Submitted to Nuclear Physics B LBL-2068

Preprint

e/

CAN AND DOES THE POMERON OCCUR MORE THAN
ONCE IN A SINGLE PROCESS?

R. Shankar

- October 12, 1973

Prepared for the U, S. Atomic Energy Commission
under Contract W-7405-ENG-48

p N
For Reference

Not to be taken from this room

; )




DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



-1- ' ' LBL-2068
.. ) ) ‘ .
CAN AND DOES THE POMERON OCCUR MORE THAN ONCE IN A SINGLE PROCESS?
" R. Shenkar
Lawrence Berkeley Laboratory

University of California-
Berkeley, California 94720

October 12, 1973

ABSTRACT
A study of high»energy’diffractive amplitudes (the elastic
amplitude bging a special case), has revealed the following regular-
ities at small momentum transfers: (a) They all tend to be almost

purely imaginary, and (b) They all have the same energy dependence,

leading to universal, constant (modulo logarithms) cross sections at

high energies. 'In this paper, it is assumed that these regularities
are produced by an undérlying, common mechanism, which is defined as
the pomeron. The question then addressed is whether the pomeron, so

defined, can and does occur more than once in & single process.

It is demonstrated that various models for .the pomeron (involv-

ing Regge poles, Regge cuts, geometric ideas like diffractidn, ete.)
lead to differenﬁ answers to this guest;on; none of them quantitative;
By.céntrﬁst,'the introduction of the pion-pole dominance (PPFD) hypoth-
esis is shown to lead to a modelfindependent éuantitative answer.
Assuming Jjust the above definition of the pémeron, the PPD hypothesis
predicts certain processes that must be termed multi-pomeron by the
advocates of ail models, and provideé estimates for their cross
sections. The predictions of this hypothesis are compared with

experiment.

This work was supported by the U. S;‘Atomic Energy Commission.
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It is.shbwn that PPD léads to; and sets lower boqnds for,
inclusive triple-pomeron cross sections assuming no mofe than our
general definition of the pomeron. It ;s pointed out that the repeti-
tion of the pomeron--guaranteed by PPD--may be used to set upper bounds
on asymptotic total cross sections. The crucial property of the result
--that total cross sectiops must eventually die away--is that it does
not rely on any model-dependénf prépgrty of the pomeron, such as

factorization.

1. INTRODUCTION

Consider the coliision of two particles a an@ ‘b.. We shall
call this process a diffractive process if:

(1)  The final particles fall into two cluste?s A and B
(in rapidity) centered around pafticles a and b ‘respectively, and

(ii) The quantum numbers of A and B are those of 4 and
b respectively.

It should be emphasized that we use the word diff?actiqnvto

réfer only to these two properties of an event and do not imply any

- underlying optical model mechanism. Clearly elastic events fall under

the class1ofvdiffractive-events as defined above.

Imaginé a rapidity plot of an event in which a and the
cluster A océupy one end, say the left end, while b and B occupy
the_right end., If there is a 1afge.rapidity gap betweén the rightmost
member of A and the leftmost member of B, we shall term it a high
energy diffractive event. The following regularities have been

detected empirically in the study of the amplitudes for such events:
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.(£). ‘They all ténd fo.be purely imaginary in the "forward"

. directions, that is, in regions of small momentum tr&nsfer t across
the large rapidity gap.

(ii)‘ They all have the‘same energy dependenée in the smgll t
region, leading to the universal, constantT cross section.

. In the elastic cﬁse, these two broperties, together with the
thic&l theorem;.iﬁply that total cross sections at high energies are
cpqstant; '

The universality of these two properties of diffractive
amplitudes at high energies'suggests a common underlying mechanism.
It is assumed here that such a meéhanism exists, and is called the
pomeron. No specific models such as Regge poles, .cuts or opfical
descriptions are assumed for the pomeron. It is_éimply defined by.the
contekt in which it occu;s;-as'thé coﬁtrolling mechanism behind.all'
.high energy diffractive processes.

It should be pointed out that the word pomeron was originally
coined by the Reggeists to stané for a factorizéble Regge pole, which
was their model for this mechanism. To.avoid confUSidn, I shall use

_ the word pomeron when referring to the hechanism inia model independent
way and the word Eomerbn pole, when referring to the Reggeist's.model
for’it.

The guestion before us is this; "Can the pomeron, as defined

-above, occur more than once in a single process?" In what fqllows, we
shall try to answer this question restricting ourselves to a subset of

diffractive events--the elastic ones. This is done only in the

Unless otherwise stated, the word constant should be taken modulo

logerithms.

sidering the diVefsity in the models. While the reggeists argue among -

o

interest of simplicity and brevity. In other words, whereas we shall
consider from now on, only those situations in which the pomeron
controls high energy elastic amplitudes, the conclusions we reach about

its multiple occurrence are valid for the pomeron defined in the broad

sense, as the mechanism behind all high energy diffractive events.
Consider the total cross section for two pérticles a and b.

It typically has an energy dependence shown in fig. 1. -There is a low

energy resonance region characterized by sharp bumps which gives way

to a smooth Regge region around SabR' .At higher energies, around

. .
Sab , the Regge region turns into a flat region. The interesting fact

~1is that while the two lower energy regions differ in their shapes as

we change the particles a and b, the region above 8 hes a

»
ab
universal form. From the optical theorem, this implies that the

corresponding elastic amplitudes must have a universal energy dependence

. *
in the forward direction. It is also found in the region above Sgp 2

that the elastic amplitudes are almost purely imaginary at small t..

.This then is the high energy diffractive region referred to earlier and

according to our definition, the pomeron controls the elastic amplitude
) *»

above the "pomerqn threshold”, . 8y, - Cen the pomeron, so defined,

occur more than once in-a singie process?

There is no unanimity among the theorists in their answvers,

since different factions of theorists believe in different models and

different models give different answers. This is not surprising, con-
themselves on whether to represent the pomeron by a factorizable Regge
pole or by some nonfactoriiable object like a cut in the J-plane; the

advocates of the geometric models speak in terms of absorbing target
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discs and projectiles diffracting around them. This state of affairs

_ is elaborated in section 2.

~Is there a model independent way of answering the question?
Cén one, assuming no more then a definition of the pomeron as the
mechanism controlliﬁg all high energy elastic amplitudes, decide the
question of its muitiple occurrence?  One can, if oné steps outside
current high energy ideas and invokes the old notionéfpion-pole
dom;nanée (PPD).» It is shown in section.5 that armed with this hypoth-
esis, oné ?an define multi-pomeron processes, and estimate tﬁeir cross

sections, assuming no more than our general definition of the pomeron.

In short, PFD provides.a model-i_xx’dependentT and quantitative answer to

the question of multi-pomeron processes. The predictions of this

hypothesis are compared with experiment in section k.

One -can also use PPD to define and set lower bounds for

inclusive triple-pomeron cross sections; as well as to set upper bounds

on asymptotic, pomeron dominated cross sections; all in a model

independent fashion. Tﬁese ideas are discussed in section 5.

- 2. WHAT DO THE DIFFERENT MODELS OF THE POMERON SAY ABOUT THE QUESTION ‘

OF MULTI -POMERON PROCESSES? A
I will consider Just three models. They will suffice to show

that the question of multi-pomeron processes, if analyzed within the

‘language of the ex1sting theories of the pomeron, becomes hlghly model

dependent.

T The PPD hypothesis is, itself, a model. The words "model indepen-
dent," as used in this paper, should be taken to mean "independent

of any models for the pomeron."”

6-

A. The pomeron pole model

In the Regge language, a pomeron pole at* J =1, with even
signature, is the most economical way to explain the regularities.
mentioned earlier. The unit intercept provides the Sl behavior,
while thg signature factor,r i~ cot(% m;P(ti), pr§vides the correct
phase at t = 0. '

The elastic amplltude, for a typical ab —ab process, has the.
following form, when dominated by the pomeron polg:

Moy ap (558 = Bogp(®) B) T Bup(t) . (2)

This amplitude is represented pictorially in fig. 2. The factorized |
form_a}lows us to ebstract the pole, with a trajector& aP(t),rand'
speak of it in other reactions. Cénsider, for example, the process
ab A»abn+ﬁ-; in a part of phase space vhere the‘rapiﬁity ordering of
the particles is as shown in fig. };

. . ,
If the subenergy Sa+ = (Paf 4 P+)2 >8,, » and the subenergy

8. = (be + P_)2 > Sb_*, Regge theory gives for the amplitude,
aP(tl) '
Matadbn+n- = »BaaP(tl)(sa+) T;(nPP(Svm ? 1taty)
ap(ty) ' -
x (sb-) BbbP(t-E) IR (2'2)

as depicted in fig. b.
Let us summarize what Regge theory tells us, granted that the

pomeron is indeed a factorizable pole.

T When I speak of a moving singularity, such as the pomeron pole,

ap(t),- being at J = 1, I mean aP(O) = 1.
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"<a) ‘It clearly defiﬁes a douﬁle-pomeron process as one in which
the pomeron pole occurs twice in the amplitude, as in eq. (2.2) or
fig. 4. The pomeron pole encountered here is the one from the elastic
reaction that originally defined it [eq. (2.1) or fig. 21.

(b) While Regge theory says thaﬁ the external couplings,
p(t), are the‘éamé ones encountered in the elastic case, all it says
of Y;Athe central coupling, is that 7y it independent of & and b.
It gives neither the écale of Y, ner the;depéndgnce §n the variables,
smc, t, t), and t,.

(c) Regge theory does, however, give the dependence of the
amplitude on the subenergies, Sa+ and Sb-' This dependence mey be
used by the éxperimentalist to identify double-pomeron processes.
| In short, granted a pomerén prole, Regge theory admits and
defines a double-pomeron process, but leaves it to experiment to set
_ the scale or rate. This conclﬁsion_is true for a general multi—poméroh

process.

B. The Regge cut model of the pomeron

Theoretical analysis following the introduction of the pomeron

poie has indicated that such a simple description of the pomeron leads

‘T_ to inconsisfencies, For one thing, if there is a pomeron pole at

~J =1, as suggested by the observed constancy of total cross séctions,
the multi-pomeron branch points accumulate at J =1 [1]. For anofher,
starting with a factoriiable pomeron pole at J = 1, one can get into
situations where some partiel cross sections exceed the total, unless
the triple-pomeron coupling, éPPP(t)’ v;nishes at t.= 0 [2,12]. At
present, when neither gPPP(O) nor the importance of multi-pomeron
bfanch.points is known, the J-plane singularity associated with the

pomeron is obscure. What does Regge theory say about the possibility
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of multi-pomeron processes, if the pomeron is represented by a non-
factorizable J-plane éingularity, such as a cut? Sfrictly.spéaking,
it is incorrect to speak of the recurrence (single or multiple), of a
nonfactorizable singulézity. The reason is th;t such singularities,
unlikg factorizable poles, do not have an identity independent of the -
specific reaction they occur in. PFor example, if the leading J-plane
singularity in the high-energy eléstic ab amplitude were a cut, we
could not dissociate.ﬁhe cuf from the particles a and b. The only -

time we can be sure that this same cut occurs in a different process,

" is when the amplitude involves explicitly the high energy a-b

amplitude as a factor.-

There  is, however, a slightly nonrigorous way of speaking of
a nonfactorizablé singularity without associatingit with a specific
reaction, and tﬁat is by its location in the J-plane or, alternativeiy,

by the energy dependence it produces. Motivated by the universal high

_energy dependence of all total cross sections, one may assume that

their J-planes are universal, in that their leadingfsingularities will

have the same location. If; therefore, one defines the salient feature

of the pomeron to be this energy dependence, one mayvdefine a multi- ‘
pomeron process as one in which this dependence is repeated. For
example, in the reaction ab —abrg'x discussed earlier (fig. 3), with

* : »
8. _>8 and S,_>8,_, if one finds the same dependence of the

a+ a+ -~
amplitude on thesé variables as in the elastic a-pg and b-g reictions
respectively, one may refer to this reaction as a double-pomeron
process. Whilé such a definition tells the experimentglist what to

look for, Regge-cut theory does not provide an explicit form such as

eq. (2.2), for the amplitude of this process.
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C. The geometric or diffraction model [3]

In this model, the collision of particles a and b 1is
viewed in geometric terms. The projectile a sees the target b as
a disc. At high energies, the disc becomes highly absorbing, due to
the_prepoﬁderance of inelastic channelsf In a naive sense, the con-
stancy of total cross sections may be understood in terms of a constant
radius, R, of the disc. ‘The phase is la;geiy controlled by the
absorptivity. To‘see this connection, consider the following rather
artificial; but illustrative.example. For a collision of spinless

particles, the partial wave series for the amplitude is given by

- Pz(cos e) .
2ik

© : | . 2'.8
M(s,0) = z:(u+1fgzi:i;42

£=0

Let us résort to the following simple minded description of the
scattering: _ ‘ ‘

(a) ‘The target disc absorbs (nz = 0) all partial waves that
impihge oﬁ it, i.e., till £ = Emax = kR; where k is tye momentum

of the projectile in the target rest frame,

(v) A1l highér partial waves go. unaffected, (ne =1, 8, = 0).

‘The phase of the amplitude is then clearly imaginary. 1In

‘practice, of course, the description is more complicated [4],

It is curious that fhe geometric diffraction model, which,
despite ifs vastly different logic, concurs with the Reggé pole model
regarding many of the featuQes of the pomeron in high energy glastic
amplitudes, takes a vefy different étand on the question of multi;
pomeron processes. Where are the two ébsorbing dises in the reaction

ah —sabn+ﬂ- that might justify calling this reaction & double-
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pomeron process? Advocates of the-geometric model see no reason for--
indeed no meaning for--the repetition of tpe pomeron.

Having discussed at some length. the various models of the
pomeron and the varying answers they give to the question of multi-
pomeron processes, we are now ready to embark on a study of the PPD

hypothesis and the model-independent answer it provides.

3. THE PION POLE DOMINANCE HYPOTHESIS
In this section, ﬁhe question of multi-pomeron processes will
be discussed, assuming no more than our genéral definition of the
pomeron. Fof simplicity, let us consider a specific reaction,
x_p -On-Pﬂ+ﬂ-. Let us go to the part.of phése space shown in the

rapidity plot of fig. 5. It is a general property of the amplitude

that, when t = (Paf +P, - Pal)z = p2, it is given by a pion pole,

with a factorizable residue:

Aﬁ+n"vL) Aﬂ-P(VR)‘
M, :. Tz ) (3.1)
T P2 Prox tes ‘ =B . . :

as pictorially represented in fig. 6.

In eq. (3.1), the factor A N _(VL) is:the elastic, ot
n o

scattering amplitude, as a function of the variables, VL’

with the left blob. A similar definition holds for A _ (VR) at the
. np

associated

right blob.
The crucial point is that if the two subenergieé, Sa+ and

: » ) »*
Sa_, exceed the pomeron thresholds, Sa+ and Sb- , the pomeron will
occur in each blob by definition, and produce the characteristic

subenergy dependence and phase in the two elastic amplitudes.
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This'prbcé;s ;mst be termed double-pomeron by any standards,
since the precise situafioné that contain the pdmeron by definition,
occur twice. The form of the ampliﬁude_in eq. (3.1) allows us another
way of seeiné this. Let us use, in eq. (3.1), the priﬁciple of CPT

invariance to replace the amplitude A _ (Vh) by the amplitude for
P '
the CPT-transformed process, (V ). We may now see the amplitude

M as descrlblng a two stage processwthereaction n p -5 p followed
by the reaction x Y o n---in which the 'x* going into the second
collisioh is the one that came out of the first. At t = ug, this «
is a real pion, and the two collisions are real collisions and can be
separated in space;time. Clearly these two elastic events are

independent, and the pomeron, whatever be the model for it, will occur

in each, if the subenergies are above the pomeron thresholds. We thus

see that there are really two discs in this process--one in each elastic

collision. By the same tqken, there are two pomeron poles or two Regge
cuts or two of whatever-you-think-the-pomeron-is. There is, however,

a catch to this argument. The point t ;-pz where fhese considera-
tions apply, is outside the physical region which is confined to
negative t. The redeeming factor is the smallness of_the quantity .
w2 (x~0.02 Gev?) which prompts the following hypothesis of PPD:

Tﬁe amplitude in the physical region is given by the‘factorizable
function [eq. (3.1)] defined at the pole, multiplied by a t-dependent
form factor, f(t).- Although the entire physical region is not close
to the pion pole, the region where the amplitude is significant is
close to it, since the (ampli’cude)2 |

contains the factors

(t - p2)-2 and f(t), both of which are rapidly falling functions A

+ -
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of t' = -t 1. Support for the PPD hypothesis and the specific choice
of the form factor appropriate to this problem are discussed at length
in the.Appendix. For the present let us accept a simple-minded form

factor given by f£(t') =1 for 0 <t' <T, and zero beyond. - The

Appendix will justify this choice and provide the value for T.

Starting with the matrix element M of eq. (3.1), we can
integrate [M[2 over t' up to T, over the blob subenefgies from
the pomeron thresholds up to the kinematically allowed maxiﬁa, to get
CE?(S,T), the double-pomeron cross section for this ordering (fig. 5)

of the central pions. The following is the result:

- s'r/(sb
. el
GE?(S’T) 12ﬂ ‘/(p as, ., L °ﬂ+ﬂ-(sa+)

((sT/s, +)+m2]
x as, (s,_ - n)o% (8,)
* ' P
S,
. T ) 1 B .
x R 5:-'?3 m . (3.2)

tayn=l8, (s, _n")/s]

V This formula is from ref.{5],adapted to a situation where the energies,

S, S W and Sb are large and the pion mass is ignored. (The last
a - .

approximationrleads,to little error, due to the téin limit.) The

T We shall be using both variables t' and t in the future.
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kinematical upper limit on the subenergies guarantees that t&in never
exceeds T. The proton mass is m. °

To estimate ng(S,T) . from eq. (5.2); one can feed in the

empirical x-n and gn-p cross sections and perform a numerical

-integration. Since these calculations are anyway quite approximate,

let us resort to a simplification that gives & quick estimate. Let us

replace the elastic cross sections, which vary slightly with the sub-
. 4 .

energies, by constants Uez(m), that represent their average behavior

in the region between the pomeron thresholds and the kinematically

‘allowed maxima. With this simplification the integral can be easily

performed to give

- el,- ‘
: Tx 2.5 % 0. (@)X 6 () [
-DP nx %P X 1 1
OE_(S,T) = - 16’(5 [§108Z -E+2'- E]‘mb
(3.3)
where
ST
Z = .

Sar (Sp - 1)

5mb, 0°(e) =5m, S * 2 eV,

L ! el
o
Choosing ﬂ“(w) ot ot

s, = b gV, T=0.25 Gev®, leads to

&P ol s at 8 = 386 GeV-.

4

The value of § 1is chosen to facilitaﬁe}comparisén with recent
experiments performed at NAL at 2O5VGeV/b. While the choice of T
is discussed in the Appendix, it must be mentioned here that it could

be lower in principle, but not likely to be lower than 0.125 GeV2.

-1l

The pomeron thresholds are chosen to eliminate all prominent reso-
nances. Some contamination from lower trajectories is inevitable.
This question is taken up later.

A similar calculation for O?f, the cross section for events
with the other ordering of the two central pions in rapidity, yields a

formula similar to eq. (3.1), with

ST

%, ® D
Sa- (Sb+ - o)

In this. formula, Sa-* is the pomeron threshold for a s x system.
Due to the lack of any structure in the cross section in this channel,
it is hard to select a value for sa_*. The following alternative
criterion for pomeron dominance is suggested and is to be observed
both in the calculation of the theoretical éstimate and in the experi-
mental selection of double-pomeron events: The . subsystem is
pomeron dominated when the rapidity gap 4y, between the two pions is
two units or more. For a phenomenological connectién between Ay > 2

and pomeron dominance, see ref.[7]. The theoretical estimate, which

deals with subenergies rather than rapidities, requires us to convert

o : . *
. & minimum rapidity gap 4y = 2 into a minimum subenergy SB_ . If the

two pions have transverse momenta ?; and F: , and have Ay = 2

2,,12 + Q?alg + pe)i <|§'b[2 + pz)% cosh 2

their subenergy is

s, (B,P)
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Assuming that on the average,

1) Bl = [B] =~ 0.3 cev/e

(i1) i?a-FL ~ 0

parameters same as before, we get

PP - 204w at s = 386 Geve.

-+

The total double-pomeron cross section is given by

(s = 386 Gevz) 0?_’ + 01_)1: = %3.8 uB

The same set of parameters yields for the reaction pp -0ppﬂ+ﬂ- a
total double-pomeron cross section of 31.3 pb at 205 GeV/c
(s = 387 GeV2).

Comparison with experiment: Recently two groups have measured double

. pomeron cross sections aé defined in this paper. The reaction
xP-nprnx at 205 GeV/c was studied by an NAL-LEL-UC Berkeley
collaboration [7], while the reaction pp — ppn n &t 205 GeV/c

was studied by the Argonne group [8]. Omitting details of thevexperi-
-ments since ﬁhey may be found in tﬁe references guoted, I present
below thé comparison between the-thesretical estimates of the cross

sections and the empirically measured values.

P

Reaction lab ‘0 (experiment) g_(theory)
X P = PR 205 GeV/c 30 & 10 b 3%.8 pb
PP = DpPr . . 205 GeV/e Wi 1 15 pb 31.% ub

*
we get S = 0.8 GeVE. With the other:

<16~

We find that the measured cross sections are compatible wiﬁi fhe_
theoretical estimates. As a result of the rather low values of the

S* used heré, there is surely some contamination from lower trajec-
tories. Raising these minimum subenergies (in the theoretical estimate
and in the experimental selection of events) will lead to "purer”
double-pomeron cross sections. At:the present energies and statistics,

such a move will lead to préhibitively low cross sections. In future

‘experiments with higher energies or statisticéﬁgr both, this will be a

desirable as well as feasibie modification.

In addition to providing an estimate of the integrated cross
section, the PPD hypothesis also mekes two predictions on differential
cross sections. These could not be meaningfuily tested with the
present statistics.

(i) The .t' distribution: Consider the general reaction ab —aabn+ﬂ_.

By integrating eq. (3.2) over the subenergies we obtain

el el .
2.5 x 0 (w) 0 (w) : ,
do ai bj 1 11 2
L A xf(Z)[—logZ- +—]mb/GeV .
at 1600 e L

(3.3")

This formule refers to a specific rapidity ordering of the central

pions--pion i nearest to a and pion J is nearest to b. In the

. 2 * 2
formula, z =t'/t,, where t. = (8 - m, )(Sbj -m )/s and £(2)

0 0 ai-
is the form factor. As mentioned in the Appendix, [eq. (A.3)], the
. e
form factor appropriate to these calculations is f(t') = e bt . In

eqns. (3.2 and 3.3%), where the aim was to integrate over t', this
form was replaced for convenience by f(t') =1 for 0 <t' <T =1/

and zero beyond. For the differential cross section of course, we
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: .munt use theAexponential form. Typically do/dt’ rises from -t .up
‘E:to 10 to and falls monotonicall&_thereafter.’ For example, in the
process depicted in fig. 6, t0v= 0.016 GeV2 and the peak is around
=.6.167GeV2. Unlike quasi;two-body.ieactions, which typically fall
. monotonically in t'. these cross sections are predicted to first rise
:_and then fall. They -owe this property to the fact that here the two
» blpb masses do not have to lie in some resonance band but are allowed
ﬁouvary. As t’ V;ncreasebfrom 'to, the allowed range of mass varia-

tion increases, while the factors f(t') and. (t' + p2)2 decrease.

c

o (41) Distribution in § . ¢ According to the Steinman relations 9],

' the amplitude cannot have simaltaneous poles in -t and in sﬂ“c,'thev
(ma.ss)2 of the two central pions. Thus the residue, R, of the pole at

t = ua, will not have pole in snﬂc, say>due to the f meson; i

According to the‘iwmﬂhypothesis, there exists a (phys;cal) region of
small t' (= -t) in which the amplitude is essentially what is found
at the pole (except for a t-dependent form»factor which introduces no
singularity in' Sﬂﬂc). In this region nf "small". t', if one divides
the events into bins (of width 0.05 GeV2 for:example) and plots

within each bin the distribution of events versus Sﬂﬂc, one should see

" none of the resonances of the dipion syStem, »Connersely,‘the t!

. above which these resonances show up would mark the breakdown of the
PPD hypothesis, telling us what "small" t‘, means. . Such a test, which
can be done in qQuasi-two-body reactions as well, will tell us in one

. stroke the validity of the'steinnan relations as stated above, and the

range of validity of the PPD hypothesis.

We thus infer from the Steinman relations that PPD is challenged

not only by the neglected singularities in t. but also by the

. relations. In our example, if we focus on the f-meson pole in Smc
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-gingularities in Sxﬂc. At a fixed value of 'sﬂic; if we increase

-t, the neglected singularities in t compete with the éion pole.
At eome fixed t, if we vary s%ﬂc, B pole in Smc can dominate the
amplitude if we get-sufficiently close to it. Shouid this hapben, the
pion‘pole will be absent in ihe amplitude according to nhe Steinman
s
the closest we can get to.it, by verying"sﬂnc Valong the reel axis,
is given by the imaginary part of the pole position, which is equal to
the product of its mass and width, with.a,value_of about- 0.2 GeV2.

At this point of closest approach,_we can'say roughly that PPD wiil be
challenged by the f-meson pole for -t around 0.2 Geva, assuming
equal residues for the tﬁo poles.. Thus the breakdown of the PPD
hypothesis can be b:ought'abouf by either.the neglected singulerities
in t or the neglected singularities in - s c. The former could be

detected by & study of density matrix elements in quasi-two-body

[

reactions and the latter by a search for resonances in s
It is interesting to study two earlier attempts at detecting
double-pomeron processes in the light of the PPD hypothesis. Leipes,

Zweig, and Robertson (LZR) [10] studied x p —»{p,f{ at 25 Gev/e

while Rushbrooke and Webber (RW) [11] studied pp —9ppn+x_ _at 625

GeV/c. Both assumed the double-Regge pole form of the amplitude,
eq. (2.2), fbr_the double-pomeron process and found that such an
amplitude had negligible weight in their fit to the double-Regge
region. This means either that the central coupling v is very small,
or thet the pomeron is not a factorizable pole and the amplitude

doesn't contain a factored component like eq. (2.2).
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Does the failure of these two analyses to detect double-pomeron
processes confiict_with the estimates of - PPD? No! The reason is that
ﬁhe PPD formuia gives a miniscule U4 pb for the experiment of LZR
(s =‘50 GeVz) and a similaer result for that>of RW. Instead of using
the foimula we can see the smallness of the PPD estimate in tﬁe following
way. For the double-pomeron process to occur via PPD, we require not
only that the two eﬁd blobs be massive, but that the central link be
kihematically allowed to have small t's. In the x D -on'pg+n-

reaction that we just discussed, we saw that

Assuming that the only sizeable cross sections are for those reactions
in which a t', of say 0.1 Geve, is accessible, we need an S given

by

* * 2
(s - m7) 1
b- <« —

s ' 10

Sa+

using the smallest values of sa+ and sb- compatible with the double-~

poméron region. Using the S* values quoted earlier, this céndition
requires § > b5 GeV2, a requirement barely met in the LZR experiment.
A similar considéfation applies to the RW experiment.

In the language of these two analyses, involving pomeron poles,
the PPD hypothesis sets . a lower bound on the central coupling,

s ©

s bty tP), by focussing on the pion pole at t = “2’ with a
o 2 : !

residue known from elastic experiments (fig. 7).

In their analysis, LZR conclude that the absence of an f

C

resonance in § further corroborates the absence of the double-
. m
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pomeron events. This conclusion is true only as long as 71 1is

controlled by a pole in SmC (fig. 8). If such a pole were present
with a substantial residue, it would lead to double-pomeron events:.at
lower energies, since t' need nqt be small. Their analysis eséeﬂ;
tially indicates the absence of such a pole.

In the PPb induced, double-pomeron processes, the situetion is
c

Just the opposite--namely, the absence of resonant structure in sIm

accompanies the controlling mechanism, the pion pole.

5. FURTHER APPLICATIONS OF F¥D

A. Triple-pomeron cross sections

The PPD hypothesis, together with the definition of the pomerén,
may be used to define and set lower bounds for inclusive triple-pomeron
cross sections. Consider, for example, the reaction
p(Pa) + p(Pb) -»p(Pc) + X, the parentheses containing the momenta of the
protons. let us restrict ourselves to events in which Pc is very

clese to Pa' Let Mx be the mass of the undetected particles, X.

We are interested in the inclusive crossvsection,
do

;—-——-??-—— and'.M 2
at a(M,"/s)

o
. .

. . ‘ 2 ‘»
, where tv=‘ (Pc - Pa)‘ = (Pa. + P - Pc)
Consider all exclusive events in this region with the property that of
all the particles in the cluster X, the one nearest to the proton, in
rapidity, is a pion of momentum Pd (fig. 9). The contribution of
these exclusive events to the inclusive cross section involves, among

other integrations, one over u = (Pd +P - Pa)z, from zero to the

c

kinematical limit in the negative u region. At u = p2, the

amplitude factorizes:

-
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. At Ay l)

ix-»uz vom

(5-1)

Using PPD, we may integrate this ]M]Q, over a region of small negative

u, up to ~U. The integral over Vk. is done using the optical

‘theorem. These operations are best represented pictorially (fig. 10).

The result is ac”/at d(sz/s), the contribution to do/dat(a sz/s)

from the pion polé in . u.

if the three blobs of fig. 10 have subenergies above the pomeron
thresholds, the pomeron will occur in each of them doing its job. This
then is a triple-pomeron process in a model-independent sense. One can

estimate the magnitude of this pion-pole contribution using »p elastic

and total'cross section data.

It is only when one speaks of a triple-pomeron pole coupling,

: gPPP(t); that one needs to put pomeron poles in the blobs. Such a

calculation has been done by Sorengen [6] who estimated gPPP(t). His

- paper also contains the phase space details omitted here.

B. Asymptotic bounds on total cross sections

Theorists have repeatedly been driven [2,12] to the conclu-

,:gioﬁ that if the pomeron were to be a factorizable Regge pole, it

couldn't be at J=1 (i.e., all total cross sections must eventually
die away), unless the ﬁriplé-pomeron coupling gPPP(t) vanished at
t = 0. This result is arrived at by repeating the pomeron in certain

:
Judiciously chosen circumstances, either exclusively or inclusively.

To ensure its repetition these authors assumed its factorization, and

_their results seem to rely on this assumptidn.

On the other hand, we have seen that using PPD, théypomeroh

may be ke?t inside blobs and repeated using just the factorizéblitiy

e . -22-

of the pion pole. It follows that the ailments accompanying an

asymptotically constant,T pomeron-dominated cross section will ensue,

forcing total cross sections to eventually die away. The cruciél
feature of the result is that it is independent of the J-plane
singularity associated with the pomeron.

To get the bounds, one needs to find appropriate situations
with repeated pomerons, to avoid pitfalls of muitiple'counting, and to
do the ﬁhase space. These details wiil be discussed'and the bounds

derived in a subseguent paper.

6. CONCLUSIONS

:'Thé-uniﬁeféﬁl’energy dependence end phase of high-energy

diffractive amplitudes (of which the elastic is a special case),

suggests an underlying mechanism. In this paper, suéh a mechanism was
assumed to exist, and defined to be the gomeron. The quéstion taken
up was "Can and does the pomeron, so defined, occur more than once in
a single process?" An analysis of various models of the pogeron'
indicated that different models gave different results, none of them
quantitative. The introduction of the PPD hypothesis provided a
model independent, quantitative answer whose utility wes demonstrated
in the specific reaction, x p —ou-pﬂ+n-. At the pion pole (fig. 6),
the production amplitude faetored into a prodﬁct of two elastic

amplitudes, A . - and A _ Since these elastic amplitudes contain

T TP

the pomeron by definition at high energies; the situation at the pion

pole is a double-pomeron process in a model independent sense. In

T

In this context the word "constant” has the usual meaning and not

modulo logs.



terms of the space-time description outlined earl;er,-possible-at.
t = u2, one may see the process as one in which a real n+ of mass y,
first suffers an elastic collision Qiﬁh'a E, and then proceeds to

 collide‘e1astically with the x . Since there are two collisions, there

are two pomerons, grénted iarge enough subenergies. The PPD hypothesis

allows a continuation of these ideas, valid at ; pa,vto the ngarby
physical region. |

A comparison with two recent experiments, x D f*x-pﬁfﬂ- and
pf -’ppn+n-, both at 205 GeV/ec, shows that ﬁhe observed cross sections
are compatible with the theoretical estimates. Further tests of the
PFD hypothesis, which must await experiments with greatér energies,
statistics or both, are suggeéted. A study of two earlier attempts at
detecfing double-pomeron cross sections shows that their negative
results are compafible with the PPD model. .

It was shown that PPD,_tbgether with no more than our general
definition of the pomeron, leads to lower bounds on triple-pomeron
processes. It was pointed out that using PPD to repeat the pomeron,
one could derive upper bounds on the asymptotic pomeron dominated cross
sections, without making model-dependeﬁt assumptions about the pomeron,
such as its.factorizability. If the preseht degree of validity of PPD.
persists asymﬁtotically, the‘result that.fotal cross sections must
eventually die away seems inescapable, no matter what the nature of
the singularity associated with the pomeron.

The philosophy throughout this paper has been to use the pion
to analyze the pomeron, rathér than to use the pomeron_to analyze
itself. The pomeron, whose nature is énigmatic, is kept within blobs,
andbonly the pion, whose properties (particularly its factorizability)

are certain, is explicitly shown. The catch is that the

-2l

factorizability of the amplitude is guaranteed only at the pion pole
and not in the physical region. One has to assume, via PPD, that this
crucial property is not lost in the transit from‘the pole, to the
physical region, 0.02.GeV2. away. This seems plausible (dhe toléhe .
smallness of pe), has worked in the past, works at § ~ LOO GeV2, but

can never be proved.
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‘region of small t', knowing its behavior at the pole.

A. The S-matrix approach.

range (in t') of validity.

APPENDIX
The arguments supporting the -existence of double-pomeron cross
sections rested on two assumptions:

(1) At the pion pole the amplitude. factorizes--the residue R

48 a product of two elastic amplitudes, each of which will contain the

pomeron  if the subeneréies are large enough. .
{2) .This behavior will persist in the small t' region. The
only difference from the situatlon at the pole will ‘be the inclusxon
of a form factor, f(t), (the PPD hypothesis).
The first assumption will‘not be discussed here si;ce it is
a widely accepted and basic property of the amplitﬁde. The second
notion involfes a guess as to how the amplitude behaves in the physical

These are

essentially two schools of thought that make two different guesses.

Here the problem is viewed as that of
guessing the behavior of an analytic function near a pole with a known
residue. There is no systeﬁatic way to do this. The PPD hypothesis

is & guess prompted by the notion thaﬁ since the physical region is

- close to the pole, the amplitude should not vary toc much in going

from the pole to the physical region. Only experimeht can decide_the
vaiidity of such a guess and if it proves a valid guess, to decide its
We shall return to this question later.

B. The absorption model [13-15]. This model has proved very useful

in the study of quasi-two-body reactions.
2
n

Here one essentially

identifiesvthe amplitude at t = with a single Feynman diagram

(the "pion pole" diagram), since at this point it dominates over the

other diagrams (fig. 1lla). u2

Away from t = the neglected diagrams

vBy contrast, the study of the density matrix elements,

have to be considered. The crux of the absorption model is that the
effect of the neglected diagrams may be incorpcrated by the inclusion

of initial and final state interactions (fig. 11b) [13,15]. Once again

only experiment can decide the validity of this guess.

Over the last few years, numerous quas1-two—body reactions have
been studied to test and compare the two guesses or models. Both
models are required to explain the empirical fact that often the fall
in t of the differential cross section is sharper than vwhat the pion -
(t - w92

this is achieved by the incorporation of form factor [16,17]. While

pole factor would indicate. In the S-matrix approach,
these form factors, suitable for describing final sﬁates containing
resonences or stable particles of definite spin, have kinematical and
dynamical notions behind them, they are'not free of arbitrary parameters
that nust be deduced from experiment [18].

In the absorption model, the sharp collimation in t is a

result of the initial and final state interactions. To the extent that

the initial state interaction is given by the elastic scattering data

(see fig. 1lb), it is free of parameters. The final state interactionms,
since they are not subject to direct measurement, must be handled
either via addit1onal assumptions or additional parameters that may be
empiricelly determined [13].

In short, both models can usually describe aﬁy-differential
cross section do/dt' with the help of Judiciously chcsen parameters.
Pyy of the

decaying final state resonances, such as the po in the reaction
P —;pOAP, can distinguish the two models. The FFD model, with a

factorizable amplitude, predicts that in the decay of the p-meson, all
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the density matrix eléments Wili vanish for all values of %' in the
Gottfried-Jackson frame, with the exception of P00’ which will be
unity [13]. The absorption model, ;ith a nonfactorizable amplitude can
admit e nonzero value for all pis. However, foi small. t' 'the pre;
dictions of this model approach . the vﬁlues given by the PPD modgl.'
The empiricﬁl ;ituation is as follows. One finds thgt for
small t' (usually up to 0.15-0.2 GeV) Poo is between 6,8 and
1, while the others are very sm#ll, uéually-ardund 0.05 [19-21].
For larger values of t', the ;esults differ substantially from the
PPD predictions; The absorptionvmodel, although parameter dépendent,is
able to accommodate and describe these matrix elements in this region.
We have seen that in our problem, the bulk of the tf integra-
tion-comes from small t' (around 0.15 Gev2 for the specific process
depicted in fig. 6). Based on the study of the density matrix elements
in this region, we may say that in this range.of t', the PFD and
absorption models are iqdistinguishable and in agreement with experi-
ment. After all both of them have toAagree at the ﬁole, and if the
process is a smooth one the merger could be expected around small t'.
Furthef evidence for factorization at small t' comes from a
‘study of ﬂfp'—;poﬂ'p at 6 and 8 GeV/c, described in ref; [22]. Here.
the PPD model is assumed for

t' - t&in < 0.3 GeV2 and the off-shell xp

cross section (lower vertex in fig. 12a) dUOff/

da, 1is extracted and
found to have the same angular depgndence as its on-shell couhterpart,
except.for an overall scale. It is also found that if the lower vertex
‘ is allowed to be inelaﬁtic (lower vertex, fig; 12b), and the off-shell
cross section for the prﬁcess 1 p —+n_ﬁop ;s derived, then the ratio

OOff(ﬂ—p —»n-nop)/GOff(nTp — 5 p) agrees with the on-shell ratio.

'p meson and seeing at what t'
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Another factor that controls the success of PPFD, in addition
to the smallness of t', is the absence of competing mechanisms. " In
the process P —»n-pn+&- it is clear that the link carrying the

momentum transfer t ~must have IG

= 1. The same conclusion may be
reached for the process . pp — ppr = if one makes the additioﬁéi
assumption that the two protons at the two ends do not send any
quantum numbers to the central pions (which is tantamount-te-assuming
a factorizable pomeron controlling the two end blobs). This ﬁeans thﬁt
the\-n and the >A2 are the only possible objects that can be
exchanged across that link. A study of the reaction 5 p —»pon [231,
shows that when the x and the A2 are présent, the A2 begins to
stand out for t' - téin. greater than O.} Gevz. This cohclusion is
based on & study of the density matrix elements of the decaying
the PPD predictions break down,
forcing the inclusion of the A2 in the description. While this state
of affairs is not expected to.be universal, it does lend some suﬁport
to odr ignoring thé Az at SmAller'valqés of t'.

‘If one is persuéded by the—above-mentioned aréuments that the
PPD model will provide a good description of a process at small t's,
there still‘remains the problem of what form factor is to be emplayéd
in the double-pomefon process. The standard form factors_of'the quasi~
two-body reactions are not applicabie hefe since they pértain to final
states of definite spins--resonances or stable particles; while in the
double-pomeron case these resonances have been séecifically excluded.
There is, however, a theoretical model’ of form factors that is valid
in precisely ihis contéxt. .By solving the multiperipheral integral

equation with variable masses for the external pions it is possible to

 derive the dependence of the high—energy elastic amplitudes on the

Ta

e’
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external ﬁasses,bi.e.; the .form factors [24]. Omittiﬁg details of the
’ calcﬁlation, as they may be fouhd in the referenée quoted, I present
here the final formula fhat is applicable to the present process: If
twovon-shell pions couple to a reggeon of épin a(u) and mass (u)%,
with a coupling B(u), then the effect 6f'taking 6ne_bf the pions off-

1 , .
shell to a mass (t)2, changes the coupling to

. EE. a 1+a(u) -
. o . ) uo -v2 +-E . B .
. 5v(“:t_)i = 8(u) ug - %(u‘g‘_ %.4. t) . (a.1)

In this fo;mula Uy is the scale factor:and-represents.the (mass)2 of

the x-px resonance that goes into the kernel of the integral equation.
| Since‘theré are at least twb proginent resonances to be considered?'
namely the p- and the f-mesons, the authors of ref. [24] recommend a
value of 1 GeV2 for Ugs which in addition to representing the mean of
the twq resonance masses also gives & good result in the numerical solu-
tion of the integral équatibn [2&]. in principle'the value of u,
could be smal;er, but not émglier than 0.5 Gev2, the maés squared.of
_ the meson. - . |
In incorporating these form factors into our calculation the
_ followling cons;derations are relevant:*b

. '(i) singe ‘u repre;ents the momentuﬁ transfer in the two

elastic pfocesées at the fwo ends of fhé pibn link (see, for example,
fig. 6), it is usually very small, since at high energieg, the bulk of
the elastic cross section comes from u < 0.1 Gevzf We may therefore
drop factors like wu/2 and u/k, as well as u2 in eq. (A.1), in

comparison with Uy and t. While t can be very smail, it is only

t We are forced here to associate pomefon Regge poles with the two
pomerqné in the blobs (see fig. 6). This is a necessary evil for

getting the form factors. -
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4at larger t (around 0.15 orxo.2 Gevz) that the form factor plays a
significant réle,providing the cut off. We shall ignore the slope of

the pomeron and set o = 1. The form factor then simplifies to

u 14
[¢]

1
uo--z-t

g(u,t) = g(u) . (a.2)

(ii) This factor occurs to the fourth power in the double-

pomeron cross section and leads-to an overall form factor

u 8 bt/ug
£(t) = |—2—| = e

uo--ét

=4t
e /uo (A.3)

for small t':. Choosing uy =1 Gev2 leads to a form factor

2(t') = e ' [unile u, = 0.5 GeV? would lead to £(t') = e O]

For simplicity this fqrm'factor was réplaced by a flat one that éimply
cut off the 1nteéral [eq. (3.2)] at t' = 1/h GeV2, leading to a

result like eq. (3.3). If inétead, one performs the intggrations using
the exponential form factors, one gets an answer in terms of exponential
functions. Numerically, the result of such a calculation is about
20-25% larger than that coming from a simple formula like eq.- (3.3).
Conéidering the other approxim#tions and uncertaintie§ ih this calcula-

tion, such as the value of u,, this difference is considered not

O}

important énough to justify abéndoning the simple formula, eg. (3.3).
The following important point is worth underscoring. For the

purposes of deriving the model independent bounds on asymptotic total

cross sections that were mentioned in section 5B, it is sufficient to
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know that there exists a physical region of nonzero measure in t' in

" which the production amplitude factorizes, as it does at the pole. On

the other hand, to mﬁke a realistic estimate of the double-pomeron cross

section, one must estimate the range in t' over whi¢h this factoriza- -

tion will persist. While the range of validity of the PPD hypothesis

mey be controversial, it seems very clear from a study of quasi-two-
body reactions that there definitely exists a range of small t' over

which the amplitude factorizes to & very good approximation and is

dominated by the pion pole. For example, at very small t', all density

matrix elements approach the PPD values [19-21]. To extend this result

from the quasi-two-body reactions to the double-pomeron process, one

simply needs to increase the masses of the end blobs from the résonande

region to the pomeron‘regioﬁ., Is this increase likely to produce any”

significant changes? It appears not, from the following consideration.
In ref. [20] we find that if in the reaction x p —opodp, we increase
fhe mass of the x-g system till we reaéh}the reaction % p -;foap,
the density matrix elements in the very small t' regiqn remain the
same. One finds, for exémple that o = 0.91 t-0.67 for

0<t' - t;i

n < 2p2, in p-decay, while Poo = 0.88 + 0.11 for.

0<t' -t <57

min in ffdeCQY‘ The sllgh§ decrease in: Poo in

going from the p to the f-meson may be understood in terms of the

increase in tgin and the increase in the range of t'.

(1)
(2]
2
[b)
(5]

[6]

| [7]

8]

[9]
[10]

[11]

Exchange in pp —appﬂ n
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FIdURE CAPTIONS
A typical total cross section as a fgnction of energy.
The elastic amplitude M ap (S,t) in the pomeron dominated
region. o
The rapidity plot for the process &b -yabn+n- in the region
of interest. » |
ab—edbn+ﬂ' in the
doubie-pomeron region.
The rapidity plot for the reaction n P —)n—pq+n- in the
region of interest. .

The production amplitude M _ at the pioh pole.

TP Prow
c
The PPD model for Yinpp(snﬂ » b5 4, tz).

known by factorization from the elastic experiments.

The B's are

C
The LZR model for r%npp(s“ﬂ » B by, t2)’

. Rapidity plot for PP - pX, with the "left-most” particle in

X Vbeing a pion.
Calculsting do"/at d(an/S), the pion's contribution to the
inclusion cross section. The prime on &' tells us to keep

Mx2 fixed when summing over Pd'

"(a) The amplitude for the reaction x p -opOAP' at the pion

pole.

(b) The amplitude for the same brocess, away from the pion
pole, in the abéorption model. The blobs denote>init1al
and final state interactions; .

(a) The‘reaction P —9p0n-p in the PPD model.

(v) The reaction x p —»poﬂ'nop in the PPD model.
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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