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Traditional computational models predict daylight illuminance in a space by dividing window surfaces into discrete 
areas and then calculating the apparent luminance of each window element by multiplying the luminance of the 
natural light source in a given viewing direction by the window transmittance in that direction. This approach works 
well for conventional glazing materials but is incapable or modeling commonly used, but complex, window systems 
such, as thoee with specular reflective venetian blinds. We dac:ribe a new approach that combines measured lumi
nance distributions for complex window systems with a flux transfer calculation within the space. This method 
resembles·the calculation of illuminance from electric light fixtures where the candlepower distribution of the fixtures 
is measured and used u an input to the calculation. BaRd on the variable luminance characteristics of the window 
system, the SUPERLITE program calculates illuminance at the workplane oYer the entire space. The measurement 
techniques and mathematical implementation in the SUPERLITE program are dac:ribed. This approach allows a 
wide range of complex window and shading systems to be eYaluated without continuous changes in the computa
tional program. A special apparatus for measuring the bidirectional transmittance of window systems has been built 
in conjunction with this approach. Sample results from the program are compared to measurements made in scale 
models in a sky simulator. 

INTRODUCTION AND BACKGROUND 

Accurate prediction o( daylight illuminance and luminance distribution in interior spaces is usually performed either 
by experimental measurements (usually in scale models) or by computational methods using appropriate mathemati
cal models. The experimental approach is versatile and can be very accurate, depending on the accuracy of the scale 
model. However, it is time consuming, inflexible, and may require a large investment in a photometric system. 
Results are limited to the specific sky conditions (real or simulated) under which the scale model is used. Moreover, 
examination of alternative designs or parametric studies requires a series or appropriate scale models or 
sophisticated adjustable ones. On the other hand, computational techniques in the form of computer progriUJis offer 
s~d and ftexibility but are often limited in accuracy due to usumptions incorporated into the mathematical model
ing. The major limitation of computational techniques is their in!Lbility to handle fenestration systems that incor
porate shading devices, especially when the geometry and surface reflectance of these devices deviate .from what con
ventional ftux-exchange algorithms can handle. 

Two fundamental issues surround the modeling of daylight illuminance in spaces with complex shading devices. 
The first is geometrical complexity. For example, eggcrate shading devices are composed of a number of daylight-
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admitting elements, each of which has four surfaces. Furthermore, moat currently available vertical or horizontal 
movable louvers are made with a series of curved surfaces, while conventional daylight illumination models can 
model only fiat surfaces. The second difficulty is the optical properties of shading device surfaces. The texture and 
finish of most louver types of shading devices results in a semi-specular surface. When combined with a curved 
geometry, such shading devices prohibit the adaptation of conventional analytical methods in determining their 
luminous performances. 

SUPERLITE is a computer program for calculating daylight illuminance and luminance distributions in inte
rior spaces (1,2,3). The modeling of the luminous performance of shading devices in SUPERLITE has been 
developed in three phases. In the first phase, shading devices were considered as the equivalent of one or more exte
rior surfaces. The major limitations of this approach are the restrictions in the number, shape, and type of the exte
rior surfaces the program can handle. Surfaces are assumed fiat, with perfectly diffuse refiectance. Moreover, a large 
effort is required to prepare the appropriate input for the resulting surfaces. In the second phase, the program was 
modified to handle horizontal and vertical shading elements, using simple descriptions of their width, depth, and dis
placement between frames. This proved to be a considerable improvement for modeling overhangs, vertical and hor
izontal fins, and simple light shelves. However, surfaces are still assumed to be flat with perfectly diffuse reflectance, 
and the interreflections between the surfaces of the shading devices are ignored. 

This paper describes the third phase of the development of the SUPERLITE computer program. During this 
phase, a new approach is taken towards the modeling of shading devices: the total fenestration system is treated as 
a luminous source of varying candlepower distribution. The candlepower distribution is determined from the 
bidirectional transmittance of the fenestration system (4,5). This approach offers the capability of determining the 
luminous performance of fenestration systems of arbitrary complexity in an accurate and consistent way. 

NEW TECHNIQUES FOR MODELING COMPLEX SHADING DEVICES 

Our new approach for modeling the luminous performance of shading systems of arbitrary complexity is based on 
using experimentally measured coefficients that describe the bidirectional transmittance of the shading system, that 
is, the fraction of the incoming luminous flux incident in direction (/3i,th) that is transmitted in each direction 
(/30 , 1/10 ) (Figure 1 ). For a given sky condition a fenestration system can be interpreted as an optical black box or a 
light-emitting plane for which a candlepower distribution (analogous to that produced by a luminaire) can be calcu
lated if the luminance distribution of the window-facing exterior hemisphere and the bidirectional transmittance of 
the fenestration system are known. The details of the geometry and the surface reflectance of shading devices, which 
ultimately determine the patterns of light transmission, are implicitly considered in the experimentally determined 
·bidirectional transmittance. 

The bidirectional transmission coefficient of a fenestration system .is determined by: 

C ( ~ • .,.~ .. fl.) is the transmission coefficient for incoming direction (~o.fl1) and outgoing direction (~ .. .P.) , 
L.,. (~•"•~ .. fl.) is the measured luminuce of the fenestration system in direction (~ .. fl.), and 
1.,. is the measured illuminance from an elemental luminous source incident in direction (~ .. .P.). 

(1) 

The transmitted luminance distribution of a fenestration system due to the exterior hemisphere (sky, ground, exte
rior obstructions) is then calculated by: 

(2) 

L.(~ .. fl.) is the luminance of the fenestration system in direction (1 .. f>.). 
L.(~l.fll) is the luminance of the exterior-hemisphere (sky or ground) element in direction (~.fl~). 
11 is the incident angle of the incoming radiation from the exterior-hemisphere (sky or ground) element, 
C (~~.fi~..S .. f>.) is the tr1Ul8mission coefficient for incident direction (1Lfl1) and transmitted direction (~ .. flo), and 
dw1 is the solid angle subtended by the exterior-hemisphere (sky or ground) element. 
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For the purposes of converting the set of the discrete measured transmission coefficients into functional form, a 
new set of algorithms can be used to generate mathematical functions such as associated Legendre polynomials that 
describe the bidirectional transmittance of fenestration systems. 

VALIDATION OF THE COMPUTER ALGORITHMS 

For the purposes of validating the new computer algorithms, we performed two different tests using fenestrations 
having theoretical candlepower distributions that could also be modeled using the previous computational algorithms 
of SUPERLITE. 

For the first test we considered a perfectly diffusing glass. Interior daylight illuminance levels were then calcu
lated and compared using (1) the theoretical bidirectional transmittance of perfectly diffusing glass modeled as a 
shading device with the new set of algorithms and (2) the diffuse glazing calculation option of the previous algo
rithms of SUPERLITE. Results showed excellent agreement (Figure 2). 

The second test was based on the additive property of light. We again produced two candlepower distributions 
that combined to give the distribution of perfectly diffusing glass (see Figure 3). Because the sum of the two 
candlepower distributions of Figure 3 (a) and (b); becomes (c), it is expected that the sum of indoor illuminance lev
els calculated first by using (a) and then by using (b) should be identical to the illuminance level calculated under 
candlepower condition (c). Figure (4) verifies this; the sum of the results from (a) and (b) are almost identical to the 
results from (c). 

In the previous cases, we used only candlepower distributions that gave uniform or part of a uniform luminance 
profile. For the third test we considered a glazing layer with bidirectional transmittances identical to the luminance 
distribution of the CIE overcast sky. We generated the candlepower distribution of a vertical window with no glaz
ing under the CIE overcast sky condition (see Figure Sa). In this case, the candlepower distribution is theoretically 
calculated as: 

(3) 

{Ji = angle from the zenith, and 
E, =illuminance on vertical plane from the'CIE overcast sky. 

The overcast sky vertical illuminance can be calculated as a double integral over half of the hemisphere as: 

E = !..±.!.!. L (4) 
v 18 I 

We compared results from two cases, one room whose window was modeled as a surface having the ca!culated 
candlepower distribution, and another modeled as non-glazed window. The calculated indoor illuminances from 
those two cases were again in excellent agreement (Figure 5-b). These and similar additional comparisons proved 
that the basic computational approach was viable as implemented. 

VALIDATION OF THE NEW APPROACH WITH MEASURED DATA 

To test our new approach, we built a simple system to measure L({J1,1/J;,{J0 ,t/J0 ) of a shading device, when the device 
was illuminated with a collimated beam incident at angle ({J1,1/J;). The luminance distribution was measured at a lim
ited set of discrete locations by scanning the shading device over the hemispherical field of transmitted flux using a 
moving sensor. These measured luminance data were converted into bidirectional transmission coefficients as shown 
in Equation 1. We then calculated interior daylight illuminance values using SUPERLITE with the experimentally 
determined bidirectional transmission coefficients for a slat-type shading device. These illuminance values were com
pared to illuminance values measured from a scale model having the same slat-type device. In this case we con
sidered the sun at a specific position on the sky hemisphere aa the only source of daylight. Due to the mechanical 
limitation of the photometric setup used for the purposes of this paper, we could measure the candlepower distribu
tion of the hemisphere only in the portion where the zenith angle is greater than 65 •. Thus, we extrapolated meas
ured data to supplement the missing data (see Figure 6 (a) for the measured and extrapolated candlepower data). 
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The calculated results were in good, but not excellent, agreement with measured ones. The deviation between 
two results was noticable especially at the points near the window. This was mainly due to the lack of a complete 
set of the candlepower distribution data of the window, requiring us to use extrapolated data for some directions. 

CONCLUSIONS 

Initial results of validation tests using measured photometric data for a. slat-type shading system are promising. The 
comparison between measured and calculated daylight illuminance levels in interior spaces suggests that the achiev
able level of accuracy using SUPERLITE to calculate indoor illuminance values depends on the available detail about 
the bidirectional properties of complete fenestration systems. 

We intend to use the automated scanning radiometer to generate a library of detailed bidirectional properties 
of many shading systems. The bidirectional prop~rties of multilayer fenestration systems (glazing plus one or more 
shading systems) can be calculated if the layer-by-layer properties are known [5J. We can then use SUPERLITE to 
simulate the hourly, seasonal, 9r annual luminous performance of multilayer fenestration systems of arbitrary com
plexity. These data can thus be used in conjunction with a future building energy analysis tool such as DOE-2 to 
simulate the effects of daylight in cpmponents and total building energy consumption and demand. We believe that 
the application of this approach, combining the power and versatility of experimentally determined bidirectional 
optical properties and the flexibility and speed of advanced simulation techniques, will encourage proper evaluation 
of daylight design strategies and thus better use of daylight in buildings in future. 
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Figure 1. The angles ~i.'lfi and ~0,'1f0, which describe the directions of the incoming and outgoing. 
radiation. 
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Figure 2. Part a shows the candlepower distribution of perfectly diffusing glass. Part b shows a 
comparison of interior illuminance levels for perfectly diffusive glass calculated with the new 
candlepower distribution model and the old glazing pro~es algorithms of SUPERLITE. 
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theoretical fenestration system having a candlepower distribution equal to the luminance · 
distribution of the CIE overcast sky calculated with the new algorithms of SUPERLITE, and 2) a 
clear glass window under the CIE overcast sky. 
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