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ABSTRACT 

A corrugated tube open at both ends, with air flowing through the 

tube, sings notes which depend on the flow velocity and the length of 

the tube. The notes it sings are the natural harmonics of the tube. A 

given note will sing when the flow velocity is such that the "bump fre-

quency" (frequency at which the air bumps into the corrugations) 

equals the frequency of the note, provided also that the flow velocity 

is sufficiently high to induce turbulent flow. For some tube diameters 

and corrugation lengths the critical minimum Reynolds number that I 

observe for singing agrees with the classical res,ult R
min 

= 2000 ob­

served by Reynolds for turbulent flow in smooth tubes. For other 

tubes I observe singing at much smaller values of R. Three new musi-

cal instruments are described: The Water Pipe, the Gas-Pipe Cor-

rugahorn Bugle, and the Gas-Pipe Blues Corrugahorn. 
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1. INTRODUCTION 

About a year or two ago there appeared in toy stores across the 

land a musical toy called a Hummer, consisting of a. corrugated flexi-

ble plastic tube about 3 ft long and 1 in. in diameter, open at both 

1 ends. When you hold one end and swing the tube around your head 

it emits a loud and clear pure tone. If you whirl it faster it jumps to 

higher notes. I have been playing with this toy off and on for about a 

year and have learned something about how it works. 

2. THE NOTES IT SINGS 

These are easily heard to be the fundamental (frequency f 1 ) and 

overtones (frequency nf1 , with n = 2,3,4, etc.) of an open-ended tube. 

Actually, the fundamental does not sing at all, but it can be heard by 

gently tapping the tube, or by blowing across one end. Slow whirling 

produces singing of the first octave (n = 2) above the fundamental. 

More rapid whirling produces successive overtones n·= 3.4.5, etc. 

Whirling it by hand I can reach the 7th harmonic, n = 7. 

Once I passed out 50 Hummers to members of my Physics 4C class 

and we all swung at once together. This produced a grand chord with 

all the overtones 2 through 7 present simultaneously. 2 

3. LOADED WAVE GUIDE EFFECT 

The Hummer's fundamental note, f1~ 175 Hz, is nearly a half tone 

lowe r in pitch than the fundamelltal of a smooth uncorrugated tube of 

the same length and diameter. This can be understood as a "loaded 

wave guide" effect due to the corrugations. One can either think of 

the corrugations as increasing the effective length L of the tube or as 

reducing the velocity of sound, c. below its value in free space. in 

the formula 

f = n f t = nc/2L, n t,2.3 .... (t) 
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that gives the frequencies. for an open-ended tube. The corrugated 

tube of my Hummer has f1 about 4% lower than. the fundamental of a 

smooth tube of the same physical length and diameter. (I made the 

measurement by estimating by ear the relative pitches of the two 

tubes. ) 

4. AIR FLOW IS NECESSARY 

The tube only sings if air flows through it. With both ends open the 

whirling tube acts as a centrifugal pump, slinging air out at the outer 

end and sucking new air in at the end near your hand. If you close one 

end of the tube and whirl it, itdoes not sing. If you hold the tube at the 

center and whirl it there is no net air flow, although there is still an 

effective wind across the ends of the tube; the tube does not sing. If 

you enclose the end near your hand with a plastic bag full of air and 

whirl the tube it sings until it has pumped the air from the bag. Then 

the bag gets sucked into the end, and the tube stops singing. 

If you hold the tube outside a car window with the end of the tube 

pointing into the wind the tube starts -to sing (n = 2) at about 15 miles 

per hour (mph). By about 35 mph I get the fifth harmonic, n = 5. I 

get the 11th harmonic at about 80 mph. The corrugated tube would 

make a very nice audible wind velocity gauge. 

5. FUNDAMENT AL OF HUMMER DOES NOT SING 

At no car speed does the fundamental sing. but it can always be 

heard faintly" roaring" if you put the inboard end of the tube next to 

your ear. If the outboard end of the tube is turned sideways so that 

the wind blows across the end of the tube then there is no net air flow 

through the tube. Then none of the notes sing, even at speeds of 60 mph. 

At high speeds the fundamental can be hard roaring fairly loudly,in­

dependent of the orientation of the tube. 
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The difference between singing and roaring is readily apparent to 

the ear. Singing consists' of a pure tone of relatively narrow band­

width. Roaring consists of a breathy noisy tone of very wide band­

width. 

6. CORRUGATIONS ARE NECESSARY 

The corrugations are essential. A smooth plastic tube of.the same 

length and diameter as the corrugated tube does not sing when you 

swing it, nor wh~n 'you hold it outside a moving car's window. The 

fundamental does roar, sounding very much like the faintly roaring 

non-singing fundamental emitted by the corrugated tube under the same 

cir cums tance s. 

7. RELATION BETWEEN WHIRLING AND HOLDING TUBE IN WIND 

I wanted to find the relation between rate of whirling and car speed, 

to produce a given note nf1 . First I noticed that for whirling, the 

harmonic number n being emitted is linearly proportional to the ang­

ular frequency of whirling. I did this by counting whirls for. ten sec-

0nds as I watched the second hand of my watch. while maintaining a 

given note ni1 by ear. To maintain n = 2, I need about 14 revolutions 

in 10 sec; for n = 3, 21 rev (in 10 sec); for n = 4, 28 rev; for n = 5, 

35 rev. For higher n I get tired in less than 10 sec and I have no 

good data. But we see that for n = 2 to 5 the whirling rate is 0.7 n 

rev/sec. 

Next I found that when I hold the tube out the window of my car the 

harmonic number n is linearly proportional to my car speed. For 

example. the 5th harmonic, n = 5, sets in at about 35 mph and lasts 

till 40 mph; the 10th harmonic sets in at about 70 mph and lasts until 

80 mph. 
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Then I noticed to my amazement that to maintain singing of a given 

harmonic n, the tangential velocity of the outer end of the whirled tube 

is closely equal to the automobile velocity when holding the tube out 

the window parallel to the wind. For example. n = 5 sings while 

whirling at about 3.5 rev/sec, as mentioned above. The radius of the 

circle described by the outer end is about 2.5 ft. The tangential vel­

ocity is therefore 3.5X2 TT X2.5 :: 55 ft/sec = 37 mph. But that is 

within the range of 35 to 40 mph that I observe in my car! The per.;. 

plexing thing about this remarkable numerical equality was that it 

was between the tangential velocity that gives a wind speed perpendic­

ular to the end of the tube while whirling. and longitudinal velocity 

while holding it out the car window. But I knew that wind blowing 

perpendicularly acro,ssthe end of the tube does not make it sing! 

How could that equality be other than a weird accident? It occurred 

to me that there was perhaps' an equality between the tangential 

velocity of the end of the tube while whirling and radial air flow veloc­

ity due to the centrifugal pumping action while whirling. 

8. MODEL FOR FRICTIONLESS AIR FLOW 

I made a simple model of centrifugal pumping. Suppose the air 

behaved like a lot of frictionless marbles that enter the end of the 

tube near your hand with zero velocity and reach some final radial 

velocity when they are slung out the far end. To find that final radi­

al velocity is a straightforward problem in mechanics. and I found 

to my great satisfaction that the radial velocity of such a marble does' 

indeed equal the tangential velocity when it leaves the end of the tube. 

That seemed to explain the curious fact that whirling with a given 

tangential speed gives the same note as holding the tube longitudinally 

in a wind of the same speed. 

:,....--
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But then Prof. Robert Karplus pointed out to me that air is not 

marbles, and that the air velocity in the tube was probably uniform, 

as for an incompres sible fluid, rather than accelerated, as for the 

marbles, so my marble analogy was no good-I should use Bernouli's 

law and all that. SO I used Bernouli's law, with an equivalent potential 

energy due to centrifugal force, and got the same answer as for the 

marbles: The uniform velocity for incompressible flow while whirling 

equals the final radial velocity for a freely slung marble while whirling, 

which in turn equals the tangential velocity of the outer end of the 

whirled tube. 

To summarize: Neglecting friction, if the tangential velocity of 

the outer end of a whirled tube is then the uniform radial flow 

velocfty v of the centrifugally pumped air equals vo' Also, if the 

tube is held longitudinally in a wind of velocity Vo ' the uniform flow 

velocity v of air through the tube will be Vo ' neglecting fraction. 

Thus if we can.neglect friction we have explained the curious rela-

tion between whirling rate and car speed. 

Unfortunately the friction is not at all negligible. That is easily 

seen by blowing with your mouth in and out through a short (6-in. ) 

segment of Hummer tube, and then doing the same through the full 

36-in. -I-ength of the Hummer. The full-length Hummer offers notice-

·able resistance. Therefore we expect friction will reduce the flow 

velocity v in the tube considerably below the velocity vo ' for both 

a whirled tube and for a tube held in a wind. Remarkably, the effect 

of friction seems to be essentially the same for these two cases. 

Otherwise I would not have found the observed numerical equality 

between the 37 -mph tangential velocity while whirling and the 30 - to 

40-mph car speed, to produce a given note. 
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9. E.FFECT OF CORRUGATIONS: THEORY 

Now we come to a :most interesting aspect, the corrugations. What 

role do they play? Here is my si:mple theory. 3 Assign the corrugation 

"wavelength" (distance fro:m one corrugation crest to the next) the 

symbol d. Suppose the air flow velocity down the tube is v. Think 

of the air as bu:mping into the corrugations at a certain bump rate f. 

My hypothesis is that when the flow velocity v is such as to give a 

bump frequency f that matches one of the harmonics of the tube, the 

tube will sing at that har:monic. 

The bump frequency f. flow velocity v, and corrugation distance 

d are related by 

v = cm/sec = (cm/bump) (bump/sec) = df. (2) 

I observe that the tube is always singing somehar:monic. no matter 

what the whirling rate or car speed is (above a certain minimum). 

Thus e-ach note sings over a whole range of airflow velocities: There-

fore I expect .the velocity v in Eq. (2) to apply to the center of the 

range of velocities that give singing of a gIven note of frequency 

f = nfl • 

to. EXPERIMENTAL VERIFICATION OF THE THEORY 

If I could neglect friction I could assume that when I hold the tube 

parallel to a wind of velocity Vo the flow velocity v through the tube 

is vo' Let us see what car speed we would then predict for excita-

tion of n = 5 of the Hummer, which has corrugation distance d = 0.64 

cm and fundamental frequency f t = t75 Hz. Using Eq. (2), we predict 

v =df = dnf1 = 0.64 cm X 5 X 175 Hz = 560 cm/sec = 12.5 mph. This is 

to be compared with the experimental car velocity v = 35to 40 mph. 
, 0 

This was encouraging; at least the predicted v was of the same 

order of magnitude as v . 
o Furthermore it was less than vo ' as 
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expected because of friction. Could friction reduce Vo = 35 to 

v = 12 mph? 

I decided that to test my theory I needed to actually measure the 

flow velocity through the tube. In spite of the nu~erical coincidence 

between whirling speed and car speed I did not trust my calculation 

using Bernouli's principle. nor did I trust that holding a tube out a 

window of a car traveling 35 mph is the same as holding it in a 35-

mph wind. (The wind pattern near the car is undoubtedly complicated. 

I obtained my re suits while driving a " van." When I repeated the 

experiments driving a car with a hood sticking out in front of me. I 

got answers different by about 25%. I trust the results with the van 

the most.) Nor did I like the discrepancy of a factor of 3 between 

v = 35 and v = 12. even though that could be due to friction. o . 

After many unsuccessful schemes I hit upon a good experimental 

method. I took a large cylindrical plastic wastebasket about 15 in. 

in diameter. cut a 1-in. hole inits bottom. and struck one end of a 

Hummer through the hole. Then I inverted the basket into a large 

tub of water. By pushing the basket down or pulling it up I could use 

the water as a piston to force air through the Hummer. I could easily 

measure the rate at which the basket was sinking into the water. If 

the area of the basket was A and that of the corrugated tube was a. 

then the air flow velocity v in the tube should be larger than the 

basket velocity in the ratio A/a. assuming the air was negligibly 

compressed. Thus for my 15-in. -diameter basket and 1-in. Hummer. 

the air flow velocity should be 225 times the basket velocity. To ex­

cite the fifth harmonic of the Hummer I needed v(air) = nf1d = 560 

em/sec. The basket velocity required was therefore 560/225 = 2.5 

cm/sec • .which is 1 it in 12.2 sec. I tried it and it worked! I 
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maintained n = 5 by ear while pushing the basket through a distance 

of 1 ft. In maintaining n = 5. I sometimes accidentally slowed down 

to n = 4 and sometimes speeded up to n = 6. My velocity therefore 

averaged to a value roughly in the center of the range for n = 5. 

My times to push the basket through 1 ft varied between 11 and 13 

sec. Thus to within about 10% accuracy I verified Eq. (2). 

Late'r I refined this method. The wastebasket wasn't quite cyl-

indrical so I got a cylindrical 5-ga1lon paint can; I used a stopwatch 

instead of my wristwatch; I made sure the can was moving uniformly 

and the note singing well before starting the watch. I now find agree­

ment with Eq. (2) to within my accuracy of .about :!: 5% . 

There is some ambiguity as to what to call the diameter of a cor­

rugated tube. The Hummer has maximum inner diameter (i. d.) 

3.0 cm. at the" crest" of a corrugation. and minimum i. d. 204 cm 

at a "trough." so I use the average. 2.7 cm. in calculating the flow 

velocity v from the measured cylinder velocity. from the ratio of 

cross sections. When I use diameter D = 2.7 cm I get the above-

mentioned agreement with Eq. (2). 

11. A NEW MUSICAL INSTRUMENT: THE WATER PIPE 

Besides confirming my theory. the inverted-wastebasket water 

piston makes a nice musical instrument. I call it a Water Pipe. 

It sings beautifully with very little effort. either pushing the basket 

down or pulling it up. I can easily get up to the t tth harmonic with 

my 15-in. basket. whereas I can only reach the 7th harmonic with 

great effort with whirling. With some practice I can play typical 

bugle songs. (The harmonics of a bugle are the same as those of 

a tube open at both ends.) The main difficulty I have is that it is dif-

ficult to skip notes. or have silences that begin at a high harmonic. 
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Thus if I want to skip from n = 5 to n = 3 it is difficult. to avoid 

sounding n = 4 momentarily as I decrease the air velocity. A suit-

able valve or stop will cure that trouble and thus improve the musical 

capabilities of the Water Pipe. 

Once I tried increasing the musical flexibility of the Water Pipe 

by putting finger holes along the tube. I found to my astonishment 

that when I uncovered a hole it did not change the pitch. But I should 

have known! According to Eq. (2) the most likely pitch does not de-

pend at all on the tube length but only on the air velocity. 

The Water Pipe is enjoyable to play around a swimming pool or 

lake. Last summer (1972) I made one from a large plastic garbage 

can. The can was big enough so I could get under it and walk around 

in chest-deep water near the beach, invisible to the external observer, 

emitting loud clear tones. Thls attracted many children and I think a 

few fish. 

12. ANOTHER NEW MUSICAL INSTRUMENT: THE.GAS-PIPE 
CORRUGAHORN 

Corrugated flexible metal tubes are used in gas plumbing and can 

be found in any hardware store. They are a bit difficult to whirl 

since they are not very flexible, but they work.beautifully with a 

wastebasket water piston (Water Pipe). Best of all, they can be ex-

cited by flowing air out thr.ough them, or sucking it in, with your 

mouth and lungs. This method is nearly impossible with the Hummer, 

because its large diameter (1 in;) makes the required volume of air 

flow so great as to exceed normal lung capacity. A plumbing gas tube 

with outer diameter about 1/2 in. does not exceed lung capacity. That 

makes possible a whole new family of wind instruments which J call 

Gas-Pip~ Corrugahorns. 
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a. The E-Flat Gas:"Pipe Corrugahorn Bugle (Corrugabugle) 

The first Corrugahorn that I put together consisted of a flexible 

corrugated copper tube 20 in. long with 1/2-in. o. d. and corrugation 

distance d = 0.40 cm.
4 

Its fundamental is about f1 = 311 Hz (mea­

sured by ear, using an A 440 tuning fork). By either blowing out or 

sucking in I easily produce n = 2, 3, 4, 5, 6, 7, 8, and, with effort, 

9 and 10. The easy range n = 3 through 6 includes all the st~dard 

bugle calls. 

By using my tongue and throat to interrupt the air flow I can easily 

jump from one note to anothel' without playing intervening notes-

for example, from n = 4 to 6 without sounding 5·. I can also start 

a higher harmonic without sounding all the lower harmonics as the 

velocity builds up, which means I can play any bugle song. That is 

why I call it a Corrugahorn Bugle or Corrugabugle. 

The instrument plays as well sucking air in as blowing it out, so 

it is not necessary to pause to get a breath, as is required in most 

other wind instruments. You simply play while breathing either in 

or out, therefore it is less tiring than most wind instru~ents. 

The notes are clear and beautiful. I have not yet Fourier-analysed 

them, but I suspect that, according to my Eq.(2), only one note is 

being sounded at a time. That is to be contrasted with, say, the flute, 

where there is a rich combination of overtones present for every 

note played. The Corrugahorn has a very" pure" sound. Not rich, 

but pure. I believe a new kind of Corrugahorn could be devised that 

would have any desired combination of overtones accompanying each 

note. The gas pipes that I have used have corrugations that are 

roughly sinusoidal in shape. Fourier analysis of these corrugations 

would therefore give a single spatial frequency of tid wavell per cm. 
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Suppose .the corrugations were instead designed to include har­

monics N/d of the fundamental corrugation frequency 1/d. Then 

air flow at velocity v would produce bump frequencies f given by 

generalizing Eq. (2) to include harmonics: 

f = N v/d, N = 1, 2, 3, '" 

The Gas-Pipe Corrugahorn has only N = 1. By adjusting the relative 

amounts of the harmonics N = 2, 3,etc. present in the corrugations . . 

one could perhaps adjust the tone quality to suit one's desires. Al­

ternatively, instead of adding Fourier components to the corrugations, 

one could perhaps instead add them to the velocity, by suitably varying 

the tube diameter. 

The Cor;ugahorn has the advantage that it requires no fingering. 

After very little practice one begins to control the air flow with one's 

throat and lungs, without conscious control of your lips. 

The first Gas-Pipe Bugles that 1 made had a peculiarity: n = 6 

was slightly more difficult to sound than n=5 or 7. The instrument 

tended to jump from 5 to 7, skipping 6, when 1 increased . the air flow. 

1 attribute that peculiarity to the fact that the entire length of the 

20-in. tube was not corrugated. One end had 3.3 in. of smooth pipe; 

4 
i.e; • about 1/6 of the 20-in. pipe was uncorrugated. For n = 6, the 

pipe should be vibrating in six segments of equal length, with nodes 

between each segment. Thus for n = 6. only five of the six segments 

were being excited by the air flow over the corrugations for that pipe. 

Perhaps that is why n = 6 was more difficult to play. To check my 

theory I made a new 20-in. instrument with the entire length cor-

rugated. The difficulty disappeared. 

The loudness of a Corrugahorn is increased by adding an impedance­

matching flared" horn" at the end. This also increases the 
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. directionality of the sound. However. this also distorts the pitch of 

the higher harmonics, by changing the effective length of the tube. 

(This also happens with an ordinary bugle.) In order to minimize 

distortion of the harmonics, 1 allow the end of the tube to project 

partly into the flared horn. For my horn 1 use a small funnel. or a 

horn cut from the end of a bicycle horn. 

b. The E-Natural Gas-Pipe Corrugahorn Bugle (.Corrugabugle) 

In correcting the n = 6 trouble mentioned above and going to a com­

pletely corrugated tube. 1 used the opportunity to choose a slightly 

different length so as to tune the fundamental to 330 Hz. That puts 

it in an easy guitar key. (I like to play with guitar players.) The 

playable harmonics are the same as for the E-Flat Corrugahorn 

'Bugle. The length is still close ,to 20 in. The corrugation distance 

d is slightly different: d = 0.435 cm~ The diameter is the same: 

1/2 in. maximum o. d.. 1.1 cm average i. d. 

c. The E-Natural Gas-Pipe Blues Corrugahorn 

This instrument is about 40 in. long. made of the same corrugated 

copper tubing as the 20-in. E-Natural Corrugahorn. but musically 

it is as different as 12-bar blues are from Boy Scout bugle calls. 

The40-in.Blues Corrugahorn has the same range as the 20 in. 

Corrugabugle. because the range of a Corrugahorn depends only on 

the corrugatIon distance d and on the range of flow velocities that 

can be produced by the player. This range depends on pipe diameter 

and lung capacity. and is nearly independent of length of pipe. except 

for the effect of friction, which is greate r for the longer pipe. The 

40-in. instrument includes all the notes found on the 20-in. instru­

ment, but in addition it has one new note between each of those notes. 
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That is what gives it its tremendously increased musical capability: 

twice as many notes in the same range. 

The easy range of the 20-in. Corrugabugle is f1 ::: 330 Hz times 

n ::: 2. 3. 4. 5. 6. 7. and 8. The easy range of the 40-in. Blues horn 

is therefore expected to be f1 ::: 165 Hz times n ::: 4. 5. 6. 7. 8. 9. 

10. 11. 12. 13. 14. 15. and 16. That is what I find experimentally. 

The notes. being closer together in pitch. require more control of 

flow velocity.o Nevertheless with only a couple hours practice the 

harmonics 4 through 10 are easy. The harmonics 11 through 16 are 

more difficult. However. by simply blowing hard one gets a run up 

and down from 10 to 16 that makes one sound like a virtuoso. To 

hit a desired high harmonic accurately takes more practice. 

Since the Blues Corrugahorn includes all the notes of the 20-in. 

Corrugahorn. one can play bugle songs on it. but it takes more 

practice since one has to avoid hitting the notes between the bugle 

notes. 

The length of the Blues Corrugahorn was governed by two con-

siderations: I wanted the easiest part of the range to lie near the 

"blue sey" harmonic n = 7. and I wanted f1 to be an easy guitar 

key. It is a very pleasant instrument on which to plCiY 12-bar blues 

in E-Natur·al. hence its -name. 

I have tried an 80 -in. Corrugahorn. with an expected range from 

n ::: 8 to 32 times £1 = 82 Hz. Unfortunately it is very difficult. at 

leas t for me at this time. to sound one harmonic at a time. Several 

adjacent harn10nics usually sound at once. The simultaneous sounding 

of n = 15 and I(J is not pleasing to most ears. 

Other lengths. dian1eters. and corrugation distances are being ex-

plored. 
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13. FURTHER EXPERIMENTAL TEST OF THE THEORY 

A simple and interesting test of the theory can be made by jeining 

two Hummers together to make a 6-ft model. According to Eq. (2) 

the frequency f at which the tube will sing depends only on the cur­

rugation distance d and the air flow velocity v. Thus you should 

get the same note (at twice the harmonic number) from the 6-ft as 

from the 3-ft tube. for the same flow velocity v. The easiest way 

to de this experiment is by whirling. Join the two Hummers. Then 

hold the combination with your right hand (your whirling hand) at 

the center. where they. are joined. and hold one end at rest with your 

left hand. Now whirl with your right hand: the Hummer between 

your two hands remains at rest. The one starting at your right hand 

gives the same centrigual pumping pressure as would a single Hummer 

(for the same whirling rate). Therefore in the absence ef friction the 

flow velocity would be the same and the same note should sound for 

the 6 -ft combination as for a single 3 -ft Humme r. 

Experimentally I find that this whirling maintains n=3 for the 

3-ft Hummer at a whirling rate of 2~2 rev/sec. When I join two to-

gether and whirl them as described above so as to maintain the same 

note (n = 6 for the 6-ft length). I need to increase the whirling rate 

slightly to 2.7 rev/sec. The additional speed is presumably needed 

to overcome the additional fraction. 

In order to eliminate the effect of friction I repeated this experi-

ment using my water piston technique. Then I found that to maintain 

the same pitch I need exactly the same flow velecity v for the 6-ft as 

for the 3-ft tube. The effect of the extra friction of the 6-ft tube was 

instead manifested in my having to push noticeably harder on my 

water piston in order to maintain the desired flow velocity. 
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Note that you must choose n suitably for this experiment to work. 

For example, if the 3-ft tube sings its 4th harmonic, the 6-ft tube 

will sing the same note, which is its 8th harmonic, at the same flow 

velocity. But if you now slow down so that 6-ft tube sings its 7th 

harmonic, then that note would have to be the "3.5th" harmonic of 

the 3-ft tube, and of course there is no such thing, so that at the 

same velocity the 3-ft tube will sing either its 3rd or its 4thharmonic 

and thus not exactly the sanle note as the6-ft tube. Remember, the 

tube is always singing some note, no matter what the air velocity is, 

and Eq. (2) gives only the average air velocity that makes a given 

note sing. 

If I had a suitable theory for the friction, I could measure the 

whirling rates at n = 5 for the 3-ft tube and at the same pitch (n = 10) 

for the 6-ft tube, and then extrapolate to a frictionless tube of 

" zero length." Presumably I would thus find the whirling rate that 

would work if there were zer~ friction, and would thereby confirm 

the observed factor of 3 between Vo = 35 mph and v = 12 mph noted 

in Sec. 10. I have not done this. 

14. WHY WON'T THE FUNDAMENTAL SING? 

A peculiar observation bothered me for some time. I cannot make 

the fundamental note of the 3-ft Hummer sing, either by whirling or 

with the water piston. (See Sec. 5.) The first singing occurs at 

n = 2. Why is that? Is there something special about the fundamental? 

Does the first singing always occur at n = 2? It occurred to me to vary 

the fundamental note f
1

by joining two or more Hummers to make a 

longer tube. I then used my water pipe to search for the lowest note 

that would sing. My method was to hold the outer end of the pipe at 

my ear so as to be able to hear faint singing; then, starting at a high 
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enough velocity so that I had good singing. I would slowly decrease 

the velocity so as to decrease nf1 • and listen for the lowest value of 

n to give singing. I found the following results for the lowest fre­

quency f(FS) at which it first sings (FS). and for the highest frequency 

f(NS) at which there was no singing (NS): (frequencies in Hz) 

Length. L 

(ft) f1 f(NS) f(FS) 

3 174 f· =174 
1 2£1 = 348 

6 87 2£1 = 174 3f
1 

= 261 

9 58 3f1 = 174 4f1 = 232 

12 43.5 4f1 = 174 5f1 = 217~5 

18 29 7f1 = 203 . 8f
1 

= 232 

We'see that is nothing special about the fundamental. For a 12-ft 

Hummer you needn = 5 before it will sing! 

Note that as the tube length increases the lowest harmonic at 

at which the tube first sings increases, but the threshold frequency 

stays roughly constant. Apparently it is a lowest frequency that 

matters, rather than a lowest harmonic. According to the above 

table ~ Hummer of any length will start to sing when the air flow can 

produce a frequency above about 220 Hz. There is nothing fundamental 

about the fundamental of a 3-ft Hummer refusing to sing. It is just 

that the fUndamental frequency 174 Hz is too low. 

This suggests an experiment: Make a Hummer whose fundamental 

is greater than 220 Hz. Then the fundamental should sing. I took a 

36-in. Hummer and cut off part so its length was (174/220) X 36 = 28 in. , 

giving a fundamental of 220 Hz. The fundamental of this 28-in. Hum-

mer doe s indeed sing! 

~ 

~, 
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15. ROLE OF TURBULENCE IN CAUSING HUMMER TO SING 

In puzzling over the refusal of the fundamental of the Hummer to 

sing, I somehow recalled that Prof. Alan Portis had mentioned the 

word" turbulence" when I first showed him a Hummer. It didn't 

register with me at that time, because it had nothing to do with my 

Eq. (2), which I had just discovered. I just muttered" Oh, sure, now 

let me show you a nice formula that explains everything." But now 

Portis's words rang a bell. It is clear that in order to excite the 

vibrational modes of the tube (the notes that sing) it is necessary to 

convert some of the energy of air flow into excitation energy. In 

the vibrational modes the air makes small excursions back and forth 

along the axis of the tube. In laminar flow the air moves .uniformly 

in one direction along the tube. It seems plausible that in ,order to 

extract energy .from the air flow there must be turbulence so as to 

break up the laminar flow and have motions in both directions along 

the tube. 

For a smooth uncorrugated tube the transition between laminar flow 

and turbulent flow occurs at a certain value of Reynolds number R: 

R = P vS/f.L, (3) 

where p:: 1.2 X 10- 3 g/cm3 is the density of air, f.L = 183 X 10-6 poise 

is the viscosity of air, v is the air velocity, and S is a character-

istic length of the object that has air flowing past it or in it. For a 

smooth (uncorrugated) tube the characteristic length S is the tube 

diameter D. In that case Reynolds found experimentally that it is 

impossible to maintain turbulence below a Reynolds number 

R'" 2000; 5 

Inserting S :: D, and also our expression v = fd (Eq. 2) into Eq. (3) 

gives 
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R = P fdD/fl.. 

Our hypothesis is that R must be greater than 2000 to get singing. 

According to Eq. (4) a minimum value of R gives a minimum fre-

quency f, for given diameter D and corrugation length d. Solving 

(4) for the frequency f we obtain a prediction for the lowest fre.,. 

quency f
min 

at which a Hummer .of tube diameter D, corrugation 

distance d, and arbitrary length can sing (of course, in .addition, 

it can only sing at a harmonicnf1 of its fundamental. f 1 ): 

f . = R . fl./ p d D. mIn mln 

(4) 

(5) 

For our Hummer of diameter 2.7 cm and corrugation length 0.64 cm 

we predict 

f
min 

= (2000)(183 X 10-6 )/(1.2 X 10-3 )(0.64)(2.7) = 177 Hz. 

This prediction is to be compared with the lowest observed value of 

f(FS) found in the previous section, roughly 220 Hz. Thus we find 

good agreement with the hypothesis! ---Putting it differently, if we 

take 220 Hz as our experimental lower li~it on singing frequency, 

Eq. (4) gives a corresponding minimum value R . =2500. That 
min 

is in good enough agreement with Reynolds' result R . :: 2000, 
min 

especially since we could perhaps reach lower values of R by trying 

more tube lengths, or by aiding the ear with an amplifier. 

16. CAN THE CORRUGATIONS INDUCE TURBULENCE? 

Although we have good agreement between Eq. (5) and experiment, 

there is an alternative possibility: Perhaps for the characteristic 

distance 5 S in Eq. (3) we should use not the tube diameter D but 

the corrugation length d. In that case we can no longer assume the 

lowe r limit of R for turbulence is Reynold I s limit R = 2000. since 
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the mechanism for inducing turbulence. the corrugations. is than 

completely different than for the smooth tube. With this se.cond 

hypothesis (corrugation-induced turbulence) we can use our experi­

mental value of f . to find the corresponding value of R . . Setting 
mln ffiln 

S = d and v = fd Eq. (3) we get 

(6) 

which gives for the Hummer with f . = 220 Hz the result , ffiln 

as the lowest Reynolds number at which corrugation-induced turbulence 

can exist. provided it is indeed the corrugations that induce turbulence 

in the Hummer. The corresponding minimum singing frequency is ob-

tained by solving Eq. (6) for f: 

2 
f . = R . ..../pd mm mln 

(7) 

17. EXPERIMENTAL DECISION BETWEEN THE TWO TURBULENCE 
HYPOTHESES 

We have two hypotheses for the turbulence-inducing characteristic 

length S: One is that S is the diameter D. The. other is that S is 

the corrugation length d. The" diameter-induced" turbulence agrees 

with experiment. in that we got Reynolds value. R . ::: 2000. within 
mln 

our experimental capabilities. But that may be .anaccident. The only 

way we can surely distinguish the two hypotheses is to vary the dia­

meter D and the corrugation length d. For either hypothesis we 

t R to be constant: at a value about 2500 if we have dia-expec min 

meter -induced turbulence.' and about 590 if we have corrugation-

induced turbulence. Then according to Eqs. (5) and (7) the minimum 

singing frequency f . behaves quite differently for the two cases: . min 
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Diameter-induced turbulence: f . = K/d D. 
mln 

Corrugation-induced turbulence: f . = K' /d2 • 
min 

where K and K' are known constants. 

In order to distinguish experimentally between (8) and (9) I ob-

tained some metal vacuum hose having minimum inner diameter 

1. 9 cm. maximum inner diameter 2.9 cm and corrugation distance 

d = 0.44 cm. First I verified. using my water pipe. that Eq. (2) 

is satisfied. namely v = nf1 d. In finding v with the water piston 

I need to assume a diameterD of the pipe in order to calculate the 

air flow velocity v from the ratio of piston area to pipe area. I 

found that to get agreement with Eq. (2) I should take fo'r D the 

average of the minimum and maxim~m inner diameter. (That is 

also what I found for the Hummer.) Thus I found D,::: (1. 9 + 2.9)/2 

= 2.4 cm. By choosing various lengths of pipe and finding f(First 

Sings) for each pipe in the same manner as described in Sec. 14 

for the Hummer. I found f .- [the lowest value of f(FS)] to be min. . 

f . ::: 330 Hz. What are the values predictedby Eqs. (8) and (9) ? min 

The Hummer has d = 0.64 cm. D = 2.7 cm. and f . :::220 Hz. mln 

Thus Eqs. (8) and (9) predict 

Diameter-induced: f = (220)(0.64/0.44)(2.7/2.4) = 360 l{z. 

2 
Corrugation-induced: f . = (220)(0.64/0.44) = 465 Hz. 

min 

The expe rimerttal value. f . ::: 330 Hz. is clearly in good agree-
min . 

(8) 

(9) 

ment with the prediction for diameter -induced turbulence and in poor· 

agreement with that for corrugation.-induced turbulence. 

Assuming diameter-induced turbulence. the experimental value 

f , ::: 330 Hz gives R , :::2300. which is slightly closer to Reynolds 
mln min 

value than I was able to come with the Hummer. 
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The fact that I did not observe corrugation-induced turbulence for 

the i-in. diameter tubes does not preclude its occurrence at other values 

of d and D. I would expect that for d > D it may be pos sible to observe 

singing due to corrugation-induced turbulence. A clear indication that this 

was happening would be if singing occurred with Eq. (4) giving R less than 

2000, so that diameter-induced turbule:nce could not occur, wher.eas 

R as given by Eq. (6) would give. R > 2000. Of course the value of R 

needed for corrugation-induced turbulence is not lmown (at least by 

me) so that we would not need that Eq. (6) give R> 2000 to believe 

we ha,d corrugation-induced turbulence. Rather, once into that regime 

of d and D it would be th~ agr.eement of Eq. (9) with expe riment 

rather thanEq. (8) that would convince me~ 

t8. POSSIBLE OBSERVATION OF CORRUGATION-INDUCED 
TURBULENCE 

TheE-Flat Gas-Pipe Bugle described in Sec. 11 has spiral cor­

rugations with d = 0.40 cm and has an average diameter D = 1.2 cm. 

[This value of D gives flow velocities v in 'agreement with Eq. (2). 

My geometrical measurement gives instead D = 1.1 cm.] It is 20 in. 

long and has fundamental f1 = 310 Hz. By taping two of them together 

I got a 40 -in. pipe with fundamental f1 = 155 Hz. For this pipe I can 

easily get the third harmonic n = 3 to sing. For that note, Eq. (4) 

gives 

R = p nf t dD/fL 

= (1.2 X to- 3 ) (3) (155) (0.40) (1.2)/(183X 10-6 = t460 . 

But this is we]] below Reynolds l~wer limit of 2000 for diameter-

induced turbulence! My tentative conclusion was that I might be ob-

serving corrugation-induced turbulence. Next, I reasoned that I 

might get to ('ven lower values of R if I used a completely 
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corrugated tube, instead of joining two tubes together, each of which 

had t/6 of its length uncorrugated. Using completely corrugated pipe 

of diameter D = 1.2 cm and corrugation length d = 0.435 cm, I 

achieved n = 2 for a 33 -in. length having f
t 

= t 96 Hz. Then Eq. (4) 

gives R . = 1340. 
mIn 

(The uncertainty is about to%.) I achieved 

this by blowing gently through the tube 'with my ,mouth and holding 

the other end of the tube at my ear to listen for singing. With a 

45-in. length having f t = 139 I achieved n =3, giving R min = t430. 

If I am observing corrugation-induced turbulence, as seems 

likely, then I can give my result for R . , using Eq. (6). My results 
mIn 

. . 2/ 
for the 33-in. tube gives Rmin = p nftd fL 

(1.2><10- 3 )(2)(196)(0.435)2/(183XtO- 6 ) = 490. 

Am I really obs'erving corrugation-induced turbulence? An ~lterna.-

tive possibility is that my technique of listening for singing is more 

sensitive than Reynolds' and that I detect slight turbulence where he 

detected none. That seems unlikely, since in that case I should have 

also achieved R < 2000 with the t-in. diameter pipe. but I didn't. 

In order to establish that I am observing corrugation-induced tur-

bulence I should verify that Eq. (9) holds andEq. (8) does not. The 

best way would be. to find new pipe withthe same corrugation distance 

d but half the diameter D, and use the -same pipe length (33 in.) If 

the turbulence is diameter-induced, then; for n = 2, Eq. (4) would 

give R only half as large, namely R =700, and Reynolds' result 

would lead to the prediction that n = 2 could not possibly sing. How-

ever, for corrugation-induced turbulence. Eq. (6) would give an un-

changed value R = 490. and n = 2 should sing as easily as for the 

tube lobse rved. 
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I have not yet found a suitable pipe to carry out that experi-

3 
ment. 

19. IS THE FLOW VELOCITY QUANTIZED? 

So far, I have assumed that the flow velocity v varies continuously, 

depending on the pressure difference between one end of the tube and 

the other, the tube diameter, and friction. Then Eq. (2) gives v for 

the center of the range that causes a given harmonic nf1 to sing. 

Is it not possible that, once the tube starts to sing, there is a non­

linear feedback mechanism that forces the flow velocity to agree 

exactly with Eq. (2)? In that case when the tube jumped from one 

harmonic to the next the flow velocity would also jump. For this to 

be the case I believe it would have to be true that a large fraction of 

the energy of flow would be converted into sound energy. Then it 

would be reasonable that not only does the flow control the sound, 

but, that the sound also controls the flow. 

I do not believe the velocity is quantized. Neighboring higher 

harmonics of the 40-in. Blues Corrugahorn often sound Simultaneously, 

as do those of the Hummer. I do not see how there can be two simul-

taneous quantized flow velocities. Also, at lower harmonics, if the 

flow velocity were quantized I would feel a" bump" in my throat 

when the Corrugahorn jumps from one note to the next. Instead I feel 

only a smoothly increasing resistance to air flow as I blow harder. 

The notes are quantized; the flow velocity is not. 
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Footnotes and References 

1Trade names I have seen for the toy are" Whirl-A-Sound," 

"Freeka," and" The Hummer." The Hummer is made by W. J. 

Seidler Co., Los Angles, CA 90057. I first heard of them from 

Prof. Claude Schultz. I have no idea who first discovered their 

musical properties. 

2This happening was inspired by a remark of Prof. Gene Rochlin 

that he had seen in London a few years ago a production by Peter 

Drucker of Midsummer Night's Dream wherein the fairi~s came 

equipped with Hummers and whirled them iIi uni~on while making 

magic. 

31 am no expert in fluid mechanics and have made no effort to 

search the literature to determine whether my observations are new 

or are rediscoveries of well known facts. 

4This pipe is labeled" Tuff Boy, 20-in. Flex. Lav. and Sink Supply," 

Distributed by Leland Co. i San Francisco, selling retail for' about 

$1.35 each. They are also available in other shorter lengths. The 

manufacturer is Roberts Mfg. Co., 10667 Jersey Blvd., Cucamonga, 

CA 91730. 

5 J. C. Hunsaker and B. G. Rightmire, Engineering Applications 

of Fluid Mechanics (McGraw-Hill, New York, 1947), p. i22. 
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