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Abstract

The scheme of helical linking of magnetic mirror sections to eliminate
longitudinal loss of particles due to the velocity space loss-cone is
described. An approximate theoretical treatment of the scheme is given along
with numerical evaluations of vacuum magnetic field properties and of single
particle motion. An estimate of the maximum equilibrium beta due to the
limitation on transverse displacement of the plasma boundary is also given.
Good elimination of longitudinal loss and reasonably high beta value make the

scheme an attractive one, to be pursued further.

* This work was supported by U.S. DOE under Contract No. DE-AC03-76SF00098.
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I. Introduction

Efforts to reduce end losses in mirror-confined plasmas by means of
ambipolar potential barriers has led to ever increasing complexity of the so-
called tandem-mirrors [1]. We have therefore decided to take a new look at
the possibility of linking up a set of mirror cells into a closed
arrangement. This is topologically similar to configurations proposed before,
some of which have been abandoned [2] while others are still under study
(3,4]. Our scheme differs from all of these by the incorporation of a
rotational transform. In the arrangement discussed here, the transform is
produced by making the 1inks between mirrors out of solenoids bent into
helical sections (see Fig. 1). In a sense, this configuration can therefore
also be thought of as a type of stellarator or Heliac, the volume of which is
greatly enlarged by insertion of straight axisymmetric mirror sections. The
latter can presumably operate at relatively high values of beta, consistent
with the reduced field between mirrors, leading to an enhanced average beta.
Other advantages and disadvantages of this system in comparison with
conventional toroidal confinement schemes need to be discussed, of course. In
this paper we are looking only at two parts of the problem, i.e., at
single-particie confinement properties of this arrangement using simple
helical bends made of circular coils and at the beta-limit set by the radial
displacement of the plasma column in the helical sections. The concept was
first described in 1982 [5].

The configuration has very high rotational transform and thus single
particle confinement of passing particles is good. We think it is possible to
use noncircular magnetic surfaces to achieve an average magnetic well and also
have vanishingly small charge-neutralization current flowing through the
straight section. However, work done in this direction will be published in a

later paper.
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11. Description of geometry

The device has to be nonp]énar to make use of helical linking in a smooth
way. The geometric axis of the device consists of alternating straight and
helical segments. For'the device to have n-straight segments we generate the
hé]ica] axis by wrapping the straight line over a cylinder, whose axis is at
an angle w/n to the straight line. This makes the transition smooth up to
first order. However, the curvature and the torsion are discontinhous at the
transition point. The ang]e by which the straight line wraps afound the
cylinder is dependent upon the length of the straight segment desired and the
radius of the generating cylinder. The torsion, and hence, the rotational
transform is determined from these parameters. The details of the
construction and program used to create the coil data will be given in a
separate future LBL-report.

The selection of the number of segments is dependent upon various
considerations. A full study of this and optimization of parameters for a
reactor type device or otherwise has not been undertaken as yet. However, as

shown in Fig. 1, the number of segments we have chosen to study is the lowest

bossible, i.e. n=3. (The n=2 case is simply a racetrack configuration, which

does not have any torsion and thus no rotational transform.) We call the
device THELMA (an aﬁronym for Triangular Helically Linked Mirror Arrangement).
The spacing of the coils to generate the desired field can be chosen in a
way to have the smallest possible ripple on the magnetic axis (say, less than
1%). In the helical sections the magnetic field does not vary very much along
the helix but is of course a function of distance along the local radius of
curvature. Particles with small velocity ratio v”/vL there will experience
relatively large drift excursions that depend on their position. Thus if the

strongest fields in the system are within the bends the trajectories of barely

i
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passing and bf reflected particles in these regions will not be axisymmetric
and will give r%ge to neoclassical drift-orbit diffusion of the class of
particles that enter the helical sections with very small parallel

velocities. We decided to minimize this effect in the present system by the
addition of strong axisymmetric mirror “"throats" (or "bottlenecks") at the
ends of each of the straight_sections. The magnetic fields in the mirror
throats (Bt) of the axisymmetric straight sections must all be equal to each
other and must be stronger thén anywhere else on any given flux surface (see
Fig. 2). In this way any particle within the loss-cone of any mirror section
will pass through all mirrors until it is scattered into a trapped orbif. If
a particle is trapped in a straight section it will carry out only
axisymmetric drift motions and hence its diffusion will not be subject to
neoclassical effects until it is detrapped and becomes a passing particle
again. Only particles trapped in the helical bends will perform banana orbits
and hence contribute to neoclassical diffusion, or worse, i.e., will drift out
rapidly 1ﬁ a few bounces. Presumably, the number of particles so.affected
could be limited to a very sma]]lfraction of the total number in the device.
These considerations were presented by Abt and Kunkel in 1983 [6], but a
thorough quantitative analysis has not yet been carried out. .

The criterion for passing particles given above re1ate§ the-mihimum mirror
ratio for the helical sections to their aspect ratio. Somewhat stronger
mirror peak fields (Bt) are desirable to give the marginally passing particles
a reasdnab1e pitch angle throughout the helical region. This is inditated in
Fig. 2. The mirror ratio, R, in the axjsymmetri; Stra1ght sections, on the
other hand, should be made much larger to maximize the benefit from the

difference between the two regions. This can be expressed formally by



the relation

R > V(1+2xr)
where « denotes the curvature and r is the maximum transverse dimension in
the helical section. The relation between various magnetic fields can be
expressed as (shown in Fig. 2)

B, > 8

t h > gs

III. Analytical treatment

If we do not take into consideration the discontinuity in curvature and
torsjon at the junction of straight and helical sections; then, we can get a
good approximation for the vacuum magnetic field inside the device by treating
it as a solenoid with continuous and well behaved curvature and torsion. In
that case, following ref. [7], we can use the Mercier coordinate system to
calculate the magnetic field. Thus we define a Mercier coordinate system (p,
w, s), where s is the arc-length along the axis, p» is the radial distance
and w is defihed by' |

@ = @+ [xds - o (1)
where x denotes the torsion and o is the.ang1é‘from the principal normal.
In this system we have the square of element of length

412 = dp% + p%dw® + (1 - xp cos 8)° ds® (2)
Laplace's equation for the scalar potential ¢ associated with the magnetic

field takes the form

la e3¢ 1 _a_ 2
v2¢ = p 3pl(1 - xp cos 8) 3] + Pz 3w [(1 - xp cos 0) 3, ]
a 1 %
+3s (T “xpcosoasl =0 | (3)

" Now we expand the Laplace equation in xp as xp << 1



AN . .
Then if we assume that in the zeroeth order B = BoeS i.e. the magnetic field

js axial, we obtain the scalar potential as
B
9 2 2, & _
¢=B8;s+g (3a° - p) as (xp cOs 6) (4)
where a is the radius of the ideally conducting solenoid. Any magnetic
surface defined by ¢ = const satisfies B.Vy = 0 and is found in this case to
be given by

gy =p - % (a2 - pz) xp cos @ = const. (5)

The displacement of the magnetic axis from the geometric axis is
Ap = % K a2 in the direction of the principal normal.

If we look at the terms carefully, we expect the magnetic surfaces to have
circular cross secfions in . the middle of the helical section. However, the
center of the circles are displaced with respect to the geometric center and
the amount of displacement decreases as we go away from the center. Thus it
may look somewhat as shown in Fig. 3. In the middle of the straight section
we would expect concentric circular magnetic surfaces, which may change due to
the discontinuous transition region. - However one only expects a qualitative
agreement with this approximate model, which may be sufficient to understand
tﬁe various numerical calculation outputs.

Now let us consider the drift orbits of single particles in this type of
magnetic field configuration on the basis of this model following ref. {8].
The guiding center velocity including the curvature and grad-8 drift is

given by



> >

dr - B mc 2 2,2 |
—_=V, -+ = (2V, + V°)(B x VB) ’ 6
& E e BV Y (®)
v \ mc V
S | A _ av
= 3 (B + rg(vav)(B x 98)1, - where rg(vav) = "B
v2
=V, + _Li_
av I 2v
I
vi / 8 = Const.
2 2 _ 2 _ :
VL + V" = v° = Const. . (7)

In guiding center approximation the drift orbit surfaces, in such a system
with magnetic surfaces, form modified or "pseudo-magnetic surfaces" with

effective magnetic field given by

=Y

B*-§+r(v )(vaa)-3+§ (8)
- g' av - .

1

This can be shown to be consistent with the drift equation (6) by expressing

the latter in the form

> ->
dr v - 8* -+ ->

=1 8*=v, __ as |B,| << |B] (9)
dat 8 Il IE*I : i _

In terms of velocity ratio we express the effective magnetic field, whose

field lines represent the drift orbits of particle guiding centers, as

2.,
mcvo (1 + 1/27v)(8 x v8) . E N mcv°

eB2 1 + 1/73 eB2

-+ >
B =8B +

4 . d
(1 + 1/87v) (8 x v8) (10)

(for Y, = v“/vL > 1.4)



From this we note that the perturbation term and hence the drift orbit

deviation from fhe magnetic field lines-

(a) depends on sign of charge

(b) is insensitive to velocity ratio Y, for \ > 1.0

(c) is proportional to the square root of the particle energy.

By treating the perturbation term B] as small one can show [11] that the
deviation A of the drift orbit surfaces from the magnetic surfaces is
roughly given by
)X

4 ~ rg(v . where L denotes the total length of the system and

av
fota () is the rotational transform, as usual.

Thus for %L ~1, A~ rg(Vav), hence the deviation is very small for
particles having small gyroradius. Thus if the field lines are confined, the
drift orbits of the particles in the single-particle approximation are
expected to be confined.

The expected rotational fransform of the field lines on the basis of this
model is simply the transform provided by the torsion of the helical sections.
Thus on the axis

v = $xds .
Sinﬁe torsion, x = (x/2«)/[(d/2)2 + (x/2r)2] = const. for a straight helix,
- where A\ is the pitch length, d the diameter of generating cylinder. 1In our
case x = wd/2 and each helical section has 2/3 period, so that we get the
total rotational transform as |
.= (3)(%) Sxh ST PL (1)

sz + 4g2(d/2)2

We expect only a small amount of shear to be present in the device with plane
¢ircular coils, since in this approximation the transform does not depend on

-
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iv. Numerical study of vacuum magnetic field property

For the vacuum magnetic field calculation the "HELIAC" {9] code was used.
However the code was modified to take fnto’account the fact that the device
under consideration has three-dimensional geometry. Some other changes
including replacement of magnetic field calculation subroutines were
incorporated. |

Here we show some vacuum magnetic field properties u;ing the

above~mentioned code. The spacing of the coil chosen was such that the

~magnetic field ripple was less than 1% on the magnetic axis (as shown in

'Fig. 4a).  The three-fold symmetry, as is to be expected from design of the

device, 1is feflected in the variation of the magnetic field on the magnetic
axis with azimuthal angle. Sl1ight asymmetry is due to the approximation in
1o§§t1ng the magnetic axis. Zero of the azimuthal angle represents the middle
of a helical section. Figure 4b shows the variation of magnetic field
magnitude B on the magnetic axis when a mirror field is introduced in the
straight éection. by changing the current in the coil.

fFigure 5a and 5b show the puncture plot of the field liﬁes in the middle
of straight and helical sections respectively. As is clear from the figures
the f1é1d lines seem to form well-defined nested magnetic surfaces. Different
symbols represent different starting points for the field lines. If one looks
carefully, the outermost magnetic surface starts showing some oscillatory
nature and breaks apart as we go further away from the magnetic axis. The
radial distance at which this occurrs is sensitive to the ripples in the
magnetic field. Less ripple increases the area in which field lines form
closed magnetic surfétes. This has a direct effect on the behavior of single

particle motion, as expected theoretically.



The variation of rotational transform with radial distance seems to first
inc?ease and then decrease as we go away from the magnetic axis as shown in
Fig. 6, however the net variation in rofationa] transform is very small. Thus
shear is also small. The agreement wifh the approximate calculation of the
rotqtional transform on axis is good. Also one should note that the
rotational transform is not passing through any region of low-number rational

multiple of 2.

V. Single particle motion

To study the drift orbit motion of single particles in the given magnetic
field configuration the "TIBRO-X" [10] code was used. However the magnetic
field ¢$1;u1ation was vectorized and a different output package was
developed. Té compare with the approximate theoretical model we show here a
typical output for tte simplified case when there are no mirrors in the
straight section (R=T), and
radius of coil1,a=0.125m
total arc-length=9.6 m

curvature,x = 2.2 m

torsion, x = 1.1 mf1
energy, £ =0.2 KeV
magnetic field = 0.3 T (in the middle of the straight section)v
vV, /V =2.0

| Y _ , .
Figure 7 shows the variation of the radial distance of the guiding center
from the geometrical axis with respect to the distance along the axis. The
radial distance remains constant in the straight section but changes in the

helical section. Poincére plots in the middle of the helical section show
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that the drift orbits 1ie on closed curves, hence the orbits are confined.

The center of the orbits is displaced with respect to the geometrical center.
Figure 8a shows the variation of drift orbit surface Poincare plots in the
middle of helical section with radial distance. The drift orbits do not
remain closed beyond a certain maximum radial distance. The regions of closed
orbits and open orbits overlap a 1ittle bit at the boundary. Whether an orbit
is closed or open in this transition region depends on the pitch angle. |
Figures 8b and 8c show the dependence on sign of charge and pitch angle.

These are in qualitative agreement with the theoretical model.

VI. Estimate of equilibrium beta value

One can make an estimate of the maximum equilibrium beta Ey considering
the displacement of magnetic surfaces in the presence of plasma due to the
cufvature of the system. The transverse displacement of the magnetic surfaces
which is dependeht on the beta value of the plasma is limited by the
transverse dimension of the device under consideration.

For-this we follow ref. [8]. Physically the procedure corresponds to
calculating the displacement of magnetic surfaces as a cylindrically symmetric
plasma column is bent into thé §hape under consideration. We make the |
assumption of small curvature and assume that.the cross-section of the
magnetic surfaces is circular. Both these assumption are justified for the
device we have under consideration.

Again using the Mercier coordinate system as defined earlier the magnetic
surfaces may be represented as

1((.) - xn s)
P =Py * E(pg0,8) = py + Re L g (pg)e o (12)
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with

2mn
Xy = 3 (13)

—j—

L
of xds -

Linearizing the usual plasma equilibrium equations in xp, for the case in
which there is no Tongitudinal current in the zeroeth approximation, we obtain

the equation for the nth Fourier component of the disp]acement,lin, as

2
1d [p(xnp Bso) . dEn]
PdP]+xr2‘P2 dp
2 2 .2 d
- 2 8 p
B T (2 P50 4y pB )2 kB —21=0 (14)
2 2 2 2 n S0 dp
V4x, e T+x e

For the case when Ixnpl << 1 j.e. when we can terminate the approximation for
low values of n, we get (In our case we can terminate the Fourier series at

n=7, without appreciable error. For this the approxihation is justified).

-3 2,7 _ by , *nP Y
Ey = 75 e (1 _3) + - (1 -3) for p 2 b (15)
2xn

©

where b is the plasma radius. Using this expression for the case when the
plasma radius is half the radius of the solenoid, we calculate the maximum
displacement of the plasma boundary with Eespect to the beta value.  The limit
on the equilibrium beta comes from the fact that the plasma bouhdary is
Timited by the transverse dimension of the device. In Fig. 9 we show the
'displacement for three different solenoid radii. The larger solenoid radius
1ead§ tollarger value of maximum eqh111br1um beta. |

'From Fig. 9 we note that our maximum equilibrium beta is ~ 5.5%. These
numbers are only estimates and should be used only for order of magnitude

estimates. In the theoretical treatment no mirror magnetic field is assumed
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in the straight section. However, we may estimate that with a mirror ratio of

4, the maximum beta value in the straight section could be ~ 20%.

VII. Discussion of results

From the numerical and analytical results it is clear that the field lines
and single particle orbits are well confiﬁed. This means that most of the
passing partic]es do not-diffuse outwards without a coliision. Hence, the
main purpose of carrying particles from one straight section into the next one
seems to be well served by he]ica1.11nks.

Another very important result is the fact that the single-particle orbits
do not depend‘upon pitch angle beyond a certain threshold value. It is
possible to adjust the mirror ratio in the helical and straight sections, so
that the pitch angle in the middle of helical and straight sections are
aTready above fhe threshold value. Thus in a collisionless picture one would
assume that there should be no pitch angle scattering in the he]ica] section,
thus reducing the outward diffusion to a large extent. Hdwever this picture
would change somewhat in the presence of collisions as discussed in section 2.

It is interesting, at this point, to compare the properties of our scheme
with those of the most popular magnetic confinement systems. The comparison
can only be'sketchy at best, so far, because our understanding of helically
Tinked mirrors is still in a rudimentary stage. The confined particles can be
divided into three classes: (1) particles trapped in the straight axisymmetric
mirrors, (2) particles in the loss-cone ofvthese mirrors (these are called
"passing particles™ in the nomenclature of toroidal confinement), and (3)

particles trapped in the helical sections. Particies of the fikst class have

-3 -



not been dealt with in this paper although in a real application of this
scheme they would make up the bulk of the plasma. Their behavior is assumed
to be standard and simple. In the absence of bal]ooning and drift
instabilities, at least, their radial transport may be assumed to be slow
compared to other loss rates. fhe particles in the third class, on the other
hand, will be subject to consecutive drift excursions, i.e., their radial
transport will be similar to that of trapped particles in stellarators or
tokamaks. _ |

Unfortunately, in the simb]e helical bends investigated here, we find that
the particles trapped in the bends seem to get lost fast. We feei that this
takes place because of the following scenario. Particles trapped in the
helical section bounce back and forth in the section. As discussed earlier
the particles tend to follow the field lines and the deviation from the field
1ines is due to the curvature and gradient-8 drifts. _The typical effect of
curvature and gradient drift is to move the particles in the direction of the
principal normal and this movement does not get affected by_the direction of
1ong1tudiha1 mbtion. Thus a particle feels the drift in the same direction,
regardless of whether it is going back of forth. On the other hand the |
rotational transform depends upon the direction of transit. Thus a particle
going back and forth has the effect of rotational transform cancelled. Hence
the net effect is that trapped particles keep moving outward until they get
ripple trapped and eventually lost. However, there are th processes which
decrease this loss. One is collisions, which may detrap the particle and the
other is the ambipo]ar field, which provides some poloidal drift and reduces
the loss to some extent [12]. Even then most of the partic]es which get
trapped are lost to the device. However this loss is much lower than the

ordinary mirror loss, as the density in the helical section would be
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considerably lower than the straight seqtions. The effect of high loss of
particles wdu]d'a]ways keep the density in the héiica] section low and thus
the trapping rate due to collision would be less also. A very crude
comparison of the ordinary mirror Toss and the loss in our scheme can be made
as follows. The loss depends on the density of particles in the helical
section, the volume of the helical section and the fraction of passing
particles subject to loss. We assumé that the scattering rate in the long
straight mirror sections is fast enough to keep the velocity distribution
isotropic, j.e., to kéep the loss—cones.fil1ed. The density‘nS in these
regions is therefore expected to be uniform in space, all the way to the
mirror throats. In the helical sections, on the other hand, the densities nh
dfop to much lower 1e§els because only few trapped particles remain there at
any given time, i.e. any mirror ratio Rh = Bt/Bh > 1 makes the velocity in

the helical region anisotopic, and only the loss-cones are nearly filled. In

a first approximation we can estimate that " < nth/Bt = nS/Rh, which is

o based on the assumption that the passing particles remain on their flux tubes.

If we denote the rate of scattering of a particle near the loss-cone
bounqary into (or out of) the loss-cone in the straight section by v;c; i.e.
e _ ¢
ve S N<ov>.o (16)
Then the rate of trapping of such a particle in the helical sections can be

estimated by the following expression:

v:r‘=_v;c = M <o v>;C < Ng<o v>;C B,/By = n.<o v>:c Bg/Bth
Tc .2
- VS Bh/BSRh (]7)

The latter relations are based on the observation that the distributions of

particle speeds in the two regions are similar and that the areas in velocity
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space of the loss-cone boundaries are inversely proportioned to the mirror
ratios, so that <o v>:‘C/Bh = <d v>:c/BS. The re]atibn-is only approximate
because the anisotropy fn the helical sections, and particularly the
counterstreaming character in velocity space must be expected to introduce an
additional deviation.

The total rate of trapping in the helical sections, and hence the upper
bound of net part1c1é loss through the mirror throats of the straight sections
can now be related dfrect]y to the ordinary mirror loss: we define the
confinement gain factor |

1c c

nvV.we L 8 V.l 2
= §'S§8°S S . h. s .
G = ““'TE-Z Rh CE 5" Rh LS/Lh (18)
nhvh“h h s i

where the magnetic flux in the straight and helical sections is assumed equal
and related to the respective volumes VS and Vh, and lengths LS and Lh by the
equality BSVS/LS = Bhvh/Lh, and relation (17) is used to eliminate the

scattering rates. We see that with R = 2 and Ls >5 L

h a sizable gain in

h
confinement time is expected.

Some suggestions have been made regarding removing the mirrors in the
straight section and making the field in the he]ica] section high. Thus the
helical sections themselves act as mirror throats and we would have no problem
of the trapped particTes fn the helical section. However, one misses the
point that in this way we are, in a sense, making all the particles trapped in
the straight section also go through the helical seétion partly and thus they -
would be subject to the same loss as the trapped particles in our device. The

transit time between the mirroring point increases, but considerably larger

fraction of the particles are involved in the process in this case. 1In our
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op{nion we would not be gaining anything, but may loose, in thi§ way of
- Tinking. ‘ ‘

Since they constitute only a small fraction of the total content of the
device, it is conceivable that the net confinement could be better than that
in purely toroidal devices that are otherwise equiva]ent. The average value
of B that can be contained is not yet known because the stability limits must
still be ascertained. The particles of most interest in the present context
are the passing particles, and the study reported here therefore focuses
primarily on this class. We have seen that particles with substantial
velocity ratio v"/vl = Y, have well behaved orbits in the helical sections.
We can assure adeque values of Y, for particles passing through the bends by

making the ratio Bt/B sufficiently large. The disadvantage of the latter is

h
that particles can and will become deeply trapped in the helical sections so
that they loose all chances of gétting detkapped before they are lost
.rad1a11y. We thus end up with the following picture. We make the}straight
sections much longer than the helical secfions so that thé-tota] rate of
transition between trapped and passing particles in the former is much larger
than in the latter. We can therefore assume that the loss-cone in the
straight mirror remaihs filled, the distribution in velocity space stéys
almost isotropic there. The same is not the case in the helical sections.
Here the radial diffusion is fast enough so that the detrapping rate cannot
balance the trapping rate.' The net particle loss from the entire system is
therefore dominated by the net trapping rate into the helical sections.

This situation needs to be compared with the tandem mirror arrangement.

.The complexity in construction of linked mirrors may be comparable or worse

than that of tandem mirror arrangements. But there is a distinct advéntage in
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not requiring carefully maintained ve1ocity distributions for thermal barriers
and ambipolar potential coﬁtro\. More important, however, is the realization
that e]ecfrostatic'potentia1 plugs in tandem mirrors contain low energy
particles much better than high-energy particles which can escape out the ends
if their energy exceeds the barrier height. The opposite is true for our
linked mirrors where the trapping rate, and hence the loss rate, in the
helical sections is much lower for energetic particles than for the low-
energy component.

A serious problem of linked mirrors,»in addition to the stability
question, is the large size that such systems are likely to have. This
problem is also mentioned by the proponents of the Dracon device [3]. The
latter has considerable similarity with ours, but the links are more complex

and do not provide a rotational transform.

VIII. Conclusion

The good confinement of passing particies‘in the device means that
helical linking does the important job of transporting particles from one
straight section to the next one very well. This implies substantial recovery
of the particles, whiéh would have been lost otherw{ée. We may eipect a
reasonably high value of beta in the.straight section. However the problem of
stability of the device needs to be solved. Use df noncircular coils is being
studied. Stabilization using ponderomotive forces is also possible.

Concluding, we would say that steady state operation of the device along

with reasonably high value of average beta and without the problem of
longitudinal loss, make the scheme of helical linking of mirrors an attractive

proposition which deserves to be pursued further.

- 18 -



W

Acknowledgements

We would like to thank N.E. Abt for providing. us with the source of the .

" codes he developed during the initial investigation of this device. We would

also like to thank Alicia Ehrhardt (PPPL) for making available the source of

the 'HELIAC' code.

- 19 -



(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(i

(12]

References

Logan, B. G., et al., "Mirror Advanced Reactor Study", UCRL-53333 (1983).:
Cordey, J. G. and Watson, C. J. H., in Proc. 5th European Conference on
Controlled Fusion and Plasma Physics, Grenoble (1972) 98.

Glagolev, V. M., Kadomtsev, 8. B., Shafranov, V. D. and Trubnikov, B. A., w
in Controlled Fusion and Plasma Phys. (Proc. 10th European Conference,

Moscow, 1981, Vo. 1, E-8.

Hedrick et al., in Plasma Physics ahd Controlled Fusion Research 1984

(Proc. 10th Int. Conf. London 1984), I[AEA, Vienna (1985) 630.

Kunkel, W. B., Bull. Am. Phys. Soc. 27, 936 (1982).

Abt,'N._E. gnd Kunkel, W. B., Bull. Am. Phys. Soc. 28, 1033 (1983).

Leontovich, M. A., (Ed.), in Reviews of Plasma Physics, Vol. 5,

Consultants Bureau, New York (1966) 45.

Leontovich, M. A.,‘(Ed.), in Reviews of Plasma Physics, Vol. 5,

Consultants Bureau, New York (1966) 207.

Ehrhardt, A., Princeton Plasma Physics Laboratory (1985). (Private

Communication)

Foote, J., “TIBRQ-X:Va'code to compute trajectories of charged particles

in magnetic fields", UCRL-52189 (1976).

Leontovich, M. A., (Ed.), in Reviews of Plasma Physics, Vol. 5,

Consultants Bureau, New York (1966) 135.

3

Hitchon, W. N. G., et al., J. Plasma Physics (1985), vol. 34, part 2, 327.

- 20 -



Fig.

Fig.

Figq.

Fig.

Fig.

"Fig.

Fiqure Captions

A view of THELMA, with generating cy]indér inserted. Note that
circular loops have been represented as polygons. "H", "S", and "G"
represent helical section, straight section and generating cylinder
respectively. |

Schematic representation of magnetic field on and off-magnetic axis
(not to scale). Solid and dashed lines represent field on-axis and
of f-axis respeétively; Bs' Bt and Bh represent field in the straight
section, throat and helical section respectively.

Expected magnetic surface in the middle of helical séction on the
basis of theoretical model. Principal normal is towards the right
side. Notice the crowding of surfaces in that direction.

Computed magnitude of B along the magnetic axis for (a)case with no
mirror and (b) case with mirrors in the straight section. Notice the
three-fold symmetry. The data used is for the actual coil system
studied. The zero of the azimuthal angle is in the middle of a
helical section.

Puncture plot (a) in the hidd]e of straight section and (b) in the
middle of helical section. Different symbols represent different
surfaces. Notice that they seem to form distincf closed magnetic
surfaces. The larger symbol represent starting point and the medium
sized symbols the point after one complete round of device.
Rotational transform in degrees vs. radial distance (ra). Note that
rotational transform has been computed for one turn of field lines.

only.
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Fig. 7.
Fig. 8.

Fig. 9.

Radial distance éf drift orbit vs. distance along geometric axis.
Notice that the radial distance from the axis remains nearly constant
in the straight section, but changes in the helical section.

Orift orbit puncture plot in the middle of the helical section and
its variation with (a) radial distance, (b) pitch angle (v"/vL =
2.0,5.0, 50.0); note that all of them are indistinguishable, as
expected theoreticai]y, (c) sign of charge. An ellipse has been
fitted to the puncture points.

(Maximum displacement of plasma column/radius of solenoid) vs. beta

for solenoid radius, a=0.08, 0.10 and 0.125 m.
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Expected Magnetic Surface
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Magnitude of B along the magnetlc axis
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Puncture Plot: Mid-Straight
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Puncture Plot: Mid-Helix
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Rotational transform vs. ra
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