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This paper extends known results of the Interpolation Search Algorithm on 
ordered tables in three ways. First, it examines the effect of hatching the search 
queries. Second, it applies the basically main-memory algorithm to a more typi
cal database environment, i.e. a blocked secondary memory. Third, it examines a 
hybrid algorithm to remedy the worst case behavior of the pure Interpolation 
Search in the event of non-uniform distribution of the ordered file while retaining 
the average complexity. 

Algorithms, analytic expressions and experiment results of these extensions 
are given and described. Analytic expressions of these algorithms are validated 
by the experiments. 

1. Introduction 

Our interest in hatched interpolation search comes from three separate 
search problems in statistical and scientific databases. The first problem involves 
the searching of data items in a compressed file. In partrcular, the compression is 
performed using a technique called header compression scheme [10]. The second 
problem is related to the searching of hierarchical relationship implemented in a 
file structure called hierarchical transposed file [11]. The third problem is the 
searching of data items in a sparse multi-dimensional data structure [12]. All 
three of these search problems can be reduced to hatched interpolation search 
over ordered files. 

The idea behind the Interpolation Search algorithm on ordered tables is sim
ple and natural. An example will be used to illustrate the algorithm in action. 

Given a table of 1,000 records with key x1<x 2< ... < x 1000 uniformly distri
buted between 0 and 10,000. Our task is to find index i such that x; =6,000. It 
. 6000 
IS reasonable to guess that about ' X 1,000 keys are less than or equal to 

10,000 
X; , and the required record should be near the 60oth record. However, let us 
assume that x 600 contains a key with value 5,800. The desired record should lie 
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between 6ooth and 1,oooth records. We therefore take a second guess that x 600 

should be the 6,000-5,800 X(1,000-600)=19th record of the new file. This pro-
10,000-5,800 

cess continues until the record is found. 

First published by Peterson [5], the Interpolation Search Algorithm has 
received extensive attention. The major result is the loglog (N )1 (where N is the 
number of keys in the table) complexity behavior of a single search [6-8,12]. 
These works, however, did not take the effect of hatching search queries into con
sideration. 

The advantages of hatched searching on databases have been advocated by a 
number of researchers [1,2,3,4]. The major argument is that by hatching searches 
or updates, the throughput of the system is increased and the potential reduction 
on processor demand may in fact reduce the response time. 

The research on interpolation search cited above concentrates mainly on 
main-memory data structure and ignores the database secondary memory con
sideration. We are interested in adding block accesses as well as providing block 
accesses approximation expressions to the basic Interpolation Search algorithm, 
similar to [13]. 

The loglog (N) behavior is guaranteed only in uniformly distributed keys in 
databases 2

• In this paper, a hybrid algorithm is given which combines binary 
search and interpolation search to remedy the worst case behavior ( 0 (N)) of the 
Interpolation Search Algorithm 3• 

The benefits of hatched searches using Interpolation Search are analyzed in 
this paper. We will provide performance expressions of average behavior for both 

- cases in terms of record accesses as well as block accesses, similar to [13]. 

The paper is organized as follows. In section 2, the analysis and the experi
ments of hatched interpolation search algorithms in non-blocked and blocked 
environments are given. In section 3, two algorithms are described which are 
combination of binary search and interpolation search. Again, analysis and 
experiments are described for the algorithms in non-blocked and blocked environ
ments. Section 4 summaries the paper. 

1 Throughout this paper, "log" designates base 2 logarithm. 
2 In [8,12], remarks were made to the effect that the same result is achiev

able on non-uniform distributions if the distribution function on the keys is 
known and used to map an initial non-uniform distribution onto an uniform dis
tribution. This mapping, however, is typically expensive or impossible to attain 
for very large databases. 

3 A recent result on interpolation search [13] claims loglog (N) complexity 
for non-uniform distributions. See the Appendix for comment on this result. 
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2. Hatched Interpolation Search 

2.1. Hatched Interpolation Search Algorithm 

Let X =(x [1],x [2], ...... ,x [n]) be an ordered file of uniformly distributed keys 
between a and b, where x [j ]<x [j +1](1 <j <n -1). For expository reasons, we 
add the keys x [O]=a and x [n +1]=b as the first and last keys of the file. 

Let B =(a1,a2,. ..... ,ak) be a ordered collection of search keys to be applied 
to file X, where a; (1 < i < k ) is uniformly distributed keys between a and b , 
and a; <a; +l(l < i < k -1 ), the algorithm BIS below will find an index j for each 
a; (1 < i < k) such that x [j ]=a; if such an index exists, otherwise, 
x [j ]<a; <x [j +1]. 

The idea behind algorithm BIS given below is that in searching file X for 
each element a; in B, one can take advantage of the previous search for element 
a; -1. Since both B and X are ordered, BIS can start the search for a; at the 
place of X where a; _1 was found. The savings of hatched searching are achieved 
because the size of file X is monotonically decreasing. 

2.1.1. Algorithm 

ALGORITHM BIS 

input: X =(x [l],x [2], ...... ,x [n ]), x [OJ= a, x [n +1]=b, 
B =( a 1,a2, ...... ,ak ). 

output: seach =(search [!],search [2], ...... ,search [k]) (the required indices). 

(1) L :=O;H :=n +l;i =1; 
(2) XL :=x [O];Xn :=x [n +1]; 
(3) while i < k do 
(4) 

(5) 
(6) 
(7) 
(8) 
(9) 
(10) 
(11) 

(12) 

begin ;,: ::~-lr· a;-XL 1; 
Xn-XL 

while N >0 and x [J]#a; do 
begin 

if x [J]<a; then 
begin L :=J;XL :=x [J] 

else 
begin H:=J;Xn:=x [J]; 

J~: L :~ -r
1

;a;-XL 

1
; 

Xn-XL 
end 
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(13) if N <o then 
(14) begin 

search [i ]:=L ;H :=n +1; 

XH :=x [n +1]; 
end 

(15) 
(16) 

else 
begin 

search [i):=J;L :=J;H:=n +1; 
XL :=x [J);XH:=x [n +1); 

end 

(17) i :=i +1; 
(18) end 

2.1.2. Analysis 
The variables L and H represent lower and upper indices of the file 

searched respectively. L is continuously set to the index of the last found key. 
Step(3) of BIS begins the searching of each element in B. For each i (1 < i < k ) 
ai is searched by step( 4) to step(16) in the algorithm BIS in subfile 
Fi =(x [L ], ...... ,x [n +1)), where L =0 at the beginning. In order to find the 

a·-x [L) 
desired index, BIS chooses an index J =L +(H -L -1)· x l~ ]-x [L , with 

H =n +1 at the beginning. The number of keys remaining m file ~ at the 
beginning of the search for a; is given by the following lemma. First, we define 
an iteration of BIS to be the execution of step(3) to step(18). 

LEMMA 1. The i th iteration in the algorithm BIS is to search ai in the 

[ 
n ·(i-1) 

subfile (x r ], ...... ,x [n +1]), where r = . 
k+1 

Proof. When i =1, r =0 and the lemma is true. Let i >2. From step (14) 
and step (16) in BIS, the i th iteration must be to search ai in subfile 
(x[r), ...... ,x[n+1)), where r is such that x[r]=a;_1 or x[r]<a;_1<x[r+l). 
Since the keys in X and B are uniformly distributed, the k elements of B 
divide X into k + 1 subsets. Hence, a; _1 should be found on the average at loca-

tion r = n ~(i - 1) of X. Thus, the lemma is proved. Q.E.D. 
+1 

The behavior of BIS is summarized by the following theorem. It shows that 
the behavior is still 0( loglog (N )), but n is reduced by a term proportional to N. 
The savings gained in practice are discussed in the next section. 
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THEOREM 1. Let X =(x [1],x [2], ...... ,x [n]) be an ordered file of uni-
formly distributed keys between a and b, where x [j] <x [j +1](1 < j < n -1), 
and B =(a1,a2, ...... ,ak) be uniformly distributed keys between a and b, where 
a; < ai +1 (1 < i < k -1 ). The average number of record accesses required by algo
rithm BIS for searching B is less than 

k 
~ loglog (n 

i=1 

n·(i-1)). 
k+1 

Proof. Let us consider the i th iteration. From lemma 1, the i th iteration is 

to search a; (1 <i <k) in subfile F; = (x [r ], ...... ,x [n +1]), and r = n ~(~~1 ), 
that is, the number of unchecked keys in file F; is n n · ( i - 1) . The i th iteration 

k+1 
is interpolation search for one record. By Perl et.al.'s theorem 2 [~](the average 

number of record accesses in i th iteration is less than log log ( n n k ~ - 1
) ). Thus, 

+1 
it follows that the average number of record accesses for searching B is less than 

t loglog (n n ~(i - 1) ). 
i=1 +1 

Q.E.D. 

2.1.3. Experimental Results 

To validate theorem 1 experimently, we generated 6 sorted files of uniformly 
distributed random integers between 0 and 231 • 1,000 sets of hatched records are 
also generated with integers uniformly distributed between 0 and 231 with size k 
for k =1 to 20. Table 1 contains the results of comparing the theoretical result of 
theorem 1 (the T .R. column) and the experimental result of executing algorithm 
BIS (the E.R. column). As can be seen, theorem 1 provides a good approximation 
to the behavior of algorithm BIS. 

Figure 1 shows the savings by executing hatched interpolation search algo
rithms on a file of 400,000 uniformly distributed integers other than by executing 
unhatched interpolation search algorithm. The savings due to the hatching of 
queries over the unhatched interpolation search are roughly 40% when k >20. 

2.2. Blocked Batched Interpolation Search 

In this section, algorithm BIS is modified to take blocking into consideration. 
The analysis following the algorithm provides block access approximation. 

2.2.1. Algorithm 

The algorithm BBIS below is similar to BIS except the addition of step(3') 
and step(ll) to step(16) where block access is taken into consideration. Let m be 

5 



the blocking factor. 

ALGORITHM BBIS 

input: X =(x [I],x [2], ...... ,x [n ]),x [O]=a, x [n +l]=b, B =(a1,a2, •••••• ,ak ), m. 
output: search =(search [l], ...... ,search [k]) (required indices). 

(1) L :=O;H :=n +I;i :=1; 
preblock :=-l;curblock :=0; 
XL :=x [OJ; Xn :=x [n +I]; 

(2) while i <k do 
(3) begin 
(3') 

(4) 
(5) 
{6) 
(7) 
(8) 
(9) 
(10) 

(11) 

(12) 
. (13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 

N:=H-L-1· 

ai-XL 1· J:=L+N· 

curblock := ~HrL ' 
if curblock ~preblock then 

begin 
read the curblock th block; 
preblock :=curblock; 

end 
while N >O and x [J]:;Fai do 

begin 
if x [J]<ai then 

begin L :=J;XL :=x [J]; end 
else 

begin H:=J;Xn:=x [J]; end 

J~: L :~ -rl;ai-XL 

1
; 

Xn-XL 

curblock == r ~ } 
if curblock ~preblock then 

begin 
read the curblock th block; 
preblock :=curblock; 

end 
end 

if N <o then 
begin 
search [i ]:=L ;H: . n +l; 
Xu :=x [n +l];XL :=x [L ]; 
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(20) 
(21) 

(22) 
(23) 

end 
else 

begin 
search [i ]:=J ;L :=J ;H :=n +1; 
XH :=x [n +1];XL :=x [J]; 

end 
i :=i +1; 

end 

2.2.2. Analysis 

In the discussion below, we assume both X =(x [1],x [2], ... ,x [n]) and 
B =( a 1,a2, ... , ak ) are uniformly distributed between a and b , and 
x [0]=a0=a and x [n +1]=ak +l=b. 

Like section 2.1, an iteration in BBIS is said to begin with execution of step 
(3), and a search step is said to begin with the execution of step ( 4 ). 

Let Fi. denote the searched sub file of the J th search step in the i th itera-
1 

tion and Li and Hi be the lower and upper indices of F; , i.e. 
1 1 1 

Fi =(x [Li.], ... ,x [Hi]). Fi consists of Ni =Hi-Li -1 unchecked keys, which are 
1 1 1 1 1 11 

uniformly distributed between x [Li
1

] and x [Hi
1

]. Obviously, F 11=X, 
N 11=H -L -1, L 11=0, and H 11=n +1. 

Let Ki. denote the index of the key accessed in the J th search step in the 
1 

i th iteration. For i >2, Kio is J in step(21) or L in step(19) in the ( i -1)8t 

iteration in BBIS, which is the required index for ai _1• And, K 10=0. 

We ·define the distance between two consecutive search steps in the i th 

iteration, Di
1 

= I Ki
1
+

1
-Ki

1 
I . Since there is at least one block retrieved for pro

cessing B , the minimum value of D 10 is assumed to be m , the blocking factor. 

a·-x[K·J 
D;

0
=1K; -Ki I· By the distributions of X's and B's, [ 

1 1 
is the 

1 0 x n +1]-x [K;J 
probability of a random key in Fi 

1 
being less than or equal to ai. The number 

of random keys in F; being less than or equal to a,· is _n_ by lemma 1 and its 
1 

• k+1 . 
n·(z-1) 

proof. The size of F; 
1 

is n k by lemma 1. Hence, 
+1 

a; -x [K;J 

x [n +1]-x [K;J n 

And thus, 

K· =K· +(n n ·(i -1)) a;-x [K;o] 
11 10 k +1 . X [n +1]-x [K;

0
] 

7 

n 
k+1 
n·(i-1) 

k+1 

n 

=K· +(n _ n ·(i -1) )· k +1 
10 k+1 n·(i-1) 

n--~-!-

k +1 



n n 
=K· +--. Thus, D,· =-k--. 

. 'o k +1 o +1 
By Perl et.al.'s corollary of lemma 1 [8] and our lemma 1, D;

1 
is less than 

.!_. ( n n . ( i -1) ) 2-~. 
2 k+1 

The following lemma extends the result of Perl et.al.[8] to approximate the 
distance between 2 search steps of a single elment in B . 

LEMMA 2. The average value of D; is less than 
J 

, where j >1. 

(n n ·(i-1) p 
k +1 ) 

Proof. From lemma 1 and its proof, the i th iteration is to search a; in 

subfile F;
1 

with size n n ·(i - 1). By the proof of Perl et.al's theorem 1 [8], the 
k +1 

average value of the D;. is less than 
J 

(n 

for j > 1. Q.E.D. 

n ·(i -1) )2-1 

k+l 

The approximated block accesses by BBIS is given by the following theorem. 

THEOREM 2. The expected number of block accesses required by BBIS 
for searching B in X is less than 

where, 

and D; 
J 

above. 

k r -1 

L; E block (D;
1 

,m ), 
i=lj=O 

n ·(i -1) 
r =loglog (n- k +

1 
), 

{
1 ifD >m 

block (D ,m) = D /m ifD <m 

is the estimated distance between two consecutive search steps as defined 

Proof. The inner sum represents the expected block accesses required to 
n ·(i-1) search for a; . By theorem 1 above, we need at most r =log log ( n ) 

k +1 
search steps to search for a;. The definition of the function block reflects the 
fact that the number of block accesses required from the j th search step to 
(j + 1 )8

t search step is 1 if the distance between them is great than or equal to 
m. Otherwise, it is D;/m, where the D;/m is the probability that x [K;] and 

J J J 

8 

, 
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x [K,·. ] are in the same block, and Ki. is the index of the key accessed in the 
J +! J 

J th search step in the i th iteration (since the keys in X are uniformly distri-
buted). The outer sum is for total block accesses for searching every element in 
B. Q.E.D. 

2.2.3. Experimental Results 

'" . In this experiment, five sorted files of 400,000 integers uniformly distributed 
between 0 and 231 were generated, each with a different blocking factor. A 1,000 
sets of sorted records were also generated with size k for k =1 to 20. Table 2 
contains the theoretical/experimental results for the combination of n (size of 
file), m (blocking factor) and k (size of batch). Again, theorem 2 provides good 
approximation to the experimental results. 

Figure 2 shows the savings of hatched block accesses over unhatched block 
accesses in a file of 400,000 records with blocking factor of 100. Again, there is 
roughly more than 50% savings when k > 30. 

From the analysis above, it is shown that the average number of record 
accesses required by hatched interpolation search is less than 0 ( k ·log log ( n ) ) 
where, k and n are the sizes of batch and file respectively. But in the event of 
non-uniform distribution, the record accesses could be 0 (k ·n) in the worst case 
because the search may degenerate into a linear scan. In the section to follow, 
we will give a single algorithm, called independent hatched binary interpolation 
search, which combines the algorithm BIS and a hatched binary search algorithm 
to give 0 (k ·loglog (n)) average behavior and 0 (k ·log (N)) worst case behavior. 

3. Independent Batched Binary Interpolation Search 

The algorithm presented below consists of the union of two algorithms. One 
is the interpolation search which is from step(10) to step(15). The other is the 
binary search which is from step(16) to step(20). For each a; in the batch file, 
the algorithm invokes the interpolation search and the binary search. When one 
of them finds the required index, both of them will stop looking for ai and begin 
the searching for a; +1• 

As before, the algorithm is described in both non-blocked and blocked 
environments. 

3.1. Independent Batched Binary Interpolation Search 

3.1.1. Algorithm 

ALGORITHM IBBIS 
input:X =(x [1],x [2], ...... ,x [n ]), x [O]=a, x [n +1]=b, B =(a1,a2,. ..... ,ak ). 
output: search =(search [l],search [2], ...... ,seach [k]) (required indices). 



(1) IL :=0;/H :=n +1;BL :=1;BH :=n ;i :=1; 
(2) XL :=x [O];XH :=x [n +1]; 
(3) while i < k do 
(4) begin 

(6) 

{7) BJ:~ r BL ;BH . 

(8) while IN >0 an BL ~BH and x [IJ]~ai and x [BJ]~ai do 
(9) begin 
(10) if x [IJ]<a; then 
(11) begin IL :=IJ ;XL :=x [IJ]; end 
(12) else 
(13) begin IH:=IJ;XH:=x [IJ]; end 

(14) IN :=IH -IL -1r· a· 
1
-XL 

1 
(15) IJ:=IL+IN· _•+ __ 

XH-XL 
(16) if x [BJ]<a; then 
(17) BL :=BJ; 
(18) else 
(19) BH:=BJ; 

{20) BJ:~ r BL ;BH 1 
(21) end 
(22) if IN <o then 
(23) begin . 

search [i ]:=IL ;IH :=n +1; 
BL :=IL +1;BH:=n; 
XL :=x [IL ];XH :=x [n +1]; 

(24) end 
(25) if BL =BH then 

(26) 
(27) 
(28) 
(29) 
(30) 
(31) 

(32) 

begin 
search [i ]:=BL ;IL :=BL ;IH :=n +1; 
XL :=x [IL ];XH :=x [n +1]; 
BL :=BL +1;BH :=n; 

end 
else 

begin 
if x [IJ ]=a; then 

begin 
search [i ]:=IJ;IL :=IJ ;IH :=n +1; 

BL :=IJ +1;BH:=n; 
XL :=x [IJ];X9 :=x [n +1]; 
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il 

(33) end 
(34) else 
(35) begin 
(36) search [i ]:=BJ;IL :=BJ;IH:=n +1; BL :=BJ +1;BH:=n; 

BL :=BJ +1;BH :=n; 
(37) XL :=x [BJ];XH:=x [n +1]; 
(38) end 
(39) end 
(40) i:=i+1; 
(41) end 

3.1.2. Analysis 
In the discussion below, an iteration is said to begin with the execution of 

step (3), and a search step is said to begin with the execution of step (8). We 
assume again that the file, X =(x [1],x [2], ... ,x [n ]), and the hatched queries, 
B =( a 1,a2, ... , ak ), are both uniformly distributed between a and b , and 
x [i]<x [j+1](1<j <n-1) and a; <ai+l (1<i <k-1). 

Since algorithm IBBIS consists of two independent search routines, two 
immediate results can be obtained by referring to the well known result of binary 
search and our result of interpolation search presented above. 

THEOREM 3. The number of record accesses required by IBBIS for 
searching B is at most 

2 t log ( n n . ( i -1) ). 
k+1 i=l 

Proof. The worst case for IBBIS to search for a; is for the binary search 
portion to dominate the search. When a; is found by the binary search, the 
interpolation search portion of IBBIS will also stop. As before, the size of file X 

at the time a i is being searched is reduced by n ~ ( i - 1) records. Since every 
+1 

search step of IBBIS involves 2 record accesses, the number of record accesses for 
finding a; in the worst case is 

And the theorem is proved. 

2log (n n ·(i -1) ). 
k+l 

Q.E.D. 

THEOREM 4. The average number of record accesses required by IBBIS 
for searching hatched records with size k in a file with size n is less than 

k n ·(i-1) 
2 ~ loglog (n- ). 
i=l k +1 
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Proof. Similar to the proof of theorem 3, except that if the interpolation 
search portion dominates, the average behavior of IBBIS will just be 2 times that 
of the average behavior of algorithm BIS. Q.E.D. 

3.1.3. Experimental Results 
' 

In this experiment, we generated six sorted files of random integers. Five of 
them are uniformly distributed and one is non-uniformly distributed. The algo
rithm IBBIS was run against these files with 1,000 sets of hatched queries from 
size 1 to 20. Table 3 gives the comparison of the theoretical result and experi
mental results with IBBIS running on the five uniformly distributed files. 

Figure 3 gives the experimental results of running algorithm IBBIS and algo
rithm BIS over uniformly distributed file. Not surprisingly, the latter provides 
better performance. Similarly, figure 4 gives the comparison of results of execut
ing IBBIS and BIS over non-uniformly distributed file. The former gives better 
performance than the latter. This figure only gives the savings by IBBIS 

The proposal of alternating binary search with interpolation search to 
remedy the possible worst case behavior of the latter is first proposed by [9] for 
non-hatched searching. Their proposed algorithm denoted by IBS, which is more 
complex than ours; gives the analytic prediction of 4loglog ( n ) record accesses in 
the average which is more than a factor of 2 larger than ours. Our experiment 
shows that algorithm IBBIS performs a little better (table 4) for non-hatched 
environment, and alternating better (figure 5) in hatched environment than the 
algorithm described in [9]. 

3.2. Independent Blocked Batched Binary Interpolation Search 

3.2.1. Algorithm 

We will add the block access consideration to IBBIS described above to con
struct the algorithm below. 

ALGORITHM IBBBIS 

input: X =(x [l],x [2], ...... ,x [n ]), x [O]=a, x [n +l]=b, B =(a1,a2,. ..... ,ak ), m. 
output: search =(search [!],search [2], •••... ,search [k]) (required indices). 

(1) lL :=O;IH :=n +1; 
(2) BL :=l;BH :=n ;i :=1; 
(3) XL :=x [Oj;XH :=x [n +1]; 

Ipreblock :=-l;Icurblock :=0; 
Bpreblock :=-l;Bcurblock :=0; 

(4) while i < k do 
(5) begin 
(6) IN :=IH -IL -1; 

IJ: IL +IN . r a;-XL 1; 
. XH-XL 

12 



(14) 
(15) 

(16) 
(17) 
(18) 
(19) 
(20) 
(21) 

(22) 

(23) 

(24) 
(25) 
(26) 
(27) 
(28) 
(29) 

,./ 
(30) 

! ' (31) 
(32) 

f..,_, 

(33) 

(34) 

(35) 
(36) 

lcurblock := r ~ l 
if Jpreblock '-:/:Icurblock then 

begin 
read Icurblock th block; 
Jpreblock :=lcurblock ; 

end 

BJ:= r BL ~BH l 
Bcurblock := r ~ l 
if Bpreblock '-:/:Bcurblock then 

begin 
read Bcurblock th block; 
Bpreblock :=Bcurblock ; 

end 
while IN >O and BL ::FBH and x [IJ]::Fa; 

and x [BJ]::Fa; do 
begin 

if x [IJ]<a; then 
begin IL :=IJ ;XL :=x [JJ]; end 

else 
begin IH :=IJ ;Xu :=x [JJ]; end 

~~,= :::~~r;;~i } 
lcurblock := r ~ ~ 
if lpreblock '-:/:Icurblock then 

begin 
read Icurblock th block; 
lpreblock :=lcurblock ; 

end 
if x [BJ]<a; then 

BL :=BJ; 
else 

BH:=BJ; 

. BJ := r BL ~BH l 
Bcurblock := r ~ l; 
if Bpreblock '-:/:Bcurblock then 

begin 

13 



(37) 
(38) 

read Bcurblock th block; 
Bpreblock :=Bcurblock ; 

end 
(39) end 
(40) if IN <o then 
(41) begin 

search [i ]:=IL ;IH :=n +1; 
BL :=IL +1;BH:=n; 
XL :=x [IL ];XH :=x [n +1]; 

(42) end 
(43) if BL =BH then 
(44) begin 

search [i ]:=BL ;IL :=BL ;IH :=n +1; 
XL :=x [IL ];XH :=x [n +1]; 
BL :=BL +1;BH :=n; 

(45) end 
(46) else 
(47) begin 
(48) if x [IJ]=ai then 
(49) begin 
(50) search [i ]:=IJ ;IL :=IJ ;IH :=n +1; 

BL :=IJ +1;BH:=n; 
(51) XL :=x [IJ);XH :=x [n +1); 
(52) end 
(53) else 
(54) begin 
(55) search [i ]:=BJ ;IL :=BJ ;IH :=n +1; 

BL :=BJ +1;BH:=n; 
(56) XL :=x (BJ];XH :=x (n +1]; 
(57) end 
(58) end 
(59) i :=i +1; 
(60) end 

3.2.2. Analysis 

Let us define an iteration in IBBBIS is to begin with the execution of step( 4 ), 
and a search step begins with the execution of step(15). 

Let IKi. be the index of the key accessed by the interpolation search in the 
} . 

j th search step in the i th iteration, BKi. be the index of the key accessed by the 
} 

binary search in the j th search step in the i th iteration. Let BKio be the 
required index for ai _1 for i >2, and BK 10=0. The IKio and IK 10 are the same 
as Ki 

0 
and K 10 in section 2.2.2. 

14 



Define ID;. to be the distance between two consecutive search steps per
J 

formed by interpolation search in the i th iteration, ID; =IlK; -IK; I· Obvi-
1 1+1 1 

ously, ID;. =D;. as in theorem 2. Define BD;. to be the distance between two 
1 1 - 1 

consecutive search steps performed by binary search in the i th iteration, 
BD; =IBK;. -BK; 1. BD 1 is assumed to be at least m, the blocking factor, 

1 1 +! 1 0 

since at least one block has to be retrieved by the binary search in IBBBIS. 

LEMMA 3. The average value of BD; is 
1 

n·(i-1) 
n 

k+1 
2j+l 

for i > 1 and J. >O, except that BD 10 is greater than the blocking factor. 

Proof. By the uniform distribution assumption, the average size of file X 

when ai is being search for is n- n ·(i-1) as before. The distance between the 
k+1 ·._ 

i th and the U + 1 )8t search steps is always half the distance between the U -1 )8t 

and the J. th search steps. The lemma is proved. Q.E.D. 

The approximated block accesses for algorithm IBBBIS is similar to BBIS 
before except that the block accesses required for the binary search is also taken 
into consideration. 

THEOREM 5. The average number of block accesses required by BBBIS 
for searching B in file X is less than 

k r -1 

:E :E (block (ID; ,m )+block (BD; ,m )), 
• • 1 1 
I =lJ =0 

where, 

{
1 if D >m 

block (D ,m) = D /m if D <m' 

r =loglog (n n·(i-1)) 
k+1 ' 

and ID; and BD; is as defined above. 
} } 

Proof. Similar to the proof of theorem 2. Q.E.D. 

3.2.3. Experiment Results 

In this experiment, five sorted files of uniformly distributed random integers 
between 0 and 231 were generated. Each of them has 400,000 records. Different 
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blocking factors denoted by m as well as different hatched size denoted by k are 
used to experiment with algorithm IBBBIS. Table 5 gives the comparison of 
theorem 5 and the actual experimental results. 

4. Summary 
In this paper, the basic Interpolation Search algorithm is extended to provide 

hatched searching over blocked and non-blocked database environments. Also, a 
combined algorithm of independent binary and interpolation search is given to 
remedy for the worst case behavior of the pure interpolation search while still 
retaining the average behavior of the latter. 

Analytic expressions for the behavior of these extensions are given. All 
expressions are validated by extensive experiments. 
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Appendix 

A recent paper on interpolation search [15] claims the expected time com
plexity of 0 ( c I" loglog (N )+c 2) for non-uniformly distributed keys. A detailed 
examination of the algorithm reveals that there is a need of 3 record accesses per 
"3-cycle" in [15], hence the complexity is really 3c 1·loglog (N )+3c 2 • The con
stents c 1 and c 2 are dependent on many factors, such as the distribution of the 
keys in a file and the parameters in [15], which can hardly determined. In prac
tice, it could be very difficult to precisely determine the values of c 1 and c 2 other 
than the fact that c 1 > 1 and c 2>0. Also, as pointed out by the author, it is a 
open problem to minimize c 1 and c 2• Hence, 3c (loglog (N )+3c 2 may be larger 
than log (N) when c 1 is slightly larger than 1. Thus, the algorithm in [15] may 
not be more efficient than binary search in practice. Table 6 below compares the 
results of 3c 1·loglog (N )+c 2 and log (N) with c 1=1 and 1.5. Table 7 gives the 
comparison of the experimental results of running the iterative reduction algo
rithm in [15], binary search and our IBBIS algorithms on 9 files with different size 
N. , The keys in these files are X; =(x; _1+i )/5,000,000,000 for i =1 to N. 

As can be seen, the algorithm in [15] (which has not been validated experi
mentally by the author) does not provide much improvement over binary search 
and our algorithm in non-uniform distribution. 
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n=20DO n=3000 D=4000 n=5000 n=toooo D=400000 

K T.R. E.R. T.R. E.R. T.R. E.R. T.R. E.R. T.R. E.R. T.R. E.R. 

1 3.45 3.76 3.52 3.70 3.58 3.50 3.61 3.57 3.73 3.66 4.21 4.46 
2 6.83 7.28 6.98 7.33 7.08 7.14 7.16 7.15 7.39 7.29 8.38 8.65 
5 10.17 10.93 10.40 11.07 10.56 10.60 10.68 10.74 11.03 11.31 12.54 12.94 
4 13.49 14.60 13.80 14.50 14.02 14.24 14.18 14.43 14.65 14.90 16.68 16.99 
5 16.79 18.09 17.19 18.15 17.48 17.75 17.67 17.69 18.27 18.79 20.61 21.36 
6 20.09 21.08 20.57 21.62 20.90 21.13 21.15 21.44 21.87 22.36 24.94 25.24 
7 23.38 24.99 23.95 24.97 24.33 24.55 24.62 25.08 25.47 25.36 29.06 29.~~ 
6 26.66 28.01 27.31 28.58 27.76 27.99 28.09 28.41 29.06 29.54 33.18 33.4 
9 29.94 31.57 30.68 31.83 31.18 31.28 31.55 31.69 32.65 33.16 37.30 37.67 

10 33..22 34.71 34.04 35.26 34.60 34.63 35.01 35.59 36.24 36.74 41.42 41.65 
11 36.49 37.89 37.40 38.62 38.01 38.17 38.47 38.64 39.62 40.28 45.53 45.77 
12 39.76 40.81 40.75 41.89 41.42 41.27 41.93 42.09 43.40 43.90 49.65 49.66 
13 43.03 44.07 44.10 45.03 44.83 44.59 45.38 45.24 46.98 47.65 53.76 54:01 
14 46.29 47.14 47.45 48.23 48.24 47.85 48.63 48.54 50.55 51.32 57.67 58.00 
15 49.55 50.20 50.60 51.28 51.65 51.23 52.28 51.64 54.14 54.37 61.98 52.11 
16 52.82 53.25 54.15 54.70 55.05 54.55 55.73 55.33 57.71 58.36 55.09 55.67 
17 56.08 56.22 57.50 57.64 56.46 57.76 59.18 58.50 61.29 61.40 70.20 70.~~ 
16 59.33 59.23 60.64 61.04 61.65 60.59 62.62 61.77 64.66 65.09 74.31 74.3 
19 62.59 62.11 64.19 64.39 65.26 63.85 66.07 64.72 68.43 66.79 76.42 78.19 
20 55.85 65.18 57.53 67.41 58.66 6709 69.52 58.06 72.01 72.09 82.52 82.50 

Table 1 

. ·· ... 
m=60 m=70 m=80 m=90 m=100 

K T.R. E.R. T.R. E.R. T.R. E.R. T.R. E.R. T.R. E.R. 

1 2.50 2.58 2.43 2.53 2.37 2,5P 2.33 2.45 2.30 2.42 
2 4.96 5.11 4.62 5.01 4.72 4.87 4.64 4.78 4.57 4.73 
3 7.40 7.53 7.20 1.38 7.05 7.22 6.93 7.10 6.64 6.94 
4 9.83 9.75 9.57 9.75 9.37 9.56 9.22 9.37 9.10 9.22 
5 12.26 12.31 11.94 12.03 11.69 11.79 11.50 11.61 11.35 11.38 
6 14.68 14.43 14.30 14.16 14.01 13.82 13.79 13.65 13.61 13.39 
7 17.11 16.87 16.66 16.51 16.33 16.11 16.07 15.88 15.86 15.56 
8 19.53 19.11 19.02 16.77 18.64 18.34 18.35 17.99 18.11 17.57 
9 21.94 21.46 21.38 20.96 20.98 20.62 20.63 20.16 20.38 19.86 

10 24.36 23.66 23..74 22.97 23.27 22.48 22.91 22.11 22.62 21.81 
11 26.78 25.73 26.10 25.17 25.58 24.64 25.18 24.14 24.87 23.65 
12 29.13 27.93 28.40 27.21 27.85 26.55 27.42 26.10 27.08 25.67 
13 31.55 29.97 30.75 29.28 30.16 28.62 29.70 27.95 29.33 27.56 
14 33.96 32.13 33.11 31.36 32.47 30.64 31.97 29.95 31.57 29.48 
15 36.38 34.25 35.47 33.43 34.78 32.81 34.25 31.92 33.82 31.45 
16 38.79 36.55 37.82 35.63 37.09 35.11 36.53 34.12 36.07 33.65 
17 41.21 38.45 40.18 37.81 39.40 36.71 38.80 36.26 38.32 35.30 
18 43.55 40.45 42.47 39.39 41.66 38.52 41.03 37.68 40.53 37.00 
19 45.97 42.64 44.83 41.37 43.97 40.54 43.31 39.75 42.78 38.94 
20 148.38 44.51 147.18 143.:>4 146.29 42.41 145.59 141.45 145.00 140.75 

Table 2 ., 
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11::2000 11=3000 11=4000 11=10000 11=400000 

K T.R. E..R. T.R. E.R. T.R. E.R. T.R. E.R. T.R. E..R. 

1 6.90 6.96 7.05 ''I.Cl2 7.16 7.10 7.46 7.53 8.43 ll21 
2 13.66 13.14 13.96 14.08 14.17 14.15 14."111 14.94 16.T7 18.43 
3 20.54 20.52 20.81 21.05 21.13 20.74 22.07 22.03 25.08 24.68 
4 26.98 Zl::n Z7.61 28.06 28.04 27.84 29.31 29.49 33.36 33.13 
5 33.59 54.04 34.39 35.36 35.93 34.94 38.54 36.61 4Ui3 40.97 
6 .C0.18 40.15 ol1.15 41.54 41.81 41.45 ol3.74 43.82 49.88 49.21 
7 45.76 47.Z7 47.90 48.23 48..67 48.50 50.94 50.87 58.13 57.40 
8 53.33 54.05 54.63 54.94 55.52 55.36 58.12 58.18 65.37 65.60 
9 59.89 60.18 61.36 61.21 62..36 62..08 65.30 84.85 74.61 '13.81 

10 65.44 66.'12 68.08 87.75 89.20 69.18 '72.48 71.'13 82.84 81.97 
11 72.98 72.51 74.80 '13.96 76.02 76.02 79.84 78.84 91.07 90.11 
12 79.56 78.89 81.51 80.78 82.85 BZ.12 86.81 85.99 99.30 98.ol7 
13 86.06 85.75 88.21 87.82 89.67 88.'12 93.97 93.17 107.52 106.34 
14 92.59 91.65 94.91 93.83 96.49 95.54 101.13 100.22 115.75 114.14 
15 99.11 98.12 101.61 100.75 103.30 101.87 108.28 107.62 123.97 122.36 
16 105.64 104.74 108.31 107.07 110.11 109.83 U5.43 114.51 132.19 130.29 
17 112..16 111.33 115.00 112.93 115.92 115.06 122.58 121.84 140.40 137.83 
18 118.67 117.35 121.59 1111.22 123.75 121.18 129.73 128.83 148.62 145.43 
19 125.19 123.98 128.38 124.88 130.53 1Z7.67 135.87 135.31 156.84 153.82 
20 131.70 130.30 135.06 131.12 137.33 lt34.18 144.02 142.54 165.05 !161.27 

Table 3 

II 21oglo,g(n) IBBIS -4(loglog(n)+2) ms 

1000 6.62 6.58 21.24 7.21 
2000 6.90 6.98 21.80 6.78 
3000 7.05 7.02 22.12 7.03 
-4000 7.18 7.10 22.24 7.59 
5000 7.22 6.95 22.44 7.52 

10000 7.48 7.53 22.92 8.15 
400000 8.42 R.21 24.84 9.36 

Table 4 

m=6D m=70 m=BO m=9D m=100 

K T.R. E.R. T.R. E.R. T.R. E.R. T.R. E.R. T.R. E.R. 

1 6.50 6.49 6.43 6.43 6.37 6.40 6.33 6.33 6.30 6.30 
2 12.96 12...83 12.62 12.79 12...72 12.77 12..84 12.67 12..57 12.59 

"3 19.40 19.21 19.20 19.15 19.05 19.06 18.93 19.01 18.84 18.83 
4 25.83 25.56 25.57 25.45 25.37 25.Z7 25.22 25.21 25.10 25.09 
5 32..25 31.61 31.94 :31.36 31.69 31.16 31.50 30.95 31.35 30.84 
6 38.68 37.94 38.30 37.65 58.01 37.38 .37.79 37.07 37.61 37.11 
7 45.11 44.70 44.68 43.91 44.33 43.52 44.07 43.08 43.86 43.32 
8 51.53 50.66 51.02 50.38 50.64 49.77 50.35 49.66 50.11 49.31 

,:_.; 9 57.94 56.55 57.38 56.41 56.95 55.02 56.63 55.35 56.36 55.39 
10 64.36 62.62 63.74 63.44 53.Z7 61.09 62.91 61.48 62.62 61.05 
11 70.78 69.00 70.10 68.56 69.58 67.57 69.18 67.36 68.87 67.08 
12 76.13 74.92 75.40 74.41 74.85 '13.67 74.42 73.36 74.08 72..78 
13 82.55 80.76 81.75 80.28 81.16 79.39 80.70 78.93 80.33 78.41 
14 88.95 86.28 88.11 tl8.24 87.47 84.96 86.97 ~-~3 85.57 83.86 
15 95.38 92.63 94.47 ·sa22 93.78 91.21 93.25 90.57 92.82 90.07 
16 101.79 98.27 100.82 9:7.51 Ul0.09 96.77 99.53 96.13 99.07 95.41 
17 108.21 104.16 107.18 103.48 106.40 102.52 105.80 101.70 105.32 101.21 
18 113.55 109.66 112.47 108.94 111.66 108.18 111.03 107.35 110.53 108.71 
19 119.97 115.44 118.83 114.37 117.97 113.50 11'1.31 112.79 116.78 112.18 
20 126.36 121.95 125.18 120.31 124.29 1119.19 123.59 1118.34 1123.00 lu7.6o 

Table 5 
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3c (loglog (N )+c 2 

N log (N) c 1=1 c 1=1.5 

1000 10.01 lO.Ol+c 2 15.02+c 2 
2000 11.01 10.43+c 2 15.64+c 2 
3000 11.60 10.65+c 2 15.98+c 2 
4000 12.02 10.81+c 2 16.21+c 2 
5000 12.34 10.92+c 2 16.39+c 2 

10000 13.34 11.26+c 2 16.90+c 2 
50000 15.68 11.96+c 2 17.95+c 2 

100000 16.68 12.23+c 2 18.35+c 2 
500000 19.01 12.80+c 2 19.20+c 2 

Table 6 

N iterative reduction binary search IBBIS 

1000 10.39 8.79 12.30 
2000 10.93 10.01 13.44 
3000 11.32 10.61 14.36 
4000 11.39 10.92 14.36 
5000 11.67 11.26 14.82 

10000 11.73 12.39 16.35 
50000 16.26 14.66 18.96 

100000 19.91 15.76 21.36 
500000 30.10 17.86 24.03 

Table 7 
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