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Abstract 

LBL-20686 

The scheme of helical linking of magnetic mirror sections to eliminate 

longitudinal loss of particles due to the velocity space loss-cone is 

described. An approximate theoretical treatment of the scheme is given along 

with n·umerical evaluations of vacuum magnetic field properties and of single 

particle motion. An estimate of the maximum equilibrium beta due to the 

limitation on transverse displacement of the plasma boundary is also given. 

Good elimination of longitudinal loss and reasonably high beta value ~ake the 

scheme an attractive one. to be pursued further. 

This work was supported by U.S. DOE under Contract No. OE-AC03-76SF00098. 
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I. Introduction 

Efforts to reduce end losses in mirror-confined plasmas by means of 

ambipolar potential barriers has led to ever increasing complexity of the so­

called tandem-mirrors [1]. we have therefore decided to take a new look at 

the possibility of linking up a set of mirror cells into a closed 

arrangement. This is topologically similar to configurations proposed before, 

some of which have been abandoned [2] while others are still under study 

[3,4]. Our scheme differs from all of these by the incorporation of a 

rotational transform. In the a'rrangement discussed here, the transform is 

produced by making the links between mirrors out of solenoids bent into 

helical sections (see Fig. 1). In a sense, this configuration can therefore 

also be thought of as a type of stellarator or Heliac, the volume of which is 

greatly enlarged by insertion of straight axisymnetric mirror sections. The 

latter can presumably operate at relatively high values of beta, consistent 

with the reduced field between mirrors, leading to an enhanced average beta. 

Other advantages and disadvantages of this system in comparison with 

conventional toroidal confinement schemes need to be discussed, of course. In 

this paper we ~re looking only at two parts of the problem, i.e., at 

single-particle confinement properties of this arrangement using simple 

helical bends made of circular coils and at the beta-limit set by the radial 

displacement of the plasma column in the helical sections. The concept was 

first described in 1982 [5]. 

The configuration has very high rotational transform and thus single 

particle confinement of passing particles is good. We think it is possible to 

use noncircular magnetic surfaces to achieve an average magnetic well and also 

have vanishingly sma 11 charge-neutralization current flowing through the 

straight section. However, work done in this direction will be published in a 

later paper. 
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II. Description of geometry 

The device has to be nonplanar to make use of helical linking in a smooth 

way. The geometric axis of the device consists of alternating straight and 

helical segments. For the device to have n-straight segments we generate the 

helical axis by wrapping the straight line over a cylinder, whose axis is at 

an angle 1r/n to the straight line. This makes the transition smooth up to 

first order. However, the curvature and the torsion are discontinuous at the 

transition point. The angle by which the straight line wraps around the 

cylinder is dependent upon the length of the straight segment desired and the 

radius of the generating cylinder. The torsion, and hence, the rotational 

transform is determined from these parameters. The details of the 

construction and program used to create the coil data will be given in a 

separate future LBL-report. 

The selection of the number of segments is dependent upon various 

considerations. A full study of this and optimization of parameters for a 

reactor type device or otherwise has not been undertaken as yet. However, as 

shown in Fig. 1, the number of segments we have chosen to study is the lowest 

possible, i.e. n=3. (The n=2 case is simply a racetrack configuration, which 

does not have any torsion and thus no rotational transform.) We call the 

device THELMA (an acronym for Iriangular Helically !:.inked M,irror Arrangement). 

The spacing of the coils to generate the desired field can be chosen in a 

way to have the smallest possible ripple on the magnetic axis (say, less than 

1%). In the helical sections the magnetic field does not vary very much along 

the helix but is of course a function of distance along the local radius of 

curvature. Particles with small velocity ratio v
11

/v.L there will experience 

relatively large drift excursions that depend on their position. Thus if the 

strongest fields in the system are within the bends the trajectories of barely 
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passing and of reflected particles in these regions will not be axisymmetric 

and will give rise to neoclassical drift-orbit diffusion of the class of 

particles that enter the helical sections with very small parallel 

velocities. We decided to minimize this effect in the present system by the 

addition of strong a xi symmetric mirror 11 throats 11 (or 11 bottl enecks 11
) at the 

ends of each of the straight sections. The magnetic fields in the mirror 

throats (Bt) of the axisymmetric straight sections must all be equal to each 

other and must be stronger than anywhere else on any given flux surface .(see 

Fig. 2). In this way any particle within the loss-cone of any mirror section 

will pass through all mirrors until it is scattered into a trapped orbit. If 

a particle is trapped in a straight section it will carry out only 

axisymmetric drift motions and hence its diffusion will not be subject to 

neoclassical effects until it is detrapped and becomes a passing particle 

again. Only particles trapped in the helical bends will perform banana orbits 

and hence contribute to neoclassical diffusion, or worse, i.e., will drift out 

rapidly in a few bounces. Presumably, the number of particles so affected 

could be limited to a very small fraction of the total number in the device. 

These considerations were presented by Abt and Kunkel in 1983 [6], but a 

thorough quantitative analysis has not yet been carried out. 

The criterion for passing particles given above relates the minimum mirror 

ratio for the helical sections to their aspect ratio. so·mewhat stronger 

mirror peak fields (Bt) are desirable to give the marginally passing particles 

a reasonable pitch angle throughout the helical region. This is indicated in 

Fig. 2. The mirror ratio, R, in the axisymmetric straight sections, on the 

other hand, should be made much larger to maximize the benefit from the 

difference between the two regions. This can be expressed formally by 
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the relation 

where K denotes the curvature and r is the maximum transverse dimension in 

the helical section. The relation between various magnetic fields can be 

expressed as (shown in Fig. 2) 

Bt > Bh > Bs 

III. Analytical treatment 

If we do not take into consideration the discontinuity in curvature and 

torsion at the junction of straight and helical sections, then, we can get a 

good approximation for the vacuum magnetic field inside the device by treating 

it as a solenoid with continuous and well behaved curvature and torsion. In 

that case. following ref. [7], we can use the Mercier coordinate system to 

calculate the magnetic field. Thus we define a Mercier coordinate system (p, 

w, s), where s is the arc-length along the axis, pis the radial distance 

and w is defined by 

w = 9 + Jxds 

where x denotes the torsion and 9 is the angle from the principal normal. 

In this system we have the square of element of length 
2 2 2 2 2 2 dl = dp + p dw + (1 - Kp cos 9) ds 

Laplace•s equation for the scalar potential ~associated with the magnetic 

field takes the form 

2 lL ~ 1 a ~ 
V ~ = p ap[(l - Kp COS 9) ap] + -z aw ((1 - Kp COS 9) aw ] 

p 

a 1 ~ 
+ as [1 - KP cos 9 as] = 0 

Now we expand the Laplace equation in Kp as Kp << 1 
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Then if we assume that in the zeroeth order~= B0~s i.e. the magnetic field 

is axial, we obtain the scalar potential as 

B 
o 2 2 a 

~ = B
0
s +a- (3a - p ) as (~p cos e) (4) 

where a is the radius of the ideally conducting solenoid. Any magnetic 

surface defined by ~ = canst satisfies ~·V~ = 0 and is found in this case to 

be given by 

2 3 2 2 
~ = P - 4 (a - p ) ~P cos e = const. 

The displacement of the magnetic axis from the geometric axis is 

Ap = ~ ~ a2 in the direction of the principal normal. 

( 5) 

If we look at the terms carefully, we expect the magnetic surfaces to have 

circular cross sections in the middle of the helical section. However, the 

center of the circles are displaced with respect to the geometric center and 

the amount of displacement decreases as we go away from the center. Thus it 

may look somewhat as shown in Fig. 3. In the middle of the straight section · 

we would expect concentric circular magnetic surfaces, which may change due to 

the discontinuous transition region. However one only expects a qualitative 

agreement with this approximate model, which may be sufficient to understand 

the various numerical calculation outputs. 

Now let us consider the drift orbits of single particles in this type of 

magnetic fteld configuration on the basis of this model following ref. [8]. 

The guiding center velocity including the curvature and grad-B drift is 

given by 
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.... .... 
dr -B me 2 2-+ 

VII- + 3 (2VII + v )(B X VB) 
B 2eB L dt 

(6) 

v2 I B = Const. 
J. 

v2 + v2 = v2 = Const. 
L II 0 

(7) 

In guiding center approximation the drift orbit surfaces, in such a system 

with magnetic surfaces, form modified-or "pseudo-magnetic surfaces" with 

effective magnetic field given by 

-+ -+ A -+ -+ 
B*= B + r (V )(B x VB) = B + B

1 g av (8) 

This can be shown to be consistent with the drift equation (6) by expressing 

the latter in the form 

.... 
dr = V11 -+* 

....J1 B = VII dt 8 

.... 
a* .... .... 

as IB1 I << IBI 

In terms of velocity ratio we express the effective magnetic field, whose 

field lines represent the drift orbits of particle guiding centers, as 

-+ mcV 4 -+ 
: B + __ o ( 1 + 1 /By v) ( B x VB) 

eB2 
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From this we note that the perturbation term and hence the drift orbit 

deviation from the magnetic field lines-

(a) depends on sign of charge 

(b) is insensitive to velocity ratio y for y > 1.0 v v 

(c) is proportional to the square root of the particle energy. 

By treating the perturbation term s1 as small one can show [11] that the 

deviation ~ of the drift orbit surfaces from the magnetic surfaces is 

roughly given by 
I(L 

~ - r (v ) ·-g av L • 
where L denotes the total length of the system and 

iota (L) is the rotational transform, as usual. 
I(L 

Thus for -L - 1, ~- rg(Vav>. hence the deviation is very small for 

particles having small gyroradius. Thus if the field lines are confined, the 

drift orbits of the particles in the single-particle approximation are 

expected to be confined. 

The expected rotational transform of the field lines on the basis of this 

model is simply the transform provided by the torsion of the helical sections. 

Thus on the axis 

l = h.ds 

Since torsion, x = (~/2•)/[(d/2) 2 + (~/2•) 2 ] =canst. for a straight helix, 

where ~ is the pitch length, d the diameter of generating cylinder. In our 

case ~ = •d/2 and each helical section has 2/3 period, so that we get the 

total rotational transform as 

l = ( 3 )( ~) -.::.211'=~~--­

j ).. 2 + 411' 2 ( d 12) 21 

4'11' 
=- = ( 11) 

We expect only a small amount of shear to be present in the device with plane 

circular coils, since in this approximation the transform does not depend on 

p. 
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IV. Numerical study of vacuum magnetic field property 

For the vacu-um magnetic field calculation the "HELIAC" [9] code was used. 

However the code was modified to take into account the fact that the device 

under consideration has three-dimensional geometry. Some other changes 

including replacement of magnetic field calculation subroutines were 

v incorporated. 

Here we show some vacuum magnetic field properties using the 

above-mentioned code. The spacing of the coil chosen was such that the 

magnetic field ripple was less than 1% on the magnetic axis (as shown in 

Fig. 4a). The three-fold symmetry, as is to be expected from design of the 

device, is reflected in the variation of the magnetic field on the magnetic 

axis with azimuthal angle. Slight asymmetry is due to the approximation in 

locating the magnetic axis. Zero of the azimuthal angle represents the middle 

of a helical section. Figure 4b shows the variation of magnetic field 

magnitude B on the magnetic axis when a mirror field is introduced in the 

straight section, by changing the current in the coil. 

Figure Sa and Sb show the puncture plot of the field lines in the middle 

of straight and helical sections respectively. As is clear. from the figures 

the field lines seem to form well-defined nested magnetic surfaces. Different 

symbols represent different starting points for the field lines. If one looks 

carefully, the outermost magnetic surface starts showing some oscillatory 

nature and breaks apart as we go further away from the magnetic axis. The 

• radial distance at which this occurrs is sensitive to the ripples in the 

magnetic field. Less ripple increases the area in which field lines form 

closed magnetic surfaces. This has a direct effect on the behavior of single 

particle motion, as expected theoretically. 
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The variation of rotational transform with radial distance seems to first 

increase and the-n decrease as we go away from the magnetic axis as shown in 

Fig. 6, however the net variation in rotational transform is very small. Thus 

shear is also small. The agreement with the approximate calculation of the 

rotational transform on axis is good. Also one should note that the 

rotational transform is not passing through any region of low-number rational 

multiple of 21r. 

V. Single particle motion 

To study the drift orbit motion of single particles in the given magnetic 

field configuration the "TIBRO-X" [10] code was used. However the magnetic 

field calculation was vectorized and a different output package was 

developed. To compare with the approximate theoretical model we show here a 

typical output for t~e simplified case when there are no mirrors in the 

straight section (R=l), and 

radius of coil,a=0.125 m 

total arc-length=9.6 m 

-1 curvature,K = 2.2 m 
-1 torsion, x = 1.1 m 

energy, E =0.2 KeV 

magnetic field = 0.3 T 

VII /Vl. = 2.0 

(in the middle of the straight section) 

Figure 1 shows the variation of the radial distance of the guiding center 

from the geometrical axis with respect to the distance along the axis. The 

radial distance remains constant in the straight section but changes in the 

helical section. Poincare plots in the middle of the helical section show 
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that the drift orbits lie on closed curves, hence the orbits are confined. 

The center of th-e orbits is displaced with respect to the geometrical center. 

Figure Sa shows the variation of drift orbit surface Poincare plots in the 

middle of helical section with radial distance. The drift orbits do not 

remain closed beyond a certain maximum radial distance. The regions of closed 

~ orbits and open orbits overlap a little bit at the boundary. Whether an orbit 

is closed or open in this transition region depends on the pitch angle. 

Figures 8b and Be show the dependence on sign of charge and pitch angle. 

These are in qualitative agreement with the theoretical model. 

VI. Estimate of equilibrium beta value 

One can make an estimate of the maximum equilibrium beta by considering 

the displacement of magnetic surfaces in the presence of plasma due to the 

curvature of the system. The transverse displacement of the magnetic surfaces 

which is dependent on the beta value of the plasma is limited by the 

transverse dimension of the device under consideration. 

For this we follow ref. (8]. Physically the procedure corresponds to 

calculating the displacement of magnetic surfaces as a cylindrically symmetric 

plasma column is bent into the shape under consideration. We make the 

assumption of small curvature and assume that the cross-section of the 

magnetic surfaces is circular. Both these assumption are justified for the 

device we have under consideration. 

Again using the Mercier coordinate system as defined earlier the magnetic 

surfaces may be represented as 

(12) 
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with 

(13) 

Linearizing the usual plasma equilibrium equations in Kp, for the case in 

which there is no longitudinal current in the zeroeth approximation, we obtain 

th the equation for the n Fourier component of the displacement, ~n• as 

1 d 
; dp 

dtn . -] 
dp 

2 dpo 
+ (x p B ) + 81rp - ] = 0 

n so dp 
(14) 

For the case when lxnPI << 1 i.e. when we can terminate the approximation for 

low values of n, we get (In our case we can terminate the Fourier series at 

n=7, without appreciable error. For this the approximation is justified) . 

. ( 15) 

where b is the plasma radius. Using this expression for the case when the 

plasma radius is half the radius of the solenoid, we calculate the maximum 

displacement of the plasma boundary with respect to the beta value. The limit 

on the equilibrium beta comes from the fact that the plasma boundary is 

limited by the transverse dimension of the device. In Fig. 9 we show the 

displacement for three different solenoid radii. The larger solenoid radius 

leads to larger value of maximum equilibrium beta. 

From Fig. 9 we note that our maximum equilibrium beta is - 5.5%. These 

numbers are only estimates and should be used only for order of magnitude 

estimates. In the theoretical treatment no mirror magnetic field is assumed 
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in the straight section. However, we may estimate that with a mirror ratio of 

4, the maximum b-eta value in the straight section could be - 20%. 

VII. Discussion of results 

From the numerical and analytical results it is clear that the field lines 

~ and single particle orbits are well confined. This means that most of the 

passing particles do not-diffuse outwards without a collision. Hence, the 

main purpose of carrying particles from one straight section into the next one 

seems to be well served by helical links. 

Another very important result is the fact that the single-particle orbits 

do not depend upon pitch angle beyond a certain threshold value. It is 

possible to adjust the mirror ratio in the helical and straight sections, so 

that the pitch angle in the middle of helical and straight sections are 

already above the threshold value. Thus in a collisionless picture one would 

assume that there should be no pitch angle scattering in the helical section, 

thus reducing the outward diffusion to a large extent. However this picture 

would change somewhat in the presence of collisions as discussed in section 2. 

It 1s interesting, at this point, to compare the properties of our scheme 

with those of the most popular magnetic confinement systems. The comparison 

can only be sketchy at best, so far, because our understanding of helically 

linked mirrors is still in a rudimentary stage. The confined particles can be 

divided into three classes: (1) particles trapped in the straight axisymmetric 

mirrors, (2) particles in the loss-cone of these mirrors (these are called 

"passing particles• in the nomenclature of toroidal confinement), and (3) 

particles trapped in the helical sections. Particles of the first class have 
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not been dealt with in this paper although in a real application of this 

scheme they would make up the bulk of the plasma. Their behavior is assumed 

to be standard and simple. In the absence of ballooning and drift 

instabilities, at least, their radial transport may be assumed to be slow 

compared to other loss rates. The particles in the third class, on the other 

hand, will be subject to consecutive drift excursions, i.e., their radial 

transport will be similar to that of trapped particles in stellarators or 

tokamaks. 

Unfortunately, in the simple helical bends investigated here, we find that 

the particles trapped in the bends seem to get lost fast. We feel that this 

takes place because of the following scenario. Particles trapped in the 

helical section bounce back and forth in the section. As discussed earlier 

the particles tend to follow the field lines and the deviation from the field 

lines is due to the curvature and gradient-S drifts. The typical effect of 

curvature and gradient drift is to move the particles in the direction of the 

principal normal and this movement does not get affected by the direction of 

longitudinal motion. Thus a particle feels the drift in the same direction, 

regardless of whether it is going back or forth. On the other hand the 

rotational transform depends upon the direction of transit. Thus a particle 

going back and forth has the effect of rotational transform cancelled. Hence 

the net effect_is that trapped particles keep moving outward until they get 

ripple trap~ed and eventually lost. However, there are two processes which 

decrease this loss. One is collisions, which may detrap the particle and the 

other is the ambipolar field, which provides some poloidal drift and reduces 

the loss to some extent [12]. Even then most of the particles which get 

trapped are lost to the device. However this loss is much lower than the 

ordinary mirror loss, as the density in the helical section would be 
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considerably lower than the straight sections. The effect of high loss of 

particles would always keep the density in the helical section low and thus 

the trapping rate due to collision would be less also. A very crude 

comparison of the ordinary mirror loss and the loss in our scheme can be made 

as follows. The loss depends on the density of particles in the helical 

section, the volume of the helical section and the fraction of passing 

particles subject to loss.· We assume that the scattering rate in the long 

straight mirror sections is fast enough to keep the velocity distribution 

isotropic, i.e., to keep the loss-cones filled. The density "sin these 

regions is therefore expected to be uniform in space, all the way to the 

mirror throats. In the helical sections, on the other hand, the densities nh 

drop to much lower levels because only few trapped particles remain there at 

any given time, i.e. any mirror ratio Rh: Bt/Bh > 1 makes the velocity in 

the"helical region anisotopic, and Q.!ll.y, the loss-cones are nearly filled. In 

a first approximation we can estimate that nh i nsBh/Bt : ns/Rh, which is 

based on the assumption that the passing particles remain on their flux tubes. 

If we denote the rate of scattering of a particle near the loss-cone 

boundary into (or out of) the loss-cone in the straight section by u~c 
lc = n <d v>lc us s s . 

i.e. 

( 16) 

Then the rate of trapping of such a particle in the helical sections can be 

estimated by the following expression: 

tr lc lc lc lc 2 · 
uh = uh = nh<d V>h i ns<d V>h Bh/Bt = ns<d V>s Bh/BsBt 

( 17) 

The latter relations are based on the observation that the distributions of 

particle speeds in the two regions are similar and that the areas in velocity 
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space of the loss-cone boundaries are inversely proportioned to the mirror 
·. lc lc 

ratios, so that <a v>h /Bh ~<a v>s /Bs. The relation is only approximate 

because the anisotropy in the helical sections, and particularly the 

counterstreaming characte~ in velocity space must be expected to introduce an 

additional deviation. 

The total rate of trapping in the helical sections, and hence the upper 

bound of net particle loss through the mirror throats of the straight sections 

can now be related directly to the ordinary mirror loss: we define the 

confinement gain factor 

( 18) 

where the magnetic flux in the straight and helical sections is assumed equal 

and related to the respective volumes Vs and Vh, and lengths Ls and Lh by the 

equality BsVs/Ls = BhVh/Lh' and relation (17) is used to eliminate the 

scattering rates. We see that with Rh = 2 and L
5 

> 5 Lh a sizable gain in 

confinement time is expected. 

Some suggestions have been made regarding removing the mirrors in the 

straight section and making the field in the helical section high. Thus the 

helical sections themselves act as mirror throats and· we would have no problem 

of the trapped particles in the helical section. However, one misses the 

point that in this way we are, in a sense, making all the particles trapped in 

the straight section also go through the helical section partly and thus they 

would be subject to the same loss as the trapped particles in our device. The 

transit time between the mirroring point increases, but considerably larger 

fraction of the particles are involved in the process in this case. In our 
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opinion we would not be gaining anything, but may loose, in this way of 

linking. 

Since they constitute only a small fraction of the total content of the 

device, it is conceivable that the net confinement could be better than that 

in purely toroidal devices that are otherwise equivalent. The average value 

of ~that can be contained is not yet known because the stability limits must 

still be ascertained. The particles of most interest in the present context 

are the passing particles, and the study reported here therefore focuses 

primarily on this class. We have seen that particles with substantial 

velocity ratio v"/vL ~ yv have well behaved orbits in the helical sections. 

We can assure adeque values of y for particles passing through the bends by v 
making the ratio Bt/Bh sufficiently large. The disadvantage of the latter is 

that particles can and will become deeply trapped in the helical sections so 

that they loose all chances of getting detrapped before they are lost 

radially. We thus end up with the following picture. We make the straight 

sections much longer than the helical sections so that the total rate of 

transition between trapped and passing particles in the former is much larger 

than in the latter. We can therefore assume that the loss-cone in the 

straight mirror remains filled, the distribution in velocity space stays 

almost isotropic there. The same is not the case in the helical sections. 

Here the radial diffusion is fast enough so that the detrapping rate cannot 

balance the trapping rate. The net particle loss from the entire system is 

~ therefore dominated by the net trapping rate into the helical sections. 

This situation needs to be compared with the tandem mirror arrangement. 

The complexity in construction of linked mirrors may be comparable or worse 

than that of tandem mirror arrangements. But there is a distinct advantage in 
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not requiring carefully maintained velocity distributions for thermal barriers 

and ambipolar po~ential control. More important, however, is the realization 

that electrostatic ~otential plugs in tandem mirrors contain low energy 

particles much better than high-energy particles which can escape out the ends 

if their energy exceeds the barrier height. The opposite is true for our 

linked mirrors where the trapping rate, and hence the loss rate, in the 

helical sections is much lower for energetic particles than for the low­

energy component. 

A serious problem of linked mirrors, in addition to the stability 

question, is the large size that such systems are likely to have. This 

problem is also mentioned by the proponents of the Oracon device [3]. The 

latter has considerable similarity with ours, but the links are more complex 

and do not provide a rotational transform. 

VIII. Conclusion 

The good confinement of passing particles in the device means that 

helical linking does the important job of transporting particles from one 

straight section to the next one very well. This implies substantial recovery 

of the particles, which would have been lost otherwise. We may expect a 

reasonably high value of beta in the straight section. However the problem of 

stability of the device needs to be solved. Use of noncircular coils is being 

studied. Stabilization using ponderomotive forces is also possible. 

Concluding, we would say that steady state operation of the device along 

with reasonably high value of average beta and without the problem of 

longitudinal loss, make the scheme of helical linking of mirrors an attractive 

proposition which deserves to be pursued further. 
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Fig. 1 

Figure Captions 

A view of THELMA, with generating cylinder inserted. Note that 

circular loops have been represented as polygons. "H", "S", and "G" 

represent helical section, straight section and generating cylinder 

~ respectively. 

Fig. 2. Schematic representation of magnetic field on and off-magnetic axis 

(not to scale). Solid and dashed lines represent field on-axis and 

off-axis respectively. Bs' Bt and Bh represent field in the straight 

section, throat and helical section respectively. 

fig. 3. Expected magnetic surface in the middle of helical section on the 

basis of theoretical model. Principal normal is towards the right 

side. Notice the crowding of surfaces in that direction. 

Fig. 4. Computed magnitude of B along the magnetic axis for (a)case with no 

mirror and (b) case with mirrors in the straight section. Notice the 

three-fold symmetry. The data used is for the actual coil system 

studied. The zero of the azimuthal angle is in the middle of a 

helical section. 

Fig. 5. Puncture plot (a) in the middle of straight section and (b) in the 

middle of helical section. Different symbols represent different 

surfaces. Notice that they seem to form distinct closed magnetic 

surfaces. The larger symbol represent starting point and the medium 

sized symbols the point after one complete round of device. 

Fig. 6. Rotational transform in degrees vs. radial distance (ra). Note that 

rotational transform has been computed for one turn of field lines 

only. 
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Fig. 7. Radial distance of drift orbit vs. distance along geometric axis. 

Notice that the radial distance from the axis remains nearly constant 

in the straight section, but changes in the helical section. 

Fig. 8. Drift orbit puncture plot in the middle of the helical section and 

its variation with (a) radial distance, (b) pitch angle (v 11 /v~ = 

2.0,5.0, 50.0); note that all of them are indistinguishable, as 

expected theoretically, (c) sign of charge. An ellipse has been 

fitted to the puncture points. 

Fig. 9. (Maximum displacement of plasma column/radius of solenoid) vs. beta 

for solenoid radius, a=0.08, 0.10 and 0.125 m. 
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Magnitude of B along the magnetic axis 
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Puncture Plot: Mid-Helix 
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Rotational transform vs. ra 
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14 
Plot of R vs Distance along Axis 
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