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Abstract 

Hei and Heii photoelectron spectra of M(BH
3
cH

3
)4, M = Zr, Hf, Th, 

arid U and that of Th(BH 4) 4 in the vapor phase have been obtained. 

Assignments of the bands based on the Xa SW calculations of Hohl and 

Rosch (preceding paper) are given. 
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Photoelectron Spectra of Metal Tetrakismethyltrihydroborates and 

Thorium Tetrahydroborate 

Introduction 

The volatile metal tetrahydroborates (M(BH4)4, M=Zr, Hf, Th, Pa, U, 

Np, Pu), have been the subject of structural, vibrational, optical, 

photoelectron (PE), and theoretical studies. 1- 8 For the actinide 

tetrahydroborates, one of the major questions has been the extent of the 

f orbitals involvement in the bonding in these complexes. 5 ' 6 

Unfortunately, the first three members of the actinide borohydride 

series, Th(BH 4)4 , Pa(BH 4)4, and U(~H4 ) 4 are polymeric in the solid state 

with a metal site symmetry much lower than the Td symmetry found in the 

vapor phase. 9 Recently, the volatile compounds, M(BH
3

cH
3

)4 where M 

Zr, Th, U, and Np have b~en synthesized and structurally 

characterized. 10 These studies have shown the metal ion is at a site of 

approximately Td symmetry in the solid state. Magnetic measurements for 

both U(BH
3

cH
3

) 4 and Np(BH
3

cH
3

)4 have been interpreted on this 

b i 
11-13 as s. 

Photoelectron spectra of Zr(BH 4)4, Hf(BH 4)4, and U(BH 4)4 have been 

published and discussed previously by two groups. 5 ' 6 Quasirelativistic 

Xa-SW calculations of M(BH 4)4 (M=Zr, Hf, Th, and U) have been described 

in the preceding paper and reproduced the ionization energies 

satisfactorily except for a uniform shift. 8 We report in this paper the 

photoelectron spectra of M(BH
3

cH
3

)4 (M=Zr, Hf, Th, and U) and for 

completeness, Th(BH 4)4• These spectra are assigned on the basis of 

their similarities to the M(BH 4)4 compounds and the results of the Xa-SW 

calculations. 
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Experimental 

Photoelectron spectra were obtained using a PES Laboratories 0078 

spectrometer, with data collection either on an XY recorder or by means 

of a RML 380Z microprocessor. The spectra were calibrated by reference 

to Xe, N2 and He. The methyltrihydroborate samples were prepared as 

described previously. 10 Th(BH 4)4 was prepared as described by Katz and 

14 Hoekstra. 

\ l .., 

v 
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Results 

He I and He II spectra were obtained for Th(BH 4)4 and M(BH
3
cH

3
) 4 

(M = Zr, Hf, Th, and U) in the vapor phase. Ionization energy (IE) data 

are given in Table 1, and representative spectra shown in Figures 1-5. 

As most of the bands were broad and featureless, they are not well 

characterized by the chosen IE, and identification of trends 

necessitates comparison of the whole band shape and position. 

The PE spectra of the thorium and uranium 

tetrakismethyltrihydroborates show two bands in the region 10-16 eV. 

U(BH3cH 3)4 has an additional ban~ at 8.3 eV, which shows a substantial 

intensity increase in the He II spectrum, and may be associated with 

ionization of the 5f2 electrons. A further three high IE bands are most 

clearly defined in the He II spectrum (see Figure 3). 

In contrast the Zr and Hf analogues have an additional low energy 

band with a maximum at circa 10 eV. Intensity comparisons suggest that 

this ionization comprises part of the first band in the spectra of the 

actinide tetrakismethyltrihydroborates. Otherwise the spectra are very 

similar to those of their heavier congeners. There is a very low 

intensity band at 24.7 ev visible in the He II spectrum of Hf(BH
3

cH
3

)4• 

5 A similar band was found at 26.1 ev for Hf(BH 4)4 and assigned to 

ionization of the 4f shell. 

The spectrum of Th(BH 4)4 shows only one band below 16 eV and two 

bands at higher IE. Apart from the absence of the f-band, it closely 

5 resembles the spectrum of U(BH 4)4• 
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Discussion 

The spectra of M(BH4) 4 where M = Zr, Hf5 ' 6 and u5 have been 

reported previously. These two groups differ in their assignment of the 

lowest energy band. The spectrum of Th(BH4)4 was measured by us for 

completeness and as anticipated resembles that of the uranium rather 

than the zirconium and hafnium analogues. The main differences of the 

tetrakismethyltrihydroborate derivative PE spectra are the presence of 

extra bands at ca 14 eV and 20 ev and the shift of other bands to lower 

IE. Interestingly the additional low energy band found for the Zr and 

Hf tetrahydroborates at 11.6 eV is also present (at 10 eV) in the Zr and 

Hf tetrakismethyltrihydroborates. Whatever the cause of this difference 

between the ionization behavior of the transition metal and actinide 

tetrahydroborates it is not supressed by methyl substitution. 

The band at ca 22 ev can be assigned to carbon 2s ionizations, and 

those betw~en 16 and 20 ev to the t 2 and a 1 boron 2s ionizations. 

The profile of the principal ligand bands may be illuminated by 

comparison with the PE spectra of methane and ethane. 15 Whereas methane 

shows a broad Jahn-Teller split band between 13 and '16 ev associated 

with the t 2 ionization, ethane has two principal bands. The first one 

between 11 and 14 ev comprises the 1 e ( '~~'cH -) and 3ag( ace) ionizations 
g 3 

whereas that between 14 and 16.5 eV is assigned to the le 
u 

ionization. In BH
3

cH
3 

it seems likely that the B-C sigma ionizations 

will also lie in the lower IE band. Indeed, the intensity ratio of 

these two bands, which is approximately 6:4, suggests that this is the 

case. In considering the '11' ionizations it is reasonable to expect that 

boron character will predominate in the lower IE band and carbon 

character in the upper of the two main bands. We therefore expect 
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features associated with the methyltrihydroborate complexing to be 

associated principally with the low energy band. The direct comparison 

of this band with the principal band of the tetrahydroborates is thus 

justified. Assignments for the observed ionization energies based on 

the preceding discussion and the results of Xcx-SW calculations8 are also 

given in Table 1. 

The differences between the transition metal and actinide 

tetrahydroborates (and methyltrihydroborates) are worthy of comment. 

The principat difference is the separation of the low energy band from 

the main band for Zr and Hf in both the unsubstituted tetrahydroborates 

and methyltrihydroborates. Three possible causes suggest themselves: 

1. As Zr and Hf are smaller than Th and U greater steric repulsion 

between the ligands could cause the t 1 level to rise. This is 

consistent with the assignment of Hitchcock et a1. 6 

2. The mainly terminal 8-H and 8-C orbitals could have higher 

energies than the 8-H-M bridging orbitals and be more differentiated in 

the "covalent" transition metal complexes than in the "ionic" actinide 

complexes. This is the assignment of Downs et a1. 5 

3. Zr and Hf have no valence orbital of t 1 symmetry whereas Th and 

U being f-orbital elements do. This would require the assignment of the 

6 
HOMO to be t 1 ~ 

The Xcx-SW calculations support point 3. 8 One major difference 

between the transition metal tetrahydroborates and the actinide 

tetrahydroborates is the reversal of the bonding ligand HOMO from the 

1t 1 in Zr and Hf tetrahydroborates to the 3t2 in the actinide 

tetrahydroborates. The calculations suggest this reversal is due to a 

weaker inter~ction of the 3t 2 orbital with the d metal orbitals and a 
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small bonding interaction of the 5f orbitals with 1t1 ligand orbital for 

the actinide compounds. Thus the 1t1 orbital is lowered in energy and 

3t2 is raised in energy leading to the single broad band observed at -11 

eV in the actinide methyltrihydroborates (-12 eV in the actinide 

tetrahydroborates). 
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Table 1. 

Ionization Energy Data for M(BH
3

cH
3

)4, M Zr, Hf, Th, U, and Th(BH 4)
4 

M5f . 8. 3 '..;.! 

1t a 10.8b 10.6 
3t2 

} 10.9 11.0 12.0 1 
1 t 1 

3t2l 
2a1 12.6 2.5 2a1 

le j 1e 11.8 11.8 13.0 

2t2 2t2 

14.3c 14. 2c 13.8c 13.9c 

1t2 17.5 1.7. 3 1t2 16.8 16.9 17.5 

1a1 18.7 19.0 1a1 18.2 18.3 18.5 

c2s 22.0 22. 1 c2s 22.2 22.0 

M4f 24.7 

a Assignments for M(BH
3

cH
3

)4, M Zr, Hf based on calculations for M(BH 4) 4 

(Ref. 8) • 

b All energy data in ev. 

cionization energies associated with C character of the BH
3

cH
3 

ligand. 

,, 
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Figure Captions 

Figure 1. PE spectrum of Zr(BH
3

cH3)4, a) He I b) He II. 

. Figure 2. PE spectrum of Hf(BH
3
cH

3
) 4, a) He I b) He II. 

Figure 3. PE spectrum of Th(BH
3

cH3)4, a) He I b) He II. 
\00 

Figure 4. PE spectrum of U(BH
3

cH
3

)4, a) He I b) He II. 

Figure 5. PE spectrum of Th(BH4)4, a) He I b) He II. \,.' 
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