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ABSTRACT 

We construct natural generalizations of the gauge theory of 

hadrons (and leptons), now to include the B(1235) and possibly other 

mesons with CP = -1. We are led to a concept of "pseudospin" 

multiplets including p, pI, Ar and B-type particles; this provides 

then a renormalizable approach to all known particle types with 

J ~ 1. A number of interesting mass relations and intriguing 

structure is found. 

* This work was supported in part by the U. S. Atomic Energy 

Commission. 

1. Introduction 

At least one vector meson with CP = -1, namely the Buddha 

particle [B(1235)J, iE known to exist in nature 1) Others, such 

as h (the singlet B), have popped up from time to time on (at 

- 2-4) 
least) theoretical grounds • While gauge theories of CP = + vector 

mesons have been successful over the years 5), I am not aware of any 

theories including such B-type particles. Especially with the advent 

of renormalizable gauge theories 6-8), in principle capable of 

describing all particles with J S 1, we feel "B-particles" can and 

should be stUdied. It is our purpose here to discuss the principles 

of including B-type particles in gauge theories, and we will construct 

a number of models. 

Most of our model-building will be hadronic, because of the 

known B itself. However, we do not claim to have explicitly discussed 

all hadronic B models that follow from our general ideas, and,we also 

note that it may be useful to .consider such particles in the weak 

interactions as well. 

In our way of doing things, a number of general featur~s 

emerge. (1) We include the B-type particles in "pseudospin" 9) 

multiplets along with p, Al , and pI type particles. This is a 

very natural extension of the gauge theory of hadrons 7), and leads 

to the idea that the underlying (algebraic) symmetry group of strong 

interactions is larger than say SU(3) /X>SU(3): Where SU(3) x SU(3) 

is generated say by j .. ?{to :!: t
3

) [tIs being Pauli matrices}, our 

symmetries are generated by the completion of this group to ~a t 
~ 

(~ = 0,1,2,3). [t~, we say, generates the pseudospin.] These 

algebras are isomorphic to those used by Gilman and Kugler 10), but 

their role is different here, because in our notation, t2 will have 
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CP = -1. In particular, if the internal symmetry is SU(3), then, 

with pseudospin, we have in all an su(6). Of course, these larger 

symmetries are in general badly broken. (2) These symmetry groups 

are intrinsically parity conserving in the sense that the entire 

multiplet is described by only one gauge coupling constant ("left" and 

"right" are locked). More will be said about this later. (3) As 

far as vector meson spectra are concerned, we find one SU(2) model 

2 in which m 
p 

'2 22 th , . 
+ mp = ~; IS IS remarkably accurate. In the 

same model, an isoscalar Al[D(1285)?] is found degenerate with B. 

In another SU(2) model, assuming the existence of h, we find it 

most naturally degenerate with ~l. The SU(3) model may be 

unsatisfactory, in that it indicates that the p' is the first 

p-recurrence at '2 3 rather than the observed p' m = 2 , at p 
2 5 1 

mp' = "2 (4) The gauge theory of hadrons' problem (GA = 2) 

is modified here, and in general improved. (5) In some of the 

models, the intriguing possibility of calculable pseudoscalar-baryon 

coupling constant emerges. This is directly connected with the 

existence of the CP = -1 vector mesons 11) 

2. Fermions and Pseudospin 

As far as I can tell, the stumbling block in constructing 

gauge theories with B-type particles is the observation that such 

particles must have a derivative coupling into say baryon-antibaryon 

(or any diagonal coupling to a fermion). Thus, at first sight, B 

particles are simply nonrenormalizable. This reasoning is however 

specious, as we shall see. The point is that B can couple off-

diagonally between two fermions in the gauge Lagrangian. One test 
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that its CP is fixed negative would be that higher order corrections 

do indeed generate the appropriate derivative diagonal couplings. 

We intend realizing just such a situation; and we shall do so 

as a very natural extension of the gauge theory of hadrons 7). In that 

model, the fermion vector meson system can be phrased [in a u(4) 

notation] 

(:~\ 
qL (1 - Y5)q 

q' (1 - r. )q' 

~:;) 
L 5 

Q -

(2.1) 

with V and A, the vector and axial-vector ga.uge particles, coupling 

as 

(~), 
s exp(it ·a) 

(2.2) 

respectively. Here 0a are ordinary Pauli-matrices (we 'are suppressing 

internal SU(2), su(3), etc . for this discussion). As written, the 

primed quark is transforming with the opposite sign of Y
5

, to remove 

axial-vector anQmalies. 

Once we have removed the anomalies with the extra quark, it 

turns out that the same space supports two more gauge transformations, 

and anomalies are still absent. We take these to be 
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(~2 O~ 
o -CJ' 2/ 

.(2.3) 

AssUming that q,q' have the same parity and charge conjugation, we 

see immediately that tl corresponds to p', t2 to a B-type particle. 

The details of C and P for these models are found in Appendix A. 

Together, all four particles are a representation of the U(2) 

(pseudospin) group 

(~) (2.4) 

It will prove useful also to note the SU(2) subgroup which commutes 

with pseudospin, 

~: ~=(W) ~ (~) lCJ
l 

0 

"U3 G~) (2.5) 

(to fY:.) o . 

It does not appear that gauge particles can be attached to ~l or 

because these mix left and right quarks. ~3 could be used alone 

however, and would evidently provide an Ai. This would provide a 

larger, more chirally symmetric pseudospin group [with members p,Al , 

B, p;Ai] but we will not go into these interesting models in this 

-6-

invariant mass term 

(2.6) 

Thus the C's and p's of all particles are now as assumed above 12). 

It is curious that within the ~ Lagrangian itself (without fermions 

there is no way of ascertaining more than the relative C, P of 

p', B. As we shall see below, however, spontaneous breakdown will 

establish their absolute C, P,even within the mesons. Such 

mechanisms will also give further (diagonal) quark masses. 

Algebras 

The desired internal symmetry can now be juxtaposed with the 

pseudospin. For the simplest case of SU(2), we distinguish three 

models: 

(a) to~> t3!' t l !, t2 (R.' ~l' R.', h) (2·7a) 

(b) to!' t3!' t
l

, t2! (R.' ~l' w', ~) (2. 7b) 

(c) to!, t
3

, tl~> t2:!: : (R.' w5, R.', ~) (2. 7b) 

where ! are another set of Pauli matrices (.p, cP) = 0, this time 

representing isospin. Here Band h have the quantum numbers of 

B(1235) and the oft-conjectured isoscalar Buddha. To each of these 

models, an w, transforming as to' may be addended trivially if 

desired. 

Each of these models has an 0(5)-like algebra. For example, 

paper. in the case of model (a): 

As an immediate application of ~,however,we notice that 

we fix the C and P of q,q' to be the same by writing the gauge-
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i € Q 5 
o:~rr ' (%,Q~) i Eo:~r Qr 

i €~r 'ty, (%,~) i E~rQ~ (2.8) 

° 

.nere %' %5 form the usual SU(2)~SU(2) (of vector and axial 

-,"ector currents associated with 

additional set of (Q' ~ tl 1) 

:lass isoscalar charge (t2). 

to and t
3

) , 

vector charges, 

Slmilar algebras 

while ~ are an 

and ~ is the second-

for models (b) and (c) 

:an be read off, remarking that, in (c), there is no local realization 

of SU(2) axial vector transformations. 

Similarly, one can write models for arbitrary internal symmetry. 

Most interesting presumably would be the models for U(2), generated 

:y to:T~ (~= 0,1,2,3), and su(3), generated by to:r-_~ (~= 0,···,8). 

?tiese models essentially combine the features of the prototype models 

(a), (b), and (c), and, except for a remark about possible trouble 

-.;ith SU(3) in Sec. 3, will not be discussed here in detail. 

A final relevant remark in this section is that we have also 

studied introducing B-type particles on qq' where both quarks 

transform with the-~ sign of Then, e.g., one can take [in a 

similar U(4) notation] 
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L (~)c, R (4)c 

L' (~} R' (~} (2.9) 

where L,R form the usual SU(2)~ SU(2), and where L'R' a~e of 

abnormal content. Particle content in such models always seem to 

involve (with B) an abnormal p particle (with C = +); further, 

these models have anomalies; and are not "parity-conserving". For 

all these reasons, our y -doubled quark system appears natural. 
5 

emphasize,howeve0that our pseudospin-vector-meson systems may be 

taken on their own, and other (baryonic?) representations may be 

sought instead of the quarks. 

3. Spontaneous Breakdown and Vector Systems 

We 

We will catalogue here a number of the simpler scalar multiplets 

possible for the Abelian theory. The analogous multiplets for the 

models with i~ospin are given in Appendix A The smallest representa-

-1 tions are-of course vector, say r: ->S r: S These are representa-

tions which potentially can couple directly to the fermions, and which 

are the analogue of the usual (rr,cr) multiplet (say (3,5) when 

using su(3) ® su(3)J . It will be convenient to distinguish three of 

these, depending on their C and P content: 

-,~ 

.!' 

.;-. 



-9-

where cr, ~, P, S type fields are characterized by 

cr(e = P = +), n(e -p = +), p(e = P = -), and S(P = -e +) 

particles. The couplings, if desired, to the fermions are 

(3.2) 

but the coupling vanishes explicitly. The couplings to the 

vector mesons are as usual for vector representations. We give all 

three representations for reference; in fact we do not necessarily 

intend using all of them at once in a given model. 

Another, even more useful representation is the M-type field 

of Ref. 7, which, as in Ref. 8, is necessary to provide unification 

with the nonstrong interactions. M transforms M ~SM(S,)-l, where 

the primed group is that of nonstrong interactions; M has no direct 

coupling to our fermions. Its representation content is 

M 

other representations such as complex vectors may also be useful, 

but, for this paper, we will confine'ourselves to the foregoing. 

The e and P content of these representations are fixed 

for all but M by the fermions. (See Appendix A) The content of 
I 

each multiplet is, however, fixed anyway by the assumed pattern of 

spontaneous breakdown 

(3.4) 

(M; 
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This leads to the general vector meson masses 

Here is appropriate when the representation content allows 

mixing between the to(p) and tl(p') type particles [e.g., pp' 

mixing in models (a) and (c)]--otherwise the masses in the tOtl 

system are just the diagonal entries [model (b)J. m
A 

2, ~2 are 
1 

generic here for normal and abnormal axial vectors, whatever isospin 

we choose. f is of course the strong gauge coupling constant. 

This pp' mixing determines, as promised, the absolut'e 

e and P of p' and B type particles even in the pure meson 

system (given e and P of p). Using Eq. (3.5), we will now 

distinguish appropriate scalar systems for the models (a), (b), and 

(c). 

Model (a) , 
R. ' 

h). The simplest scalar system here is just 

M (no t's) . This has a number of interesting features worth 

mentioning .. In the first place, the mass spectrum is 

2 2 2 '2 2 2 2 I 2 2 2 
m p = f (ItO - ttl) , m = f. (ItO + Itl ) , mA = (KO + Kl ) =~ p 1 

The model predicts h degenerate with ~l' We also get the sum rule 

rn 
p 

2 
+ m 

p 

'2 ') 2 = rnA ~ + ~ , together with an equal spacing rule: 
1 

is as far above as 
2 

m 
p 

is below it. Thus this 

m 
p 

p' 

'2 

is 
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not the p' '2 
of experiment at m = 5/2. 

p 
Instead, taking known 

masses of p, 
'2 

Al , we find mp = 3/2, the position of the as-yet-

undiscovered first dual p'. Later we will discuss (with v
3

) 

raising p' to 5/2, with a corresponding raise of h. 

Another interesting feature here is a calculable pion-quark 

coupling: M does not couple directly to fermions, but we have 

determined that, say, the remaining pion in M does couple 'diagonally 

via loops. It is easy to check that the .e ,h intermediate state 

I 3 - C/I induces a direct coupling of the form ,~M f q t2 ~l q which is just 

like the pion in S would couple. Similarly~ as must occur, h 

develops diagonal quark couplings through a ~'~l intermediate state. 

Another feature is that the GA = 1/2 (for "bare" quarks) 13) 

result of the original gauge models is in general modified in these 

theories. Letting the weak interactions transform M as 

from the right, we can calculate 

(t' + t') 0-3 

(3. 6 ) 

The t is for the quarks which transform as t Y5' In fact, this 

result is perfectly general (as long as ~l exists, and ,is not 

restricted to just M); in this simple case, however, Eq. (3.6) 

reduces to 

where we've assumed the (+) quark is dominating the low-lying 

fermion spectrum. 
'2 

Using mp = 3/2, we get GA ~ 0.85 which is 

an illlpl'Ovement over the old unified models. This modification (and 
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improvement) of GA is a general feature of all our type of models, 

and traceable directly to the intrinsic pp' mixing. Of course, for 

real baryons, G
A 

depends on Eq. (3.6 ) times a factor reflecting the 

coIiIposi tion of the baryons: If the baryons are taken in a symmetric 

su(6) multiplet 14), e.g., we get to multiply by 5/3: 

Model (c) (l2" (1)5' ~'l2.'). This is a model without ~l; although the 

effects of an Al may be present as a kinematical enhancement, it 

is not likely this model can be successfully unified with the nonstrong 

interactions (G = 0 etc.). A,trees ' still, the model is very 

interesting for hadrons. If we proceed with just M, we find as 
[n(1285)?] degenerate with ~. In fact, 

m 
p 

2 

2 1 fixing mp - 2' 

'2 5 
at mp = '2 p' 

of £ and B. 

(3.8) 

~2 = ~, we find indeed the experimentally known 

'In this model we, predict the p' mass in terms 

Model (b) (Q/ ~l' ~,(I)')' This is a model without pp' mixing. We 

must split ~l from p, and raise B even more than ~l~ Thus, in 

addition to M, we must introduce some 

Withv
l

, we find 

is a candidate for ¢[l020]; with v2' 

so here (I)' is closer to ¢'(1675). 

v3 
2 

m 
p 

and (at least) either 

2 
~ m

A 
,so (I)' 

1 

2 2 
+1IL -m 

1:1 Al 

2 2 
+~ 

2 2 m ~ 2m , 
p - Al 

This model seems less attractive, 

both on grounds of vector masses, and because of the large number of 

scalars. 
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A necessary remark in this section is that the models we've 

discussed so far have the minimal number of scalars to achieve 

interesting vector spectra. Other Z's may be added with 

corresponding complications. 

The case of SU(3) is not totally satisfactory. Here we 

must have f?' R- J
" ~l' Ball together (with strange mesons) in the 

same multiplet. Then we see immediately from (3.5) that (fixing 

21223 2 
mp = 2' mA 1, ~ = 2) one cannot get mp ' greater than 2. 

1 2 3 
(It is easy, of course, to put mp ' = 2)' So, at the SU(3) level, 

our models, as they stand, are giving the "first" dual p'; SU(3) 

appears unsatisfactory here unless a lower p' is discovered 15). 

It also remains possible that some other scalar representation can 

split the multiplet differently. 

4. Structure of the Scalar Systems 

We begin, for, simplicity with a discussion of the "Abelian" 

case, 'which will illustrate most of the principles. Further, we will 

assume, at first, that there are no "insertions" in the "primed" side 

of M. Either KO ~ Kl vacuum expectation value would break the 

system down from eight symmetries (four local, four "primed" global} 

to four final symmetries, being the product U(2) group of primed and 

unprimed. The four Goldstone bosons are eaten as four vectors are 

raised. However, we need in general KO and Kl . Together, the 

final number of symmetries is reduced to two, being the product group 

to and t l • Now there are two remaining real Goldstone bosons-­

corresponding to a IT and a P. In the case of model (a), e.g., 

this translates into a zero mas J[. and,' P (isosinglet). These are 
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consequences of spontaneous breakdown of t3! and t2 respectively. 

Their degeneracy is a consequence of the persisting tl! global 

invariance. At this stage, we remark that the (a) model appears 
, 4) 

completely analogous to the low spectrum of Brower's model . 

(He found ~e' trajectories split equally around a degenerate P~ 

trajectory.) The possibility of a very low mass P is discussed 

further in Appendix B. 

Here, however, we can change this situation if desired: e.g., 

a tl insertion such as Tr~tM(aoto + altl ») will raise [ and P 

away from zero mass, but they would remain degenerate. A t3 

insertion, which would raise P above ~ is unfortunately parity 

violating and cannot be introduced directly. A t3 insertion ~ be 

achieve~however, via the introduction of an extra ~. Then, we can 

have the term Tr(t
3 

Mt Z3 M). In such a model (just t3 insertion), 

only one IT remains at zero mass 16), while P is raised. 

Concurrently, the presence of 1:3 now further raises £' and h; 

the ~-P and ~l-h splitting is not necessarily correlated in size. 

The possibility of p' being the observed p' 

in this model. If we set p' at that mass, we 

at ~ is now reopened 

2 
find ~ = 2. 

Further, Eq. (3.6) for (G ) can be reexpressed, A quark 

2 '2 m m 
p p 

4 2 2 2 2 
= mA GA + mA (~ - mA,) (4.1) 

so we would, unfortunately,be back at 

Further, t3 and/or tl insertions can'be reconciled with the 

usual nonstrong interactions [(tb it;)! local gauge group): We 

must, of course, make such insertions indirectly through the' 

spontaneous breakdown of "weak" Higgs' fields r;. For example, to get 
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a tl insertion we would use 

¢ ~ S' ¢ S 
'-1 (4.2) 

This field, being like the t l ,t2 part of Ll' is essentially 

neinberg's6) scalar 9, and is enough to provide adequate spontaneous 

breakdown in the usual weak interactions, while introducing a tl 

insertion via Tr(¢l Mt M) (or Tr(¢i Mt !i M». Alternately, a t3 

insertion can be achieved via a weak scalar ¢3 (like t
3
), taken 

in the combination Tr(¢3 Mt L) M). Parity-violating terms like 

Tr(¢l ¢3) can be included to avoid extra Goldstone bosons. All this 

can be done without expanding the weak interactions to include ti t2 

currents in analogy with the strong interactions. We shall, however, 

ceturn to such subjects below. 

Although the scalar systems in model (b) and SU(3) are 

easily discussed in the terms we have just employed for the Abelian 

case and case (a), our model (c) (no ~l) is very unusual, and 

deserves separate comment. As one can see from Appendix A, there 

are no pions in the appropriate M. Presumably, this is related to 

not needing any to be eaten by an ~. Pions can be included via 

L:-type fields, as in the Appendix (or a more complicated M), but in 

all the multiplets we have found, the pion occurs together with fields 

that can have no parity and isospin conserving vacuum expectation 

value (see Appendix A). Thus, in these models, we find no reason 

for the pion to be zero mass (i.e., Goldstone). The point is of 

course .that ~l type (global) transformations in such a model 

correspond to an intrinsically broken symmetry (by vector representa­

tion content). If a reason cOuld be found for getting the rr to 
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zero mass in the trees, such a representation would quickly generate 

via loops (pseudo-Goldstone 17». In the absence of such a 

mechanism, we must conclude that a gauge ~l should always be 

incorporated from the start. This is distressing, however, in 

relation to the sum rule (3,8), which is so good. 

5. Parity-Conserving strong Interactions and Miscellaneous Topics 

As mentioned in the Introduction, the basic pseudospin-

symmetry group of these models, taken with say SU(2), SU(3) "', is 

intrinsically parity conserving. Both "left" and "right" vector 

mesons are locked together with a single coupling f. On the other 

hand, the scalar representations that we have intro~uced have no such 

nice property. For example, one can (a priori) introduce parity­

violating insertions of the form Tr~t M(UotO + u
3

t
3
i) in the 

potential. After that, of course, one can have (p) t 0 as a 

complementary source of spontaneous parity violation. 

It is an interesting question whether or not we can stop 

such insertions in one way or another. If we have the ordinary 

(to ± t 3) weak interactions, acting on the M we have introduced, 

we certainly cannot stop them in a gauge invariant manner. (We can 

of course hold them small by band as usual 18». One path toward 

stopping the insertions is through expanding the weak interactions to 

include the pseudospin group (and second class currents--to be 

suppressed). In such a situation, the group structure is so tight 

that it is no longer possible to violate parity by representation 

content, as is now common. Rather, we must take the whole parity-

conserving multiplet. Then parity would have to be broken 
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spo~taneously, presumably through a (p k) ~ O. wea T This is an 

intriguing possibility that we will explore elsewhere. 

Another possibility is that other scalar representations be 

used that brook no insertions. We have found a number of simple 

models of this, but they are physically unsatisfactory. As an 

example, consider in the "Abelian" case, the "SU(2)-M" representation 

MgU(2) 

This 4-component representation supports no to transformation. If 

we couple t in the manner 

and a U(l) as 

(s ·3) 

then WE have a model with all but one vector mesons rais~d and only 

one a-like scalar left. This vector meson transforms like the 

product group t l , and we can raise this with the introduction of 

(S.4 ) 

The resulting model has all four vector mesons raised, and one n 

and two a's left in the scalar sector. In this model, we have used 

our B-type particle to "eat the pll, and the resulting system is 

-18-

, 
completely parity-invariant. A weak left'handed W can be attached 

as ti on the right of M, and CU
3 

to the quarks. No pa.rity­

violating insertions are possible here, but, unfortuna.tely, this model 

does not appear readily extendable to internal symmetry. Still, the" 

idea of parity-conserving strong interactions, say by eating all 

p's 19), is very interesting, and we are not yet convinced such 

models cannot be made more physical. 

We have some remarks about the issue of nO ~2r, (with 

respect to the qua.rk doubling). In the first place, it is worth 

re-emphasizing that the vector (and scalar) systems of this paper can 

be viewed on their own right, to be attached later to appropriate 

baryons. From this point of view, we need classifY various fermions 

under the pseudo spin group. On the other hand, staying with our 

original (motivating) fermions, it looks that nO ~2r can be taken 

correct 20):" In the case of the calculable pion-quark couplings, the 

question is open at the moment, but the pion in the multiplet 

works quite well on its own. In fact, this pion, while coupling (say) 

with g2,-g2 to q,q' respectively, gives masses mq = g2v2' 

I 
m~ = -Q2v2. For simplicity then, think of zero quark mixing (M = 0). 

Writing q' ;; rsq ", we have two degenerate quarks' q ,q" at the same 

mass, and with opposite parity. Their pion couplings are both +g2' 

so the q,q" contributions add and nO .... 2r receives in fact an 

extra (good) factor of 2. At the same time, the B-quark coupling is 

i(q -,J1 q" - q" -,J1 q)B which is quite correct, because q" has 
.' IJ. 

opposite parity. 

We have a remark to make about M-type particles in general. 

We have seen here that such are always best thought of as bound states 

in just such a rS-doUbled quark system. Indeed, in the original 
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model 7,8) if one introduces a q' transforming with the opposite 

-, t sign of rS under the primed group, we have the coupling qR ML qL 

etc. 21) In fact such an observation leads to the idea of an M-free 

theory based on q,q' with a gluon coupling between them. M's can be 

~lled into existence as bound states by searching for a solution with 

~ mixing mass q'q. All this is in direct analogy to the way pions are 

found with just one quark. Such theories would also be, in principle, 

parity conserving . Analogously" this idea can be extended to the 

gauge groups of this paper. 

As a final remark, we note that these theories might be 

expected to Reggeize 22) better than the original M models. For 

example, here the h meson, being the next member on the [,h 

trajectory, may help [ Reggeize. By the same reasoning P might 

be helped to reggeize (even in the original models) by ~l--especially 

if P is set to zero mass. 

I would like to thank Professor K. Bardakci, Dr. K. Lane, 

Professor H. Bingham, Professor A. Goldhaber, and especially Professor 

I. Bars for helpful conversations., 
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Appendix A. C, P, and Scalar Representations 

In the text, we fixed the C and P content of q,q' to 

be the same. As we shall note below, the whole theory can be redone 

with different assumptions; first, however, we want to give the matrix 

C and P transformation properties of all relevant fields with this 

convention. C and P transformations on the quarks [in the u(4) 

notation] are 

~ q £2Lc -
l C C' q (A.l) 

C' q (A.2) 

where C iy2 rO is the fermionic charge conjugation operation, 

while C' = ( ~ I ~) operates in the pseudospin space. The 

transformation properties of the vector mesons are then 

- C' V
T 

C' (A.3) 

- C' V C' (A.4) 

The transformation properties of the E's can be read off from the 

manner in which they couple to fermions [see Eq. (3.2)J; note the 

C and P properties of ~J, 

c' ~T C' (A.S) 

C' S C' (A.6) 
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For L2' the parity is reversed and, for ~,both parity and charge 

conjugation are reversed. In fact, this argument is formal for ~, 

as it does not couple to these fermions. However, it is a useful 

field through its couplings to the vector mesons, and its C,P is 

fixed through its assumed spontaneous breakdown «cr) I 0). We will 

assume the complex field M to transform as 

~ M'Uc-l 

C' M C' (A.8) 

~d use allowed vacuum expectation values accordingly. Other M's 

are possible, but do not appear useful. 

This completes a description of the p, p', AI' B type 

models. We want to note that a different kind of model involving 

p, Al , Ai, PAB (abnormal p with C = +) is also possible. The 

way to obtain such models is, say, to leave the quarks alone, but use 

a conjugation (instead of Tl ) for the vectors. That is 

(A.9) 

Then t2 - PAB. We have avoided explicit discussion of these models 

on physical grounds. .Wi th this remark, one can see how to construct 

models of p p' Al B evenwhen q,q' have opposite C and P. 

One needs only use the T2 conjugated gauge particles. 

Using these transformation properties, one can check the C 

and P of the following assortment of scalar multiplets for each 

of the SU(2) models of Sec. 2. 
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Theory (a) (£, £', ~l' h): 

M 

(A.IO) 

Notice that the fields in different multiplets are in fact distinct. 

Theory (b) (£, ~l' ~, WI): 

M 

(A.ll) 

where 1) has }'CG -++ O· • 
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Theory (c) (£, D, £', ~): 

M 

t a + t cr' + t -roS 1 2 ~~ ~ 

(A.12) 

Analogous multiplets for SU(3) are even easier to construct than 

these, and are left as an exercise for the reader. 
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Appendix B. Possible Low Mass P and Exchange Degeneracy 

We have seen in the text that it appears possible to raise P 

above ~ in these models, but it is somewhat cumbersome, requiring a 

considerable number of new scalar fields; indeed, the simplest (a) 

model, with just the M scalar, keeps them degenerate (this is the 

extra symmetry tll' corresponding to p' transformations). This is 

also the situation found by Brower 4) 

In fact, for a considerable time prior to the construction of 

the Buddha-type models, I. Bars and the author have been discussing 

together the possibility of a very low mass P particle, say degenerate 

with the pion, or very close. The following ideas of this Appendix 

arose in collaboration with I. Bars. 

We realized that the very. existence of a P particle in the 

M~models 7-8) is a sign that the Lagrangians are giving a simple 

realization of exchange degeneracy. For some time physicists have been 

familiar with the (£,f), (w,~), (~,h), (cr;R,')' (1),~) exchange 

degeneracies, and a so-called "pseudotensor" trajectory 3) with 

intercept near zero and approximately degenerate with ~l. This 

pseudotensor trajectory, usually assumed to begin particle content at 

J = 2, is "smOothing" the Al behavior in the cross channel (say rrp 

scattering). Our Lagrangians are clearly giving "smoothed" (no 6I = 2, 

unitarity bounded) physics, but realized on systems with J'::: 1. In· 

this sense, it is not surprising that P is found in general in 

these models: It has the quantum numbers of a particle at J = 0 on 

the ''pseudotensor'' trajectory. 

This is, of course, all the more striking in the B-models 

here, where P most naturally occurs degenerate with l!. On the 
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other hand, it may be the case that P should always be raised by 

hand, and thought of as a low spin representation of the higher J 

part of the pseudotensor trajectory. 

In any case, Bars and I have also found that a very low mass 

P is a very peculiar particle indeed, and may possibly have eluded 

detection thus far. We are presently pursuing this investigation 22) 
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e.g., that 11 .,.-
9 

where x is 

a missing pseudoscalar with small mass. The asymmetry 

arises because of + + 
p ~ 11 + P can occur, but there is no 

corresponding mode. 



4'0 ' ,t' 

r-----------------LEGALNOTICE------------------~ 

This report was prepared as an accoun t of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 



TECHNICAL INFORMATION DIVISION 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 


