. Finally, the coinciding solutions that are marked Not Possible in Table 
1 can not occur because the atom positions 2 and 3 are always chosen as the coinciding 
positions by a subroutine ORDER that is described below. The new atom position then can
not be at two different distances from the same calculation surface position. 

Table 1 
BCC Analytical Solutions 

Case Distance to Positions Comments on Solutions 

# 1 2 3 Regular Coinciding 
1 Rl Rl Rl Standard Standard 
2 R2 RI RI Modifyt Modifyt 
3 Rl Rl Rl Modifyt Not Possible 
4 Rl R2 Rl Modifyt Not Possible 
5 R2 R2 R2 Standardt Standardt 
6 RI R2 R2 Modify§ Modify§ 
7 R2 R2 Rl Modify§ Not possible 
8 R2 R) R" Modifv~ Not possible 

Comments on solutions are discussed in the text. 

r 
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The program developed for these calculations is described next. The first part of the 
program generates all the geometrical data from a few parameters that are particular for 
each boundary. The main DO loops of the program go through all possible sets of three 
atoms where 2 atoms belong to one crystal and the remaining to the other. On the basis of 
geometry some sets are discarded because a solution does not exist for that particular 
group. These are sets where two atoms are too far to possibly give a solution or where all 
three atoms belong to the same lattice. For each three atom set that can possibly give a 
solution the following subroutines are called. 

Subroutine ORDER takes the three atom set and orders them such that atoms 2 and 3 
are in the same layer and atom 2 is further from the boundary than 3. Under this order of 
the three atom set the solutions to the problem take the forms discussed in this section and 
summarized in Table 1. Subroutine NEWSPHERE produces the change of coordinates indi
cated in the text. The solutions to the problem are obtained in this prime coordinate frame 
and then backtransformed to the original coordinate system. Subroutine CHECK checks 
the solution obtained by NEWSPHERE so that no overlap with other atoms in the calcula
tion surface occurs. In addition, the new solution is compared with the solutions already 
obtained since different atom sets can give the same solution. This indicates a. particularly 
stable translation since additional redundant bonds across the boundary occur. 

For each boundary translation the atom positions can be plotted as shown in Fig. 3a 
for a translation (, = .5, til = .59, tz = -.64 of the E17 boundary shown in Fig. 1. From 
these atom positions, a very distorted picture of the boundary in terms of polyhedra 
appears. However, individual atom relaxations that would produce additional bonds of the 
required length are evident as shown in Fig. 3b. The structural unit description then is 
shown in Fig. 3c. 
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X~L 8510-4489 
Figure 3. The relaxation procedure; (a) distorted structural units; (b) individual atom relax-
ations; (c) structural units 

The graphical procedure of obtaining the individual atom relaxations is entirely 
justifiable since at present the atomistic calculations can not claim to be more accurate. In 
addition, the atomistic calculations give as result only one minima of the energy function, 
and in order to obtain other possible structures the calculations must be restarted from a 
different initial configura.tion. In the systematic procedure described here all possible 
minima of the energy function are genera.ted at once with considerable savings of computa
tional effort. 

Example: The Structures of E17 

The result of the calculations described in the previous section is an interlocking group 
of 3 or 4 atoms. The set of all possible translations for the E17 grain boundary is shown in 
Table 2 in order of increasing z component. Because of the ~.ymmetry of the atom calcula
tion set about the half period, similar translations result from, for example, the sets 1,2,11 



-F-

and 6,5,8. For a given case in Table 1 the translation that results from 1,2,11 corresponds 
to t while the translation obtained from 6,5,8, corresponds to -to Only the positive transla
tions are indicated in Table 2. All numerical values of position are given in units of the lat
tice parameter. Once the rigid-body translation is accomplished, further individual atom 
relaxations are evident that form additional groups of atoms that retain the interatomic dis
tances of the crystal. Four typical structures are shown in Figures 3c and 4a-c. The sym
bols in the figures are chosen to indicate the AB stacking and the relative positions of the 
grains. The following notation is used to describe a given structure: C is a capped trigonal 
prism, K is a. unit of BCC crystal, and T and 0 stand for a tetrahedron and an octahedron 
respectively. In all cases, the individual atom relaxations are large (>.25) only for 2 or 3 
atoms per period. Thus, other than the distorted structural units shown at the grain boun
dary, additional tetrahedra, octahedra and BCC unit cells occur within 3 lattice parameters 
normal to the boundary. 

T.>JIL£ Z 
CB Tra.ulatioftl (or. Bee !:=-l; 100'(014) Til' Bound.ry 
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Fig. 4 Representative structures of the ~17 boundary 

Some translations produce a structure that can be described as a sequence of polyhe
dra that repeats with the period of the boundary. For example, the translations 5,7,14, 
(Fig. 3c) result in the sequence CTCTK while the translations 1,2,4,11,li (Fig. 4a) result in 
the sequence CTCOT. These translations have a component parallel to the tilt axis close or 
equal to 0 or .5, as a r·!sult the ordinary mirror plane is conserved. Some translations fo~m 
only a few structural units between _the atoms in the set that originated that pa~ticular 

\' 

~ 
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translation. For example, the translations 3,9,10,12,13,15, and 16 (Fig. 4b) result in a group 
of two or three tetrahedra near the origin but it was impossible to relax the boundary 
further and create additional structural units. A particularly interesting set of translations 
is 7 and 8 (Fig. 4c). The y component of the translation moves the lower grain to one-half 
of the period of the boundary which is equal to 4.14. Because of the symmetry of the calcu
lation set about the half-period (see Fig. 1), these translations are the result of a number of 
different atom sets and, in particular, translation 7 is the result of a Case 2 and a Case 7 
(see Table 1). The boundary structure as shown in Figure 4c includes two capped trigonal 
prisms but the rest of the boundary cannot be relaxed to give additional structural units. 
Because of the symmetry of the calculation set the centers of the trigonal prisms are 
separated by half the period of the boundary. The translations that result in incomplete 
structural unit descriptions have a component parallel to the z axis which is different than 
.0 or .5. For these translations all symmetry elements are destroyed. 

The criteria that have been established in order to obtain the most likely, occuring 
boundary structure are to look for the structure with the highest coordination and with the 
minimum excess volume. The excess volume is linearly related to the z-component of the 
translation and thus to minimize the excess volume .the lowest tz is required. Of the two 
continuous structures indicated above, the one with the highest coordination is the struc
ture CTCTK. This occurs because the atom positions are distorted in the structure 
CTCOT in such a way that the octahedral atoms inside crystals 1 and 2 have coordination 
12 instead of coordination 14 (see Figs. 4a and 3c). Thus, the most likely structure of the 
E17 boundary is translation 5, illustrated in Figure 3c. 

There are a number of grain boundaries that cluster in groups whose excess volume 
does not differ by more than 5%. One of these clusters is formed by the first 7 boundaries in 
Table 2. The translations of some of these boundaries are very close and thus the resulting 
structures are similar, for example, translations 5 and 6 and translations 1,2, and 4. 
Another important phenomenon that occurs for translations with similar z-component is the 
trarisformation between structures with different overall translation. These transformations 
occur by the addition or removal of a layer of atoms parallel to the boundary and the sub
sequent shift by dp of the lower grain. For a symmetrical boundary with a planar density 
of coincidence sites equal to one, this represents the addition or removal of one atom per 
boundary period. It can be shown that the addition or removal of one layer parallel to the 
boundary plane is equivalent to an in-plane displacement. Thus, the difference between the 
in-plane components tz l,tp 1 and tz 2,tp 2 is approximately equal to the crystallographic in
plane displacement corresponding to layer addition or removal. An example of such a 
transformation is the addition of one layer to translation 5 which transforms the most likely 
structure in to the structure of translation 8. These transformations are extremely impor
tant in the description of grain boundary phenomena such as segregation. The change in 
structure of a grain boundary as the level of segregation increases occurs by transformations 
among the possible structures of a grain boundary. This point is discussed in detail in the 
next section. Some of the translations are exactly equal to a DSCL translation. For exam
ple, translation 14 is equal to 1/2[Ul] which is a crystal lattice translation'and also a DSCL 
translation. 

Continuity of Boundary Structure and Physical Processes 

Each boundary in the sequence of [100] symmetrical tilt grain boundaries between E5 and 
the perfect crystal was studied as the E17 boundary described in the previous section. This 
sequence of boundaries can be described by a mixture of structural units of the I:5 boun~ 
dary and the perfect crystal. The sequence of structural units for each boundary is shown 
in Table 2. The BCC tilt grain boundaries were also studied by Vitek, et.al. using molecu-
lar statics with the Johnson potential. 171 The structure of the boundaries calculated agree 
very well with the structures shown in this section. The atomic structure of I:41 agrees well 
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TABLE 2 
Structural Unit Description of [1001 Symmetrical Tilt Boundaries 

r: Angle Plane Structural Unit Sequence 
1 0 (001) K.K •.... 

41 12.58 (019) CTKKK-CTKKK.CTKKK-CTKKK ..... 
25 16.26 (017) CTKK-CTKK.CTKK-CTKK ..... 
37 18.92 (016) CTKKCTK,CTKKCTK, .... 
13 22.62 (015) CTK-CTK, CTK-CTK, .... 
17 28.07 (014) CTCTK.CTCTK ..... 
5 36.89 (013) CT-CT.CT-CT ..... 

with the HREM experimental observations. 

One of the more important aspects that results from this investigation is the existence 
of structures that are related by the addition or removal of one layer of atoms parallel to 
the boundary. Although the discussion that follows concentrates on the addition of a layer 
per period as would occur in grain boundary segregation, the problem of formation of sub
stitutional point defects at the boundary can be described by the inverse phenomenon of 
removal of one layer per period of the boundary. Segregation occurs then simply by adding 
one atom per boundary period. The sequence of structural units for a period without segre
gation will be indicated by a U, and the sequence of units in a period where segregation has 
occured by S. The U periods and S periOds have the same excess volume. Thus the two 
structures have different in-plane translations. This implies that at the region where an U 
unit joins a S unit, a partial grain boundary dislocation with Burgers vector equal to the 
difference in translations exists. Since this defect has an energy associated with it, segrega
tion would tend to occur in such a way that the number of these defects is minimized. 
Under non-equilibrium conditions segregation occurs randomly along the boundary as the 
segregating atom species arrive at the boundary plane. Upon annealing, U units and S units 
will cluster to minimize the energy associated with the partial grain boundary dislocations. 
This implies that changes in concentration along the boundary plane should occur, and that 
the clusters of S units are preferential sites for the heterogeneous nucleation of second 
phases or for crack nucleation due to fragility at the boundary plane induced by the segre
gating species'. Va~iations of the concentration of a segregating species along the boundary 
plane have been reported. lsi 
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