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Abstract 

LBL-206 

The stability of excited superheavy nuclei with respect to fission is 

studied on the basis of realistic shell models and of the B.C.S. Hamiltonian. 

A statistical approach is used to calculate the deformation probabilities of 

excited nuclei as well as the fission and neutron decay widths. The results 

of the calculations show a rapid washing out with energy of the shell effects 

responsible for the high fission barriers predicted in the superheavy region. 

The first chance fission probabilities are calculated for nuclei is the region 

between Z = 108 and Z = 126. Two single-particle models proposed by Nilsson 

and by Bolsterli et al. have been used in the calculations. The results are 

discussed in terms of the possible production of superheavy elements by means 

of standard nuclear reactions • 

tWork performed under the auspices of the U. S. Atomic Energy Conunission and 

support€:d in part by Centro di :Radiochimica e Analisi per Attivazione, Universita 

di Pavia, Italy. 
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1. Introduction 

Shell.model calculations have led to the expectation that magic or 

near magic regions exist close to Z = 114 and N = 184. Shell closures are known 

to produce nuclear binding energies substantially larger than average: further-

more such potential energy depressions are limited to spherical or near spherical 

configurations. On this basis it was expected that the presence of such shells 

would generate substantial fission barriers in a regionwhere the liquid drop 

model predicts insignificant barriers. The main mode of instability for 

very high Z elements is spontaneous fissi6n: the presence of magic 

or near magic regions would allow for substantial fission barriers, thus increasing 

the spontaneous fission half lives. 

Such considerations have led to a great amount of. theoretical study on 

1 2 3 4 . . 
the stability of superheavy elements ' ' ' ) and also to the attempt of 

synthesizing them by means of nuclear reactions 5' 6) or to find them in nature5,7,B,9 

but with inconclusive results. 

The theoretical studies carried on so far concerned the nuclear potential 

energy surface as a function of one or more deformation parameters. Such 

potential energies are calculated usually by means of the so-called Strutinski10 ) 

procedure. The use of the shell model as such for the calculation of the nuclear 

binding energy, while accounting reasonably well for the fluctuations due to 

the shells, leads to erroneous ~bsolute values. The Strutinski procedure 

subtracts from the overall energy calculated by means of the shell model, a 

suitably smoothed energy, obtained from the model itself. The ;f'luctuati.ons or 

wiggles obtained in this way are then added to the liquid drop energy which 

provides a satisfactory smooth value for the overall binding energy. 

• 

• 



,., 

' 

-3- LBL-206 

In this way the nuclear potential energy can be described reasonably 

well and equilibrium deformations, masses, fission barriers, alpha and beta 

decay energies can be predicted. 

The application of such a method to the superheavy nuclei has led to 

impressive predictions such as fission barriers of 8 or 9 MeV and large overall 

d 'h lf 1' . 2 ' 3 ) F . . 232Th d 238u h f' . ecay a 1ves 1n many cases • or compar1son an ave 1ss1on 

barriers of about 6 MeV while the other actinides have even lower fission 

barriers. 

The analysis of the potential energies alone does not allow one to draw · 

definite conclusion regarding the actual possibility of making such superheavy 

elements, Two more problems must be studied. The first concerns the actual 

possibility of obtaining suitable compound nuclei: since substantially large 

projectiles are needed in order to reach the magic region, there is some doubt 

whether complete fusion of target and projectile with a subsequent relaXation 

of the system to the compount nuclear stage is indeed possible. This point has 

11 been discussed by W. Swiatecki ). The second problem, which is the subject of 

the present paper, concerns the attenuation of the shell effects with excitation 

energy. As it has been mentioned above, shell effects are responsible for the 

large predicted fission barriers: the excitation energy, by depleting the lower 

shel,l of nucleons and by populating the higher one, tends to introduce a 

s~ring of the shell effects. Such an effect is improperly considered a 

·reduction of the fission barrier height with increasing excitation energy. In 

treating the present subject, a thermodynamical or a statiStical approach is 

mere appropriate and penetrating. If the system were at constant temperature, 

one could simply substitute the free energy for the potential energy; the free 

energy, just as the potential energy, has the property of being 

1 11 
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at a minimum for equilibrium configurations. Such a potential would account 

for the warming up of the nucleus with the consequent smearing of shell effects. 

However, a compound nucleus, particularly when large excursions from equilibrium 

deformations are involved, can hardly be considered at constant temperature. 

Actually, the compound nucleus is at a fixed excitation energy and consequently 

the proper thermodynamical function to use is the entropy. At each excitation 

energy, one should study the variation of entropy with deformation or, in the 

language of statistical mechanics, the variation of the statistical probability 

with deformation. All the information required regarding the washing out of 

shell effects will be included in such functions. 

In the present paper, a theory will be illustrated which allows one to 

calculate the statistical probability associated with deformation, the location 

of the fission transition state, the fission width and the fission probability on 

the basis of the shell model. Furthermore, the theoretical models necessary for 

such calculations will be presented. Finally, actual calculations will be 

presented for some superheavy nuclei ranging from Z = 110 to Z = 126. In such 

calculations, two different shell models have been used. 

12 Some preliminary results of such calculations were published elsewhere ). 

' 

" 
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2. Theoretical Considerations 

2.1. Probability of Deformation 
' . 13 14 In prevlous papers ' ), a calculation of the statistical probability 

associated with a given deformation for an excited nucleus, was presented. The 

procedure is based upon the coupling of one or more collective modes of motion 

with the internal degrees of freedom, with the assumption that excitation energy 

is randomly shared between internal and collective degrees of freedom. The 

deformation probability at a given excitation energy turns out to be: 

P(E, e:) de = 127Tm A,-l/2 p(E_) de 
h . ~ 

(1) 

where e is the collective coordinate, m is the inertial mass associated with 

it, ET = E- V(e) is the local excitation energy at the deformation£, V(c) is 

the potential energy, p(Err) is the level density due to internal degrees of 

freedom at the deformation £ and at the local excitation energy ET and: 

E=E T 

In such an expression, the leading term is p(~): it accounts for essentially 

all of the fluctuations of probability as a function of deformation and it 

contains the feature of the shell smearing with excitation .energy. Of much 

less significance is the inertial mass, which, although it depends both on 

excitation energy and deformation, has an insignificant effect on the relative 

probability. The potential energy V(E) is very relevant also, since it appears in 

the dependence of ET upon E in the argument of the level density. 

'" ,,, 



-6- LBL-206 

Actually, the success of the calculation depends on the ability to evaluate 

both the potential energy and the level density on the basis of a realistic 
t 

nuclear model. 

The expression given in eq. (1) is relevant to the fission process in 

so far as it can describe the probability of fluctuations in shape no matter 

how large. The fission process is indeed connected with a large fluctuation 

in shape, and its probability is related to the probability of such fluctuations. 

In the next section, such considerations will be treated quantitatively. 

2.2. THE TRANSITION STATE IN FISSION 

In the case of a non-fissioning and, in general, non-decaying compound 

nucleus, eq. (1) is a function approaching to zero at some large deformation 

(P = 0 forE= V(E)) and with a finite integral over the deformation space. 

This integral is the overall level density of the nucleus at the excitation 

energy E. It can be said that the system is bound in the compound-nucleus 

deformation·space. With a nucleus which can undergo fission, a new situation 

occurs: namely, along some direction in the deformation space, the probability 

does not ever go to zero; however, after going through a minimum, it increases 

dramatically for configurations farther and farther away from sphericity. Also 

the integral of the probability over the deformation space tends to diverge. 

I 
In such a case, one ,cannot speak of statistical equilibrium in a true sense: • 

I 

i it is better to think in terms of a bulk probability, contained within a 
• 

deformation boundary which could be called the compound nucleus region ~nd which 

leaks out through some special deformation configuration into the region where 

the fission fragments are formed. If the decay probability is small, the system 
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can be still considered quasi-bound in the compound nucleus configuration and 

the compound nucleus itself retains a physical significance .. The special 

configuration which controls the flow of probability towards fission is the 

. region where the probability itself is at, a minimum and is called transition 

state. 

Usually the transition state is considered to be located at the fission 

saddle point which is a point in the potential energy surface. However, such an 

identification.is not necessarily correct when the fission barrier is primarily 

the result of shell effects rather than deriving from the liquid drop potential 

energy. Indeed the excitation energy will tend to wash out the shell effects, 

but such a washing out can take place at a different rate for different defor-

mations. Therefore the minimum in probability (or the transition state) does 

not necessarily coincide in deformation with the saddle point at all excitation 

energies. ·It follows that in order to evaluate the fission widths and 

probabilities, one should search for the location of the transition state at 

all excitation energies. Similar considerations have been made by Ramamurthy 

16 et al. ) . 

2.3. FISSION DECAY WIDTHS AND PROBABILITIES 

The fission width can be written as follows: 

E 

r F = 2tt~ (E) f x p (x ' ~) dx 

0 

where E = E - V(c.) and the coordinate c. takes its value where P(E, c.) is at a 
X 

minimUm.. The level density p(E) refers to the compound nucleus. By recalling 

the exponential behaviour of the level density, one can write with very good 

approximation: 

I lr 

1 
A' p (E ' c. ) 

X 
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where 

x=E T 
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This approximation shows clearly the simple relation between the fission width ,, 

and the deformation probability at the transition state. It can also be seen 

that the fissionwidth is indeJ;>endent of the inertial mass of the transition 

state. 

Similarly, the neutron decay width is given by the relation: 

r 1 . 
N = 27Tp(E) 

4 E-BN 

nfl";: 1 ainv p(x) (E - ~ - x) dx 

·.vhere m.. is the neutron mass, cr
1 

is the cross section for the inverse reaction 
1~ nv 

and BN is the neutron binding energy. The level density p(E) refers again to 

the compound nucleus, while p(x) refers to the residual nucleus after neutron 

emission. 

Also, the neutron decay width can be written in an approximate and 

convenient form: 

= 1 X 
27Tp(E). 

w}1e;re A i!'l th~ wafls nwnber oft-fie ;re!3iO,ual nucle~s, A' = ( d ~p(x)) x=E-BN 

and the numerical constant is calculated op the assUmption of constant inverse 

cross sections. 

The first chance fission probability is: 



! 
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assuming that fission and neutron emission are the only competing decay processes. 

The first chance fission probability must not be confused with the total 
0 

fission probability ~ . While the former accounts for the compound nucleus 
OR 

fission only, the latter includes all the fissions occurring along the whole 

neutron evaporation chain and in many cases, could be much larger than the first 

chance fission probability. 
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3. Models Employed in the Calculations 

3.1. THE SHELL MODELS 

Twc different shell models have been employed in the present calculations. 

The first model; proposed by Bolsterli et al. 15 ) contain the spin independent part ! 

of the single particle potential which is obtained by folding an effective two 

nucleon interaction with a.uniform sharp-surface psuedo density. Such a form 

of the potential is very close to the Wood Sa.Xon potential. In such a model 

the shape of the nucleus is specified by means of smoothly joined portions of 

three quadratic surfaces of re~olution. The single particle energy levels and 
I 

spins have been calculated for the nucleus ~~~X and used without modification 

for the other nuclei close-by. The second model consists of a modified three 

dimensional harmonic oscillator potential proposed by Nilsson 2 ): the shapes of 

the nucleus have been restricted to a family of ellipsoids of revolution. The 

values of the coupling parameters K and ~which have been used are: 

K 

Protons 

0.0534 

0.686 

Neutrons 

0.0634 

0.256 

These values are expected to be more suitable for A = 296. The calculations presented 

here extend below and above this mass number: no attempt has been made to 

modify the coupling parameters. The only A dependence in the calculation has 

been. that introQ.uceCI. by the 13caling quantity: 
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3. 2. CALCULATIONS OF THE FISSION BARRIERS 

The potential energy of superheavy nuclei as a fi.mction of deformation 

has been calculated by means of a modified Strutinski.procedure illustrated 
. 14 

elsewhere ). The fission barriers obtained from the model proposed by Bolsterli 

et al. were taken from the same authors: such fission barriers for the nuclei 

296 290 298 296 
108x, 110x, 114x, and 

116
x are shown in fig. 1. The fission barriers obtained 

from the Nilsson model have been calculated by us with the parameters specified 

in the previous sections. Only one deformation coordinate, the ellipsoidal 

deformation e: has been taken into account, since it has been shown that for 

superheavy nuclei the he:x:adecapole coordinate e: 4 is not particularly relevant 

up to the top of the fission barrier. The fission barriers of. the nuclei ~i~x, 
298 292 296 296 298 296 310 308 310 312 308 310 312 
llOX' 112X, 112X, 114X, 114X, 116X, 116X' 118X' 118X, 118X' 124X, 124X, 124X, 
312 314 316 
126x, 126x, 126x are shown in fig. 2 tprough fig. 8 together with the liquid 

drop energies. 

3.3. THE LEVEL DENSITIES 

The level density formalism employed here has been described in detail 

. . 14) 
~n a prev~ous paper . The level densities are calculated on the basis of the 

actual sets of single particle levels _at different deformations by means of 

a numerical procedure. The pairing effects are accounted for by means of the 

B.C.S. Hamiltonian which enters in the expression for the grand partition 

function used for evaluating the level density. Even-odd effects are allowed 

for by incrementing the ground state energy by the lowest-quasi-particle 

excitation associated to the odd nucleon. The complete consistency of the 

potential energies and of the level densities is to be stressed: both are 

based upon the same shell model levels and the same B.C.S. Hamiltonian is used 
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for the pairing effects. The level density calculations should be considered 

to be quite accurate and to contain a large amount of physical information 

without the introduction of any empirical constant~ The washing out of the 

shell effects, which will be seen to occur with increasing excitation energy, 

is therefore a direct prediction of the single particle model. In fig. 9 two 

level density curves as a function of energy are shown: 
I 

they refer to the 

. 296 same nucleus 116x at sphericity and at the transition state deformation. It 

can be observed that t;he two level density curves behave so as to eliminate 

the effect of the 7 MeV difference in potential energy between the ground state 

and the saddle point. This point will be taken-up again in the discussion. 

3. 4 . ACTUAL CALCULATIONS 

The potential energy curves are first calculated as functions of defor-

mations on the basis of a given shell model. The same shell model is then used 

for the level density calculations. The potential energies and the level 

densities are then used to obtain the deformation probabilities of the super-

heavy nuclei for a set of excitation energies as described in sec. 2.1. A 

quantity related to the deformation probability, namely .R.n P(E,e: )h/(27T'm)112 is 

presented iri fig~ 10 through fig. 13 for the nuclei i~~X, iigx, ii~x, ii~x calcu­

lated on the basis of the shell model propo~ed by Bolsterli et al. and in fig. 14 

~~ ~6 . and fig. 15 for the nuclei 
110

x and 116x on the .basis of the N1lsson model. 

At each excitation energy, the minimum in deformation probability (the 

transition state) is searched for and the deformation probability at the transi-

tion state is transformed into the fission decay width as described in sec. 2.3. 

Similarly the neutron decay width is calculated by using the .level density 

J 
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of the residual nucleus at i tfj most probable deformation which in all the cases 

studied turned out to be sphe:dci ty. The neutron binding energies, necessary 
. 2 

for the neutron decay width calculations have been taken from Nilsson et al. ) 

and are presented in Table 1 together with the fission barrier heights. The 

• fission decay widths and the neutron decay widths are then used to evaluate the 

first-chance fission probabilities as a function of excitation energy. Such 

calculations have been performed for all the nuclei listed in sec. 3.2, The 

fission probabilities calculated from the Bolsterli et al. shell model are 

presented in fig. 16 and those calculated from the Nilsson shell model are 

presented in fig. 17 through fig. 23. 

1' I 
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4. · Discussion 

The influence of the effects produced by the near magic regions close to 

Z = 114 and N = 184 can be evaluated by observing the actual potential energy 

curves in comparison with the liquid drop potential energies in fig. 1 through 

fig. 8. Only a small sample of nuclei have been considered here: a much larger • 

. . 2 3 
survey has been made by Nilsson et al. ) and by Nix ) where calculated masses 

and half lives are also reported. A substantial number of such nuclei are pre-

dieted to have overall half lives sufficiently long to make.them observable 

experimentally if they can be produced in their ground states. The conditions 

for reaching the ground states are, first, the compound nucleus formation 

through some suitable reaction, second the survival with respect tb fission of 

the compound nucleus decay stage; It has been stressed in sec. 1 that the first 

point is very poorly known. As far as the second point is concerned it is 

possible now to give answers which should be as accurate as the potential energy 

calculations • 

. 4 .1. TEMPERATURE DEPENDENT SHELL EFFECTS 

It was stated in sec. 1 that the excitation energy is expected to destroy 

the shell effects: this is particularly important in the case of superheavy 

nuclei whose stability against fission relies uniquely upon the shell effects. 

The primary shell effects are local deviations from uniformity in the 

single particle level density: such deviations affect the potential energy in 

the region close to the Fermi surface, Thermodynamical or statistical quanti ties are '• 

also influenced by the shell effects. The perturbations of the single-particle 

level density can be expanded in Fourier series. Gilbert17 ) has shown that a 
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perturbation with a wavelength A is washed out by the temperature following 

the relation: 

2 S a exp(-27T T/A) 

where T is the temperature and S is the temperature dependent part of the 

shell effects as they influence some statistical quantity such as the entropy. 

The present calculations include such washing out automatically. A very striking 

296 example is t}le following. The nucleus 116x has a fission barrier of rv 7.5 MeV 

and the location of the top of the barrier is at £ = 0. 225 as can be observed 

in fig. 5. In fig. 9 the level densities are shown as a function of excitation 

296 . . 
energy for the same nucleus 116x at the deformation £ = 0 and £ = 0.225. The 

level density at £ = 0 does not increase quite as fast as that at .£ = 0. 225: the 

value of the former at 20, 40, 60 MeV is equal to that of the latter at energies 

lower by 3.5, 6.0, 7.5 M~V respectively. This gives a rather accurate idea of 

the rate at which the shell effects are destroyed by the excitation energy. In 

this case the compound nucleus at 60 MeV excitation energy does not feel any 

shell effect whereas in the ground state it amounted to 7.5 MeV. In this sense 

it could be said that the nucleus at 60 MeV excitation energy does not have a 

relevant fission barrier any longer. A more general view of such effects is 

given by the deformation probability curves presented in fig. 10 through fig. 15. 

At low excitation energies the maximum probability is centered at sphericity; 

the higher this peak is the stronger the shell effects are. The compound nuc+eus 

region is limited by the transition state associated to the minimum in 

deformation probability. It should be pointed out that the portions of the 

curves beyond the transition, state may be ph~sically meaningless, since in such 

'' 
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regions the system is not expected to be at statistical equilibrium. ·with 

increasing excitation energy, the compound nucleus peaks tend to become 

decreasingly sharp while the deformation probability at the transition state 

increases substantially. At the highest excitation energies the compound 

nucleus peak is not visible any longer: only a more or less flat region in the 

deformation probability can be observed close to sphericity; Under such con-

ditions the shell effects have essentially disappeared and the nucleus is left 

with only the liquid drop smooth potential energy.: therefore it is quite 

doubtful whether one is justified in considering the existence of a compound 

nucleus at all. 

4.2. FIRST~CHANCE. FISSION PROBABILITIES 

The first chance fission probabilities PF = fF/(fF + fN) which are to 

be discussed are presented in fig. 16 through fig. 23. In order to have a frame 

of reference in the analysis of such quantities, it is worthwhile to consider 

an approximate expression for rF;rN obtained by assuming a uniform model in the 

·level densities: 

where A is the compound nucleus mass number, BN and BF are the neutron 

binding energy and the fission barrier height respectively and T is the nuclear 

temperature. Such an expression can be obtained from the equations in sec. 2.3 

for the,high energy limit. 

'1 
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For a nucleus with A~ 300, the temperature T ~ 1 MeV corresponds to 

an excitation energy between 30. and 4o MeV. In the case in which BF ::.:::: BN the 

fission probability PF given by the above expression is about 0.1. Similar 

calculations show that for PF = 0.5, BN -. BF = 2.15, for PF = 0.7 BN - BF = 2.98 

for PF = 0.8 BN- BF = 3.5, for PF = 0.9 BN- BF = 6.35. In all such cases 

the fission probability is expected to decrease very slowly with excitation 

energy. 

A first inspection of the calculated first chance fission probabilities 

shows that for excitation energies of the order of 35 MeV and above, extremely 

high values are reached, up to ~ 0.95. Such high values would be predicted by 

the uniform model for neutron binding energies between 3 and 5 MeV larger than 

the fission barriers: since the neutron binding energies are of the order of 

5 to 6 MeV this implies that, in order to obtain such fission probabilities the 

uniform model would re~uire vanishingly small fission barriers. A check in 

Table 1 shows immediately that the true fission barriers are either very close 

to the neutron binding energies or even larger. It is then possible to say that, 

at sufficiently large excitation energies the calculated fission probabilities 

behave as if the nuclei under investigation had vanishingly small fission bar­

riers. The question may arise why the washing out of the shell effects involves 

primarily the fission barriers and not the neutron binding energies. The answer 

is rather simple: although in superheavy nuclei the fission barriers arise 

beca,us~ of E!ll~~l effects, the neutron pi:p.ding energies der:i,.ve primarily from 

the liquid drop energy terms. Therefore the neutron binding energies are only 

slightly affected by the excitation energy. The low energy behavior of fission 

probabilities are instead to be considered normal in the sense that they reflect 
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to a large extent the actual. values of the fission barriers. For fission bar-· 

riers substantially larger than the neutron binding energies, the fission 

probabilities assume quite low values and increase rapidly with excitation 

energies. For fission barrier values smaller than the neutron binding energies, 

the fission probabilities assume rather large values which can sometimes fluctuate 

with increasing excitation energies depending upon the relative rate of increase 

ofT F and rN. 

4. 3. STABILITY OF EXCITED SUPERHEA VY NUCLEI 

Of course, the first chance fission probabilities alone do not indicate 

directly the overall probability for the compound nucleus to reach a ground 

state. The quantities which should be calculated are the total fission proba­

bilities which take into account the probability of fission decay at every stage 

of the neutron evaporation cascase. Although the present calculations have been 

performed only for even even nuclei and therefore do not give sufficient infor­

mation for the calctW.ation of the overall fission probabilities more than one 

isotope corresponding to the same atomic number has been considered. Since 

such isotopes are very close to one another, an. estimate of the chance of 

survival for a given compound nucleus can be obtained. The general conclusion 

is that the stability of the excited compound superheavy nuclei against fission 

is by far smaller than could be guessed on the basis of the fission barrier 

<:!al(:!ul~tio;ns. Qn.f-y for a few cases does tpe probabil~ty of survival seem 

substantial and even then is significant only for relatively low excitation 

energies. However, if.the formation of the superheavy compound nuclei is suf­

ficiently likely, then the possibility that a detectable fraction of some com­

poUnd nuclei will reach a ground state is not ruled out by the present calculations. 
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As a further remark it can be said that the present calculations have 

been carried out on the assumption that the· single particle spectrum is independent 

on excitation energy. A self consistent calculation may show how good this 

approximation is. If, as it could be guessed, the excitation energy tends to 

smear out the single particle spectrum itself, then the present calculations 

represent a somewhat optimistic evaluation of the superheavy compound nucleus 

stability. 

It should be mentioned that the present calculations do not account 

for the effect of the angular momentum oh the fission barrier. Since angular 

momentum tends to decrease the fission barrier, the present estimates for the 

fission probabilities may be somewhat optimistic. 
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Table 1. Neutron binding energies and fission barriers for superheavy nuclei. 

BN(MeV) BF(MeV) BF(MeV) 
(Bolsterli et al. model) (Nilsson model) 

296x 
108 4.57 2.80 

290x 
110 6.15 4.45 3-93 

298x 
110 4.89 5-39 

292X 
112 6.67 5.76 

296x 
112 5-95 7-35 

296x 
114 6.83 8.58 

298x 
114 6.29 7.69 9.24 

296. 
116x 7-30 7.40 7-45 

31ox 
116 5.42 8.19 

308x 
118 6.07 8.33 

31ox 
118 5.96 8.17 

312x 
118 5.76 7-70 

308x 
124 8.13 7.00 

31ox 
124 7.24 7.09 

312x 
124 7.19 6.88 

(continued) 

:I 



7.57 

7.51 

7.36 
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Table 1 (continued) 

BF(MeV) 

(Bolsterli et al. model) 

LBL-206 

BF(MeV) 

(Nilsson model) 

6.14 

5.83 

5.79 
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Fi6ure Captions 

296 290 298 296 . 
Fig. 1. Fission barriers for the nuclei 108x, 110x, 114x, and 116x calculated 

on the basis of the shell model proposed by Bolsterli et al. 15 ). 

Fig. 2. Fission barriers for the nuclei ii~x and ii~x calculated on the basis 

of the Nilsson model2 ). The black dots represent the potential energies 

calculated by means o;t' the Strutinski procedure; the solid line represents 

the liquid drop potential energy. 

Fig. 3. Same fig. 2 for the nuclei 292x and 296 as 112 112x. 

Fig. 4. Same fig. 2 for the nuclei 296x and 298 as 114 114x. 

Fig. 5. Same as fig. 2 for the nuclei 296x and 310 
116 llOX. 

Fig.• 6. Same as fig. 2 for the nuclei 308 310 and 31~ ll8X, 118X, 118 . 

Fig. 7. Same as fig. 2 for the nuclei 308 310 
124x, 124x, and 312 

124x. 

Fig. 8. Same fig. 2 for the nuclei 312 314 316 as 126X, 126X, and 126x. 

Fig. 9. 296 Level densities for 116x at the ground state and at the saddle-point 

deformat1on, respectively. Theexcitation energy is measured taking the 

local value of the potential energy as zero. The washing out of the 7.5 MeV 

difference in potential energy is visible at 

Fig. 10. Deformation probabilities at different 

60 MeV excitation energy. 

296 excitation energies for 108x 

Fig. 

Fig. 

Fig. 

Fig. 

on the basis of the shell model proposed by Bolsterli et al. The deformation 

parameter y is defined in ref. 15 ). The quantity P(E,y)h/(2mny)
112 

has the 

dimension Mev-112 • 

11. Same as in fig. 10 for 
290 . 
110x. 

12. Same as in fig. 10 for 298 
114x. 

13. Same as in fig. 10 for 296 
116x. 

14. Same as in fig. 10 for 290 
llOX; the calculations have been performed on 

the basis of the Nilsson model. 

i . I 



Fig. 15. 

Fig. 16. 
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296 
Same as in fig. 14 for ll6X. 

LBL-206 

296 290 298 296 First chance fission probabilities for 108x, 110x, 114x, 116x on the 

basis of the shell model proposed by Bolsterli et al. 

290 298 . Fig. 17. First chance fission probabilities for 110x and 
110

x on the bas~s of 

the Nilsson model. 

Fig. 18. Same as i:h fig. 17 f<:>r 295c 296 
112 and 112x. 

Fig. 19. Same as in fig. 17 for 296 298 
ll4x and ll4x. 

Fig. 20. Same as in fig. 17 for 296 310 
ll6x and ll6x. 

Fig. 21. Same as in fig. 17 for 308 310 312 
118x, 118x, and 118x. 

Fig. 22. Same as in fig. 17 for 308 310 312 
124x, l24x, and l24x. 

Fig. 23. Same as in fig. 17 for 312 314 
120x, 126x, and 316 

126x. 
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