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ABSTRACT 

The binding energies of 0- states in P and As doped silicon crystals are 

calculated as functions of uniaxial compressive stress along the [100J 

direction within a variational scheme in the effective-mass approximation and • 
.. 

with a Chandrasekhar-type variational function. A model Hamiltonian which 

takes into account valley-orbit corrections, electron-electron interaction 

and stress effects is proposed. Our calculation shows that as the stress is 

applied, the outer electron orbital is driven readily into the two 

stress-deepened valleys, which leads to a strong decrease in the 0- binding 

energy. With further increase in stress, the inner electron orbital changes 

graduaily from a function almost evenly distributed among the six conduction 

valleys into one in which the two stress-deepened valleys are dominant, and 

the 0- binding energy increases. Our results agree qualitatively with 

previous theoretical calculations and are in good agreement wtth far infrared 

photoconductivity measurements in Si:P. 
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I. INTROOUCTION 

The existence of a 0- negative donor state in semiconductors, the 

analogue of the H- hydrogen negative ion, was first suggested by Lampert1 

many years ago. The free H- ion, observed experimentally by Smith and 

Burch2 , has a binding energy of 0.75 eV. This value is in good agreement with 

theoretical studies3- 5 which yield one bound 1S state with an energy close to 

-1.0555 RH, where RH is the H-atom Rydberg. A crude estimate of the binding 

energy of a 0- center in Si and Ge can then be obtained by considering an 

effective Rydberg RH*mm*e4/2E2n2 where m* and E are an average effective mass 

and the semiconductor dielectric constant respectively. The estimated·O­

binding energies6 would therefore be roughly 1.74 meV for Si (RH*=31 .27 meV), 

and 0.54 meV for Ge (RH*-9.81 meV). However, Oean ~ al. 7, who were the 

first to report the observation of 0- centers in Si and Ge, estimated the 

binding energies of the 0- second electron as - 4 meV for Si and - 1.5 meV 

for Ge, which are about three times as large as the predicted values. The 

direct observation of 0- centers in Si and Ge were first reported by 

Gershenzon et al. 8 who determined the 0- binding energy directly from the 

long-wavelength photoconductivity band at sufficiently low temperatures 

(T-1.5-4.2 K) and reported values of 2.2 meV for Si:?, and 0.95 meV for 

Ge:Sb, 1.2 MeV for Ge:? and 1.55 meV for Ge:As. Since then, a great deal of 

interest has been raised' in the study of both the 0- donors and A+ acceptors 

in semiconductors and considerable experimental work has recently been 

reported. 9- 18 Although many experimental results7- 9 associated with impurity 

states in semiconductors have been ascribed to isolated 0- centers, 

Narita14 ,18 suggested that some of the large binding energies reported were 

in fact associated with complex-formation. Therefore it is important to 

prepare the semiconductor sample with very small donor and acceptor 
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concentrations in order to study isolated 0- centers. 

The present experimental situation with respect to the binding energy of 

0- centers can be illustrated by looking at the data on P and As doped Si 

crystals: the reported 0- binding energies for Si:P are 2.2 meV (Gershenzon 

et al. 8), 1.73 meV (Narita et al. 15 ) and 1.7 meV (Norton11 ) while for Si;As 

the binding energy of the 0- extra electron is reported to be 2.05 meV 

(Narita et al. 15 ) and 1.7 meV (Norton11 ). These measurements are in good 

qualitative agreement with the effective Rydberg theoretiqal estimate of 1.74 

meV mentioned above. Of course, there are considerable differences between 

the problem of the 0- center in multi valley semiconductors and the free H­

ion. For a complete study of the 0- state in these semiconductors, one 

should take into account the anisotropy of the electron mass, valley-orbit 

(Va) effects, as well as electron-electron correlation effects. 19 ,20 

This paper is essentially concerned with the effect of [100J compressive 

uniaxial stress on the binding energy of 0- centers in P and As doped Si 

crystals. By ,applying a [100J uniaxial compressive stress, the 0- electrons 

in Si: P and Si :As are driven into the two valleys that have their principal 

axes of the energy spheroid along the [100J-direction. Recent far infrared 

photoconductivity measurements in Si:P by Narita and collaborators 12 ,15,18 

show a large 0- binding energy decrease with stress from a zero stress value 

of - 1.7 meV to - 0.7 meV at a stress of 2xl08 dyn cm-2 . They found that 

above 2.5xl08 dyn cm-2 the photo-response becomes too small to be detected 12 . 

It recovers15 however with further increase in stress and the 0- binding 

energy is - 1.1 meV at a stress of 1.8xl09 dyn cm-2 • In the case of Si:As, 

Narita et al. 15 report a zero stress 0- binding energy of 2.05 meV and a 

value of - 1.1 meV at a stress of 1.8xl09 dyn cm-2 . 

A qualitative explanation for the observed experimental data was given by 
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Larsen20 , who used a Chandrasekhar-type variational function for the 0-

state~ neglected mass anisotropy by considering an effective-mass Rydberg 

associated with the light mt mass (RH*=20 meV), and also assumed that the VO 

interaction only affects the inner orbital of the two electrons in the O~ 

center, which in turn is assumed to respond to this interaction as if the 

orbital were identical to the donor 0° 1s ground-state wavefunction. 

Although Larsen's results account qualitatively for the stress behavior of 

the experimental 0- binding energies, his theoretical value21 for the zero 

stress 0- binding energies is 1.0 meV for both Si:P and Si:As, a result which 

is a factor of two smaller than.the experimental measurements8 ,11,15 and 

which does not account for the observed differences 15 between the zero stress 

0- binding energies in Si:P and Si:As. In addition, Larsen's theoretical 

approach20 applied to the A1 ground state of the donor 0° in Si:P and Si:As 

would yield 31 meV and 39 meV, respectively, to be compared with the 

experimental results 22 of 45.59 meV and 53.76 meV. 

In this work a model Hamiltonian which takes into account 

electron-electron interaction, stress effects and VO corrections for both the 

inner and the outer orbitals of the 0- state in doped Si is proposed. We use 

a variational scheme in the effective mass approximation with m* and € such 

that an effective Rydberg of 31.27 meV (equal to Faulkner's ground-state 

value6) is obtained. Electron-electron correlation is taken into account 20 

through a Chandrasekhar-type variational wavefunction for the two-electron 0-

state. 

In Section II we present the 0° and 0- model Hamiltonians for 

substitutional P and As in doped silicon and describe the basic assumptions 

of the present calculations; results and discussion are presented in Section 

III; the conclusions are in Section IV. 
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II. THE DO AND 0- MODEL HAMILTONIANS 

As it is well known, Si presents a multi valley structure22 of the 

conduction bands with six equivalent minima along the <100> directions. For 

substitutional P and As in doped Si the zero-stress DO donor wavefunctions 

belonging to the 1s ground-state multiplet can be written in the 

effective-mass approximation (and ignoring the effect of mass anisotropy) as 

(2. 1 ) 

where IUj+> is the Bloch function of spin up at the conduction band minimum 

of the j-th valley, F(r) is a ls-l1ke envelope function, ri corresponds to 

the irreducible representations (A1, E and T2) of Td associated with the 

s-like states of group V donors in Si, and the Yr . coefficients are as i,J 

follows: 

YA1,j 
1 (1,1,1,1,1,1) a 76 (2.2) 

1 (-1,-1,-1,-1,2,2) m 
YE,j .. 

1 (1,1,-1,-1,0,0) 2 

1 (1,-1,0,0,0,0) T2 

Y 1 (0,0,1,-1,0,0) .. 
72 T2,j 

(2.4) 

1 (0,0,0,0,1,-1 ) T2 

The 1s multiplet of a group V donor in Si splits into a ground state 

singlet 1s(A1) and excited triplet 1s(T2) and doublet 1s(E) components, 

consistent with the Td site symmetry of the substitutional donor. The 

energies of the T2 and E states are approximately the same (we assumed them 
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to be degenerate) and in good agreement with effective-mass theoretical 

calculations. 6,22 The ground-state 1s(A1) level lies below the effective 

mass value and the energy shift differs for the various group V impurities . 

. The energy separation 6~ between 1s(E) and 1s(A1) is referred to as the 

"valley-orbit" or "chemical" splitting. 

The DO donor model one-electron Hamiltonian in the case of [100J 

compressi ve stress is assumed to be 

where 

~EM{DO) - ~ t HEM(rt) IUka><ukal 
k",1 a 

is the effective-mass Hamiltonian, 

~S{DO) - ~ t HS{k) IUka><ukal 
k-1 a 

is the stress-dependent term, and 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

is the va interaction. In the above a stands for the spin quantum number, 

+ 2 * 2 2 HEM{r) - -(~ 12m) V - (e IEr), 

-2S/3 

S/3 

r<R , 

r>R , 

(k",1 , 2) J 
(k"3-6) 

(2.9) 

(2.-10) 

(2. 11) 

with R defining a "central cell region" and V~ chosen such that at zero 

stress the difference in energy between the A1 and E levels fits the 

experimental va sPlitting22. The stress operator HS acts only on the Bloch 

functions IUka>. It shifts the energies20 ,23 of the valleys proportionally to 
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the applied stress: S=1 meV corresponds 12 to a stress of 

1.13x108 dyn cm-2• The operators HEM(;) and HvO(;) act only on the F(r) 

envelope function; ~EM(OO) is diagonal in band index (effective-mass 

approximation); ~VO(OO) models the VO interaction, gives no contribution to 

the energies of the T2 and E states and is responsible for the chemical shift 

of the A1 ground state from the effective-mass6 result. The average effective 

mass m*-0.2987 and the dielectric constant €=11.40 are suCh that an effective 

Rydberg equal to Faulkner's6 ground-state value is obtained. 

Under [100] compressive stress, the 1s(A,) ground-state wavefunction 

takes the general form 

(2.12a) 

with Y, - Y2 - , and Y3 a ••• - Y6 = Y. The F(r) wavefunction is assumed to 

be 

(2.12b) 

The D° ground state energy 

E(OO) • <~(00,A1)~1 ~(OO)I~(OO,A,)~> (2.13) 

can then be calculated as a function of applied compressive stress within a 

variational scheme, with F; and Y as variational parameters. One obtains for 

E(OO) (see Appendix A) 

E(OO) - F;2 - 2F; - (4S/3)(1-y2)/(2+4y2) - ~(F;)(2+4y)2/(2+4y2), (2.14a) 

with 

(2.14b) 

and F; and Y to be chosen optimally. In the above expressions, lengths and 

energies are in units of the effective Bohr radius and effective Rydberg, 

respectively. 
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Under [100J compressive stress, the 0- two-electron Hamiltonian is given 

by 

.. , 

with 

and 

The 0- trial wavefunction is constructed by using a 

Chandrasekhar-type3 ,20 approach 

I~(o-» • [1~A(r1)~B(r2» + I~B(r1 )$A(r2»J(1+Ar12) 

x (1/12)(1++> - 1++» 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

where A takes electron correlation into account and $A($B) corresponds to the 

inner (outer) electron orbital of the 0- state, i.e., 

(2.20a) 

a1 - a2 • 1, a3 - ••• • a6 • a for the inner orbital and 

(2.20b) 

B1 • B2 - 1, B3 • ••• • B6 a B for the outer orbital. We take ~1 < ~2. 
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In the above expressions, the parameters ~1' ~2' a, a and A are chosen 

optimally so that the energy 

(2.21) 

is minimized (see Appendix 8 for details of the calculation)~ Of course, at 

zero stress all the conduction valleys are equivalent and a = a = 1. Under 

high compressive stress along the [100] axis, the two conduction valleys 

having the principal axes of their energy spheroids in the [100]-direction 

have lower energy than the other four and therefore a = a + 0 as S +~. It 

is worth pointing out that all necessary integrals appearing in (2.21) can be 

performed analytically and that only the minimization requires numerical 

handling. 
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III. RESULTS AND DISCUSSION 

We calculated the stress dependence of the D- binding energy of ?and As 

doped Si under the same assumptions considered by Larsen20 , i.e., (i) assume 

that ;2 is sufficiently small so that the VO interaction has negligible 

effect on the outer orbital; (ii) assume that the vo i,nteraction is 

delta-function-like, reproduces the experimental value in DO and affects only 

the inner electron orbital; (iii) the inner-electron orbital envelope 

function is "frozen" at the zero stress value ;1=1.075. In this 

approximation it is straightforward to show that the VO interaction does not 

contribute to the zero-stress D- binding energy since it produces the same 

energy shift for both E(DO,Al) and E(D-). 

Table I compares our values at zero stress for the binding energies of 

the D° ground-state ls-multiplet and of 0- states in Si:? and Si:As with 

experiment8 ,11,15,22 and Larsen's results 20 • If one takes into account the 

experimental uncertainty in measuring the zero-stress 0- binding energy, it 

is apparent from Table I that the results of our model calculation agree well 

with the experimental data. 

The 0- binding energies of ? and As doped Si under [100J compressive 

stress are shown in Fig. 1. Our results agree qualitatively with Larsen's 

calculations20 and,a minimum in the 0- binding energy as a function of 

[100J-stress is found for Si:? and Si:As. The measured decrease with stress 

-of the D- binding energy in Si:?, however, is more pronounced than what the 

theory predicts. Because of the neglect of the effect of the VO interaction 

on the outer D- orbital the same value of 1.62 meV is found for both Si:? and 

S i: As, in contrast with the more recent experimental measurements by Nari ta 

et al. 15 which clearly indicate a chemical shift for the zero-stress 0-

binding energies in Si:? and Si:As. 
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In order to investigate the effect of the VO interaction on the 0- outer 

electron orbital we have modelled the VO interaction by a constant -V6 

potential within a central cell region of radius R, with V6 such that the 

experimental valley-orbit splitting between the D° donor levels Al and E is 

reproduced. Also, we have allowed the ~1 parameter of the inner-electron 

envelope function to vary when minimizing the energy of the 0- state. 

Results for the zero-stress binding energies of the D° ground-state 

1 s-mul tiplet and of the 0- state in P doped Si are given in Table II. One 

should notice the good agreement between the predicted zero~stress 0- binding 

energy of 2.23 meV and the value of 2.2 meV measured by Gershenzon et al. 5 

The zero-stress optimized variational parameters are ~=1.766 and Y=1.0 for 

the D° state and tl-1.924, t2=0.597, A=0.284, a=S=l.O for the 0- state which 

should be compared with the values t=Y=1.0 and tl=1.075, ~2=O.477, A=0.313. 

a=S=1.0 obtained by neglecting the effect of the VO interaction on the outer 

orbital and by assuming it to be delta-function-like when it acts on an 

unperturbed zero stress ~1-1.075 envelope function. It is clear therefore 

that the effect of the VO interaction on the envelope functions is 

essentially to decrease their range both in the D° and the 0- centers. The 

result of this model calculation of the 0- binding energy in Si:P as a 

function of applied [100J compressive stress is given by the solid curve in 

Fig. 2. All the essential features of the experimental measurements are well 

reproduced by our theoretical calculation. The theoretical zero-stress 0-

binding energy agrees well with the measured value by Gershenzon et al. 8 and 

the strong decrease with stress observed by Narita et al. 15 is in good 

agreement with the theoretical results. 

The results for Si:P were obtained by considering R equal to the 

nearest-neighbor distance in Si, i.e., R=2.35 A, and V6=O.045 Ry such that 
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the experimental zero-stress VO splitting22 between the D° donor levels Al 

and E is reproduced. We have, however, tested the effect of varying R from 

- 1.5 A to - 7.0 A and at zero stress the theoretical 0- binding energy 

varied from 2.38 meV to 2.21 meV, which is comparable with the experimental 

uncertainty at zero stress. 

The probability of finding the inner and outer 0- orbitals in one of the 

stress-deepened valleys, 1 or 2, is shown in Fig. 3 as a function of the 

applied compressive stress along the [100] direction in Si:? At zero stress 

each of the six valleys has an equal probability of being occupied whereas at 

high stress both the inner and outer 0- orbitals move into the 

stress-deepened valleys 1 and 2. One can qualitatively understand the 

behavior of the 0- binding energy with stress as follows 20 : as the stress 

increases from zero in the low-stress regime (S ~ 7.5x108 dyn cm-2), the 

outer 0- electron orbital, which is the least affected by t~e VO interaction, 

is easily driven into the two stress-deepened valleys while the inner 0-

electron orbital is prevented by the strong VO interaction from increasing 

readily the contributions of valleys 1 and 2, and is essentially equally 

distributed over the six valleys. In the low-stress regime, therefore, the 

contribution of the various valleys to the 0- inner and outer electron 

orbitals becomes more and more uneven under increasing stress; this leads to 

• an increasingly high admixture of the high-energy antibonding19 ,20 

configuration and, consequently, to a pronounced decrease in the 0- binding 

energy_ With further increase in stress (S ~ 7.5x108 dyn cm-2 ) the inner 0-

electron orbital changes rapidly from a t:unction almost evenly distributed 

among the six valleys to one in which the stress-deepened valley 1 and 2 

have the dominant strength. The outer 0- orbi tal is already essentially 

equally distributed over the two stress-deepened valleys and, therefore, the 
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valley distribution of the inner and outer electron orbitals becomes more 

alike, with the consequent reduction of the admixture of the high-energy 

anti bonding configuration; this leads to an increase in the 0- binding energy 

with stress. 

The optimized values of the variational parameters ~1' ~2' A, a and B for 

0- centers in P doped Si under stress are shown in Fig. 4. The parameters ~1 

(inner electron), ~2 (outer electron) and A (electron correlation) are 

related to the Chandrasekhar-type variational function, whereas a and Bare 

valley-admixture parameters for the inner and outer electron 0- orbitals, 

respectively. The behavior under stress of the 0° variational parameters ~ 

and Y (not displayed) is very similar to that shown for ~1 and a • 

So far we have presented a study of the effect of the valley-orbit 

interaction on both the inner and outer 0- electron orbitals and on the 0-

binding en~rgy in P doped Si, for which there are some available 

stress-dependent data. In the case of Si:As, however, there are no low­

stress measurements of the 0- binding energr reported in the literature. As 

can be seen from the zero-stress experimental data22 for the 0° ground-state 

1s(A1) level in Si:As, the chemical shift from the 1s(E) level is 22.5 meV, 

which is comparable to the ionization energy of the ls(E) level and about 

twice the corresponding chemical shift ( 13.0 meV) for Si:P. Therefore, VO 

effects and the short-range part of the impurity potential are expected to be 

particularly important in As doped SID Our model calculation for Si:As (with 

the R radius of the central-cell region equal to the nearest-neighbor 

distance in Si) predicts a zero stress 0- binding energy of 3.93 meV which is 

about a factor of two larger than the experimental measurement 15 of 2.05 

meV. Of course, the modeling of the VO interaction by a constant potential 

in a central cell region does not account for microscopic details of the 
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potential in the neighborhood of the impurity and is too crude to account 

properly for such strong central-cell corrections as those observed in As 

doped 5i. 
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IV. CONCLUSIONS 

We have calculated the [100J stress dependence of the binding energy of 

the two-electron 0- state in P doped silicon within a variational scheme in' 

the effective-mass approximation. Stress effects, VO corrections, 

electron-electron interaction and correlation were taken into account by a 

model Hamiltonian and a Chandrasekhar-type variational wavefunction for the 

two-electron 0- state. The observed behavior of the 0- binding energy of 

Si:P under [100] compressive stress is well reproduced by our calculation. 

The theoretical zero-stress 0- binding energy is in good agreement with 

experiment~ The pronounced decrease followed by a recovery of the 0- binding 

energy under [100] stress (observed by far infrared photoconductivity 

measurements in Si:P) is quantitatively reproduced by our theoretical 

results. The theory shows that as the stress increases from zero, the 0-

outer electron orbital is driven into the two stress-deepened valleys, which 

leads to a strong decrease in the 0- binding energy. With further incl"ease 

in stress, the 0- inner electron orbital increases its contribution of the 

two stress-deepened valleys and the 0- binding energy increases with stress. 

The VO Hamiltonian was modeled by a constant potential within a 

central-cell region so that it could account for some corrections to the 

effective-mass approximation. Of course, such simple model VO interaction 

does not properly account for microscopic details of the impurity potential 

in the neighborhood of the substitutional impurity and is expected to be too 

crude to mimic such strong central-cell corrections as observed for example 

in As doped Si. For substitutional P in Si, however, a comparison between 

our calculations and the experimental results for the 0- binding energy under 

[100J compressive stress is certainly encouraging. 
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APPENDIX A 

The D° ground state energy, as expressed by ( 2.13), (2.5) and (2.12), 

is given in terms of ~ and Y as 

E(Oo) - EEM(OO,A,) + ES(OO,A1) + EVO(00,A1) 

where 

and 

with 

EEM(OO,A,) - <~(OO,A,)+I~EM(OO)I~(OO,A,)+> = ~2 - 2~, 

ES(OO,A,) - <~(00,A,)+I~s(00)1~(00,A1)+> 

- -(4S/3)(1-y)2/(2+4y2) 

EVO(OO,A1) - <~(OO,A,)+I~vo(OO)I~(OO,A,)+> 

• -6(~)(2+4y)2/(2+4y2) 

6(~) - -fHVO(;)F2(r)d; .. V6[1-exp(-2F,;R)('+2~R+2~2R2)]. 

(A.1) 

(A.2) 

(A.4) 

(A.5) 

The above equations result in (2.14) for E(OO). It is then 

straightforward to minimize the A, energy with respect to y and F,; for each-

value of the stress. By evaluating aE(DO)/ay=O, we obtain, 

Y - {(2-3X) + [(2-3X)2 + 32]1/2}/8 (A.6) 

with X-S/36(~). It can then be shown that I~(OO,A, )+> is an eigenstate of 

the stress and VO part of the ~(OO) donor Hamiltonian, i.e., 

[~S(OO) + 1tVO(OO)]I~(OO,A,)+> a ES+VO(OO,A,)I~(DO,A1)+> (A.7) 

with 

ES+VO(OO,A,) - ES(OO,A,) + EVO(00,A1) -(1/2)6(~) {-6-X-[(2-3X)2 + 32]1/2}, 

(A.8) 

One can now, for each S, numerically minimize 

E(OO) - ~2 - 2F,; + (1/2)6(F,;) {-6-X-[(2-3X)2 + 32]1/2} (A.9) 

with respect to F,; and then obtain the ground-state energy E(OO) as a function 

of [100] compressive stress. 
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APPENDIX B 

The evaluation of E(O-) given by (2.21) is outlined here. In what 

follows, all lengths and energies are in units of the effective Bohr radius 

a*~2e/m*e2 and effective Rydberg RH*=m*e4/2e2fi2, respectively. 

We begin by defining bonding and antibonding19 ,20 $± functions as 

and one then obtains 

with 

Also, we define effective-mass matrix elements N± and €± by3 

N±(~1'~2'A) - <$±(~1 ,r2)1$±(r1 ,r2»' 

e±(~1'~2'A) m <$±(~1 ,r2)IHEM(r1 ,r2)1$±(r1 ,r2» 

2 
+-

l"12 

Therefore, it is straightforward to show that 20 

(B.1) 

(B.2) 

(B.3a) 

(B.3b) 

(B.4) 

<1/1(0-)1 1jI(0-) > .. N-1 = 4{[1+(a+8)2+4a282JN+(~1 '~2,A) + (a-S)2N_(~1 '~2,A)} 

(B.5) 

and 

with 

with 

For the stress part of the Hamiltonian, we obtain 

ES(l) .. (4/3)NS{[-2 + (a+8)(a-2S) + 4a282JN+(~1 ,E;2,A) 

+ (a-8)(a+28)N-(~1 '~2,A)}, 

(B.6) 

(B.8) 

(B.9a) 



ES(2) = (4/3)NS{[-2 + (a+S)(S-2a) + 4a2S2JN+(~1 '~2,A) 

+ (S-a)(S+2a)N_(~1'~2,A)}. 

The VO contribution to E(O-) is given by 

<~(o-)I~vo(o-)I~(O-»I<~(o-)I~(o-» = EVO(1) + EVO(2) 
~ 

with 

+ [g-(~l ,E;2,A) + h_(E;1 ,E;2,A) Jf2(S,a)}, 

EVO(2) .. 4N{[g+(E;1 ,E;2,A) - h+(E;1 ,E;2,A)Jfl (a,S) 

+ [g-(E;1,E;2,A) - h-(E;1,E;2,A) Jf2(a,S)}, 

fl(xl,x2) - (1+2x2)[1 + (1+xl)(x1+x2) + 4x12x2JJ 

f2(xl ,x2) .. (1 +2x2)(xl-x2)(xl-1) ~ 

g±( E;1 ' E;2, A) .. <cf>±(;l ,;2) I HVO(;l) + HVO(;2) I cf>±(rl ,;2» , 

h±(E;1,E;2,A) a <cf>±(;1 ,;2)IHVO(;1) - HVO(;2 YIcf>;(;1 ';2»' 

20 

(8.9b) 

(8.10) 

(8.11a) 

(8.11b) 

(8.12) 

(8.13) 

(8.14) 

(8.15) 

One can show that ES(l) and EVO(l) correspond to the stress and VO 

contributions of the inner electron 0- orbital while ES(2) and EVO(2) are 

related to the contributions of the outer 0- orbital to E(O-). 

The matrix elements N±, e:±, g± and h± can all be evaluated analytically 

and one then obtains E(O-) from (2.21) and (8.5) - (8.15). For each value of 

the stress, E(O-) is then numerically minimized with respect to E;1, E;2, a, S 

and Ao The binding energy of the 0- state as a function of [lOOJ compressive 

stress is given by 

(8.16) 

with -2S/3 being the energy of a free electron at the bottom of valley 1 or 2 

of the stress-deepened conduction-band edge. 
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TABLE I 

Comparison between theory and experiment for the zero·stress binding energies 

(meV) of the D° ground state ls-multiplet and of the 0- states in P and As 

doped Si. Both theoretical calculations assume that the va interaction-

affects only the 0- inner-electron orbital. 

Larsen20 
Si:P this work 

expt 

Larsen20 
Si :As this work 

expt 

aRamdas and Rodriguez22 
bNorton 11 
cNarita et al. 15 
dGershenzon-et al. 8 

31 . 
44.28 
45.59a 

39 
55.77 
53.76a 

T2(00) 

31.27 
33.89a 

31.27 
32.67a 

E(OO ) 0-

1.04 
31.27 1.62 
32.58a 1.7b ,1.73c ,2.2d 

1.04 
31.27 1. 62 
31.26a 1.7b,2.05c 
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TABLE II 

Comparison between theory and experiment for the zero.stress binding energies 

(meV) of the Do ground-state ls-multiplet and of the 0- state in P doped Si. 

This calculation corresponds to modeling the VO interaction for both the 

inner and outer D- electron orbitals. 

Larsen20 
this work 
expt 

aRamdas and Rodriguez22 
bNorton 11 
cNarita et al. 15 
dGershenzon-et al. 8 

31 .27 
33.89a 

31 .27 
32.58a 

1.04 
2.23 

1.7b,1.73c ,2.2d 
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FIGURE CAPTIONS 

Figure 1. Comparison between theoretical and experimental binding energies 

• of 0- centers in (a) Si:P and (b) Si:As as functions of applied [100J 

. J 

compressive stress. Oashed lines represent Larsen's results20 and solid 

curves correspond to our results. Both theoretical calculations assume that 

the VO interaction affects only the 0- inner-electron orbital. Experimental 

results are as follows: Narita et al. 15 (.), Norton" (0) and Gershenzon 

et al. 8 (0). 

Figure 2. Binding energy of 0- center in P doped Si as a function of applied 

[100] compressive stress. The dashed line represents the result obtained by 

Larsen20 ; the solid curve (our calculation) corresponds to modeling the VO 

interaction for both the inner and outer 0- orbitals. Also shown are the 

experimental results of Nari ta etal. 15 (. ), Norton 11 (0) and Gershenzon et 

al. 8 (0). 

Figure 3. Probability strength of each of the stress-deepened valleys, , or 

2, in the inner and outer 0- electron orbitals as functions of the [100] 

compressive stress in P doped Si. The dashed line represents the result 

obtained by Larsen20 while the solid curve (our calculation) corresponds to 

modeling the VO interaction for both the inner and outer 0- electron orbitals . 

Figure 4. Optimized values of variational parameters ~1' ~2' A, a and 8 for 

0- centers in Si:P [cf. (2.19) and (2.20)] as functions of applied 

compressive stress along [100]. 

25 
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