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The Morphological Stability of Continuous 

Intergranular Phases: 

Thermodynamic Considerations 

by 

W. C. Carter and A. K. Glaeser 

Department of Materials Science 
and Mineral Engineering, and 

Materials and Molecular Research Division 
Lawrence Berkeley Laboratory 

University of California 
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ABSTRACT: 

A thermodynamic analysis of the morphological stability of continuous 
intergranular phases, incorporating the number of bounding grains n, and 
dihedral angle ; as variables is presented. For each n, the minimum 
thermodynamically unstable wavelength of an infinitesimal amplitude 
perturbation coincides with the Rayleigh result (2wRc) for ; = 180°. 
For n!= 2, the ratio Amin/2wRc decreases with ;, approaching a limit of 
(0.7) as ; ~ oo. For n ~ 3, Am·n/2wRc increases with decreasing ; and 
tends to infinity as ; ~ w - (2wfn), or equivalently as the interface 
curvature vanishes. For fixed ;, the stability increases with n. 
Several applications and implications of the analysis are discussed. 



1. INTRODUCTION: 

Rayleigh presented the first complete analysis of the morphological 

instability of continuous phases in 1878. 1 As Rayleigh remarked, 

"[these] phenomena, interesting not only in themselves, but also as 
• 

throwing light upon others yet more obscure, depend for their 

explanation upon the transformations undergone by a [cylindrical body] 

when slightly displaced from its equilibrium configuration and left to 

itself". 2 The Rayleigh analysis indicates that infinitesimal periodic 

perturbations with a wavelength A- exceeding 2TIR (the cylinder 

circumference) will reduce the specific (per unit volume) surface 

energy, and thus will increase in amplitude. Gro\o•th of perturbations 

with A > A . (= 2TIR) eventually cause the formation of one discrete m1n 

particle per wavelength increment of cylinder. 

Such phenomena continue to be the subject of considerable interest; 

a wide range of microstructural phenomena involving capillarity-induced 

shape changes have been analyzed or modelled in terms of the Rayleigh 

analysis. These include: the stability of lamellar eutectics, 3- 5 fibers 

in composites, 6 and artificially lengthened precipitates, 7 •8 the shape 

1 . f f . ld . . . 9 • 1 0 h 1 . f k . d d b evo ut1on o 1e 1on em1tter t1ps, ea 1ng o crac s 1ntro uce y 

11 12 thermal shock, ' as well as by scoring and welding of 

. 13 14 b1crystals, ' and the stability of the continuous pore phase during 

15 16 sintering of powder compacts. • 

The Rayleigh analysis permits qualitative understanding of many of 

these phenomena, however, complications arise when the continuous phase 

is located at a grain boundary. For an intergranular phase, each grain 

boundary intersection is characterized by some dihedral angle. The 
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associated deviation from a cylindrical geometry changes both the 

surface energy per unit volume and the stability condition. 

The modifying effect of dihedral angle on the stability of 

continuous grain boundary phases was recognized by C. S. Smith. 17 In 

discussing continuous phases along three grain junctions Smith wrote, 

11 If a second phase forming at a grain edge has a dihedral angle against 

grain boundaries of nearly 180°, it will behave like a cylinder and will 

certainly break up. If, however, the interphase tension is low in 

comparison with the adjacent grain boundary tension, the resulting 

triangular shape becomes stable at longer and longer lengths until, at a 

dihedral angle of 60° and below, the phase becomes stable at any length 

of grain edge." 

The stability of continuous phases along three grain junctions of 

tetrakaidecahedral grains has been evaluated by both beere18 •19 and 

20 Tucker and Turnbull. These analyses indicate the important modifying 

effect of dihedral angle on the condition for intergranular phase 

continuity. More generally, continuous phases may be situated at 

(along) the junctions of an arbitrary number of grains. The ensuing 

analysis quantifies the discussion of Smith by extending Rayleigh's 

method to continuous phases surrounded by n grains with (variable) 

dihedral angle •· Results indicate the stability condition depends 

strongly on the intergranular phase geometry (as dictated by the values 

of nand .), and may differ significantly from that of a cylinder. 

A complete analysis of morphological instability has two 

components: 21 a thermodynamic analysis identifying the smallest 

wavelength (infinitesimal amplitude) perturbation for which the 

amplitude will increase, and a kinetic analysis determining the 

3 



particular wavelength for which perturbation growth is most rapid. In 

this paper, we present a thermodynamic analysis for nonfaceting surfaces 

with single-valued interfacial tensions. Possible modifications which 

. 22 23 may result from surface facet1ng ' and the implications of the 

analysis to the kinetics of phase breakdown have been discussed • 
23 elsewhere. 

. . 

A kinetic analysis is forthcoming. 24 
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2. THEORETICAL ANALYSIS: DETERMINATION OF .A • 
mm 

The ensuing sections describe the assumptions made and procedures 

used in the analysis. The objectives are the calculation of the surface 

area and volume of both a perturbed and an unperturbed channel as a 

function of the number of bounding grains n. and the dihedral angle •· 

The results of these calculations are employed to define the condition 

for thermodynamic stability of a continuous grain boundary phase. 

2.1 Geometry 

Figure 1 illustrates most of the geometrical parameters relevant to 

the analysis. Isotropic interfacial energies (grain boundary and 

interphase) are assumed, i.e .• the energy for each type of interface has 

some unique but constant value. Each interphase boundary will thus have 

identical curvature. and intersect the adjoining interphase boundaries 

at a common dihedral angle, •· The intergranular phase will display 

n-fold symmetry. The channel cross-section may be circumscribed by a 

circle of radius R • which intersects all n triple junctions. 
c 

Simple geometry yields 

oR 
c 

sin ( TI/n) 
= 

11R c 

cos (1)1/2) 
= 

-R 
c 

cos (TI/n + ~/2) 

If the origin of a polar coordinate system (r-6) coincides with the 

circumscribing circle's center 
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A perturbation on the cross-section can be described as the largest 

term of some periodic function of wavelength A = 2TI/k and arbitrarily 

small amplitude 6 

R = R + 6 cos kz 
c 0 

(3) 

We may then express r in the form 

r = r r z 6 

• 

where rz and r
6 

are functions of z and 6 only, respectively. 

2.2 Determination of Interfacial Area 

(4) 

The total interfacial area is comprised of a sum of grain boundary 

area and interphase boundary area contributions. For convenience, the 

interphase boundary energy may be set equal to unity (in appropriate 

units), and the grain boundary energy expressed as (2 cos ~/2). The 

total interfacial energy may thus be expressed as 

F = cr + cr b(2 cos ~/2) s g 

where cr is the interphase boundary area, cr b is the grain boundary s g 

area. It is convenient to _consider the interfacial free energy per 

wavelength of perturbation 

f = A + A b(2 cos ~/2) s g 

6 

(5) 

(6) 
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where Agb is 

21T/k 

Agb = n J (a. - [R + 6 cos kz]) dz (7) 
0 

0 

2n1T 
(a. - Ro) (8) =-

k 

and a. is some arbitrary length. Similarly, we may express A as s 

1T/n 21T/k 

n J d9 J dz 
I 

A = [r 2 + (ar/ae) 2 + r 2 (ar/az) 2 ] 2 (9) 
s 

-1T/n 0 

Since dr/dz is of order 6 and arbitrarily small, we keep terms of order 

up to 6 2 , yielding 

A s = 

where 

and 

U = 2p(1T/n + ~/2 - 1T/2) 

P = (2p 3 + p~ 2 )(1T/n + ~/2 - 1T/2) +cos ~/2 (5np 2 cos 1T/n 

2~ 3 sin 2 1T/n cos 1T/n - ~ 2 p sin ~/2 - 2p 3 sin ~/2 

- 2p 3 sin 3 ~/2) 

7 

(10) 

(11) 

(12) 

(13) 



2.3 Volume Determination and Criterion for Break-up 

The cross-sectional area of the intergranular phase (channel) is 

A = R2 [n (sin TI/n cos TI/n + p 2 (~/2 + TI/n - TI/2 + cs c 

sin (TI/n + ~/2) COS (TI/n + w/2)))] 

The channel volume per perturbation wavelength is 

v =!X 
k 

To sufficient approximation 

where 

R 
0 

1 ; = (kV/2Tix) 2 

.. 

(14) 

• 
(15) 

(16) 

(17) 

(18) 

Combining Eqs. 6~ 8, 11, and 17 yields a result expressible in the form 

(19) 

We may consider Eq. 19 as the expansion of the free energy about a 

metastable value f , bv an infinitesimal amount 6. As is the case in 0 . 

all problems of metastabilitv, stability is determined by the sign of 

the second derivative, i.e., the term multiplying 6 2 /2. Thus, the 

channel is unstable to a;~ tnfinitesimal perturbations with wavelength 

A = 2TI/k for which 
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This defines a critical condition for perturbation growth. 

* Perturbations with a wavelength exceeding A . , where m1n 

= 2 R ( p )~ 
Amin ~ o U - 2 cos w/2 

(20) 

(21) 

decrease the free energy and thus grow (increase in amplitude) without 

thermodynamic barrier. The (2 cos w/2) term stems from grain boundary 

area changes. Since dihedral angles ~180° are considered, cos w/2 is 

always ~0. · For ; between ~ - (2~/n) and ~. both U and P are ~0. Thus, 

the change in grain boundary area accompanying development of a 

perturbation increases A . and stabilizes the intergranular phase. m1n 

2.4 End-State Calculations 

The stability condition derived in this analysis defines the 

minimum wavelength necessary for an infinitesimal periodic perturbation 

on R to increase in amplitude. As detailed in Section 2.3, 
c 

infinitesimal perturbations with A > A . decrease the interfacial m1n 

energy in comparison to that of an unperturbed cylinder having the same 

volume per wavelength. 

The interfacial area of the perturbed "cylinder" is sensitive to 

the form of the imposed perturbation. Conceivably, a perturbation with 

an additional radial or rotational component could yield a smaller A . m1n 

Since we are only concerned with the sign of the Eq. 20, it is 
sufficient to approximate ~ as R . 

0 

9 



than derived here. Hence, although the calculated values for A . 
m1n 

presented serve as a sufficient condition for instability, perturbations 

of greater geometrical complexity may provide a smaller value for A . 
. m1n 

as a necessary condition for instability. 

In view of this uncertainty, it is desirable to determine a lower 

limit wavelength A~~ as a function of n and •· This e~tails calculating 

the perturbation wavelength for which the total (grain boundary and 

interphase boundary) interfacial energy per wavelength in the 

unperturbed and final (discrete particle) states are equal (Appendix I). 

Shorter wavelength perturbations would increase total interfacial 

energy. Thus, the difference between A . and Ann indicates the maxfmum m1n ~~ 

possible reduction in A . achievable by :.mposition of a more m1n 

geometrically complex or finite perturbation. 

The calculation is straightforward for~= 180°, since this implies ·. 

~gb = 0, and consequently, changes in grain boundary area accompanying 

the transition from a cylinder to an ensemble of equidistant spheres of 

* equivalent total volume need not be considered. For the simple case of 

a cylinder, A~~= 4.5Rc independent of n. For~< 180°, the calculation 

is more tedious. Results tor n = 2 and 3 are presented in Figs. 2a and 

3a, respectively. For n = 3, results of Clemm and Fisher25 were used to 

describe the geometry of the discrete phase. The generalization to 

24 arbitrary n and results for n > 3 will be presented elsewhere. 

* Comparison of end-state calculations for n = 2,3 including and 
excluding grain boundary area changes indicate a trend similar to that 
suggested by Eq. 21, i.e., the grain boundary area changes associated 
with an infinitesimal perturbation increase A, and stabilize the 
~ontinuous phase. 

10 
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3. DISCUSSION: 

Results of the analysis for several n are presented in Figures 2-4. 

For each n (Figures 2a-4a), A . ·'coincides with the Rayleigh result m1n 

(2wR ) for • = 180°. For n = 2, the ratio A . /2wR is <1 for all c m1n c 
I 

~ < 180°, decreasing with • to a limit of (0.7) 2 as • ~ 0°. The 

corresponding end state calculation (Section 2.4 and Appendix I) for 

n = 2 indicates that A~~ follows a similar trend, decreasing·from 0.716 

.at~= 180° to 0.633 when • ~ 0°. The present values of A . /2wR are m1n c 

lower than those appropriate to a sinusoidal perturbation imposed on 

p,
23 and thus more closely approach a necessary condition for 

instability. The close correspondence between A . and Ann suggests m1n .._.._ 

that although a f~rther reduction in A . is possible, the decrease is · m1n 

likely to be small. 

For n ~ 3, A . and A . /2wR tend to infinity as • ~ w - (2w/n), m1n m1n c 

or equivalently, as the interface curvature vanishes. The end state 

calculacion (n = 3) shows a similar increase in A~~ as • decreases from 

180° to 60°. A· previous analysis indicated a similar trend but a more 

rapid increase in A . /2wR with decreasing •. 23 For fixed n, a m1n c 

continuous phase with lower • is expected to be more stable than one 

with higher •· For n .;: 3, the phase is completely stable to 

(infinitesimal) perturbations when • ~ TI - (w/2n). For fixed •· the 

stability increases with n (Tab!~ I). 

To facilitate comparison between this analysis ·and that of 

Rayleigh, two normalization parameters are incroduced. Defining R as eq 

the cylinder radius yielding the same volume per unit length as an 

intergranular phase characterized by a dihedral angle •· the ratio 

11 



A . /2rrR normalizes the actual A . by the minimum wavelength that 
m1n eq m1n 

would grow in a geometrically similar compact with an equivalent volume 

fraction of (cylindrical) second phase. The dependence of A . /2rrR on 
m1n eq 

+ for various n is presented in Figs. 2b-4b. 

An alternative normalization mode is based on consideration of the 

surface curvature as characterized by p. The stability condition of the 

intergranular phase may be compared with that of a cylinder having the 

same curvature, i.e., one with a radius p. The results of this 

comparison, presented in Figs. 2c-4c, indicate that the approximation 

A . = 2rrp overestimates A . for all w < 180° and becomes progressively m1n m1n 

* poorer as • decreases. 

3.1 General Considerations: 

The composition, inherent properties, morphology, and spatial 

distribution of a second phase within a matrix, can have an important 

impact on a material's ultimate properties. The incorporation of 

continuous filaments into polycrystalline matrices may dramatically 

alter mechanical behavior. High temperature stability and useful 

lifetimes of such composites will be influenced by the fibers' relative 

susceptibility to morphological instabilities and concurrent 

coarsening. 3 Continuous phases may provide high diffusivity transport 

paths, (e.g., vapor transport along continuous pore channels in uo2 fuel 

20 elements ) or be preferentially leached, thus limiting the utility of a 

material in storage applications, e.g., containment of nuclear waste. 

* In comparing normalizations, the trend A/2rrp < A/2rrR < A/2rrR is 
simply a consequence of having p > R > R when~< 180°.c eq 

c eq 

12 
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In these cases as well as others, factors influencing the morphological 

stability of continuous phases may become important considerations in 

materials design. In the following, a number of specific cases are 

considered, and the extent to which dihedral angle may·stabilize an 

intergranular phase is indicated. 

3.2 Consideration of n = 2 

Crack healing experiments have been conducted on cracked sapphire 

. 1 1 13 b. 1 14 d h 11 k 11 s1.ng e crysta s, 1.crysta s. an t erma y shoe ed polycrystals 

and used to determine surface diffusivities in alumina. During 

annealing, the crack first breaks down into parallel, high aspect ratio 

pore channels. These channels in turn undergo a Rayleigh instability. 

resulting in breakup into a string of equidistant isolated pores. The 

ratio of pore spacing (AJ to (apparent) pore radius r is used to 
p 

distinguish between surface diffusion and volume diffusion controlled 

breakup, while the po~~ radius r artd an experimentally measured breakup 
p 

(ovulation) time are tised to determine the appropriate diffusivity. 

The dihedral angle will affect the shapes of both the continuous 

and discrete pores. and through its effect on A . , will also affect the m1.n 

kinetically dominant wavelength. and thus both the size and spacing of 

discrete particles or phases resulting from perturbation growth 

~rocesses. Experiments on a series of bicrystals with a systematic 

variation in ; (owing to r:nsorientation effects) would be expected to 

reveal a systematic variation in particle size and sp~cing. In 

polycrystals, incorporat::1g a spectrum of;, "scatter" in the sizes and 

spacings of discrete part1cles would be observed. In polycrystalline 

1 . 11 a um1.na. the pore spac1ng to pore diameter ratio varied by as much as 

13 



factor two. Similar variability was obtained for the breakdown of 

elongated bubbles (appearing to lie on two grain interface~) in tungsten 

filaments. 8 

For alumina, surface diffusion was identified as the dominant 

transport process in each case. However, the deduced surface 

diffusivities differ by between one and two orders of magnitude at the 

same temperature. An assessment of the contribution to scatter owing to 

dihedral angle effects is therefore of interest. 

Since the shapes of both the pore channel and the isolated pores 

are affected by ;, it is anticipated that A/2r will also be dihedral 
p 

angle dependent. For constant A/R , A/2r decreases by ~4% as ; varies 
c p 

from 180° to 0° (Appendix II). Recent dihedral angle measurements in 

alumina by Handwerker26 have indicated a wide dihedral angle range, 85° 

to 170°. Within this range of;, there is a factor ~1.14 decrease in 

A . . The total "scatter" in A/2r will depend on the dihedral angle 
m1n p 

dependence of the kinetically dominant wavelength. If the kinetically 

dominant wavelength is a mechanism dependent, but dihedral angle 

independent multiple of A . , the total scatter in A/2r owing to 
. m1n P 

dihedral angle effects is <±10% and similar A/2r ratios would be 
p 

obtained regardless of whether measurements were conducted on single 

crystals or polycrystals. If the observed scatter reflects primarily 

dihedral angle effects, the ratio of the kinetically dominant wavelength 

to A . must depend on ;. m1n 

While the pore spacing:pore diameter ratio is used to determine the 

dominant transport mechanism, the appropriate diffusivity is calculated 

using the measured breakdown time and the isolated pore's radius. For 

surface diffusion dominated breakdown of a cylindrical pore, the 

14 
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breakdown time is proportional to r
4

/D . Only when ~ = 180° is the s 

isolated pore spherical and the analysis strictly valid. For a 

lenticular pore on a two grain interface, r , the apparent pore radius, p . 
! 

is both proportional to A2 and a function of f· The breakdown time will 

also be modified by dihedral angle effects on both local curvature 

differences and the volume of mass which must be transported to 

accomodate breakdown. Discrepancies between surface diffusivities 

determined using single crystals and polycrystals are thus likely. A 

t . t t. f th ff t . . 24 quan 1 a 1ve assessment o ese e ec s 1s 1n progress. 

3.3 Consideration of n = 3 

Pore stability during intermediate stage sintering has been 

18 19 . 20 
considered by Beere, ' Tucker and Turnbull, as well as others. Two. 

approaches have been employed. Beere, and Tucker and Turnbull have 

assumed a specific grain shape, a tetrakaidecahedron, and evaluated the 

pore shape minimizing the total interfacial energy (at constant density) 

as a function of f· The results indicate that the compact density at 

which a continuous pore phase (along three grain junctions) is no longer 

stable increases as + decreases. Pore phase breakdown is predicted at a 

pore fraction of =87. when w = 180°, and a pore fraction approaching Oi. 

as.~ 60°. For uo
2

, for which W = 90° is quoted, the critical porosity 

is =47.. Similar values are presented by Tucker and Turnbull. 

Alternatively, the pore phase has been approximated as a 

cylindrical channel along three grain junctions. Breakdown of the 

continuous pore phase, marking the transition from intermediate to final 

stage sintering, has been assumed to occur by perturbation growth 

processes. Assuming the same grain shape as Beere, and equating the 
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grain edge length to A 0 , one can similarly estimate the critical m1n 

density at which pore closure could occur by a Rayleigh instability. 

The volume fractions porosity corresponding tow= 180°, 90° and 60° are 

~84, 24, and Oi. respectively. Although this approach neglects "end 

effects" associated with four grain corners, a similar trend in 

stability and critical pore fraction are indicated; a decrease in ; is 

expected to delay pore closure until a higher density has been reached. 

The dihedral angle distribution may consequently have an important 

modifying effect on microstructural evolution. 

Nichols has recently presented a simplified model for stable open 

porosity in which pores are idealized as cylinders, predicting a 

crit;ocal volume fraction of porosity (or swelling) of ~s-67. for the 

continuous/discontinuous porosity transition for equiaxed grains. 27 A 

dihedral angle distribution would be expected to introduce a spectrum of 

transition conditions, with pore channels of higher • closing more 

rapidly and at lower density. The gradual loss of (redundant) open pore 

channels makes gas removal (e.g., binder burnout) more difficult. 

Eventually, regions will become isolated from the surface due to the 

closure of lower • channeLs. Pore phase continuity will also affect the 

swelling of ceramic nuclear fuels. During swelling, low • channels 

would be expected to open first, and venting of gases should occur when 

adequate pore interconnectivity is achieved. 

Dihedral angle distr1bution dependent spectra of pore ciosure 

conditions and sizes, ~ill also introduce a spectrum of pore-grain 

boundary separation con~1t10ns. This factor, combined with effects of; 

h 0 k . d . b h 0 11 bolo 28 on pore s r1n age an cu~~sening e av1or, as we as pore mo 1 1ty, 
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may contribute to the development of microstructural inhomogeneities 

promoting the initiation of abnormal grain growth. 

Narrowing the dihedral angle distribution would be expected to lead 

to more uniform microstructure development. A comparison of dihedral 

angle measurements in undoped and MgO-doped Al 2o3, 26 has indicated that 

dopant additions reduce the width of the dihedral angle distribution. 

Handwerker et al. point out this increases the uniformity of 

microstructural evolution by reducing the variation in driving forces 

f d 'f' t' 29 or ens1 1ca 1on. The potential benefits of a dopant-induced 

reduction in boundary mobility have frequently been cited. Dopant 

effects on the uniformity of the pore structure produced during the 

transition from intermediate to final stage sintering may also be 

important. 

In addition to the pore phase in powder compacts, second phases at 

three-grain junctions are commonly found in alloys with a large 

difference in either the melting points or solubilities of the 

constituents. 17 A residual glassy phase along three-grain junctions may 

also develop in liquid-phase sintered materials. Similar stabilizing 

effects may be of importance in these cases as well. 

3.4 Consideration of n ~ 4 

Table I illustrates the increased stability to perturbation growth 

accompanying an increase inn (;constant). The enhanced stability is 

manifested in two ways. The stabilizing effect becomes significant at 

progressively higher ; as n increases, and the dihedral angle range 

within which perturbation growth is possible diminishes (Figs. 2-4). 

17 



Thus, stabilization effects of the type considered are expected to be 

extremely important when a continuous phase is bounded by a large number 

of grains. 

When n is large, one would also anticipate periodic fiber-matrix 

grain boundary intersections along the fiber axis, and "rumpling" of the 

fiber surface in the z direction. The resulting changes in the geometry 

of both the unperturbed reference state and the perturbed state are 

expected to modify A . . Growth of a perturbation results in a net m1n 

increase in grain boundary area and enhances stability (Eq. 21). 

Increasing grain boundary density is thus expected to increase A . . m1n 

The extent to which A . is increased by this effect increases as • m1n 

decreases, perhaps as much as doubling A . as • ~ ~ - (2~/n). When m1n 

• < 180°, surface rumpling will also modify A . , however, a m1n 

quantitative assessment is difficult. 

The general trend illustrated in Table I suggests that the high 

temperature stability of intergranular phases could be enhanced by 

proper manipulation of • and n. If stability to breakdown were 

desirable, e.g., fibers in composites, it would be advantageous to 

maximize the number of coordinating grains. Thus grain size:fiber 

diameter ratio (Q) emerges as a potentially important parameter in 

materials design. 

Grain growth and fiber coarsening may modify n, introducing an 

additional time-dependent component to morphological stability. Grain 

growth may dramatically decrease fiber stability within certain ranges 

of Q. A decrease in Q from 20 to 4 may only have a limited effect, 

whereas an additional factor of 2-3 increase in grain size would likely 

have a profound influence on fiber stability. 

18 
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When n is sufficiently large to inhibit perturbation growth, other 

factors inducing mass redistribution along or between fibers may assume 

greater.significance. A "perturbation" or variation inn along the 

fiber axis will produce local curvature differences which may induce 

mass transfer from regions of lower n to higher-n regions; relatively 

coarse-grained regions may emerge as preferential fiber-pinchoff sites. 

Similarly, differences in coordination number may provide a driving 

force for interfiber mass transfer (coarsening). 

Cline has proposed that if the rod fraction in a composite exceeds 

20%, two-dimensional coarsening occurs more rapidly than breakdown and 

h 'd' . 3 sp ero1 1zat1on. Weatherly has proposed a lower volume fraction for 

this transition. 5 These estimates are likely to be further modified 

when intergranular phases are considered. The minimum aspect ratio 

necessary for breakdown into two or more particles will increase as n 

increases and/or • decreases. Local surface curvatures, and thus the 

curvature differences driving coarsening are also affected by n and •· 

Thus, analysis of transition conditions appropriate to intergranular 

phases is likely to be complex. 
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Appendix I: End-State Calculation 

It is useful to determine the size of the discrete particle, 

resulting from the breakup of a continuous phase, which yields the same 

total interfacial energy as the original unperturbed continuous phase. 

The calculated size defines an absolute lower limit for the wavelength 

of breakup, independent of the perturbation details. A sample 

calculation for n = 2 is presented below. 

Using parameters defined in Section 2.2, the volume of the 

continuous phase assumes the form 

V = [R~A(~ - sin ~)]/sin 2 (~/2). 
c 0 

(I-1) 

The total interfacial energy is given by 

f = (a - R )A(4•cos ~/2) + AR (2~/sin ~/2). 
c 0 0 

(I-2) 

The volume of the discrete phase is 

(I-3) 

where r is the radius of curvature of the spherical cap. The total 

interfacial energy for the discrete phase is 

(I-4) 

?1 



Volume conservation requires that Vc = Vd. The lower limit wavelength 

Aii is thus defined by setting fc = fd' yielding 

Aii = 9 (2(1 - cos W/2) - cos W/2 sin 2W/2) 3 

2~R (8 sin W/2)(W - sin W)(2 + cos W/2) 2 (1 - cos W/2) 4 

0 

22 
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Appendix II: Effect of • on A/2rp 

Crack healing experiments have been employed to estimate the 

surface diffusivity of alumina. The transport mechanism controlling 

breakdown of high aspect ratio pore channels is determined by evaluating 

the pore spacing:pore diameter ratio. An analysis of dihedral angle 

effects on this ratio for n = 2 follows. 

The volume conservation condition Vc = Vd (Appendix I) provides a 

relationship between R and r. The spacing between pore centers is 
0 

simply .\. The apparent (grain boundary plane) pore radius r is related 
p 

to the radius of curvature of the spherical cap r by 

r = r•sin w/2 
p 

If the perturbation wavelength is expressed as 

(II-1) 

.\ = k·2~R (II-2) 
0 

where k is a kinetic scaling factor, the ratio .\/2r is of the form 
p 

where 

G = --=----=-....;~-~~--l-~ ( 
2 - 3•cos ~Ji/2 + COS 3 ~Ji/2 

sin w/2 (w - sin ~Ji) 

23 
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Consequently, to assess the changes in A/2r that are purely the 
p 

consequence of changes in phase geometry, one can evaluate the change in 

G1/ 3 as • varies from 180° to 0°. The results are tabulated below. 

0.860 0.850 0.843 0.838 0.833 

0.830 0.828 0.827 0.826 0.82548 
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.Figure Captions: 

.Figure 1 

.Figure 2 

Figure 3 

Figure 4 

Table Captions: 

Table I 

Geometry of intergranular phase, and illustration of 
parameters p, ~. Rc, and dihedral angle ;. (XBL861-7403) 

Effect of dihedral angle on normalized Amin for n = 2 . 
Wavelengths are normalized with respect to (a) 2nRc, 
(XBL866-2327) (b) 2nReq where Req is the radius of a 
cylinder having equivalent volume per unit length 
(XBL866-2328), and (c) 2np, where p is the curvature 
(XBL866-2329). 

Effect of dihedral angle on normalized Amin for n = 3. 
Normalization parameters are as described for Figure 2. 
At w ~ 60° (shading) the phase is stable to perturbations 
of infinite wavelength. [a-(XBL866-2330), 
b-(XBL866-2332), c-(XBL866-2331)) 

Effect of dihedral angle on normalized Amin for n = 4 and 
6, illustrating the rapid increase in normalized Amin as 
n increases. Normalization parameters are as described 
for Figure 2. [a-(XBL866-2333), b-(XBL866-2334), 
c-(XBL866-2335)] 

Compariso~; •)f A/2nRc, A/2np, and A/2nReq for w = 135° and 
n varying !rom 2 to 8 . 
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Table I 
• = 135° 

.. 
n A • /2wR A • /2wp A • /2-rrR 

m1n c m1n m1n eq 

2 0.910 0.841 1.161 

3 1.093 0.768 1.266 

4 1. 271 0.688 1. 415 

5 1.500 0.596 1.633 

6 1.864 0.487 2.000 

7 2.663 0.344 2.824 

8 00 -0- 00 
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