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I. INTRODUCTION, 

The subject of the phenomenology of hadronicinteractions at 

'high energies is extremely broad. In these lectures it is necessary 

to limit the discussion to only a few topics and merely to scratch,the 

surface of Inost of these. Since my charge is to provide an introduction 

on which concurrent and subsequent lecturers can build I ,stick to 

basics. Furthermore, my approach is down-to-earth in the extreme. 

Elegance and rigor take a back seat to "Anschaulichkeit" and intuitive 

understanding. The lectures are thus aimed at plain and simple ,folk. 
I 

Theorists and other s,ophisticates may, while wincing, ~so benefit, 

but they are not the intended audience: 

In strong interactions at high energies for the past year and 

a half the scene has been dominated by the great extension of the 

energy range for controlled experiment.e.tj,on made available b;, the, 

Intersecting St9rage Rings (ISR) at CERN, Geneva~ Switzerland, and 

the proton synchrotr~n at the National Accelerator Laboratory, Batavia, 

Illinois (NAL). Prior to the start-up of these facilities the highest 

,available energy was at SerpUkhov in the U.S.S.R. where a 70 GeV proton 

beam provided a c.m.s.energy W:::: 11.5 GeV in collisions with a 

stationary nucleon. Now we have' available c m.s. energies of 

W ~ 20-60 GeV at the'ISR in proton-proton collisions and W - 20-27 

GeV at NAL from 200-400 GeV protons or mesons on a stationary nucleon, 

target. For the first time we have been able to, look in detail at 

truly high energy phenomena. At these energi~s the ,symbol, », in 

the statement W» ~ almost takes on its rigorous mathematical 

meaning, not merely the physicist's interpretation of somewhat larger 

than or at leaF,t slightly greater than! Of course, many of the 

phenomena observed at the ISR and NAL have been known, in outline at 
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least, for many years from experiments with cosmic rays, as the experts 

in that field hasten to point out (e.g., Feinberg, 1972). Nevertheless, 

the wealth of detail possible with controlled experimental conditions 

and intense beams of particles has meant that gross features seen in 

cosmic rays are now firmly established and finer details, energy 

dependences, or rare processes are being explored for the first ti'me., 

Since t~e time of Rutherford elastic scattering has occupied 

an honorable position among phenomena designed to' elucidate the forces 

between particles and their structure~. Inelastic scattering, too, 

has played its role in the study of structures and excitations since 

the days of Franck and Hertz. In particle physics both elastic and, 

inelastic scattering have been pursued continuously over the years, 

but with the availability of meson and baryon beams with energies of 

several GeV'and the attendant production of particles emphasis shifted 

to the detailed study of the complete final state of three, four, or 

more particles. Quasi-two-body processes with one or two resonances 

in the final state were studied, decay correlations and energy,depend

ences observed. A tremendous amount of information was and still is 

being accumulated on these so-called exclusive processes and a semi

quantitative understanding and theoretical fra.mework was gained. 'Some 

aspects of this are summarized in Chapter II. As higher 

energies became available the most probable occurrence in a hadronic 

collision was the production of many,particles. Two-body or quasi

two-body channels were relatively improbable. Attempts were made to 

study resonance formation among the final state particles and to 

interpret the various invariant mass plots within some theoretical 

framework-(e.g., n-,point Veneziano amplitudes or Van Hove phase space 

'plots). At 'energies like Serpukhov or higher, however, the average 
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, number of produced particles is so.large ~t little can be learned 

from exclu~ive experiments-~the number of degrees of freedom is just 

too great. It is nece;sary to fall back on simpler things--total cross 

section measurements, topological cross sections, single particle 

production spectra (with elastic and inelastic scattering of the 

incident particle as special cases), two-particle correlations and 

yerhaps slightly more complicated situations. We speak then ?f 

inclusive experiments or processes. The total cross section crab is 

the zero-particle inclusive process--a + b ~anything. The reaction 

a + b ~c + anything, where the type of particle (c), its momentum 

and perhaps spin, is all that is observed, is called a single-particle 

inclusive process, and so on., Over the past three or four years 

inclusive processes have become an industry at least as large as the 

quasi-two-body industry once was. Counter experimenters have found their 

beam surveys upgraded in theoretical respectability and bubble chamber 

physicists have been able to get publishable results from the tremen

dous number of previously useless unfitted events. At first glance it 

.. t'hat much of interest could come out of singlemight seem surpr~s~ng 

particle spectra, but we will see in Chapter III that 

simplicity' allows application of ideas closely related to two-body 

, ppenomenology. 

The most important single feature of hadronic interactions to 

be discovered with the extension of the available energy range is the 

rising total cross sect~on for proton-proton collisions (again, this 

was anticipa.ted somewhat frcim cosmic ray evidence (Yodh, Pal, and 

Trefil, 19(2)1. This raises the question of bounds on total and 

differential cross sections and other aspects. These topic:; are 

.. 

• 
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discussed in Chap. II after a review of the basic experimental facts and 

the general theoretical framework. The Froissart bound on total cross 

sections, a different treatment of the ratio of real to imaginary part 

of the forward scattering amplitude, discussion of the partial wave 

(impact parameter) distribution for p-p scattering, the MacDowell-

~ Martin bound and the connection between the energy dependence of ampli

tudes and their J-plane structure completes this chapter. An introduction 
;. 

to inclusive processes is given in Chap. III. Again the basic facts are 

presented, followed by a discussion of the main theoretical ideas via thp. 

Feynman-Wilson fluid analogy. The relation between the fluid analogy and 

the Mueller-Regge description is outlined briefly, as is the "two':' 

component" model of prong cross sections. A series of appendices 

summarize notation and some details that would burden and disturb the 

flow of argument in the text proper'. A major omission is the 

discussion of processes involving large transverse momenta. Reliable 

data are just beginning to emerge and there are some fascinating theor

etical speculations,but could take a whole lecture series in itself. 

References are cited in the. text by authors and year of publi

cation and are given in full in the bibliography, alphabetically by 

first author. Papers from conference or "sUmmer" school proceedings 

are cited in the text in the same manner, but. are listed in the 

bibliography by the conference location. The full citations for the 

conferences are given at the beginning of the bibliography. In such a 

rapidly developing field as high-energy physics the best sources of 

background information and leads to more detail are the conference 

proceedings, summer school notes, and the review literature (Physics 

Reports, Reviews of Modern Phy,ics). Two recent books a.re noteworthy--

D. Horn and F. Zachariasen, Hadron Physics at VelY High Energies, W. A. 

Benjamin, Reading, Mass. (1973) and R. P. Feynman, Photon-Hadron 

Interactions, W. A. Benjamin, Reading, Mass. (1972 ). 
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II. TOTAL CROSS SECTIONS, ELASTIC SCATTERING, 

AND TWO-BODY PROCESSES 

1. Basic facts and Samples of data 

The most recent reviews of total cross sections and elastic 

scattering are those of Diddens (1972), Giacomelli (19721 and Amaldi 

(1973), and on two-body and quasi-two,-body inelastic processes those by 

Chiu (1972), Michael (1972), Phillips and Ringland (1972), Barloutaud 

(1973), and Fox and Quigg (1973). I shall lean heavily on these and other 

reviews both in the topics I discuss and for excuse on the topics I omit. 

While the emphasis in this chapter is more on total cross 

sections and elastic scattering at high energies than on processes 

with nontrivial quantum number exchanges, it is expedient to summarize 

the gross empirical facts and main theoretical concepts for all two

body processes: 

"(i) There exist SU(3) singlets and' octets of mesons, and 

singlets, octets, and decimets of baryons, of a variety of different 

spins and pari tie s·. Some of these mesons and baryons are stable, 

apart from electromagnetic or weak decays. Others appear as resonant 

states in scattering or production experiments. 

(ii) The quantum numbers of the observed meson and baryon 

multiplets can be generated by the mnemonic of the quark model, with 

(qq) . for the mesons and (qqq) for the baryons. (This particular 

empirical fact will need !lX)dification as soon as any "exotic" 

resonance is firmly established.) 

(iii) Two-body and quasi-tl-Io-body processes are peripheral, 

showing peaking at forward directions (small t) and/or backward 

directions (small u). 

-y 

I 

• ,-
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(iv) :-Integrated cross sections, or differential cross sections 

at fixed momentum transfer, show approximate power-law behavior in the 

energy, __ Inparticular, total cross sections seem to become constant 

asymptotically and obey pomeranchuk I s theorem.' 

(v) Virtually all occurrences or nonoccurr~nce~ of peripher

ality in a given process (iii) can be understood in terms of the 

exchanges of the internal quantum numbers of the known SU(3) multi

plets of mesons and baryons (i). 

(vi) A modest amount of analyticity in the kinematic invariants, 

plus crossing symmetry, relates the phase of an amplitude at high 

energies to its power-law behavior (iv). This connection is the same 

as, but more general than, that given by Regge pole theory. 

(vii) The known mesonic and baryonic states (i) can plausibly be 

placed on Reggetrajectories, and the trajectories are approximately 

linear in the square of the masses. This gives great impetus to the 

use of Regge exchanges to' unifY items (iv), (v), and (Vi) into an 

aesthetically pleasing whole." 

The above seven points were written down four years ago (Jackson, 1970) 

and are subject to some slight modification. On item (ii) there is 

increasing' evidence, though not yet overwhelming, of the existence of 

exotic baryonic resonances (See Lovelace, 1972). In point (iv) the 

statement that "total cross sections seem to become constant 

asymptotically" should be omitted. Total cross sections may become 

constant asymptotically or they may not. As we shall discuss 

subsequently in detail, at the highest available energies total cross 

sections show energy dependence. If they become constant ultimately, 

it occurs at very much higher energies. 

-8-

(a) Total cross sections 

The high-energy behaviors of total cross sections of p, p, 

:rr , + - + :rr, K, and K on protons are shown in Fig. lea), taken from 

Denisov et al. (1971). With the exception of the K+P total cross 

section, which shows a very slight rise, all the cross sections fall 

smoothly from 5 to 60 GeV/c incident momentum. The total cross 

section differences, + + x ':' p, :rr , K , 

displayed in Fig. l(b) on a log-log plot. The differences can be 

fitted by a power-law form 6a. = A./p
ni 

with n - 0 64 0 02 ~ ~ Lab' - . %. , 

0.54 ± 0.02, and 0.32 % 0.02 for (p,p), (K-,K+), and (1(-,1(+) 

are 

differences, respectively (Table 4 of Giacomelli, 1972). This power

law behavior supports the first part of statement (iv) above, and 

Fig. la the now discredited second part. 

,The constancy of total cross sections at high energies, so 

nicely indicated in Fig. la, received a jo~t with the commencement 

of operation of the ISR at energies equivalent to 300 to 2000 GeV 

incident in the laboratory. Right f th b rom e eginning there were 

rumors of large cross sections (45 to 50 mb). Furthermore, an 

analysis of cosmic ray data on the very high energy proton flux at an 
, 2' 

atmospheric depth of 550 gm/cm on Mt. Chacaltya in Bolivia, ,compared 

with the flux at the top of the atmosphere, gave evidence that the 

nucleon-nucleon total cross section increased with energy significantly 

at laboratory energies above 500 GeV (Yodh, Pal, and Trefil, 1972). 

Data from the ISR were published ea' rly ~n 19 ( ~ 73 Amaldi et al., 1973a,b; 

Amendolia et al., 197~,' Braccini, 197~). Th d / _ ese an other results on 

the proton-proton total cross section are displayed in Fig. 2. The 

dashed curve is a lower bound deduced from analy~is of _ the cosmic ray 

data. The data sho', that the asymptotic constancy inferred from the 
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Fig. 1. (a) Total cross sections in millibarns for p, p, + 
1T, rr, 

K , + 
K on protons v~rsus incident laboratory momentum in GeV/c (from 

Denisov et al., 1971). 

(b) Cross section differences in millibarns versus incident 

laboratory momentum in GEV/C on a log-log plot (from Denisov et al., 

1971) . 
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Vol.3, Prot. 16th Int.Conf. H.E.P 1972) 
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Fig. 2. Total cross section in millibarns for pp collisions versus 

s = if in Ge';' (bottom scale) and incident laboratory energy in rr=V 

(top scale). The dashed curve is a lower bound estimated from cosmic 

ray data (Yodh, Pal, and Trefil, 197?). 
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left-hand side of Fig. 2 (and all of Fig la) is only a local minimum 

a~ E ~lOO dev and-that the cross section rises from this minimum 

of 38.5 mb to 43+ mb at the highest ISR energy of W ~ 60 GeV. 
, \ 

For incident particles other than protons, data at energies 

higher than 70 GeV are almost nonexistent. While the next year will 

b~ing many results from NAL, at present the only very high~energy datum 

is 0' t = ~4. 0 ;l- 0·5 mb I at .. 205 GeV incident energy for 1(" on 

protons in the NAJ, 30" hydrogen bubble chamber (Huson, 1973). From 

F~g. la it can be seen that this result throws no light on the question 

of constancy versus rise of the 1( p cross section. 

(b) Differential cross sections for elastic scattering 

The well-known peripheral nature of elastic scattering at high 

energies is illustrated for 1( p, K-p, and pp scattering in Fig. 3. 

For small momentum transfers the cross sections are fitted ro~ by 

exp(Bt) where 2 t = -q is the invariant momentum transfer variable 

and pp, respectively. In naive geometrical terms these "slope" ' 

parameters correspond to an extended scattering region with root mean 

square impact parameter (b2 )t = (~B)t = -V0.0389[2B(GeV/c)-2]'fm 

~ 0.78-0.95 fm. 

That there is some structure within the forward peak and also 

backward peaks of various sizes is indicated by the data sh9wn in 

Fig. 4. The K-p differential cross section snakes back and forth 

around the smooth and featureless K+P cross section. In the very 

forward direction Cltl < 0.2(GeV/c)2, not shown in Fig. 4a) the K-p 

cross section 1:3 larger and falls off more rapidly than the + 
K P 

cross section. For 0.2 < It I < 1.0 (Gev/c)2 the K-p cross section 

,is smaller than the + K p, but at it crosses over and lies 

I 
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Fig. 3· Differential cross sections do/dt for elastic scattering of 

1( p, K-p, and pp at 25 and 40 GeV/c incident momentum and 

o < It i <- 0.8 (Gev/c)2 (Serpukhov data, Fig. 17 of Giacomelli, 1972) . 
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Fig. 4. (a) K+p and K-p elastic differential cross sections over 

the entire momentum transfer range at 5 GeV/c (from Chabaud et_al., 

1972) . 

(b) pp elastic differential cross section over the entire 

momentum transfer range at 5 GeV/c, (fro~ Chabaud et al., 1972). 
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above the + Kp. Only beyond It I ~ 3·5 does it fall below and stay 

much below the K+p cross section, each having a backward peak. The 

hints of diffraction maxima and minima in the K-p cross section are 

more than hints in the pp cross section shown in Fig. 4b. By 

contrast, the pp differential cross section at the same momentum is 

extremely smooth, as can be seen in the compilation of Fig. 5. ,The " 

evidence of Figs. 1, 4, and 5 indicates that in geometrical terms pp 

and K-p interactions correspond to larger absorbing regions, with 

more sharply defined edges, than pp and K+P interactions. 

,The differential cross section for proton-proton elastic 

scattering at various en~rgies is summarized in Fig. 5. The energy 

dependence is quite 'striking. The smooth behavior at "low" energies 

gradually evolves into structure at It I ~ 1-2 (GeV/c)2 at ISR 

energies as the cross section "shrinks" (becomes compressed to 

smaller -and smaller I t I values) • The shrinkage of the very small 

It I region is best described by the energy dependence of the "slope 

parameter" ,B, defined by 

(1) 

To the' extent that B changes slowly with t this is equivalent to f 

writing the differential cross section as 
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Fig. 5. Compilation of differential cross sections for p-p elastic 

scattering at various energies. The incident laboratory momentum is 

indicated at the right-hand end of each curve (Fig. 15 of Giacomelli, 

1972). 

do 
dt (s,t) 

do . 
dt (s,O) exp[B(s,t)t] • (2) 

Furthermore, when we speak of the slope parameter B( s ) we mean 

B(s,O), or more commonly, some sort of an average value obtained by 

fitting dO/dt with an exponential in It I at small Itl. For p-p 

scattering the slope parameters B(s,t) for two different &mall It I 

ranges are shown as functions of energy in Fig. 6. From 5 GeV/c to 

2000 GeV/c laboratory momentum' B increases by about 50 percent. 

At high energies simple Regge theory would predict 

B(s,t).= Al(t) in s + ~(t), corr~sponding to a straight line on 

Fig. 6. For PLab > 10 GeV c the data are consistent with 'such a 

variation, but at ISR energies it is possible that the shrinkage has 

stopped at least momentarily. More will be said on this question.in 

Section 5 below. At larger It I values, too, data from the ISR 

(the W = 53 GeV results are shown in Fig. 5) are consistent with 

little energy dependence from W = 30 to 53 GeV (Strolin, 1973). 

(c) Power law behavior 

Part of the lore of high-energy phenomenology is that 

differential cross sections at fixed t, or cross sections integrated 

over the forward (or backward) peaks, show power law behavior in 

energy and that the power depends on the reaction mechanism (Morrison, 

1970) • Si.l:lple Regge theory predicts-, for the exchange of a single 

Regge pole in the t-channel, 

do 
dt (s,t) ;::: B(t) s2a(t)-2 

where aCt) is the trajectory function of the pole. 
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o Akimov- Kirillavo 
a Bellettni 
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o Cherney 
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Fig. 6. The slope parameter B(s,t) in (GEV/c)-2 for p-p elastic 

scattering versus s in (GeV)2 for 0 < It I < 0.1 (open points) 

and 0.15 ~ It I < 0.5 2 (GeV/c) (solid paints) (Fig. 14 of 

Giacomelli, 1972). 
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Figure 7 shows six examples of integrated cross sections for 

inelastic processes with nontrivial quantum number exchange in the 

t-channel (graphs from HERA reports, Bracci et al., 1972a,b). All 

these processes show a narrow forward peak in t; the integrated cross 

sections should,according to (3), show a power law behavior with an 

exponent corresponding to a value of a(t) at some small negative 

value of t. The compilers have in each case fitted a power law in 

Plab (c£ s) to the higher energy data. The six reactions, the 

anticipated t-channel exchanges, and the effective values of a 

deduced from the exponents, are 

Reaction Exchan~es Effective 0 

- 0 0.41 :t 0.07 :n: p -+:n: n p 

+ 06 ++ :n: p -+ 1! P 0.48 ± 0.09 

- 0 :n: p -+ 1') n A2 0.24 :t 0.09 

- ~ 
A2 Kp-+Kn p, 0.28 ± 0.12 

:n:-p 0 
A2 0.06 :t 0.05 -+pn :n:, 

- + :n:, w, A2 0.04 ± 0.09 :n: p -+pp 

The first two reactions are classic p-exchange processes. The value 

o ~ 0.4-0.5 is in excellent agreement with a linear Regge trajectory 

that passes through the p (J = 1-, 

and the g (J = 3-, 2 
m 

g 
2 2.82 i 0.27 GeV ). 

m 2 = 0.58 ± 0.10 Gey2) 
p 

The third and fourth 

processes involve A2 or A2 and p exchange and seem to have a 

smaller effective 0. Part of this may be a result of broader 

differential cross sections which sample more negative t values and 

so smaller a(t), but there is probably a residue that is evidence 

for thE breaking of exact exchangE degeneracy (EXD) of the even and 
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Fig. 7. Examples of the energy dependences of cross sections for 

inelastic processes with the exchange of mesonic quantum numbers in the 

t-channel. Th~ data above a few GeV/c incident momentum are fitted 

wi th a power law, The exponents are given on each graph 

(Bracci et al., 1972a,b). 
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odd signatured Regge trajectories See Chapter III. The final pair 

of reactions, p-mesoll production with and without charge transfer in 

the t-channel, show a much faster falloff with energy (0::: 0+). This 

behavior is consistent with pion exchange as the dominant mechanism, 

at least in the forward peak, and is supported by the characteristic 

population of the zero helicity state of the p-meson. 

Other examples of power law behavior are less easy to under-

stand, but the general trends are consistent and satisfYing from a 

Regge exchange point of view. Barloutaud (1973) cites several more 

examples, including hypercharge * ** (K ,K ) exchange reactions. 

A final observation on power law behavior is that it has been 

traditional to parametrize the total cross sections shown in Fig. la 

with the form, 

(4) 

with n
i 
~1/2, consistent with the intercept 0(0) ~ 0.5 of the high 

lying Regge trajectories (p, w, P', ~). The range of exponents 

associated vii th the {:;,rJ's of Fig. lb and more particularly the rising 

cross section shown in Fig. 2. show that (4) is at best a rough 

parametrizationuver a limited energy interval. 

2. Crossing symmetry, Signature, Pciwer Law Behavior and 

Phase,Pcimeranchuk Theorems 

In order to discuss the phenomenology of total and elastic 

cross sections there are a few basic ideas that must be mentioned. 

These follow from the substitution law of field theory and from a 

modest amount of analyticity in the kinematic variables. 
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(a) Substitution law 

Consider the process, 

A+B .... C+D 

where the 4-momenta of the particles are a~, b~, c~, d~, respectively. 

For simplicity suppose that the particles are spinless. Then there 

is one invariant amplitude tfrL(s,t,u) describing the scattering, 

where according to Appendix A.5 s,t, and u are the standard 

kinematic variables, s = (a + b)2 being the square of the total 

energy in the c.m.s., and t = (a - c)2, u = (b - c)2 being 

momentum transfer variables. From field theory it is known, and it 

is generally accepted as having wider applicability, that the 

amplitudes for other related processes can be obtained from ~(s,t,u) 

by sUbstitution according to the·substitution law. For example, if 

we leave the 4-momenta of B and D unchanged but substitute 

a -. -a and c -. -c then 
~ Il ~~' 

- 2 = (a - b) , f (- -)2 t-.t = a-c , s -. s' 

u -+ u' = (c + b) 2, and 

"»1(s,t,u) .... CYYl. .. : 'tre(s' ,t' ,u') 

with the amplitude ~flf, which is just the old amplitude 

evaluated at a different point in the (s,t,u) space, describing the 

process, 

(6) 

where A and C are the antiparticles of A and C, respectively. 

Process (5) is called the s-channel process, process (6) the u-channel 

process, becau:3e s pla.ys the role of the energy variable in (5) 
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while u plays that role for (6). The substitution (a .... -8: , 
~ ~ 

c -+ -c) is called crossing or line reversal, or more specifically 
~ ~ 

s-u crossing because of the interchange of the roles of s and u. 

(b) Crossing symmetry, analyticity, and signature 

The idea that a single amplitude ~(s,t,u) can, depending 

on the range of the variables, describe several processes is a very 

important concept. With s-u crossing in mind, we note that the 

constraint 

positive s 

s + t + U = ma
2 + ~2 + mc

2 + md2 indicates that for fixed t 

requires generally a negative value of u * and vice versa. 

Thus positive u can be equally interpreted as negative s and the 

s-u crossing can be viewed as a transformation from the positive s 

region to the negative s region. It is useful to introduce a new 

variable, 

v 
1 
4~ (s - u) 

which together with t can be used as kinematic variables. 

For elastic scattering in the forward direction (t = 0) 

v has the simple interpretation of the total laboratory energy of 

A (or the negative of the lab energy of C). 

The invariant amplitude crrz (v, t) satisfies a dispersion 

relation in v at fixed t. The dispersion relation follows from the 

* This can be seen most easily at high energies where masses can be 

neglected. Then the constraint is s + t + u :::: 0 and (A.16) and 

(A.18) show that for large positive s, the range of· t is 

-s < t < O. 

... , 
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analyticity of t?rl(v,t) in the cut v plane, as shown schematically 

,in Fig~ 8. The cut structure along ·the positive and negative real 

axes stems from,unitarity in a familiar way, the s-channel thresholds 

opening up on the right an,d the u-channel on the left.' The physical 

amplitude for the s-channel process A + B .-. C + D is obtained by . 

letting, v approach the positive real axis from above, indicated by 

v + i€. For the u-channel process C + B .-.X + D the physical region 

.~ is just below the cut fat v negative. 

The physical amplitudes for the s- and u-channel processes can 

• be written 
\ 

o/)(v + i€,t) 

(8) 

'1'>lu(v,t} = Cft!(-v - i€,t) 

, It is useful to cons~der instead of ~s and 91?u amplitudes that 

are even and odd in v. We thus define for complex as well as real 

v the even and odd amplitudes: 

(Sometimes these- are call~d crossing-even. or crossing-odd a.."!lplitudes.) 

These amplitudes satisfy dispersion relations of the form, 

1m cvy\(t) (v' t) [_1_ :t _1_] 
I'l, ' v' - V v' + v 

(10) 

In (10) the pole terms are implicit in the integral and the necessity 

of subtractions has been ignored. 
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1m v 

Re v 

Fig. 8. The complex v plane showing schematically the branch cut 

and pole structure of the scattering amplitude. For A + B.-.C + D 

the physical region is ju"t above the right-hand cut, for 

C t B.->A + D it i~ judo below the left-hand cut. 
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The distinction between crossing-even and crossing-odd 

amplitudes has physical meaning when the amplitudes are considered in 

the t-channel (Ae ... Bn). Here t is the energy variable and s and 

u are momentum transfer variables related to the scattering angle 9t . 

( 
,From Eq. (A.20) we see that for elastic scattering at least (actually 

ma = mc ' ~ ~ = md is sufficient) 

v (11) 

Since Pt and Pt are just functions of t, v is equivalent in 

the t-channel to cos 9t . Now in discussing the dynamics of Regge 

exchanges in the t-channel one first considers a partial wave 

expansion. Then because' of the possibility of Majorana exchange 

forces (see Blatt and Weisskopf, 1952, p. 136, for this ancient 

terminology) one considers separately the forces occurring in the even 

partia~ waves and the odd partial waves. The Regge poles that arise 

from these two sets of forces are different in general. 

The poles coming from the even ( odd) 

partial waves and having physical particles with even (odd) J values 

are called even (odd) signature Regge poles. 

Because of the connection (11) between v and cos 9t it is 

evident that for t-channel exchanges even-signature Regge poles 

contribute only to crozsing-even ampli'tudes and odd-signature to 

crossing-odd amplitudes. Examples of even-signature Regge trajectories 

are the pI ;; f with the meson (1,= 0, 

as an observed physical state, the A2 with the A2 meson (I 

*'* K with the ** K -meson 1 
(r = 2' 

1, 
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2 
m = 2.02). 

p with the p-meson 

Some odd-signature Regge trajectories are the 

(I = 1, iP = 1-, m
2 = 0.58) and the g-meson 

(I = 1, iP - 2 = 2.82) 3 , m as physical states, the w with the 
) 

(I 0, iP= 1 - 2 = 0.61); and the * * w-meson m K with the 'K -meson 

1 iP = 1-, 
,2 = 0.79) (I = 2' ' m as particles. 

(c) Power law behavior and associated phase, Pomeranchuk theorems 

The evidence presented in Fig. 7 shows that high-energy 

reaction amplitudes exhibit power law behavior in the energy, at least 

approximately. Such behavior has important,consequences for the phase 

of the amplitudes. The operative theorem of complex variables (for we 

do need to assume analyticity of the type displayed in Fig. 8 or Eq. 

(10)J is the Phragmen-Lindelof theorem (Titchmarsh, 1950, p. 183; Eden, 

1967, p. 194 ). The application of the theorem is straightforward. 

We only state the results relevant for our purposes. 

t: 

Let us assume the following properties for err; (v, t) at fixed 

(;) CI/"7 (v,t)· 1 ti i th .,. ~s ana y c n e upper half v plane, 

(ii) ~l(v,t) does not increase exponentially for Ivl ~~, 
(iii) o/'t)(v,'t) ~ c(t) va(t)(£n v)(3(t) as v ~oo along the 

positive real axis, where aCt) and (3(t) are real f)mctions of t, 

(iv) o::rrl('v,t) -> c(t)(_v)Cl(t)Qn(_vV(3(t) as v -> -00 a~ong 

the negative real axis. 

Note that aCt) and (3(t) are the same in both limits, but c(t) 

and c(t) are in principle different complex filnctions of t. 

Application of the Phragmen-Lindelof theorem establishes that 

/ 

.' \ 
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, (l2) 

Suppose that 9?({v,t) is crossing-even. Then ~(t) c(t) =c(+)(t) 

and (12) yields 

±lc(t)leC1na(+)(t)/2 _ r(+)(t) ~ -oot ""(;)(to 
(13) 

where y(+)(t) is real. If ttrz(v,t) is odd under crossing, 

c(t) = -c{t) =, -c(-){t) and (12) gives 

and 

(-)( ')1 
:tilc(t)le-ina ,t 2 rH(t) ~ + tan ""(~)(t0 

(14) 

r( -) (t) is real. The phases given by (13) and (14) are the same' 

as those that occur for even and odd signature Regge poles. The Regge 
, 

amplitudes are of the form, 

cc 

p (+)(-cos 
a - (t) 

sin 

9t ) ± P (±) ,(cos 
a (t) 

Using (11) and assuming that v is large we find 

cc 

a: 
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The results (13) and (14) are more general, however,since they follow 

even if there isa (.en v'~t3(t) variation of the amplitude times the 

power law behavior. 

~The 'result (12) allows some other conclusions: 

(i) Equality of elastic differential cross sections for 

particle and antiparticle scattering:. 

l (l6) 

(ii) Pome~anchuk theorem of equality of particle. and anti-

particle total cross sections: 

lim [at(AB)lat(AB)] 1 , 
v-+ cD 

provided a(O) = 1. Pomeranchuk's original proof, 

\(17) 
) . 

'/ ' 

based oryl on 

d.1spersio? relations like (10), assumed at ~ constant and required 

the weak condition, Re trj(v,O)/Im ~(v,o)'.en v ... 0. The present 

proof permits logarithmic variation of crt' but has the stricter 

assumption Re (;)rl(v,O)/Im CfrI(v,O) ... constant (perhaps zero). 

Needless. to say, with the results of Fig: 2 known, there are more 

general proofs (e.g., Grunberg and Truong, 1973). Similarly, Eq. (16) 

has been put on a firm and general. footing for 2-body inelastic as, 

well as elastic scattering by Cornille and Martin (1972). 

The extent of the testing of (16) and (17) can be judged by 

inspection of Fig. 1 and 2 for, total cross sections and Fig. 9 for the 

differential cross sections where the slope parameter defined in Eq. (1) 

+ - + - -is shown for ,rr p, rr p, K p, K p, pp, and pp elastic scattering. 
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F 

.Cetainly'the trends of the data in these figures support the 

aSymptotic validity of (16) and (17), but as the data of Fig. 2 show 

• pp 

12 -.. 
~ \0 
Cl 

D 8, 

f pp 
6 

20 

Fig. 9. Slope parameters for :i- i-n , K , and 

RPI 3'4-~-6 

RPI 3 

CERN - IHEP (1972) 

pp IISR, ~t 7) 

SOC) , 1000 2000 

pi elastic scattering 

cross sections oh hydrogen as a function of s, obtained from a fit 

of dcr/dt to an exponential in t over the range 0.1 < It I <- 0.4 

(C~V/c)2 (Figure 18 of Giacomelli, 1972). 

asymptopia may be far away. Experiments wi th m~son and antiproton 

beams at NAL are eagerly awaited. 

3. Froissart bound 

On the basis of the analyticity in s and t contained in 

the Mandelstam representation Froissart (1961) proved that the total 

cross section is bounded from above according to 

2 < C(£n s) (18) 

~s s ~~. The right-hand side of (18) is called the Froissart bound. 

Its derivation has been generalized, simplified, made more rigorous, 

made plausible by many (not the 'same!) authors (e.g., Martin, 1963, 

1966; Eden, 1967; Eden, 1971; Roy, 1972; Horn and Zachariasen, 1973). 

We will'therefore not discuss the' careful proofs, but confine our 

attention,to'the physical intuitive asp~cts. 

Suppose that the interaction between two spinless particles 

is mediated by the exchange of a particle of spin J and mass ~ 

in the·t-channel. Then the lowest order amplitude will be real and 

* at high energies of the form, 

2 sJ 
g -2--

~ - t 
(19) 

* In the t-channel the single partial wave g ~ J gives rise to a 

numerator proportional to barrier penetration factors (PtPj)J times 

PJ(cos (\). At high energies in the s-channel. (11) l'~ads to the 

stated form. 

. \ 

•• 
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If we use the eiko~l approxima,tion (discussed in Appendix C) as an 

approximation to the full scattering amplitude, we obtain via Eq. (C.14) 

an eikonal phase, 

°eikonal(S,b) 
2 J-l ( )' g s 'KO ~b (20) 

The behavior of 0 as a function of b is indicat,ed in the top part 

of Fig. 10. Asymptotically the modified Bessel function falls off as 
1 

ex:p(-~b)/(~b)2. Hence the phase shift is small compared to unity 

provided 

(21) 

The square of the partial wave scattering amplitude is sketched in 

the bottom part of Fig. 10. It is small compared with unity for 

~b » ~bc' rises to unity for ~b ~ !lbc and with the example of a real 

phase shift (20) oscillates between zero and unity for, 'smaller values 

of !lb. The integral (B.25) defining the elastic cross section (equal 

to the total here) can be estimated to be 

1 
x -2 

2 b 2 
It C (22) 

With the critical impact parameter given by (21) we obtain at high 

energies the estimate, 

'cr' 
t 

Note that (23) only has meaning for J > 1. I For J = 1 'the phase 

(20) is independent of s.' This woul:d Ie,ad to a constant cross 

J 

o 
o 
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' .... ' 

•. 1 

~.. ..' .. 4_ .. . ;;" ~ • . '- ~, 

Fig. 10. Phas€shift 5(s,b) as a function of impact parameter (tol 

and abso111te square !a(s,b)!? of t.he partial waVE amplitude "a:;; a 

funC'tion of impacLrararneter (bottom). 



section. For J < 1, ~bc decreases with increasing s; the phase 

is small,at all impact paramters and the cross sections fall with s. 

While the above example is somewhat unrealistic it does show how 

unitarization via the eikonal partial wave representation imposes' the 

Froissart bound on the full amplitude even though the lowest order 

approximation (the t-channel exchange of something) may increase, as 

a high power of s and violate the Froissart bound itself. This is, 

of course, related very intimately to Froissart's original proof. 

A more realistic example would have had the phase shift 

becoming complex for b ~ bc ' Then the p~rti~ wave amplitude (B.26) 

would rapidly approach i/2 for b < bc ' Using (B.25) for at and 

- the above method of estimation we would still arrive at (22) for 'the 

total cross section, but would find aet ~ at /2., 

The exchange of a Regge pole as the lowest order amplitude 

affords an instructive example of a complex phase shift and some 

subtleties in impact parameter space. For definiteness,~nsider the' 

exchange of an even-signature Regge pole with amplitude, 

-t3 e rt 
-i~(t) aCt) 

e s 

where t3 and Yare real, t3 > 0, and the exponential residue is 

chosen for convenience. With a linear Regge trajectory, 

aCt) = a{O) + a'(O)t, this can be written 

( . )0(0) B(s)t/2 -t3 -~s e 

where (24) 

1 
'2 B(s) Y + a' (0) inC-is) 

From (c.16) we deduce that the eikonal phase shift is 

Beikonai(s,b) 

At high energies B{s) is pl'edomina.ntly real with a small negative 

imaginary part. Thus the phase of B is determined almost entirely 

2 11:' () by the factor,. i exp[-i '2 0(0)]. For 0 < 00 <2, this factor 

* has a positive imaginary part. For fixed impact parameter the power 
, ' , 

law increase in the magnitude of B implies that for 1 < a{O) < 2 

the phase shift will develop a large positive imaginary part and 

e
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-+ 0 rapidly as s -+ co. Another way to look .at it is that 

for all values of b less than a critical value b
c 

that 

grows with enErgy. From (B.25) or (B.27) the total cross section will 

be given roughly by (22). All that remains is to estimate b
c

' 

To estimate bc from (25) we rewrite it as 

Beikonal(S,b) ~ exp[~{o) - 1) tn{-is) - b
2
/2B(S)]. (26) 

Evidently whatever the value of,' (3, the imaginary part of B will be 

very large until the second term 'in the exponent overcomes the first. 

This defines the'critical impact parameter, 

b
2 

c 2B(s)[a(0) - l]£n s 

* The intercept 0(0) is expected to'be smaller than 2 on the basis 

of a theorem by Jin and Martin (1964) concerning the number o.f 

subtractions necessary in flxed-t dispersion relations. 

- , 
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Note that if B(s) were in fact independent of s, as occurs if the 

Regge trajectory has zero slope, the total cross section would grow 

only as £n s, not as 2 (£n s). This is just what we would expect 

with a phase shift that was a Gaussian of fixed shape rather than an 

exponential in impact paramter as was our elementary particle exchange. 

Assuming a'(O) ~ 0, however, we obtain at ,high enough energies the 

estimate, 

b
c 

2 ~ 4 0:' (OHa(O) 
-2 

l](£n s) (28) 

The Yukawa (exponential) force and the Regge (Gaussian) force thus 

both give the same s-dependence. The Regge exchange does it in a 

sneaky way, however, by having the mean square radius of the Gaussian 
,- ' 

grow as £n s, as well as having its magnitude increase as a power of 

S .' 

As already implied by the earlier discussion, if-the full , 

amplitude is described at high energies by a single Regge pole then 
\ 

the Froissart bound is violated if a(O) > 1. Since total cross 

sections do not seem to decrease with energy it was natural within a 

Reggepole framework to assume-that the leading Regge pole had 
-, 

a(o) = 1. The pole, with the internal quantum numbers of the vacuum 

(Q 0, I 0, Y = 0, B = 0,·,,), is knoWn as the Pomeranchuk pole 

or pomeron. It occupies a unique positlon--it 1s the highest lying 

Regge trajectory; furthermore, it does not seem to have any particles 

associated with it andalso seems to have an abnormiUly small slope 

(cf. the shrinkage of the forward peak in da/dt for pp scattering, 

Fig. 6). The last two points have inevitably raised doubts in many 

minds as to whether diffraction scattering is properly described by a 

Regge ~'. We now tend to speak of a Pomeranchuk singularity, 

leaving deliberately vague the type of singularity!in- the angular 

momentum plane. At some point, of course, the J-plane description 

may become so complicated as to be uneconomical and therefore 

inappropriate. 

An alternative description of diffractive scattering is 

advocated by Cheng and Wu on the basis of a long study of massive 

quantum 7lectrodynamics at very high energies (see Cheng and"~u, 1970, 

and the references cited there) •. They show that the leading behavior 

as s -+ co at small t is given by the "one-tower" diagrams shown in 

Fig. 11. We call the sum of leading contributions of all the one-tower 

+ ... 

Fig. 11. One-to~er diagra!IlS in QED. These diagrams give the leading, 

s dependence at high energies (Cheng ~d Wu, 1970). 

diagrams a_single-tower exchange. The general form of this amplitude 

is 

ret) 
(.en s)n 

(?9) 
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where a . is real;,-'~d posi ti ve 2 
(a = l+lt ex /;2, where ex is the. fine 

structure constant) and n = 2 in spinor QED. In Regge language this 

amplitude corresponds to ~he exchange of a fixed singularity (a cut) 

in the J-plane with J > 1. Cheng and WU postulate, with plausible 

theoretical and physical arguments, that this single~tower exchange 

amplitude is a Born approximation whose two-dimensional Fourier 

transform gives tlle eikonal phase. The real function fet) is such 

that at large impact parameters 5(s, b) a: e -I-Ib where 1-1, <~, Illy 

being the mass of the "photon" (vector meson). Apart from the 

lo~rithmic factors in (29) the Cheng and WU eikonal phase shif't is 

thus qualitatively similar to the elementary particle exchange (20) 

with J = 1 + €. In the phenomenological fits (Cheng, Walker, and 

Wu, 1973a,b) the complicated and not totally explicit phase shift is 

approximated by 

(30) 

Here E is the lab energy of the incident particle, c and ~ are 

fundamental parameters that are t~e same for all processes, while fj 

and bOj are different constants for ltP, .Kp, and pp scattering, 

but the same for particle-pr~ton and antiparticle-proton scattering. 

Since (30) represents only the diffra'ctive scattering contribution, 

fits to total cross section data at energies of the order of 2-30- GeV/c 

require an additional term, . -1/2 taken to be Aj E , with Aj 

different for all six processes. With 14. parameters an adequate fit 

is obtained to all the total cross section data shown in Figs. 1 and 2, 

obviously including tho rising pp cross section at ·ISR energies. 

With n = 0 in (30), the param€ter c = 0.083; with n = 1, C"= 0.20. 

-;8-

The fixed J -plane s ingulari ty is only slighly above unity. The 

estimate analogous to (23) is 

Ultimately this gives a (£n s)2 behavior with 0e£/Ot ~ 1/2, 

characteristic of a totally absorbing disc with a logarithmically 

growing radius, but the smallness of c and the pre'sence of th~ 

(£n s)n factor in the denominator makes asymptopia very far away. 

. , 
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_4 •. Ratio of Real to Imaginary Part of···the Forward Scattering 

Amplitude 

Variation in energy of the real part of the forward scattering 

amplitude has traditionally been'associated with structure in the 

total cross section, the classical optical dispersion of the index of 

refraction being the most familiar example. Experts in dispersion 

relations continue to polish the data and the equations in the'reson-

ance region,~d extend them.to higher and higher energies. But in the 

classicM. age (denoted, I suppose, by B.r.S.R.) when 30 or 70 GeV was 

c~nsidered high energy the interest in real parts was not widespread. 
I 

Above the resonance-region (Flab ~ 5 GeV/c) the ratios of real to 

imaginary parts,usually denoted in the literature by p(s) or a(s), 

are small and appear to decrease in magnitude smoothly with increasing 

_ energy. The ratios tend to be negative (only K-p is positive; pp 

is nearly zero), with the pp and K+p values largest in absolute 

value, of order -0.3 or ,-0.4 at 5 GeV/c and -0.2 at 30 GeV/c. 

The rising total cross section for proton-proton interactions 

arouses interest in the real parts again. The monotonic decrease in 

magnitude of the ratio of real to imaginary part is cast in doubt. 

There is a fancy theorem (Khuri and Kinoshita, 1965) that states that 

if the total cross section continues to increase with energy then 
I 

eventually pes) must become positive and stay positive; a~y approach 

to zero must be from above. On the experimental side there are recent 

ISR data (Arnaldi et a1., 1973a) giving slightly,positive or zero 

values, implyi~g a change of sign of pes) for p-p scattering at 

ISR energiec or below-. 
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We 'discuss here a simple lldo-it--yourself"'way of understanding 

and calculating pes) from data on the total cross section. The method 

is not efficient (though applicable in principle) when cross sections 

vary rapidly with energy, but works admirably above the resonance 

region. Like dispersion relations ,it is based on analyticity of for

ward (or fixed t) amplitudes in energy. Np integration is necessary, 

however; only differentiation! First a small amount of elementary 

complex variable theory. Let fez) be analytic inside some region of 

the complex z-plane. For points within tha~ region, fez + A) can be 

represented by a Taylor series expansion of fez): 

f(z + A) 
2 

fez} + Af'(z) + ~ fll(z) + ••• 
,2! 

The series -converges and represents fez + A} uniquely provided the 

point z + A lies insid~. the circle of convergence defined by the 

distance from the point z to the nearest singularity of fez}. This 

Taylor series can be represented compactly by the formal operator 

statement, 

fez + A) 

That is all, the complex variable theory we will need. 

Now consider the scattering amplitude F(v,t) for the s-channel 

process, ab ~ab, where v = (s - u}/4~ and t is the momentum 

transfer variable. The u-channel process, ab ~ ab, is described by 

the amplitude F(v,t). The domain of analyticity in, V· of F(v,t) 

is shown schematically in the top part of Fig. 12. From the substitu-

tion law we know that F(l',t) F(-v,t), as indicated in Fig. 12 by 
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the relationship of the points A and C. It is convenient to define 

symmetric and antisymmetric combinations of amplitudes, 

1 
2[F(v,t) ± F(-v,t)J 

F + is said to be even under crossing (v ~ -'v), and :C odd. The 

s-channel process then has an amplitude, 

while the u-channel amplitude is 

We wish to compare amplitudes at the points A and Bot Fig. 12. We 

thus use the Schwarz reflection law for real analytic functions to 

obtain 

* ±F± (v) 

In Eq. (34) and subsequent equations I suppress the fixed argument t 

for brevity. 

Suppose now that we choose to use the variable ~ = .en v 

instead of v to describ~ the energy variation of our amplitudes. The 

analytic structure in the ~ plane is sketched in the-bottom part of 
, 

Fig. 12. We see that novi the points A and B are related by a dis-

placement of irr-, i.e., v ~ vei:r.- is equivalent to ~ -> ~ + irr-. We 

wish to use the Taylor series representation (31) to express the left-

" hand side of (34), F± at the point B, in terms of the function and 

its derivatives at A. Because of the branch cuts this cannot be done 

instantly. We must use analytic continuation. First we express 

-42-
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F ±(~ + i:rr) as a Taylor series expansion around the point ~ + i ~ 

(the center of the large circle in Fig. 12): 

Then we express F+(~ + i~) as a Taylor series expansion around the 

point ~ + i * (the center of the smaller circle in Fig. '12), and so 

on. The result is 

[
.:rrd(,l· 

exp 1 2" ~ \: . . .) ] 

The final expression is just what we would have obtained by blind use 

of the Taylor series (31) with A = i:rr. Our derivation lacks rigor 

because, among other things, the sequence of successive Taylor serie~ 

expansions is infinite. Never mind; use the result in (34) to obtain 

* ±F± (~) • 

Equation (35) can be put in a more symmetric form by operating on both 

sides with exp (i ; ~~) : 

± [5~F±(t)r 
Writing out the real and imaginary parts of both sides we find for 

.~ amplit.udes the relation, 

and for odd amplitudes, 
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Re F J ~ ) = tan (~ ~~) Im F J ~) . 

These two formal equations were noted by John Bronzan in a talk at 

Argonne National Laboratory in March, 1973. Their application to the 

real world was impressed upon me by Gordon Kane. (They may be well 

known to Andre Martin and others.) 

Before using ·(37) and (38) for p-p scattering I make a few 

observations. Firstly, for amplitudes having power-law behavior in v 

these relations yield immediately the standard Regge phase of the ampli-

tude, a result usually deduced from the Phragmen-Lindelof theorem (e.g., 

Eden, 1967, p. 194). The reader can check that amplitudes varying as 

va(£n v)~ have the standard phase with corrections or order (in v)-l, 

as expected. The second observation is that if the functions on the 

right-hand sides of (37) and (38) are appro~imatedby finite poly

nomials in ~ the infinitely many differentiations implied by 

terminate in a finite number. Thus .the nonlocality inherent in the 

equations (and equivalent to a dispersion relation) is replaced in 

practice by a local or semilocal connection. Note that with a quad-

ratic approximation in ~ only the first derivative contributes. Since 

cross section data above the resonance region can invariably be approxi-

mated, at least locally, by a quadratic form in ~ or a power law in 

v, Eqs. (37) and (38) yield simple connections between real and 



-45-

* imaginary parts. A corollary is that the behavior of p(~) at any 

energy is determined almost completely by the energy variation of at 

in the immediate neighborhood. Nothing can be learned about asymptopia 

from the magnitude or energy dependence of p(~) at finite energies. 

For applications to scattering data it is convenient to intro-

duce amplitudes f± that differ from the customary invariant ampli

tudes by one power of v and are normalized so that 

For proton-proton and antiproton-proton scattering we define 

''± = ~r:_ ± a '\ so that app = a+ - a and a = a+ + a The \pp pp) pp 

corresponding amplitudes are denoted byf±(~). For the imaginary part 

of the odd amplitude (actuallY even under crossing because of our 

division by v), we take the parametrization of Denisov et al. (1971): 

a = Im f 

with a = 28.4 ± 2.7" mb and n = 0.61 ± 0.03. Since FLab ~ y at 

Serpukhov energies this power-law behavior yields 

(40) 

,. 
Im F ~ - 2!. ~ Re F and 

+ - 2 ~ + 
The use of the approximate relations 

Re F_ ~ ~ ~~ Im F resulting from keeping only the first term in the 

expansion of the tangent have been employed in the past, but not based 

~n (37) and (38) and not with a clear explanation of what approxima-

tion was involved, at least to ~ kno~ledge. 

For the amplitude f+(~) 

With a quadratic form for a+, 

a +(~) ~ a + b~ + c~ 
2 

we have 

Re f+(~) ~ ~ a+(~) 
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* we use (38) to find 

(b + 201) ) 1t 
"2 

(41) 

(42) 

Then we have the ratio of real to imaginary parts for proton-proton 

scattering given by 

~ (b + 2c~) - cotC~)a-<~) 
a+(~) - a-<~) 

The corresponding quantity for antiproton-proton scattering is 

~. (b + 2c~ + cot(~)a-<~) 
a+(~) + a_(~) 

(44) 

* There is a subtlety here. The usual amplitude F+(~) satisfies 

(37). It is obvious that an additive real constant to F+ will not 

affect the imaginary part calculated from (37). Correspondingly, the 

real part computed from (41) is uncertain by a term (c/y). The 

ambiguity is equivalent to an unknown subtraction constant in a disper-

sion relation or in a parametrized form satisfying analyticity and 

crossing requirements (Bourrely and Fischer, 1973). Such a contribu-

tion vanishes exponentially (in ~). Since we are concerned only with 

the high energy behavior we shall omit it. 

. , 
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The same general forms for p(~) hold for ,/p and -n: p and 

K+p and K-p tt· f d -sca erlng as or pp an pp. The behavior of the 

various p(~) in the range from 5 to 70 GeV/c can now be understood. 

The "even" amplitude f+(~) is decreasing from the resonance region 

towards higher energies. The real part computed from (41) is therefore 

negative. For pp + + (and n: p and K p) the two terms in the numerator 

in (43) are both negative, giving a negative p(~) of appreciable 

magnitude. For pp (and n:-p andK-p) on the other hand, the terms 

in the numerator tend to cancel, yielding a less negative (and perhaps 

even positive) value for p(~). 

Exercise: Take the available data on ,/p and n:-p total cross 

sections (from the various HERA and ,Particle Data Group complications) 

and determine p(t) for each channel from 5 GeV/c to 200 GeV/c by 

the methods of this section. Compare the results with available data 

(Allaby, in Kiev 1970; Foley et al., 1969). 

The results of a calculation using (42) and (43), with the 

Denisov parametrization for (J"-<~), are shown in Figs. 13 and 14. Two 

quadratic forms in '~ for (J"+(~) were fitted to a smoothed (J"pp(~) 

plus (J"_(t). The ratio pet) was then calculated using (43). The 

solid and dashed curves in Figs. 13 and 14 represent the two parametri-

zations. The available data for p(t), above 10 GeV/c are shown in 

Fig. 14. The agreement between the curves and the data is quite satis-

factory, showing the efficacy of our method. The whole calculation was 

an afternoon's work with an HP-35. The curves also agree in general 

trend with a recent dispersion relation calculation (Kroll, 1973) and 

the use of a parametrized analytic- form (B0urrely and Fischer, 1973). 
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Shortly there should be results fTom the US-Soviet collaboration using 

a gas jet target at NAL. This experiment will span the gap between 

Serpukhov and the ISR.It should locate the cross-over point precisely 

(near 210 GeV, I hope:). 

Since (37) and (38) are unfamiliar it is perhaps worthwhile to 

show explicitly the connection with dispersion relations. The odd amp-

Ii tude F-<v), for example, satisfies a dispersion relation of the form 

of (10): 

Re F -< v) ~ vpf"" dv ' n: -
o 

Im F -< v') 
'2 2 

v - v 

If the variables are changed, with v 

becomes 

Re F -<~) 
! pi"" Im FJt + T)dT) 

11' sinh T) " 
-CD ' 

Unless Im F_ grows exponentially in T), as 

~+T) thi Vo e , s 

with ~ 2: 1, the 

integral converges very rapidly away from T) = O. Excluding this cir-

cumstance, a Taylor series expansion of Im F_(t + T) around T) = 0 

gives 

Re F -<~) 

an expression that can be shown (exercise for the reader:) to be 

equivalent to (38). 
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Fig. 13- Total cross section data for p-p scattering from Fig. 2 

replotted to show two quadratic parametrizations in ~. = .en v. The 

dotted curve is yet another smooth behavior at higher energies. 
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Fig. 14. The ratio p of real to imaginary part of the forward 

nonfiip ampli tUde for p-p scattering calculated by differentiation 

from the total cross section of Fig. 13. ThE: solid, dashed and dotted 

curves here correspond to the solid, dashed and dotted curves in 

Fig. 13. 
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5. Partial Wave Distribution for Proten-Proton Scattering, MacDowell

Martin Bound on B(s) 

In the previous two sections we have focussed on the p-p 

elastic amplitude at t = O. Now we consider the question of the shape 

of the differential cross section. The discussion will be naive and 

• • schematic, neglecting spin completely. 

The ISR data at W ~ 53 GeV are shown in Fig. 5 as 

the stars with Etab = 1480 GeV indicated. At this energy the c.m.s. 

wave number is k = W/2 GeV = 5.07 W/2 rm-l ~ 134 rm-l • A slope 

parameter B ~ 10 GeV-2 (see Fig. 6) implies a mean square extent of 

~ 0.9 rm. It can therefore be expected that of the order of 100 partial 

waves will be significant. The continuous impact parameter representa-

tion is quite appropriate. 

(a) Partial wave distribution for pp scattering at ISR energies 

The data of the ACGHT collaboration (strolin, 1973) are 

replotted on a somewhat compressed vertical scale in Fig. 15. The 

data of this same group at very small It I values (Barbiellini et al., 

1972) are not shown, but for 0.2(Gev/c)2 < It I < 0.5(Gev/c)2 they 

are consistent with an exponential in t with slope parameter 

B - 10-11 GeV-2 . At It I <.o.15(GeV/c)2 the data show a steeper 

slope of order B - 12-13 GeV-2 , but this detail could not be seen 

in Fig. 15· 

The dashed straight lines show that the data at small It I and 

for 2 <. It I < 4(GeV/c)2 can be represented by exponentials in Itl· 

2 The dip at It I ~ 1.3(r~V/c) implies an interference between two 

contributions to the amplitude. Since we know from Fig. 14 that at 
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-2.1 

t 

. -31 

-32. t---t--l--+--
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Fig. 15 Differential cross section for p-p elastic scattering at 

c.m.s. energy W = 53 GeV. Preliminary data of the ACGHT collaboration 

(Strolin, 1973). The dashed lines are proportional to exp(lOt) and 

exp(2t). The solid curve is the cross section given by a purely 

imaginary non flip amplitude whose partial wave profile is given by 

the solid curve in the inset at upper right. 



-53-

t = 0 the real part of the nonspinflip amplitude is extremely small, 

we make the simplifYing assumption that the amplitude is purely 

imaginary at all t values of interest. We are neglecting all other 

helici ty amplitudes. Thus we fit the cross section with the 

expreSSion,' 

The coefficient 2 at /16~ is the optical theorem value of da/dt at 

t = O. The solid cross section curve in Fig. 15 is (45) with 

at = 40 mb, -2 . -2 -3 
Bl = 10 GeV , B2 = 2 GeV , and f" = 7 x 10 . The 

numbers were chosen for their simplicity, rather than in any attempt 

to give a least squares fit. The integrated elastic cross section 

with these parameters is 8.0 mb, in rough agreement with the value of 

7.6 * 0.3 mb quoted by Amaldi et al. (1973b). 

The partial wave (impact parameter)amplitude corresponding to 

the scattering amplitude in (45) can be obtained by the methods of 

Appendices Band C. The scattering amplitude F(s,t) is 

F(s,t) (46) 

and its partial wave projection, according to (B.24) and (c.16), is 

a(s,b) 

This partial wa.ve profile (divided by i) is plotted as a function of 

impact parameter in frn in the inset of Fig. 15. The solid curve is 

the sum of the two terms in (47), while the dashed curves are the 

separate contributions. The most remarkable thing is that the distri-

bution need be only slightly flatter than a Gaus~ian in order to 

introduce the dip and secondary maximum. [A counter argument might be 

-6 that the secondary maximum is only - 10 times the forward cross 

section and hence should be generated by a change of the order of only 

10-3 times a Gaussian and so should be within the thickness of the 

lines on the figure!] Similarly, the mentioned steeper slope of the 

cross section at It I < 0.15 (GeV/c)2 can be incorporated by a third 

term in (45) or (47) that will cause the partial wave profile to 

extend slightly farther out in the region beyond 1 fm. 

* 
The calculation 

of this is left as an exercise for the reader. 

The simple description contained in Fig. 15 applies at one 

energy. It is important to ask about energy dependence. It is clear 

from Fig. 5 that from 20 GeV to 2000 GeV there is significant energy 

variation in the cross section at fixed t. It is less clear over 

the ISR range (500 to 2000 GeV lab equivalent). Any model based on 

the eikonal approximation (or something like it) and with a largely 

imaginary phase shift will have destructive interference between 

successive terms, as in our simple description (45), but different 

* It is amusing to note that the sharper peak at very small It I can 

be generated by assuming a(s,b) is purely imaginary, using (B.5 ) to 

solve for Im a = ~ G -,r;-:H), and as surning that the overlap 

function H is a Gaussian in b (Heckman and Renzi, 1972). There 

is no a priori reason to favor at Gaussian for H, of course. See 

Barger, Phillips, and Geer (1972) for an example of a peripheral 

addition to the basic Gaussian for a(s,b) and de Groot and 

Miettinen (1973) for a more elaborate analysis with the overlap 

function. 

.. 

.. 
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predictions about the energy dependences of the several contributing 

* terms (Barger, Phillips, and Geer, 1973). In the Chou-Yang model the 

eikonal phase shift is energy independent and so is dcr/dt. In the 

Regge eikonal model of Frautschi and Margolis the eikonal phase from 

the pomeron pole is (25) with 0:(0) = 1.' There is thus s-dependence 

of the phase through B(s) provided 0:' (0) ., O. According to (c.16) 

the ~th power of the phase shift leads to a term in the scattering 

l-n /] amplitude proportional to B .exp[Bt 2n . Thus the whole amplitude 

shrinks logarithmically, but successive terms involve relative powers 

of B-1 and so cause an energy dependence in the shape of the differ

ential cross section, even when plotted versus B(s)t. There are other 

models, like the hybrid model of Chiu and Finkelstein, with features 

intermediate between these two and still others', like that of Cheng 

and Wu, ':Iith more drastic energy dependence at least asymptotically. 

Careful measurements at NAL energies and at the ISR should aid 

enormously in discriminating among models. 

(b) MacDowell-Martin lower bound on the slope parameter B 

While on the subject of partial wave di~tributions it is 

worthwhile to consider the following question: Given the total cross 

section and the integrated elastic cross section, can anything be 

said about the slope parameter B of the forward diffraction peak? 

Intuitively we expect a correlation. The larger the absorptive 

* See Jackson (1970) for a description of this and the other models 

and also the appropriate references. Zachariasen (1971) also 

discusses the various models for diffraction scattering with emphasis 

on the J-plane structure. 

diffracting object, the narrower in angle its diffraction pattern~ 

This has already been rema'rked on in correlating the total cross 

sections of Fig. 1 with the differential cross sections of Figs. 4 

and 5 (see also Fig. 9). We are thus not surprised to learn that the 

answer to the question is yes (MacDowell and Martin, 1964). We give a 

slightly simplified derivation of the MacDowell-Martin bound using 

the impact parameter description and &.lsodiscuss its limitations as' 

a tool for learning about the partial wave co~tent of the scattering 

amplitude. 

The bound is on the logarithmic derivative with r~spect to t 

of the absorptive part of the forward scattering amplitude 

(F = D + iA), 

A(s,t) s 2 f
oo 

2 0 db Ima(s,b) 

The derivative of A(s,t) with respect to t 

t = 0 is 

s roo 2 2 
E J 0 db b 1m a(s,b) 

The logarithmic derivative is thus 

. JOO 2 2 ltJo db b 1m a(s,b) 

4{" db' 1m a("b) 

(48) 

2 -q evaluated at 

(49) 

(50) 
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Because of the optical theorem (B.25) the denominator in (50) is just 

the total cross section. 

The existence of a lower bound on (50) stems from the unitarity 

requirement that 1m a(s,b) ~ O. In fact, the imaginary part of 

a(s,b) is constrained to the range, 

o ::: 1m a(s,b) ~ 1 

We are thus invited to consider a variational problem subject to some 

constraints. We define b2 = x, 1m a(s,b) = f(x), and introduce the 

absorptive contribution to the elastic cross section, 

Then we minimize (50) subject to the constraints, 

Get abs 

o < f(x) < 1 

This is a simple variational problem with Lagrange multipliers. The 

result is that (50) is minimized if 

f(x) (54 ) 
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2 for x < R such that f(x) < 1 and f(x) = 1_ for smaller x. For 

all hadronic scattering processes at high energies Get/Gt < 0.5. From 

(54) we have 

for 0 < ex < 1 

for 1 < ex 

Thus the range of interest is ex <,1 and the partial wave distribution 

(54) is linear in x or parabolic in b. For ex ~ 1, Gt 
2 

2]'(R a, 
2 2 '-1 2 2 

4]'(R ex /3, and (A dA/dt)t=O = R /12. The parameters R Get abs 

and ex can be eliminated to yield the bound, 

0.-1 dA) > 
\: dt t=o -

This is the MacDowell-Martin bound, apart from an insignificant and 

totally justified simplification. 

With the knowledge that the forward amplitude is largely 

imaginary at high energies we can equate the logarithmic derivative of 

the absorptive part to one half of the slope parameter defined by (1). 

In this regime the MacDowell-Martin bound reads 

B(s,O) 

Equation (56) is a nice bound, very solidly grounded in 

unitarity and nothing much else, but is it useful? Skeptics argue 

that no bound, even Froissart's, has ever had real practical use and 

the less assumptions needed to prove it, the less likely it is to be 

even vaguely useful. Certainly some bounds fall into this category 

. , 
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(see Roy, 1972, for the most recent and detailed compendium of all 

kinds). On the other hand, a bound is a definite statement and should 

at least be given a chance to prove itself. We test (56) against the 

data on p-p elastic scattering. In Fig. 16 we show a compilation of 

data on the ratio 0et/Ot for p-p and n--p scattering. At 

.4 

.I 

, , 
\ 
\ 
\ pp , 

'1 n 
I 

IJf ]I. 
I 

I I 

OL---L-~~~~IO~~~~~~IU02~~--~~~I~O~3--~-L~~~IO~4 

~ob (GeV/c) 

Fig. 16. The ratios of elastic to total cross sections for p-p and 

T[ -p interactions versus laboratory momentum (from Jackson, 1973). 

Serpukhov energies and above the p-p ratio is 0e£/Ot ~ 0.175· 

Taking this value and the total cross sections from Fig. 2 or Fig. 13, 

2 . / ~ we find at /18re 0e£ ~ 10.1 to 11.3 (GeV c) from the bottom to the 

top of the ISR energy range. These lower bounds are to be compared 

with the experimental values of B(s,O) from 11.5 ~ 0.6 to 

12.6 ± 0.8 over the same range. The experimental results are only 

slightly (10-1510) greater than the lower bound. 
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The closeness of experiment to the bound can be put in 

perspective by considering an example of an exponential fit for all t. 

The differential cross section is then 

do 
. dt (s, t) 

, where we have explicitly exhibited the value at t = 0 via the optical 

theorem and the definition of p. Integration of (57) over· t gives 

the relation, 

Comparison of (58) with (56) shows that if p2 is negligible then 

Beff = (9/8)Bmin · Since the differential cross section at small It I 
is fitted well by an exponential (or two exponentials of slightly 

different slopes) it is quite reasonable that the experimental slope 

parameter is just slightly larger than the theoretical lower bound. 

In fact, to the extent that the cross section is exponential in t 

over the range contributing significantly to the integral anything 

else is impossible. 

At this point we are a little disappointed in the significance 

of the MacDowell-Martin bound. The closeness of the experimental 

slope to the bound is merely a consequence of an approximately Gaussian 

shape in impact parameter of aCs,b). Of course, the fact that it is 

roughly Gaussian and not rectangular or some other strange shape is 

progress, isn't it? Yes, it is progress, but not because of the bound. 

One might think, as did MacDowell and Martin (apparently because of an 

arithmetic slip), that comparison of experiment with their bound could 



-61-

distinguish between such grossly different partial wave distributions 

as a Gaussian and a rectangle. Not so. From (50) it is apparent that 

the slope parameter at t = 0 is determined by the average value of 

x = b2 . Requiring the first moment of a function to have a definite 

value constrains the function slightly, but still leaves almost 

unlimited freedom. To drive home this point I have constructed three 

different partial wave distributions, all having the following proper-

ties in common, 

6.8 mb 

B(s,O) 

and 

1.125 

The cross section and slope values are appropriate to 300 GeV labora

tory energy or W:::: 24 GeV at the ISR. The choice B/Bmin = 9/8 is 

consistent with experiment and contains the Gaussian and rectangular 

partial wave distributions as examples. The cross section for a 

Gaussian is (57); for the rectangle it is 

(59) 

with B(O) = R2/h. The third partial wave distribution is a 

"peripheral" one. The cross section is chosen to be of the form 

da 
dt 
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The ratio B(O)/Bmin depends on the ratio of R2/~. 

(60) 

2 
For R I}... = 7·0 

we have B(o)/Bmin = 9/8. The purely imaginary partial wave distribu

tion corresponding to (60) is 

, 

a(b) 
at 2· 2 

= i 8n}... IO(Rb/"A.) exp[-(b + R )/2}...) (61) 

where IO(Z) is a modified Bessel function of the first kind and order 

zero. 

. The three partial wave distributions are shown in Fig. 17 

and the differential cross sections in Fig. 18. The distributions in 

b are quite different in detail even though having the same (x) and 

the resulting cross sections are very different for It I > 0.1, too! 

The message is, I hope, clear--nearness of the slope paramter B(O) 

to the lower bound (56) establishes little about the partial wave 

distribution. The shape of da/dt at t I 0 can, of course, furnish 

much information, as has been illustrated already in Fig. 15. 

Lest I leave the impression of scorning bounds like the 

MacDowell-Martin bound let me remark that (56) is useful in correlating 

. b h' If f r example a fat ~constant and various asymptot~c e av~ors. ,0 'e£ 

at ~C(£n s)2, (56) shows that the diffraction peak must exhibit rapid 

shrinkage with B ~ (in s)2 asymptotically. More on this in the next 

section. 
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I 

Fig. 17. Partial wave (impact parameter) distributions for p-p 

scattering. All three distributions give 0t = 38.9 mb, 0e£ = 6.8 mb, 

B(O) = 11.4 GeV-
2 

(B(O)/Bmin = 9/8) . 
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Fig. 18. Differential scattering cross sections from the partial wav€ 

distributions of Fig. 17. All three cross sections have the same 

slope at t = 0 and extrapolate to the same optical theorem point. 

For small It I they fit the p-p elastic data at ~ 300 C',€V 

laboratory energy. 
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6. ASymptotics and J-plane structure 

Although various remarks have already been made about energy 

dependences of total and differential cross sections in both theory 

and experiment we summarize here and also discuss briefly the J-plane 

structure of some models. By J -plane structure we mean the singularity 

structure of the t-channel partial wave amplitude analytically continued 

to complex angular momentum j . The dependence of an amplitude on s 

for fixed t is related to the singularity structure in the J-plane 

through the Watson-Sommerfeld transformations of the t-channel partial 

wave series and the connection (11) between v and cos 9t (See, for 

example., Collins and Squires, 1968). At high energies it is possible 

to replace the Froissart-Gribov formula for the analytically continued 

t-channel partial wave amplitude by the simpler Mellin transform 

formula, 

F(t,j) Lao 

ds s-j-l A(s,t) 

'~th its inverse, (62) 

A(s,t) 1 
c+ioo 

1 j 
2ni dj s F(t,j) 

c-ioo . 

In (62) c is any real number such that the vertical contour lies to 

the right of all the singularities of F(t,j) and A(s,t) is the 

s-channel absorptive part of the scattering amplitude (See Horn and 

Zachariasen, 1973, Appendix D, for the derivation and such details 

as signature.) To gain faith in (62), assume that F(t,j) has a pole 

at j = a(t). The second relation then yields A(s,t) cr sa(t), as 
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expected for a Regge pole. A second order pole gives 

A(s,t) cc (in s) sa(t) and so on. It is left as an exercise for the 

reader to deduce the following examples: 

F{tz~2 A~szt) 
"\ 

(j _ arl sa . , 

(j _ a)-2 -sa in s 

(j _ a)n tn(j - a) ()n ex( )-n-l -1 n! s tn s 

(j _ ex) v _sex(£n s)-V-l/r(_v) . 

Here n is zero or a positive integer while v is not an integer. 

The examples indicate some types of J-plane singularities and their 

associated s dependences. We saw that the successive terms in the 

Frautschi-Margolis (Regge eikonal) model had s-dependence 

sex/(£n s)n-l, n = 1,2,···. The first term corresponds to a pole in 

the J-plane, while higher terms evidently correspond to logarithmic 

singularities with softer and softer discontinuities at the tip of the 

branch cut. There are, of course, considerably more complicated 

singularities possible in the J-plane. 

Two examples with increasing total cross sections can be 

mentioned. One is the self-consistent solution of a multiperipheral 

model for diffractive scattering (Ball and Zachariasen, 1972). The 

scattering amplitude is 

F(s,t) 



) , 

2 where q -to The total cross section is 

so that the optical theorem point ~~ (s,O) is proportional to 

2 (tn s). On the other hand, the diffraction pattern shrinks as 

2 (tn s) so that the integrated elastic scattering cross section is 

constant in energy. The J-plane structure is given by 

F(t,j) - ,] (64) 

There are, for t < 0, complex conjugate branch points at 

cx (t) c 
1 ± iqRO. For t ~O these coalesce to give a second order 

pole at j= 1, yielding crt 0:: tn s according to our examples 

quoted above. In terms of s-channel partial waves the amplitude (63) 

has a rectangular distribution in impact parameter out to 

bmax = RO £n(s/sO)' with a magnitude that decreases as (tn s)-l. 

It corresponds classically to an absorbing disc with a logarithmically 

growing radius, but with a decreasing opacity. 

The other example is an amplitude appropriate to any model 

that saturates the Froissart bound, e.g., the model of Cheng and Wu 

(1970). At sufficiently high energy the scattering amplitude is 

F(s,t) 

2 2 
The total cross section is crt = 2nRo (£n s); cre£/crt = 1/2; the 

shrinkage of the diffraction peak is as (tn s)2. From (62) we find 

the J-plane projection to be 

F( t, j) (66) 
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with complex conjugate branch points cxc(t) = 1 ± iqRO for t < O. 

The singularities become a third order pole at t = 0 and give 

2 crt ~ (tn s). The physical interpretation in the s-channel has 

already been discussed. 

We summarize the asymptotic behavior of the various models in 

the following table: 

Asymptotic Energy Dependence of Various Models 

Model 

Pomeron pole } + secondary poles 

Pomeron eikonal 

Ball-Z.ohar'.,.n :r 
(second order pole . 

at t = 0) / 

Saturation of 

Froissart bound 

. (third order pole 

at t = 0) 

crt 

...! 
a + bs 2 

a - b(£n s) 

£n s 

2 (£n s) 

Chou-Yang 

(fixed pole at j } 
constant 

1) 

cretfcrt Beff 

(tn s) -1 £n s 

-1 (tn sfl £n s 

(tn s)-l (tn 8) 2 

1/2 

constant constant 

e. 
1 

(_)S2 

(+)(£n s)-l 

(+)(/.n 8)-1 

(0) 

Comparison of the predictions of this table with the p-p data of 

Fig. 2 (crt), Fig. 16 (ae/crt ), Fig. 6 (Beff ), and Fig. 14 (p) shows 

several things. First of all, if one accepts the rising cross 

sections of Fig. 2 the simple Regge pole model and the Chou-Yang 

model are excluded. The other three models (and surely others) can 

accommodate the energy dependence of crt' Nothing can be said about 
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saturation of the Froissart bound unless we include the cosmic ray 

evidence (Yodh, Pal, and Trefil, 1972). Figure 16 is on the face of 

it peculiar. For both pp and n-p interactions the ratio ae£/at 

seems to become energy independent at high energies and be quite small 

(- 0.175' for pp, - 0.135 for n-p). For any of the models in the 

table, except Chou-Yang, we are asked to believe that this constancy 

is a transitional effect which will disappear at still higher energies. 

This is perhaps plausible for Cheng and Wu (although 0.5 is a long 

way off!), but less so for the Regge models. The third quantity, Beff, 

displayed in Fig. 6 is also apparently in a transitional stage, at 

1east for any model that saturates the Froissart bound. A steady 

growth with in s is consistent with the Regge pole and Regge 

eikonal models, although the inferred slope of the pomeron trajectory 

G?'(O) ~ 0.3) is quite small. The evidence from Fig. 14 on pes) 

indicates that it is very far from its asymptotic behavior at ISR 

energies and so cannot be sensibly compared with the expectations of 

the table. Its crossover to positive values does, of course, support 

some models. 

There once was a time when theorists stated that asymptotic 

behavior would occur at 5 or 10 GeV incident energy. From the evidence 

available today one might venture to say 5 or 10 TeV, but even that 

might be too low! 
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III. INCLUSIVE PROCESSES 

1. Preamble 

As already mentioned in the Introduction, inclusive processes 

of the type 

a + b -... c + anything . , 
'or 

a + b -... c + d + anything 

(and in principle more complicated processes) have become an important 

aspect of high-energy experiment and theory. Partly this is by 

default--very many particle states, often with several unseen neutrals, 

,are difficult if not impossible to study in complete detail. Partly, 

however, it is by design. We have learned that in some senses 

inclusive reactions are simple and amenable to theoretical analysis. 

Though the basic concepts and ideas have been known for 10 

years or more from the work of Amati, Stanghellini, and Fubini (1962), 

Fubini (1963), and from Wilson's Schladming lectures (1963), it is 

only in the past four years that intensive theoretical and experimen-

tal work has been done. The renewed interest on the theoretical side 

was prompted mainly by work of Feynman (l969a,b) and of Yang and 

collaborators (Benecke et al., 1969) with their ideas of scaling and 

of limiting fragmentation. The reasons for the experimental interest 

have already been discussed. By now hundreds of papers have been 

published; numerous conferences have been held; summaries of theory 

and of experiment exist in review journals and conference proceedings. 

Since these lectures are elementary and introductory I list a sampling 

of the reviews and conference reports where the hungry and/or 

dissatisfied reader can go for more or better information: 
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(a) Mostly experiment: 

(b) 

Wroblewski, 1970 

Lander, 1971 

Morrison, 1972 

and the summary of contributed papers in Vol. 1 of the Proceedings 

of the Chicago-Batavia Conference (1972). 

Theory and experiment: 

Quigg, 1971 

Van Hove, 1971 

Frazer et al., 1972 

. Horn, 1972 

Jacob, 1972 

Mueller, 1972 

For entire conferences devot~d to multiparticle production processes, 

see the proceedings of the Helsinki (1971) and the Zakopane (1972 ) 

meetings. Other lecturers here will carry on the list. In particular, 

the content of Wilson's hitherto unpublished Cornell report (Wilson, 

1970) appears in tbeseproceedings .• 

In this chapter we discuss the essential experimental facts and 

the general theoretical framework for inclusive processes. Most of the 

treatment is without bias towards any particular theoretical model, 

although some concepts, e.g., finite range correlatipns in rapidity, 

will be accepted as true without serious questioning. This facilitates 

establishing all the essential ideas and can be changed in the light 

of contrary facts without undue harm. The notation and kinematics of 

inclusive proc~sses are described in Appendix D. Definitions of 

distributions, correlat.ion of functions, multiplicity moments, and 

sum rules are given in Appendix E. 
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2. Basic Facts and Samples of Data 

(a) Prong cross sections as functions of incident energy 

As mentioned in the Introduction, increasing energy brings 

production of more and more particles, mostly pions but with some 

heavier particles as well. A measure of the particle production is 

afforded by the values of the topological or prong cross sections,. 

These are the cross sections an for a specific number n of charged 

particles in the final state (whose ionization produces prongs or 

tracks in a bubble chamber or emulsion), independent o,r how many 

neutrals a~e produced. At a given incident energy the prong cross 

sections are expected to be given by something like a Poisson distribu

tion, with events having half as many or twice as many as the average 

number of prongs being fairly frequent.* Figure 19 shows a typical 

set of prong cross sections (Charlton et al., 1972). They happen to 

be from 205 GeV protons incident on the NAt 30" hydorgen bubble 

chamber; the results from 50 and 69 GeV at Serpukhov (Ammosov et al., 

1972), 102 GeV at NAt (Chapman et a1., 1972), and 303 GeV at NAt 

(Dao et al., 1972) are qualitatively similar. Later we will discuss 

the shape ,of the prong distributions in more detail, but now we turn 

to the energy dependence. 

The prong cross sections for pp interactions at various 

energies are summarized in Fig. 20. The increasing numbers of 

* Completely independent emission of particles. would lead to a 

Poisson distribution in the number of charged prongs. Crude imposi

tion of charge conservation by the assumption of pair production of 

positively and negatively charged particles leads to a Poisson distri

bution i~ the number of negative prongs (Wang, 1~9). 
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Fig. 19. Prong cross sections in mi11ibarns versus prong number for 

205 GeV pp interactions. The first and second moments are 

2 
(nch ) = 73.6 t 2.2 (from Charlton et al., 

particles produced as the energy increases is very evident. Not so 

dramatic but still evident is the peaking of a given cross section at 

some energy and then its decrease. The 2-, 4-, 6-, and even the 8-

prong cross sections are decreasing at the highest energies. Whether 

these low prong number cross sections continue to decrease at higher 

energies or reach constant values is a point of considerable interest 

for "two-component" models of particle production. More later on 

this topic. 
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Fig. 20. Prong cross sections in mi11ibarns versus incident 

laboratory momentum in GeV/c for pp interactions (Fig. 4.4 of 

Morrison, 1973). 
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energy (W ;::: 8 GeV) corresponds to 34 GcV/c laboratory momentum 

(from Ammosov et a1., 1973). 
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For pions and I-mesons incident the data are not available at 

as high energies, only up to 34 GeV for K and 50 GeV plus the one 

set of data at 200 GeV (Huson, 1973) for pions, but the same trends 

and features are visible. Figures 21 and 22 show the presently existing 

results (without the200'GeV' 1(~·data). 

(b) Average number of charged particles versus energy 

The average number of charged particles per inelastic collision 

(ncb) is defined by 

n a 
n (67) 

where an is then-prong cross section and the prime on the sum means 

that the elastic scattering contribution (to the2-prong cross section 

usually) is omitted. This quantity and higher moments defined 

analogously are a useful way of characterizing the prong distribution. 

It is obvious from Figs. 20-22 that (nch ) is an increasing function 

of energy. It is popular to plot the data on (nCh ) versus s in 

the manner of Fig. 2 with a linear ordinate and a logarithmic abscissa. 

The data then show a roughly linear rise, at least at high energies, 

corresponding to 

(68) 

with aO ~ -3.4 and al~ 1.94 for p-p interactions and similar 

values for rr-P and K~P collisions. A logarithmic increase is 

expected on the basis of elementary considerations (see Section 3 

beiow), but for the sake of perversity Fig. 23 
.1 

p-p interactions as a function of Q2 (W -

displays 
.1 

2m )2. 
p 

the data for 
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Fig. 23. Average charged particle multiplicity per inelastic p-p 

collisions versus (W - 2m)t ~ st in (Gev)t (from Jackson, 1973). 
p 

The highest point is an estimate from cosmic rays. 

At high energies The data lie on a reasonable straight 
1 

line, (nch ) ~ 1.85 Q2. This is an example of something known among 

my friends as Jackson's theorem (see Fig. 18 of Jackson, 1970), the 

point being that over a limited range a in s variation can be 

approximated by a power of s. Some models of multiparticle produc
.l 

tion, for example the hydrodynamic model of Landau, predict the sq 

variation of multiplicity . 
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(c) Average multiplicity of different types of particles 

as a function of energy 

Figure 23 shows that the average number of charged particles 

per inelastic p-p collision is of the order of 10 to 13 at ISR 

energies. We expect that these are predominantly pions, but it is 

obviously of interest to learn the composition in detail. For example, 

are the prdportions of K-mesons and/or antiprotons relative to' pions 

constant in "energy, even though the total number of charged particles 

increases? Or is some (all?) of the increase above some energy 

accounted for by an increased production of K± and p? A summary 

of available data is shown in Fig. 24. Several features are worthy 

of note. At low energies the charged multiplicity is built up with 

protons and to a lesser extent posi ti v'e and then negative pions. Soon, 

however, the pions take over the bulk of the multiplicity and rise in 

proportion to the total. The average number of protons decreases 

slightly" from slightly less than 2 at low energies to' - 1.3 at 

ISR energies. The. K+, K-, and p average multiplicities are quite 

small at low energies and have a steeper energy dependence than the 

pions. Nevertheless, even at ISR energies(s - 103- 3 )C 103 Ge~), 

their ave,rage numbers per collision are still small: 

0.4-0·5, ~ 0.3-0.4, ~ 0.10-0.15· 

There is some indication that the relative proportions of K+ and K-

may be becoming s-independent at the highest energies, but the average 

number of p is still growing relative to (nCh )' 

All of this !:lakes most reasonable sense on the naive grounds 

of energetics, with the more massive objects being produced with 
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multiplicities. (Figure frorr, Antinucci et a1., 1973.) 



greater difficulty. One can ask, of course, whether the range of s 

shown in Fig. 24 is plausible, or whether one might have expected a 

more rapid rise from threshold and earlier development of an asymptotic 

behavior. After all, at s ~ 3000 GeV it is energetically possible 

to make 28 nucleon-antinucleon pairs! (or ~ 380 pions!). The 

relatively expanded scale in Fig. 24 over which the multiplicities 

rise can be·explained in part at least by the small inelasticity of 

the collisions. The collision partners, perhaps with their charges 

changed, carry off an appreciable fraction of the available energy. 

This "leading'particle"effect is exhibited in more detail in item (e) 

below. 

(d) Limited transverse momentum 

One of the most striking features of multiparticle reactions 

at high energies is the limited extent of the transverse momenta, 

i.e., the magnitude of the component of momentum perpendicular to the 

beam direction. On a Peyrou plot of Pit vs p J.' with the kinematic 

boundary a circle with radius, p ~ W/2, events cluster along the 

x-axis. This behavior has been known for a long time in cosmic rays 

(see, for example, Feinberg, 1972, and earlier references cited 

there) . Two examples from recent experiments at accelerators are 

given in Figs. 25 and 26. The data shown in Fig. 25 are inclusive 

distributions in 2 for. KO, and A from K--p interactions pJ.. rr, 

at 13 GeV/c (Barletta et al., 1973). The results in Fig. 26 are from 

the ISR and show the inclusive invariant cross sections for + rr , 

+ K , K-, P, and P at fixed PI! (x = 0.16) versus PJ.. (Bertin 

et a1. , 1972) . Independently of whether one fits with an exponential 

in 2 one finds mean values of transverse momenta of the P..L or P..L 

Fig. 25. 
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hyperons from K p interactions at 13 GeV/c (from Barletta et al., 
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Fig. 26. Invariant cross sections E(d3a/dp3) for + rr , ;t , 

(c) 

10 

t 
+ K , 

! 

p, and p produced in p-p collisions at ISR energies as functions 

of PJL in GeV/c at x = 0.16. The solid lines are exponential fits 

to the ISR data. The dashed lines show the trends of 24 GeV/c data 

from CERN. (Figure from Bertin et al., 1972.) 

order of (P-t) ~ 0.33 GeV/c for pions and (PJL> ~ 0.4-0.5 GeV/c for 

K± or p±. There is very little variation in (Pi-) with bombarding 

energy from ~ 10 GeV to cosmic ray energies well above the ISR. 

There is some variation of with PI! at a given energy. This 
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can be understood in terms of the constraints imposed by the kinematic 

* boundary. 

The smailness of (p) is another manifestation of a property 
J.. 

of hadronic interactions already seen in the collimated character of 

elastic scattering where (-t) ~ B-1 ~ 0.1 (Gev/c)2. Hadrons are 

extended objects and their interactions are peripheral with the 

exchange of "soft" quanta as the dominant mechanism. Multiparticle 
, / 

production apparently proceeds in the same way. The multiperipheral 

model (Amati, Stangheilini, and Fubini, 1962, and hundreds of subse

quent papers by others) is one explicit realization of this. 

(e) Longitudinal behavior (in x, or y) of inclusive 

distributions 

The other kinematic dimension to be considered is the longi-

tudinal momentum PI' or the equivalent variables x or y [see 

Appendix D, .Eqs. (D.4) and (D.8)]. While in the transverse direction 

all types of particles tend to be limited in PJ: in the beam direction 

there are significant differences depending on particle type and the 

relation to the incident collision partners. Figure 27 shows some 

typical inclusive distributions in x for fixed p = 0.8 GeV/c at 
J.. 

the ISR (Albrow et al., 1973). The data span the range of 

0.2 < x < 1.0. This may appear to be nearly the whole range of x, but 

the region 0 < x < 0.2 is more important than it seems because of 

* There was for a time interest in something called the "seagull 

effect", namely a dip in (p) as a function of x 
1-

one evaluates (Pi-) from the invariant cross section 

at x = O. If 

. d3a/dyi p J.. at 

fixed y instead, then (Pi-) versus y shows a more or less monotonic 

behavior away from y = O. See, for exampl(, Figs. 12 and 13 of 

Bosetti et al. (1973). 
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the phase space dx/x [see (D.32)]. Rapidity phase space does .not 

have any weighting factor; rapidity thus shows more clearly the fraction 

of available phase space covered. From (D.27) we deduce that at 

PJL = 0.8 GeV/c, x = 0.2 corresponds to 6y ~ 1.5, 1.6, and 1.9 for 

rr, K, and p respectively. Comparison with 6y = Y/2 ~ 3.8 for the 

range 0, x < 1 shows that the particles in Fig. 27 come from regions 
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of phase space close to, or at least not remote from, the incident 

proton. They are all in the "fragmentation region" of Benecke et a1. 

(1969). 

The shapes of the spectra in.Fig. 27 are characteristic·of 

inclusive distributions at any energy. The protons are relatively flat 

(on a logarithmic scale) and persist up to x = 1. In fact the elastic 

peak and its tail of diffractively produced resonances and continuum in 

missing mass ~ are not visible because of a broadened resolution and 

elimination of elastic events. The region near x = 1 for the protons 

is discussed in detail by Sens in these proceedings. The pion and 

K-meson spectra are typical of particles different from the incident 

ones • The distributions peak near x = 0 and fall more or less 

exponentially in I~I away from that point, with negligible yields at 

the kinematic boundary (x = 1). Corresponding features for + 
rr 

interactions at 8 and 16 GeV/c, this time integrated olJer all P.L2, 

are shown in Fig, 28. The "leading particle" effect is· visible in the 

data on the left, rr+p ->rr+X. For negati~e x both distributions fall 

rapidly as x -> -1. This is expected because x -> -1 is the proton 

end of the scale. The inclusive proton spectra (not shOwn) peak at 

x ~ -1 and fall monotonically with increasing x, being ~.l in 

relative size at x ~ 0 and still smaller for x) O. 

(f) Scaling 

Feynman (1969a,b) gave a description of hadronic interactions 

that leads to the conclusion that as s ->~ the inclusive cross 

section, expressed in terms of p~2 and x = 2p~/lfS, should be 

independent of s. This is called Feynman scaling. At more or less 

the same time Yang and collaborators (Benecke et al., 1969) from a 

rather different point of view suggested the hypothesis of limiting 
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fragmentation whereby at high enough energies the inclusive cross 

section for the production of a particle c from a target (or projec-

tile) should be independent of the incident energy and' type of the other 

collision partner provided the momentum of c is finite in the rest 

frame of,~, he target (or proJ" ectile) " F , or x away from x = 0, these 

two kinds of scaling are equl"valent, " as·wlll be shown below. 

Tests of scaling or the approach to scaling abound in the 

literature (see the references cited at the beginning of this chapter). 

We refer only to Figs. 27 and 28 for an indication. The solid curves 

in Fig_ 27 are representations of 24 GeV/c (s = 47 Gev2) data from 

'CERN while the points are ISR data at s::: 2000 Gev2. For the + 
If 
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data scaling is satisfied to within 10-2o-~ accuracy. FO.r the protons 

and K+ scaling over such a wide range in s does not occur. The K+ 

cross sections are rising from s::: 50 to s::: 2000, while the proton 

inclusive cross section falls slightly. Over the ISR range s::: 500 

to s.:: 3000 Gey2 the data on p + p ... c + anything, + - + c = 1f , 1f , K , 

K-, show scaling in the fragmentation region (Ixl ~ 0.2) to an 

accuracy of lO-15~ (see Prof_ Sens's lectures for examples). Only 

the p + p -+P + anything fails to scale at ISR energies. This is 

consistent with the behavior of (n _) sh,own in Fig. 24. 
p 

Figure 28 shows + + . 
1f P -+ If- + anything at 8 and 16 GeV/c 

laborat~ry momentum. These energies are very low compared to the ISR 

energies, but the approach to scaling is visible. Details of the 

s dependence of the different regions of x need not concern us. 

These energies are sufficiently low that kinematic effects (e.g., in 

only events with four or more charged prongs can contribute) 

can still have undue influence. 

(g) Quantum number transfer 

An interesting aspect of mUltiparticle production is the 

extent of transfer of additive quantum numbers such as charge, hyper

charge, or baryon number from the region of phase space occupied by the 

initial particles to other regions in the final state. If we think'of 

the colliding hadrons as extended bodies of hadronic matter making 

rather peripheral collisions with a relatively small fraction of the 

total energy going into particle production, we might expect that the 

"leading particles" would largely preserve their quantum numbers_ In 

the multiperipheral model this naive expectation occurs because of the 

correlation between the size of possible' rapidity gaps and the Regge 
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intercepts of the links. Crudely speaking the higher the intercept the 

larger the gap. Empirically (and dynamically in the models) the highest 

trajectories carry the fewest nonvacuum quantum numbers. Thus baryon 

number, for example, has difficulty migrating very far down the 

rapidity axis in such models. 

Let Q be one of the additive quantum numbers such as charge. 

Then we define the differential distribution in rapidity dQ/dy by 

dQ 
c:Jinel dy 

Figs. 29 and 30 show differential distributions in rapidity for 

electric charge. The data of Fig. 29 are from ~+p and ~-p inter-

actions at 16 GeV/c. These data show no narrow spikes at the ext rem-

ities of the plot with zero or very small values between. Rather, there 

is a gradual change from one end to the other, with the negative charge 

(belonging initially to the incident pion) being spread out somewhat 

more than the proton's positive charge. This can be accounted for by 

the lighter mass of the pion and its greater mobility in rapidity. 

The data of Fig. 30 are perhaps more revealing. These are from p p 

interactions at various energies and show the anticipated tendency as 

the rapidity interval widens to have the charge cling to its initial 

part of the rapidity phase space. While by no means localized 

precisely, the charge does tend to stay within 6ne or two units in 

rapidity of the ends of the plot. This behavior is consistent with and 

lends some support to the idea of a finite correlation length in 

rapidity. 
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Fig. 29. Differential distribution in rapidity of electric charge for 

~+p and ~-p interactions at 16 GeV/c (Data from the ABCCHW and 

ABBCCHW collaborations; figure from Morrison, 1972). 

. . 
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Fig. 30. Differential distribution in rapidity of electric charge for 

p'p interactions at Plab = 6.6,12,24 GeV/c and W = 54 GeV 

(Plab .:::: from 1500 GeV/c) (from Sivers, 1973). 

3. Theoretical framework a5suming a finite correlation length: 

Feynman-Wilson "gas" 

A very useful ~onceptual framework for inclusive processes is 

the fluid analogy, often called the Feynman-Wilson gas. The idea is 

that, since phase-space can be written 2 dy d p~ and the kinematics 

limits the possible range of' y, while the dynamics effectively limits 
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the range of PJL' the particles in a multiparticle production process 

can be viewed as a fluid confined in a bottle in the -+ 
y - p J. space. 

As s -+ "", the bottle becomes very long and the "motion" inside is 

essentially one-dimensional. Figure 31 is a schematic diagram of the 

envisioned situation. The normalized n~particle distributions defined 

1 1 
I 1..12. , 
Ie! >1 
1 I 

t-E-----Y: 

'L 
I~ 

Fig. 31. Feynman-Wi1son gas picture. The "gas" of produced particles 

is confined in phase space to the general region of the ''bottle''. The 

length of the bottle is determined by the kinematics, while its radius 

is governed by the dynamic limitation of ~. The finite correlation 

lengths at each end and in the center are indicated by La'~' and 

by (E.5) are thought of in much the same way as the corresponding 

densities in a real fluid. In particular, the essential working 

hypothesis is that the correlation length in rapidity over which a 

given particle can be influenced by another i~ finite. We- see 

immediately that a number of important results follow directly from 
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this hypothesis. The idea of 'a finite correlation length and its 

consequences is contained in the work of Amati, stanghellini, and 

FUbini (1962) on the multiperipheral model and in the papers of Wilson 

(1963, 1970). Wilson attributes the fluid analogy to Feynman. 

(a) Limiting fragmentation and scaling at finite x 

Consider the single particle inclusive density, 

(70) 

In general it depends on the indicated three variables, the first being 

equivalent to the c.m.s. energy Wand the second and third to the 

momentum ~ o~ particle c in a frame related to the incident 

particles. Suppose now that particle c is produced "in the vicinity" 

of particle a, that is, the rapidity difference (Yc - Ya) is 

finite as s(Y) ~~. The assumption of a ~ range of correlation 

implies that at large enough energies particle c cannot ''know'' what 

~ or ~ particle b is on the rapidity axis. In this circum

stance the density (70) must become independent of Y = Ya - Yb and 

also of particle b: 

lim 
Y-+ CD 

Yc-Ya fixed (71) 

The first form in (71) can be recognized as a statement o~ limiting 

fragmentation of particle a (Benecke et al., 1969), while the second, 

equivalent [because of Eq. (D.27)J, ~orm is a statement o~ Feynman 

scaling (Feynman, 1969a,b) in the region x > o. 
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If particle c is produced "in the vicinity" of particle b 

then the limit corresponding to (71) has' a ~ b and x < o. 

(b) Central plateau 

Suppose that particle c is produced in the central region 

of Fig. 31, that is, many:correlation lengths L away from either end. 

Then it will be unaware of the identity or position in rapidity of 

either a or b. The density (70) then becomes independent of Y'and 

y and is only a function of 1Y: * 
1.. 

lim 
Y-+ CD 

YC-Yb;;>~ 

Ya-Yc»La 

hC(p ) 
J. 

(72) 

The invariant cross section in this so-called central region is flat 

in rapidity and depends on the incident particles a and b only 

through the factor 0ab. 

For p-p interactions at ISR energies the apparent development 

of a central plateau, as well as evidence for limiting fragmentation, 

is shown in Fig. 32. Data from a number of experiments at different 

c.m.s. energies, but all at PJ. = 0.4 Gevlc, are plotted as a function 

of YLab = Yc - Ya . Limiting fragmentation to an accuracy of 10-20~ 

over the ISR range can be seen from the data at YLab < 3 for all ' 

particles except possibly antiprotons. Comparison of the dashed lines 

with the ISR points indicates departures from scaling at W = 6.8 GeV. 

The central plateau for + ± 
~-, K , and p seems established although a 

plot of the data versus y* instead o~ YLab w'ould indicate some 

* One might think that there could be a possible dependence on y, 

c 
independent of Ya and Yb ' but the Lorentz invariance of Pab 

requires that it be a function of Y - Ya and Y - Yb· 

. ,. 
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Fig. 32. Compilation of single particle inclusive invariant cross 

sections in 
2 

mb/(GeV) at p = 0.4 GeV/c 
-L 

for p + p ~ c + anything 

+ - + - 4 with c = ~ , rr , K , K , p, p at various ISR energies (and 2 GeV'c 

.in the lab) as functions of YLab = Yc - Ya' Note the displaced ordin

ate scales. The center of the rapidity scale (Ya + Yb)/2 is at 

YLab = 2.0-, 3. 2 , 3·5, 3.9-, and 4.0+ for W = 6.8, 23, 31, 45, and 

53 GeV, respectively. (Figure from Bussiere, 1973·) 
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tendency for the--plateau to rise with "increasing energy -by---lO-20~. 

The logarithmic scales in Fig. 32 and the scatter of the data points 

makes this difficult to see. The conclusion from Fig. 32 is that (71) 

- * and (72) are verified, at least at the 10-15~ level. 

(c) Growth of multiplicity and correlation parameters 

with energy 

The existence of a central plateau over all but finite 

regions at either end of the total rapidity interval Y implies that 

as s ~ ~ the multiplicity must grow logarithmically: 

Thus the coefficient in (68) is given by 

Direct computation of the right-hand side of (73) from the charged 

particle distributions at 9 = 90
0 

cms at the ISR gives numbers in 

* In his lectures at Middleton Hall Prof. Sens reported more recent 

results with greater accuracy (~3-5~) that seem to show the various 

inclusive cross sections following universal curves in YLab = Yc - Ya' 

with a continued steady rise as (y ) - Y/2 increases. Such Lab max - -

behavior is inconsistent with the short-range correlation picture, 

provided we are in the asymptotic domain. Wi th L ~ 2 and Y /2 ~ 4 

we might expect deviations of the order of -2 + 
exp(-Y/2L) ~ e ~ 0.1 . 

Thus asymptopia may not be available quite yet at the ISR. 
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reasonable agreement with al , as inferred from the multiplicity as a 

function of energy. 

Stodolsky (1973) has remarked on the connection between the 

coefficient al and the limitation on p~. In essence he employs the 

conservation of energy sum rule (E.19). For simplicity consider that 

only one kind of particle is produced, thafits t:Ldistribution is 

more or less independent of y* and that its distribution in y* can 

-'" Y' * Y be approximated by a rectangle on the range, - ~t+ 6 < Y < - - 6 
,2" 2 

Then (E~19), evaluated in the c.m.s. for 1!.t.~.iiO'; reaq! 

W 

·~it 

cosh y* p(y,y*,~dy lpJ,.,;, 
45 

(w) &1 -6 
---We 

D1zi 

where (w) is the average value of the transverse mass (D.5) and we 

have assumed nucleon-nucleon collisions. From (74) we have 

(w) 

Empirically al ~ 2 for charged particles. If most particles are 

pions and all three charged states are produced equal~y, we can expect 
\ 

the total multiplicity to have al ~ 3. With 161« 1, we find 

(w) ~ 0.3 GeV, in good agreement with the observed value of (~ for 

pions. It can be argued that (75) is just an expression of conserva

tion of energy and therefore a definition of 6 in terms of al and 

(w). Nevertheless, it is an explicit demonstration of the connection 
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between the multiplicity and the extension of the inclusive cross 

section in transverse momentum and in rapidity. 

The asymptotic energy dependence of the correlation parameters 

fk (E.13) in the finite correlation length picture follows in the 

same way as for the multiplicity. Consider the two-particle correlation 

function C(1,2). As indicated schematically in Fig. 31, C(1,2) 

falls rapidly to zero for IYl - Y2 1 >~ L12 • Thus in the integral 

(E.16) defining f2 integration over (Yl - Y2) withY2 fixed will 

give a finite Y-independent value. The subsequent integration over 

will effectively multiply by a factor Y and f2 a: Y = .tn(s/ma~)' 

This same behavior occurs for higher correlation parameters, with all 

but the last integration yielding a Y-independent result asymptotically 

and the final integration introducing a factor of Y. Thus the 

hypothesis of finite range correlations leads to the asymptotic energy 

dependence, 

for all k. Present energies may not be sufficiently larg~est 

this sort of asymptotic statement, especially for the higher correla-

tion parameters. In Sec. 5 we discuss a mixed description of produc-

tion that differs in its predictions from (76). 

4. Relation of the Feynman-Wilson gas to a Regge description, 

the approach to scaling 

The framework of Sec. 3 is an asymptotic one expected to be 

valid as s ~OO, or better, as Y» L. At finite energies 

(5 GeV/c - 500 GeV/c lab momentum) we expect to see departures from 

the predictions of (71) and (72). The energy dependences of the 
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nonscaling contributions can be anticipated by invoking a Regge descrip-

tion in analogy with the Regge theory of 2 -+2 prQcesses. It is 

customary to speak of the Mueller-Regge description because of Mueller's 

important paper relating one-particle inclusive cross sections to the 

disco~tinuity in 11- of the forward 3 -+ 3 amplitude (Mueller, 1970) •. 

This subject is dealt with in detail by other lecturers and in the 

references cited at the beginning of this Chapter. I restrict 'my 

explicit discussion of Muellerism to Fig. 33 where the standard set of 

diagrams are displayed. For the theorists who wish to know about the 

firmness of the theoretical foundations there are papers by stapp (19711 
, 

,Tan (1971), and Polkinghorne (1972). Our brief treatment below is 

based on heuristic arguments of power-law behavior in the various sub-

energies ,with 1i ttle reference to the de.tails of Regge theory. 

'2:~ 
X ~ 

Fig. 33 Schematic diagrams for Regge analysis of inclusive processes. 

Top line: Conversion of the inclusive cross section for 

a + b -+c + anything, via un~tarity and analytic continuation, into a 

discontinuity (in ~,the mass squared of X) of the forward 6-

particle amplitude for abc -> abc. Bottom line: ,Va~ious assumed Regge _ 

limits, single Regge (limiting fragmentation region), double Regge 

(central or pionization region), triple Regge limit. 
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(a) Fragmentation region, trip1e Regge region 

Equation (71) is the statement of scaling in the fragmentation 

region of a. In Regge language the energy dependence of the cross 

section is expected to be 0(0)-1 s and the absence of any energy 

variation is attributed to exchange of the Pomeranchuktrajectory with 

a(o) = ap(O) = 1: At finite energies other Regge singularities with 

smaller intercepts will 'contribute. Thus (71) is generalized to 

'c 
Hm Pab (77) 

Yc-Ya fixed 

Y>~1 

Note that in (77) we can if we wish replace the variable x with 
\ 

s/11- according to (D.29). On the basis,of 2 -+ 2 phenomeno1ogy where 

the dominant nondiffractive Regge exchanges,have a(O) ~ 1/2 we 

expect that in the fragmentation region a good description of the 

s dependence will be given by 

For the reaction pp -+p + ~nything '(78) has been tested over the 

range from 40 to 400 G~V incident energy at NAL (sannes et al., 1973, 
\ 

, and private communication). In the range 0.75 < x < 0.95 and 

0.2 < It I < 0.5 Eq. (78) is quite consistent with the data; further-

more, the functions ~ and gl seem to have closely the same shape 

in x and in 2 
p.,l • 

The triple-Regge region indicated by the lower right-hand 

diagram of Fig. 33 is a subset of the fragmentation region correspondin, 

to s/~ large, as well as sand tl. Since 'tl ~ s(l - 'x), the 
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region of large s /if has x::: 1-. As s ... co this means that there 

is a large rapidity gap between c and the nearest particle in 
. CXi (t) . 2 

"anything". Regge behavior as s ,where t = (p - p ) ,'is 
a c 

The cross section will thus vary as expected. 

2ai (t)-l 
s 2 -1 for fixed M, with the s factor coming from division by 

the incident flux. But if Mf is also large we expect a Regge descrip-
.2 2 CXk(O) 

tion in terms of M", i.e., (M") -. In order to be a special form 

of (77) there must be additional if dependence in the form of a 
-2 -ax.(t) 

factor (Ml) ~ ,leading to the expression 

1 
PTriple Regge ::: s 

In (79) w~ have generalized somewhat by replacing axi(t) by 

cx. (t) + CX. (t) to allow for interference terms and summing over i, j ,k. 
~ J 

The scaling contribitions in (79) come from ~(O) = 1 independently 

of cxi(t) and cxj(t). The dependence on sit! or x is, or course, 

dependent on CXi(t) , and cxj(t) as well as ~(O). 

The triple-Regge region is of great interest both theoretically 

and experimentally, as is discussed in detail by other lecturers. 

(b) Central region 

For particle c in the central region of Fig. 31 Eq. (72) 

is the sc~ling stat,ement. At finite energies we expect secondary 

contributions depending on the two rapidity differences and 

Ya - Yc' or 'equivalently on the subenergies s [see Eq. ac and 

(D.17»). The general behavior in s will be 

(~c)CX(O)-l (I: exp([cx(O) - l](yc - Yb») and similarly for 

Keeping only the leading secondary contributions, as in (78) , we find 

lim 
ya-yc::::l 
Yc -Yb>:>l 
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(80) 

where the secondary functions hii)(~) depend on the Regge couplings 

ofbb ~ Reggeon ... c and aa ... Reggeon ... c. For a symmetric situation 

such as pp -+c + anything, (80) can be written convenieJltly in terms 

of c.m.s. rapidity as 

P ce;'tral (, ,y*,~) ~ hO(~) + ( :0 f h, (~) co,h Y*/2 • (81) 

There are two observations here. The first is that the s dependence 
-l _1. 

of the approach to scaling is s .4, rather than s 2. This follows 

immediately from the fact that the relevant rapidity difference is 

Y/2, not Y. Thes.econd observation is that the sign of hl (~ 
.-

governs the curvature in rapidity away from y = O. If the approach 

to the scaling limit in the central region is from above (below) then 

the curvature of the distribution in y* is concave upwards 

(downwards). Experiment for pions or all charged particles shows a 

rise with increasing energy at y* = 0 and concavity downwards away 

from y* = 0 (see Fig. 32). This behavior is quite consistent with 

(81). The rise shown by a combination of data at Plab , 30 GeV and 
. 1 

early ISR data was compatible with a S-4 variation (Ferbel, 1972). 

More recently, however,. the simple behavior of (81~ has been cast in 

doubt by more extensive data from the ISR. These results at 

y* ~ 0 in combination 14ith lower energy- data are more consistent 

with 
_1. _.l.. ) 

s 2 than s" (Jarlskog, 1973 . 
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The question of the approach to scaling is obviously an 

interesting one. The above simple remarks are just the beginnings.-

Duality and exchange degeneracy arguments can be brought to bear in 

order to estimate the expected sizes of the secondary contributions. 

This subject is dealt with in some detail by Roberts in his lectures. 

There is also the "threshold" aspect exhibited in Fig. 24 wherein 

appreciable production of heavier particles begins at higher s values 

and takes longer to approach an approximately scaling limit. The 

effect at y*~ 0 is even more pronounced than in the integrated 

results shown in Fig. 24. While smallest for pions, this threshold 

effect is undoubtedly present at a level such that plots of data at 

* ' J ~ 
Y ~ 0 from Plab ~ 30 GeV to ISR energies against s ~ or s 2 are 

of dubious value. Some theoretical support for the importance of a 

threshold effect comes from application of two-component duality to 

inclusive distributions with the consequence that the nonleading 

(s-k) contributions in (81) must be positive. 

(c) Factorization 

The finite-range correlation picture for the n-particle 

distributions has implicit in it the idea of factorization. Thus, in 

(71) the normalized density depends on a and c, but not on b, and 

in (72) is independent of both a and b. This means that the 

inclusive cross section in these regions depends on b (or on a ar.d 

b) only through the multiplicative factor 0ab. In Regge language 

this is a natural consequence of the assumption of Pomeranchuk-

singularity dominance of the total cross sections and the appearance 

of the P - bb and P - aa vertices in the 3 ~3 amplitude, as 

shown in Fig. 33. 
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These factorization properties have been tested extensively 

for the fragmentation region, most1y at energies below 30 GeV 

incident in the laboratory (Chen et al., 1971; Lander, 1971; Berger, 

Oh, and Smith, 1972; Miettinen, 1972; Lam, 1972; Fry et al., 1972). 

The overall conclusion is that factorization holds for the scaling 

contribution in the fragmentation region to 10-15~. There is also 

some evidence for factorization of secondary contributions (Miettinen, 

1972) and for two-particle distributions (Lam, 1972). 

Factorization for the central region is tested only roughly 

by the analysis of the approach to scaling of Ferbel (1972). MOre 

detailed checks will be possible with Serpukhov and NAL data on 

reactions initiated by pions, K-mesons and antiprotons, as well as 

protons. There is a high probability that factorization will fail to 

hold at the level of a few percent because of the presence of Regge 

cuts or, in other terms, from the existence ofa diffractive contribu-

tion associated with the incident particles, as well as a finite-

correlation length contribution. See the next section and, in much 

more detail, Harari's lectures. See also Wi~son (1970). 

5'. Brief remarks on a two-component description 

There have been various specific models devised to describe 

multiparticle reactions. These are described and references to the 

literature are given in Frazer et al. (1972) and Horn (1972). The 

short-range correlation picture with its explicit realization in the 

multiperipheral model of Amati, Stanghellini, and Fubini (1962) and 

many subsequent versions is perhaps one extreme. At the opposite 

extreme is the diffractive model in its recent realizations of Adair 

(1972), Hwa (Hwa, 1971; Hwa and Lam. 1971), and Jacob and Slansky 
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(Jacob and Slansky, 1972; Jacob, Slansky, and Wu, 1972; Berger,. Jacob, 

and Slansky, 1972) in which all the production is assumed to occur by 

excitation o~ the incident particles into fireballs or nova that 

subsequently decay. A more reasonable view is that nature elects to 

make use of both dynamical mechanisms (Wilson, 1970). There is now 

support for the presence of a "diffractive" as well as a "multi-

peripheral" component in a number of experiments. Professor Sens 

discusses one of these--the correlation of a proton near x = 1- with 

the angular distribution of charged particles. Another is the 

behavior of the prong cross sections at different energies (Figs. 20-22) 

or equivalently (n) and f2 • W~ will comment briefly on this aspect. 

It is dealt with in more depth by Harari. 

The two-component or two-mechanism model for prong cross 

section in its simplest form assumes an incoherent superposition of 

a "diffractive" cross section and a "multiperipheral" cross section 

for each n value. It is further assumed that the diffractive part 

contributes most importantly to the low multiplicities and is indepen-

dent of energy in each topology, while the multiperipheral part is 

perhaps Poisson-like in its distribution over topologies with a mean 

~ltiplicity that grows with energy, but whose total contribution to 

the inelastic cross section is an energy-independent fraction. 

Different versions of this two-component model have been discussed by 

many authors (Bialas, Fialkowski and Zalewski, 1972; Fialkowski, 1972; 

Fialkowski and Miettinen, 1973; Frazer et al., 1973; Harari and 

Rabinovici, 1973; Quigg and Jackson, 1972; Van Hove, 1973). The 

.~riants differ in-detail, but agree on the essentials. There is a 

relatively small, but important, diffractive component that amounts 

to 20 % 5~ of the inelastic cross section, with the remainder as 
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multiperipheral. The consequences for the-prong cross sections are 

sketched in Fig. 34 at the bottom. At high energies there should be 

seen a clear distinction between the constant diffractive component at 

low prong number and the multiperipheral component that moves out in 

n roughly proportional to tn s. Estimates indicate that at the 

highest ISR energy there might be signs of a shoulder at small n. 

n 

OIFRACTION MODEL 

on'·l 

_5 

I 

MUL TIPERIPHERAL 

DIFFRACTION OISllOC. - LOW MULT. 
+ 

MULTIPERIPHERAL 

FiG. 34. Prong cross sections as functions of n and s. The 

expected behavior for diffractive, multiperipheral and two-component 

models are shown at upper left, upper right, and lower center, 

respecti vely (from ~rrison, 1973). 

. ' 
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The behavior of correlation parameters in a two-component 

model is of interest. First we note that in the extreme diffractive 

model the logarithmically growing multiplicity is generated by assuming 

for n < N (82) 

where 
1. 

N ~ s2 (or some more modest power of s). The correlation 

parameter f2 involves the sum. of' n(n - l),on and so behaves 
1. 

asymptotic~y as f2 ~ N (E S2. !his is in marked contrast to the 

result (76) of the multiperipheraL (finite-range correlation) model. 

The purely dif'f'ractive model, while in reasonable accord with the data 

on f2 in pp collisions at Serpukhov energies and below is in gross 

disagreement with the NAL bubble chamber data at 200 and 300 GeV. 

In the two-component model the dif'fracti ve part is 'confined 

to low multiplicities and is s-independent. !hus its contributions to 

(n) and f2 are constant in energy. All the energy dependence is by 

hypothesis in the other component. Let ad and am = 1 - ad be the 

fractions of the two components in the inelastic cross section and 

~et (n)d' (n)m' f 2d, f'2m be the mean multiplicities and correla

tion parameters for each component separately (normalized to the 

dif'fractive and multiperipheral parts of the inelastic cross section, 

respectively). _ In the two-component model without interf'erence it is 

easy to show that the multiplicity and the correlation parameter are 

given by 

(n) 

(83) 
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Now suppose that (n)d' f 2d are independent of' energy, while (n)m' 

f'2m grow asymptotically as 

asymptotic behavior, 

(n) ~ .en s 

2 
(.en s) 

.en s. Then we find from (83) the 

(84) 

[For higher correlation parameters one finds fk (E (.en s)k~J The 

cross term in f2 (83)--a long-range correlation effect--produces 

f2 ~ (.en s)2, even though the ingredients varied as .en s at most. 

The two humps developing in Fig. 34 for increasing s are, of course, 

just a dif'ferent manifestation and source of this phenomenon. The 

many versions of the two-component model have little difficulty fitting 

the observed correlation parameters f2 up to the highest NAL 

energies. 

As a final remark on evidence in support of two operative 

mechanisms in multiparticle production we mentiqn briefly the rapidity' 

correlations observed in pp interactions at ISR energies between 

charged particles and photons (Dibon et al., 1973). The correlation 

functions R(Yl'Y2) defined by Eq. (E.18) for these data are displayed 

in Fig. 35. The distributions at the different ISR energies are 

qualitatively and even quantitatively similar. The open circles show 

the correlation as a function of * yphoton for * Ych = O. There 

appears to be a fairly important short-range correlation centered 

about * * yphoton ~ Ych 
and having a range of the order of L ~ 2-3· 

The solid points are for They exhibit a smaller short-

'range effect centered at * * yphoton ~ Ych and also a long-range 

correlation whose existence is clear, but whose actual magnitude is 
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,., 

Fig. 35. Rapidity correlation functions R(Yl'Y2) defined by (E.18) 

for photon-charged particle correlations in pp collisions at ISR 

energies (W = 23, 30, 45, and 53 GeV) as functions of Y*h t • The p 0 on, 

solid points correspond to Y~h = 0 and the open circles to 

Y~ = -2.5 (from Dibon et al., 1973). 

probably not easy to establish with certainty because of errors in 

normalization of thE various cross sections. In spite of such 

uncertainties the presence of a long-range correlation component in 

the data is certain. Integration of such a contribution leads to 

2 
f~ oc (tn s) , as we have already seen. e: 
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APPENDIX A 

s-matTix formulas, cross sections, two-body kinematics 

In what follows the usual units for relativistic particle 

pbysics and quantum theory are used: 11 = c = 1; masses, momenta, and 

energies are expressed in GeV; cross sections are calculated in units 

of M-2 = (GeV)-2 and are converted to millibarns by multiplication by 

the magic factor 0.389. Free particle states are normalized to one 

particle per unit volume. The phase space for a single particle is 

thus d3p/(2~)3. The convention on 4-vectors is indicated by 

p~ (E, Px' Py' pz) and a·b = aObO - !.~. 

1. Invariant or Feynman amplitude ??z 
The invariant amplitude 9'Il is related to the s-matrix through 

the relation, 

(A.l) 

~ere 0 and ~ are the labels for the initial and final states and 

the product of factors (2E
i

) is over all the particles in both 

initial and final states. ~mplicit in the S-matrix element are the 

conservation of energy and momentum delta functions. The invariant 

amplitude has these factors extracted. Its various arguments are thus 

to be taken as evaluated taking the conservation laws into account. 

~ith the presence of the square root of the product of factors (2Ei ) 

and the single particle normalization stated above, the invariant 

amplitude is Lorentz invariant, as its name implies. 
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2. Decay processes 0 -+ (1,2, .•. ,n) 

The transition probability is 

dWt3Q 

For a two-particle final state, in the rest frame of 0, 

where 

(A.2) 

(A.3) 

If some observables, e.g., spins, are not detected, averages of the 

initial state and sums over the final state are understood. 

3. Two-particle collision cross section 0 - (1,2); @ - (3,4, .•• ,n+2) 

The projectile is labelled #1 and the target ~2 in What 

follows. The differential cross section is 

(A.4) 

In this form the cross section is manifestly Lorentz invariant. The 

is called the 
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nux factor *. It is obviousl¥ invariant and has the use:f'u.l values, 

(laboratory or target rest 

frame) 

(center of mass frame) 

where W is the total energy in the ems. 

For a two-body final state (~+ m2 -) ~ + m4)' the ems 

differential cross section is 

(A.6) 

where is the square of the total energy 

W in the ems. The ratio of the final to initial ems momenta is 

, 
Pems 
Pcms 

t· -<"3 + _m.;:.4 )...",:_)[_S_-_(II)..<t---_m....:4---:):~J 
[s - (~ +~) J[s (ml - ~) ) 

The differential cross section expressed per unit interval in 

invariant momentum transfer is 

* With the advent of colliding beam machines, in which the target is 

in motion and not necessarily in head-on collision with the projectile-, 

~~ere has arisen some question about the appropriateness of this flux 

factor. See Newton (1966), p. 220-1, for the generally accepted 

view and Martin and Spearman (1970), p. 153-4, for a different, non-

in-.-ariant r.onvention as well as the standard result. 

]'( do 

P~ms Pcms'dflcms 
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, 
.L 

2 
64]'( s Pems 

(A·7) 

Note that 2 
s Pems is just the square of the invariant flux factor 

For elastic scattering the standard ems scattering amplitude 

f is related to the ·invariant amplitude by ems 

f cms (A.8) 

For inelastic two-body processes conventions vary, but usually an 

additional factor of IIp' /p appears on the right-hand side cms cms 

of (A.8). Then the differential cross section (A.6) is given by the 

absolute square of f cms 

4. Optical theorem 

The optical theorem that follows from conservation of 

probability (unitarity of the S matrix) is 

- ~ 1m '1r(oo (A.9) 

where is the total cross section for the channel u. This 

can be written in a more familiar form, 

(A.IO) 

where f(OO) is the forward scattering amplitude (whose square gives 

the differential elastic scattering cross section per unit solid 

angle) in any frame moving parallel to the incident particle's 

direction and is the incident particle's momentum in that frame. 
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5. Two-body kinematics 

Some kinema1;ic variables have already been def~ned; We, gather 

here a summary of useful two-body quantities. The gener~l notation is' 

indicated in Fig. A.l for the process, 

(A.ll) 

Fig. A.l 

The invariant variables s,t,u are defined by 

s 

t (A.l2) 

with the constraint equation, 

s +t + u (A.l3) 

I' 
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In terms of laboratory quantities (the laboratory is ,the 

frame where particle 2 is at rest) the invariants are 

t (A.l4) 

) 

For elastic scattering or reactions in which m4 = ~ the momentum 
\ , 

transfer t simplifies to t '= -2~(T4)lab' where T4 is the kinetic 

energy 'of the recoiling particle #4. 

The invariants can also be expressed in terms of the center of 

mass (c.m.s.):variables. Let the c m.s. energies and momenta of the 

particles be El , E2, K~, E4 and Pl = P2 = p, P3 = P4 = p' . Then 

s ;;; ~. = (El + E2)2 (E
3 

'+ E4)2 is the square of the total c.m.s. 

energy and 

if 2 2 
+ ml -~ 

El = 
2W 

if 2 2 
+ m2 - ml 

2W 

if ,2 2 
+ m3 - m4 

E3 
2W 

if 2 2 
+ m4 - m 2 

2W 

and .(A.l5) 

2 1 [s2 - 2{m 
2 2 2 _ m22)2] p !is 1 

+ m2 )s + (ml 

'2 1 [s2 _ 2{m) 
2 ? 2 2 2] P !is + m4 )s + ,(m) , - m4 ) 
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rhe two momentum/transfer variables are 

where 

t = \ t. - 2pp' (1 -cos 9 ) 
IlUn ems 

u 

9 cms 

'u. 
IlUn 

u i - 2pp'(1 + cos 9 ) m ncms 

-+ -+ 
is the angle between Pl and P3 

(A.16) 

in the c.m.s. and 

At high energies (w» m.) some useful approximations are 
l. 

p' .. ) (A.18) 

and umin has m3 <-t m4' Note that if ml = ~ £E. ~ = m4 
-2 tmin c£ s and so approaches 'zero very rapidly at high energies. 

For elastic scattering tmin - 0, of course, ,and umin 

without approximation. 

The three-dimensional scalar product of the c.m.s. momenta 

-- ... Pl and P3 can be expressed in terms of the invariants s,t,u: 

-A8-

4p p' cos 9 
s s s 

222 2 
(~ - ~ )(m3 - m4 ) 

t - u + -;;....----"'---~ (A.19) 
s 

where we have changed the notation slightly in order to discuss 

channels other than the s-channel of Fig. A.l., For the t- and 

u-channel processes, where t and u are, respectively, the squares 

of the total c.m.s. energies in the two channels and the other 

invariants are momentum transfers, the corresponding expressions are 

I 

2 2 2 2 

4PtptcOS 9t 
(~ - ~ )(m2 - m4 ) 

s - u + 
t 

(A.20) 

(~ 
2 2 2 2 - m4)(~ - ~ ) 

4p p' cos 9 t - s + u u u u 
(A.2l) 

The angle ~\ is the angle between 2 and 1 in the t-chanllel c.m.s . 

of the process 1 +3-+2+4; 9u is the angle between I and 3 

in the process 3 +2-+1+4. The various momenta are the c.m.s. 

values in each channel, obtaineq from (A.l5) by substitution. 
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APPENDIX B 

Partial Waves, Helicity Amplitudes, Impact Parameter Representation, 

The material in this appendix is well known. It, is brought 

together here mostly to fix notat~on, not to give derivations. 

1. Partial wave decompositions ' 

Because of the convenience of dealing with a Lorentz invariant 

amplitude we define the scattering (or two-body reaction) amplitude 

Ftn(s,t) by 

(B.l) 

were o/Y! f!C1. is the invariant amplitude in (A.l) • From (A. 7) the 

differential cross section is 

~ 
dt 

(B.2) , 

For particles wi~hout spin Ff!C1.(s,t) has'the ,Rayleigh-Faxen-Holtsmark 

partial wave expansion, 

( S)t Leo .(2£ + 1) a.e(f!C1.)(s) P.e(cos g) 
pp l , 

, . , (B.3) 
.e=0 

• nere cos 9 is related to t' via (A.l6) anda~f!C1.)(s)F is called 

the partial wave amplitude. 

The optical theorem (A.9) can be translated'into a statement 

a'bout the partial wave amplitudes,: 

,L la~f!C1.)(s)12 ~ G}a)(s) 

~ 

(B.4 ) 
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where the sum over ~ is over all the kinematically allowed two-body 

channels and the function G~Q)(s) represents the contribution from 

the open channels with more than two particles. Sometimes (B.4) is 

written 

where H.e(S) contains all the contributions to the unitarity sum 

except· for the elastic scattering part. H.e(S) is,the'partial wave 

projection of the so-called overlap function (Van Hove, 1964). If the 

elasFtic scattering partial wave amplitude is written as 

(00) 1 ~2i5.e(S) 
a.e (s) = ~ e 

,./ 1. -0 (B.6) 

. then (B.5) implies that 

, 2 

Ie 2~5.e(S) I 

If only elastic scattering can occur, H.e = 0 and the phase shift 5
Q 

is real. .If other channels are open then 5Q is complex, with 

positive imaginary part. The partial.wave amplitude (B.6) thus lies. 

on the boundary of~or inside ,the unitarity circle, a circle on an 

Argand diagram of radius 1/2 centered at the point i/2 . 

2. Helicity amplitudes 

If the particles possess spin a'convenient set of amplitudes 

are .thE helicity amplitudes of Jacob and Wick (1959). The ini tisl 

and final states are specifiEd by the· usual kinematic variables of 

Appendh (A.S) 9.:1d also by the helicities ~'j of th" particles. The 

generalization of (B.2) for unpolarizedbeams is 
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- (B.8) 

The generalization of the partial wave expansion (B.3) is 

wnere d~j(9) is a Wigner notation function (seethe Appendix of, 

Jacob and_Wick, 1959) and ~ = ~1 -~, ~ = ~ - ~4' while j 

angular momentum. 

3. He1icity amplitudes for 
1+ - 1+ 

0- + 2' -+ 0 + 2' processes 

is the 

An important special case of helicity ~mplitudes is for the 

- 1+ - 1+ or M+B'->M'+B',where M stands 
reaction, 0 + 2" -+ 0 + 2" 
for meson and B for baryon. To reduce the number of subscripts 

we introduce a change in notation from Appendix (A.S). We put 

jJ., m, ~' , 

El w, E2 E, E3 w' , E4 E' .- (B.10) 

.... .... --+ .... .... -, --+ p' Pl q, P2 p, P3 q , Ph 

In the we have --+ .... and p' = -q.. c.m. s. p = -q 

The invariant spinor amplitude F
f3CX

(s,t) is 

U
i3

(P')[A(S,t) + ~(i -l i') B(s,t)J 'b(P> (B.ll) 

-114-

where \laUa = 2m, u
i3

u
i3 

= 2m', and A(s,t), B(s,t) are two scalar 

invariant amplitudes. The convention on gamma matrices is that of 

Bjorken and Drell (1964). A straightforward Pauli reduction leads to 

the form, 

(B.12) 

where 

-V(E - m){E' - in') [-A +G + m; m')B] 

• (B.l3) 

The helicity amplitudes F~,~ are explicitly 

(B.14) 

(In these expressions as in all our helicity amplitudes we have 

specialized the azimuthal angle to ,¢ = 0.) 

The differential cross section and polarization are 

do 
dt 

p 

r 

.L QF 12 + 1 12) 2 ++ F+_ 
sp 

* 2 Im(F ++ F +_ ) 

2 2 
IF++I + IF+-' 

(B.1S) 
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ken of the heli~lty amplitudes F,,',,' called s-channel,helicity 

amplitudes to distinguish them from t-channel helicity amplitudes 

obtained by taking helicity p~ojections in the process MM' ~BB', has 

a partial wave expansion of the form (B.9). 

4. Impact par~eter representation 
/ 

At high enough energies, where very many partial waves are 

important, the partial wave series (B.3) and (B.9) ,can be converted 

into more convenient and intuitive integrals over impact parameter. 

For large j and not too largr angles the Wigner rotation functions' 

are approximately, 

Where J (z) is the nth order Bessel function and n 

n = ~ - " = ("3 - "4 - ~ +~) is the net helicity flip. With the 

approximation .of replacing the sUm in (B.9) by an integral over 

(j +~) and the use of (B.l6) we obtain 

At high energies where tmin is negligible, (A.16) shows that 

2 4 , . 2 Q 
-t - q ~ pp S1n '2 

We therefore define thE impact parameter b by 

~b J
. 1 

+ '2 

(B.17) 

(B.18) 
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and write the agrument of the Bessel function as 

·2(j + ~) sin ~ = qb 

~ne integral over (j +~) then becomes. the ipPact parameter 

representation, 

("3'4IF(~, t II "'-",,) ~ 2(,pp')! 1- b db I n (qb )("3'4 10(" b) 1 "'-",,> • 

(B.l9) 

For particles with no spin the representation corresponding to (B.3) 

is 

(B.20) 

The "partial wave" projection formulas r-omplementary to (B.19) 

and (:8.20) are 

and 

I 1 rt» q dq In(qb) 
2(SPp')2) 0 

x (t..3t..4IF(s,t = -q2)1t..1~) 

2(,~·)~rq 

(B.2l) 

(B.22) 

In these integrals over momentum transfer it is assumed. that) the 

amplitude falls off rapidly enough, in q,.= -r:t that the integrals 

converge. From (A.18) it can be seen that at Meh energies where 

,(B.19) and (B.20) are'likely to be useful the coefficient of the 

integrals is 



.1. 
2(Spp')2 
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.::: s . (B.23) 

It is sometimes useful to replace (B.20) and (B.22) by an 

equival~nt two-dimensional Fourier transform representation,' 

S J\~ i'q.S 
2rc do e Sj3a(s,b} 

and its inverse, (B.24) 

() 1 J 2 -i(1- 'Ei 2 )' al30 s,b = 2rcs d q e Fj3a(s,t = -q ) 

Here q and ti are two-dimensional transverse vectors. We have used 

(B.23) to ~implify slightly. 

For elastic scattering of Ispinless particles the representation 

(B.20) leads [via integration of (B.2) over ail q2 and by means of 

the optical theorem (A.9») to the following expressions for the 

elastic and total cross sections: 

(] 

e£ J
oo 

2 2 
.. 41( 0 d(b) la(s,b) I 

If s(s,b) is written in a form equivalent to (B.6): 

a(s,b) (B.26) 

-138-

and the complex phase shift o(s,b) is given by 0 = a + i~, then 

the total, elastic and inelastic cross sections become 

• (B.27) 
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APPENDIX C 

Eikonal Approximation 

For short-wavelengths scattering can be described in terms of 

a semi-classical trajectory (localized wave packets) and impact 

parameters. For the schrodinger equation this leads to the eikonal 

approxima tion for the phase shift as a function of energy and impact 

parameter. The standard derivation of the eikonal approximation is 

given in many places (e.g., Gottfried, 1966, p. 113ff; Glauber, 1959, 

p. 315ff). The eikonal approximation to the wave function leads at 

high energies to 

(C.l) 

~ereS is the impact parameter of the incident particle and V{~ 

is the scattering potential. The exponent represents the phase 

accumulated up to the point (li,z) by the action of the potential. 

straightforward calculation of the scattering amplitude leads to the 

approximate expression, 

f(F' ,F) k f"" -1(1t' -li'} -'- . O' [ 2i6C~ 1 
~ 21Ci dee - 1 (C.2) 

where 

6(~ 1 L- >CO',,) dz - 2RV 

is the eikonal approximation to the phase shift. For a spherically 

symmetric potential integration over azimuth in (C.2) leads to an 
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expression equivalent to (B.20) with (C.3) as an approximation to the 

phase in (B.26). 

The lowest order approximation to (C.2) in powers of the 

potential is obtained by expanding the exponential in the integrand. 

This gives 

(C.4) 

which, for small angle scattering where It·_it is perpendicular to the 

incident direction, is just the first Born approximation. 

An alternative derivation of (C.2) and (C.3) with closer 

connection to the relativistic problem is based on the Born series 

of which (C.4) is the first term. With the definition 

U(5t) = -2m V(5t)~2, and its Fourier transform, 

f .3x 
-iq'x iq ·xt 

U(~,~) e 1 U(~ 2 
= e 

the (n + l)th term in the Born series, 

co 

f(I(',k) L f(n) (i,\K') 

n=l 

can be written formally 

(c.6) 

where there n+l factors of U and n Green functions G. More 

explicitly, this reads 
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--:2"...--='\0::---' U(~, q2) . -"'2.---=1~2:--
ql - k ie q2 k - ie 

~2:-_-=\k"""'--· U(~ ,I?) 
~ -'ie . 

(C.?) 

EaCh potential factor in (C.7) is replaced by its representation (C.5). 

Then the eikQnal approximation is made by approximating the intermediate 

momentum factors in all the Green function propagators as follows. 

Choose the z-axis for all integrations as the incident direction F 

[or the average direction (F + Ft)/2) and define parallel and· 

perpendicular components of every vector: 't = (x\, Z)' ct '" (ct ,q ) . 
..&. '"Il '"IlL nil 

A typical propagator is then approximated by neglecting qJL2: 

( 2 2 )-1 q - k - ie a 
, 2 2 2 )-1 

(qJ. + qll - k - ie .:: 

The amplitude (C.?) then becomes 

iq. . (tj l-itj )l.+iq j (z. l-Zj) i1(. it 
x e Jl. - II J- .e n 

The integrals over the transverse components of each intermediate 

momentum· d2qj~ can now be performed to yield the product of two

dimensional delta functions, 
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This is equivalent to the semi-classical straight line path implicit 

2 in (C.l). The integrations over the (n+l) different d xjJL are 

thus reduced to only one: 

(C.8) 

The integral over dq
jll 

can be done by contour integration to yield 

Inspection of the remaining integrals over dZj in (C.8) with (C.9) 

inserted shows that each integrand oscillates rapidly at high energies 

and thus will give a negligible result unless in each, successive 

integral (Zj_l - Zj) .~ O. With the approximation to small angle 

scattering,'(C.8) can thus be written 

(C.lO) 



. where q = It - 1(' is the vectorial momentum transfer. The 

restriction on the ranges of integration has a familiar counterpart in 

the limitations on the time integrations in the expansion of the 

S matrix in quantum field theory. Because of the symmetry of the 

integrand of the (n+l)-dimensional integral the ranges of all the 

z integrations can be extended to the interval (-~,~) providedwe 

divide by (n+l)!. Thus (C.10) becomes 

k 1 
2rci'(n + l)! J ... -. [ 1"" ]n+l 2 iq,x.l.' 

d xl.. e ~ ~ dz U(3tJ.'Z) 

(C.ll) 

With the definition of U(~ and the Born series (c.6) it is directly 

evident that (C.ll) is the (n+l)st term in the expansion of the 

eikonal formula (C. 2) • 

The derivation of the eikonal approximation in relativistic 

field theories seems possible in some theories and not in others (See, 

for example, Abarbanel and Itzykson, 1969; Levy and Sucher, 1969; 

Tiktopoulos and Treiman, 1971; Fried, 1971; Cheng and Wu, 1972; 

Swift, 1972). In spite of the uncertainty of its fundamental basis 

the eikonal method is an extremely plausible and simple way to impose 

the requirements of uni tari ty in the direct channel. The standard 

recipe for "eikonalization" relies on the connection (C.4) of the 

lowest order exchange amplitude (the first Born approximation) with. 

the two-dimensional Fourier transform of the phase shift 6(~. 

Explicitly, if the lowest order relativistic amplitude is FBorn(s,t), 

then the relativistic eikonal phase is (in the notation of (B.24) and 

(B.26)] 

5eikonal(S,b) 
1 

2rcs 
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J 
2 -i .... li . 

d q e q FB (s,t orn 
2 

-q ) 

and the relativistic eikonal amplitude is 

Feikonal(s,t) 
_ s Jd~ iq.li (2i5eikonal(s,b) .:\ 
- 4;f .-be \: -V 

(C,12) 

.(C.13) 

The eikonal phase (C.12) is in general complex and .describes elastic 

scattering in the presence of competing processes. In nonrelativistic 

problems this situation is normally described by a complex optical 

model potential. 

For reference we quote some simple examples of FBorn(s,t) 

and its two-dimensional Fourier transform, s 5eikonal(S,b): 

FB (s,t = _q2) orn 

( 2 2)-1 A s)(q + Il 

2' 2 2 A{s)(q + Il )-

. 2 
A(s) exp[-B(s)q /2] 

2 
+ 41-1 

s 5eikonal(s,b) 
A(s) KO(llb) 

(C.14) 

(C.15) 

(C.17) 
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APPENDIX D 

Kinematics of Inclusive Processes 

The process a + b ~c + anything is indicated diagramatically 

in Fig. D.l. With the masses of a, b, and c given and unpolarized 

beams, there are three 

a 

b 

Fig. D.l 

kinematic variables, plus a trivial one (e.g., the azimuthal angle of 

the momentum of ~ in the c.m.s.) needed to describe the cross section. 

These can be simply the total c.m.s. energy Wand the components of 

the momentum of c parallel and perpendicular to the incident beam, 

P
II 

and PL. This is one more variable than in the 2 ~2 process 

of Appendix (A.5) because the missing mass M is variable, not fixed 

by M = m4. Nothing more really need be said, but in describing 

inclusive processe:; several different choices of variable are made 

and it is necessary to move from one to the other. We summarize in 

this Appendix the more important sets of variables and their connec-

tions. An exhaustive compilation of inclusive kinematics can be found 

in Kasman (1972). 
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1. (s, t, u, ~) 

The obvious and direct extension of the two-body kinematics is 

the use of any three of s, t, u, Nf as variables. The definitions of 

s, t, u are given in (A.12), which in the present notation are 

s t u (D.l) 

and 

Nf (Pa + Pb 
2 

- P ) c (D.2) 

The constraint equation (A.13) reads 

s+t:u..:if 2 2 2 
m +~ + m 
a c 

2. (a, P J! x) 

In discussing scaling Feynman (1969a,b) introduced a reduced 

longitudinal momentum variable called, x. In.the c.m.s. frame let the 

momentum Ii of particle c have components parallel and perpendicular 

to the incident direction (that of particle a) 

.... PJL. Then Feynman's x is defined as either 

x 

* where Pmax 

* .2JL 
* Pmax 

is the 

two definitions are 

definiteness we use 

OR x 
= 

maximum momentum permitted 

equivalent at high energies. 

the second form throughout. 

c 

* denoted by p II 

in the c.m.s. 

For simplicity 

and 

(D.4) 

The 

and 

The variables s, P.J.' x (plus the azimuth of Pi) are an 

equivalent set for inclusive processes. Note one peculiarity of the 

x variable. If P
I
\ is finite then as s --) 00, x -> 0 independent of 

the particular value of P If This means that for s -> co a finite part 



of phase space is mapped into x = O. This can cause some conceptual 

problems, as we will discuss below when we consider cross section 

formulas. 

3 . (s, P.l! y) 

In the c.m.s. or any other frame K moving uniformly parallel 

to the incident direction (~-axis) particle c has momentum p with 

components There is another Lorentz frame K' moving 

with a relative velocity t parallel to the z-axis in which particle 

c has only transverse components of momentum, i.e., :::1\ ~ 
P = Pl.' In 

that frame, the energy of particle c is E' = wc ' where 

'is sometimes called the transverse or the longitudinal mass and is 

denoted by ~,~, K, by other authors. The energy and momentum of 

particle c in the frame K can evidently be expressed in terms of 

PJL and ~ according to 

w sinh Y (D.6) 

E w cosh Y 

where w is given by (D.5) and the longitudinal boost or rapidity y 

is related to ~ by' 

y tanh-l ~ • (D.7) 

Thus p can be replaced by y, and 
1/ ' 

(5, Pol' y) can be used as the 

three kinematic variables. For reference we record two more 

expressions for y: 

y 

O +P10 .tn --w 

(D.8) 

The above expressions define the rapidity y in the frame K. 

What about different frames, e.g., c.m.s. and laboratory? The laws of 

Lorentz transformations are such t~at the rapidity Yl in frame ~ 

differs by a constant from the rapidity ~ in frame K2, the constant 

being the longitudinal boost that takes one from ~ to K2 according 

to (D.7). This translation by a constant amount in going from one 

Lorentz frame to another (along the beam directio~ is one of the 

attractive features of rapidity. 

4. Rapidity and related angular variables 

2 2 
If PJL »m the expression (D.8) for y can be approximated 

by 

'.en ~ot ~) 
2 

y m e (D.9) - -- cos 
2p2 

l 

where tan e = PjPlr Thus in the c.'m.s. the rapidity is approximately 

equal to the cosmic ray angular variable, 

( 9 ) ,.en \.cot ~ms , (D.lO] 

Another cosmic ray angular variable is 

1)' - .tn(tan eLab ) (D.ll; 



-D5-

where 9Lab is the angle of emission of particle c in the laboratory. 

If c is relativistic in the lab and the c.m.s. motion is also 

relativistic in the lab, then the two angular variables are related by 

1'1 + .en(rcms ) (D.12) 

where rcms = (1 - ~~ms)-1/2 ~ W/2~. 

5. Invariant sub-energies in terms of rapidity differences, s· and Y 

The invariant sub-energy of particles land 2 is 

(D.13) 

Using (D.6) to represent the momenta and energies this can be written 

(D.14) 

Sirrll.la.rly, the inva.riant momentum transfer, 

(D.15 ) 

can be written 

(D.16) 

If the rapidity difference Yl - Y2 is large, then 

(D.l?) 

If we specialize to the incident particles a and b then 

we have 

s (D.18) 
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where Y = Ya - Yb is the laboratory rapidity of particle a. At 

high energies, Y is given approximately by 

1 Y .~ tn(s/m ~ ) + 0(-) a 0 s 

In this limit the rapidity of the c.m.s. is 

(D.19)" 

1 Y ~ -(Y - 6) cms - 2 (D.20) ;-

and the rapidities of particles a and b in the c.m.s. are . ' 
(D.21) 

where 

This is indicated in Fig. D.2 for 6> O. The maximum rapidity 

interval 

b a 

Y - 6 Y + 6 
2 ~I -2-.-

I I 
I 

6" 
.1 ti' ~ ~ I 
I 
I 

0 Y - 6. Y/2 Y -2-

y ----.. 

Fig. D.2 

available to particle c is approximately Y, but dependir.g on its 

mass it may be slightly largf,r or smaller than this. If c is 



" 
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lighter than both a and b then the maximum and minimum rapidities 

for c are indicated on Fig. D.2 with 

b.' .en(m 1m ) a . c 

b. + b.' 

This corresponds to an absolute maximum c.m.s. rapidity for particle c 

of 

(D.22) 

The value (D.22) is attained at p~ = O. If particle c has a non

vanishing value of P-L, the maximum allowed rapidity is smaller. The 

range of rapidity is restricted to 

where at high energies and for Pi «w/2 the extreme is given by 

Since most particles have relatively small P-L this value is typically 

smaller than (D.22) by less than unity. At large ~,of course, it 

causes an appreciable shortening of the range of rapidity. 

6. Phase space and invariant cross section 

The single-particle inclusive cross section is given by (A.4), 

integrated over all final state momenta except particle c and summed 

over all final states ~ that contain c and are kinematically 

allowed. The cross section this appears schematically'as 

do c 
ab 

d3p Lorentz invariant ._·_c 
Flux factor Ec (D.25) 
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where the flux factor is given by (A.5). It is useful to define the 

invariant differential cross section for a + b ~c + anything as 

F c 
ab 

It is easy to show that the invariant phase space d3p/E, can be 

~ 
written in terms of P J.. and y as 

(D.24) 

Thus the invariant differential cross section is sometimes written as 

(D.26) 

7. Relations between variables 

We have the three major sets of variables (s, P~, y), 

(s, PJ: x), and (s, t, It). We give here the relations allOng these 

variables in the high energy limit where terms of order lis relative 

to the leading contributions are neglected. 

(a) Rapidity y and Feynman's x 

For finite Ix I (not of order l/-ys), fixed moderate P..L' 

and large s the .relation between x and y is 

~ exp(y y) m c - a ' a 
x > 0 

x (D.27) 

x < 0 
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Where w is given by (D.5) and x > 0 means that particle c is 

in the same hemisphere as particle a in the c.m.s. For fixedP.L 

the differentials are related by dy = dx/x, as follows from (D.25) 

* * when E is approximated by PII. 

(b) Relations between (t,z.f), and (Pi'x) 

For finite lxi, moderate P,.L' and large s the invariant 

momentum transfer t can be written in terms of P.L and x as 

2 
2 2(., 1) P..L 

t = ma (1 - x) + mc ,1 - i-x 

provided x > O. For x < 0, the connection is 

2 
2 2 r.. 1) 2 P.L 

t - s I x I + ma + mc ~ - 1iT +"b I x I - TXT 

* Exactly at x = 0, i.e., for PII = 0, the relation is 

Similarly, the square of the missing mass is 

provided Ixl 

2 2( 2) 2Pl.. 
s(l - Ixl) + mc 1 - TXT - TXI 

* is finite. For PII = 0, we have instead 

s - 2-Vs w + m 2 
c c 

(D.28) 

(D.28') 

(D.28") 

(D.29) 

(D.29' ) 

It is worthwhile to note that for a given x the minimum t 

value (obtained by putting PJL = 0 m (D.28) is 

(D·30) 
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If we use x = 1 - M2/s from (D.29), tmin can be written alter

natively as 

m f, m a c 

m = m = m a c 

(D.3l) 

These last expressions can also be obtained from (A.18) with appropriate 

approximations. They do not hold too near x = 1, i.e., where z.f is 

not large compared to the other masses; 

(c) Relations between (t,z.f) and (Pi'y) 

From (D.16) it follows that the invariant momentum transfer 

is given in terms of rapidity by 

t 2 2 
ma + m - 2m w cosh (y - Y ) c a c c a (D.32) 

For large Iyc - Ya l this becomes 

t ~ m 2 + m 2 _ m w eXPly _ y I 
a c a c c a 

The square of the missing mass can be found in the high energy limit 

from (D.29) and (D.27) to be approximately 

S[l - ~ exp(y - y )] * 
~ c a ' ¥c >0 

M2 ~ (D.,,) 

S[l - ~ exp(y - yc)] , * 
~ b Yc <0 

(d) Phase space connections and invariant cross sections 

In the high energy limit the differentials of the three sets 

of variables are related as follows: 
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dx 2 
::: X dP.l. .::: dx dt ::: !. J- dt 

s 

This means that the invariant cross section can be written in the 

alternative forms, 

F c 
ab 

c 
1 daab 

.::: ;- dx dt 

c 
s daab 

.::: ;- J- dt 

The factors of ~ in the last two forms are present to give cross 

sections per unit azimuthal angle. 

2 The approximate phase space in terms of x and P.l.. in 

(D·34) 

2 (n.34) is singular at x = O. The exact expression is dx dP.l. jxo 

wbero Xo = (x2 
+ "';.2 ) '" i, tbe ".>ed energy. Fnr Ix I »2w/V. ' 

x_ ~ Ix! and~e expressions in (D • .:,4) and (D.35) are acct:.ro.tc. As u- , 

Ix I -t 0, however, the distinction between Ix I and xo must be made. 
. c 

Note that in integrating Fab over any finite interval of some 

variable one must multiply by the relevant phase space differential 

from (D.34). Thus the number of particles seen in the interval 6(~2) 

and 6x, integrated over azimuth, is 

c 2 6x 
(Flux) x (Time) x Fab x rr x 6(p ) . 1.. Xo 

(n.:;!) 

As s ~OO, this number is almost singular at x = 0 if F fo c 

there. 
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APPENDIX E 

Distributions, Correlations, Moments, Sum Rules in Inclusive 

Processes 

We have defined the kinematics of inclusive processes in 

Appendix D. Here we put down definitions of the normalized distribu-

tiona, correlation functions, moments, and sum rules. 

1. Normalized distributions 

The n-particle inclusive invariant cross section for the 

process, 

a + b ~ (1 + 2 + ••• + n) + anything (E.l) 

is defined in conformity to the single particle cross section (D.24) 

as 

(E.2) 

In order to compress the notation somewhat it is convenient to adopt 

the notation 

for the Lorentz invariant phase space. Then the invariant cross 

section (E.2) is 

dna
ab

(1,2, .•. ,n) 

d91
1 

d912 ..• d¢n 
(E.4) 
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It is also convenient to introduce the normalized distributions, 

Pab (1,2, ••. ,n) 
dn

Oab (1,2, •• ·,n) 

d¢1~2···~n 

In (E.5) sometimes 0ab is the inelastic, rather than total, cross 

section if the elastic scattering contribution is omitted from the 

.appropriate inclusive cross sections. In what follows we will 

generally omit the subscripts abo The incident particles will be 

understood to be given. 

2. Multiplicities and Higher Moments 

The average number of particles of type i is given by the 

integral pver all phase space of the normalized single-particle 

inclusive distribution for particles of type i: 

(E.6) 

Higher moments are defined similarly by integrals over all phase space 

of 2-particle and higher distributions. For example, the second 

moments are given by 

The presence of (n(n - 1») for i = j stems from the definHion of 

the inclusive cross section--jf there are n particles of type i in 

a given event, the first one can be picked out in n different ways 

and the second in (n - 1). The third moment is given by 

... ,j 



. . 

.,. . 

-E3-

J' p(i,j,k)d¢.d¢.d¢k 
. ~ J (E.8) 

and so on. 

The analog in inclusive distributions of the prong cross 

sections discussed in Sec. III.2(a) are the n-charged particle distri-

butions summed over all types of charged particles. We denote these 

normalized distributions by p h(1,2, ••• ,n), but it should be c , 

remembered that 1 stands for ~ charged particle in the phase space 

element· d~l' and similarly for the other particles. The various 

charged particle moments can be defined either through the prong cross 

sections: 

(E.9) 

n 

or in terms of integrals over the various normalized distributions 

(nch ) J Pch (1) d¢l 

) (E.IO) 

(nch (nch - 1») J Pch(1,2) d¢ld¢2 

and so on. 

3. Correlation coefficients} correlation functions 

The idea of totally uncorrelated production of particles would 

lead to the prediction that the n-particle distribution is given by 

p(1,2,··. ,n) pel) p(2) ... p(n) (E.ll) 

-E4-

This is not actually attainable on kinematic grounds alone (see Sec. 4 

below), but is a useful norm from which to measure correlations. The 

analog for the prong cross sections is a Poisson distribution, 

= (nt e -(n) 
n. (E.12) 

From (E.ll) or (E.12) and the definitions of the moments in Sec. 2 

above it can be shown quite simply that the integral correlation 

coefficient for charged particles, 

. )k (n (n -l)···(n -k+l») - (n ch ch .. ch (E.13) 

/ 

vanishes for uncorrelated charged particle production. The correlation 

coefficients fk are thus useful as empirical quantities measuring 

the character of the n-particle distributions. Equation (E.13) 

defines fk for the charged particles, but there are obvious 

generalizations for other situations, e.g., charged and neutral, 

+ K , and p, etc. 

+ 
1( , 

Sometimes moments for negative prongs instead of all charged 

prongs are presented. These moments are trivially related to the 

moments for all charged prongs because of charge conservation. Let Q 

be the total charge in units of the proton's charge in the initial 

state. Then for an event with n charged prongs, the number n of 

negative prongs is n = {n - Q)/2. This leads to the relations, 

(n ) 

1 f _ (n) + S.2 
1+ 2 4 

and corresponding linear combinations for higher moments. 

(E.14) 
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·The integral correlation coefficients fk have their differen

tial counterparts constructed from the normalized n-particle inclusive 

distributions p(1,2, •• ·,n). The most commonly used one is the two-

particle correlation function C(1,2): 

C(1,2) = p(l,2) - pel) p(2) (E.15) 

Evidently, the integral of C(1,2) over phase space gives f 2 : 

(E.16) 

Because of limited statistics, often correlations ar given in 

only one variable, say rapidity. The two-particle rapidity correlation 

function is defined by 

(E.17) 

From the experimental point of view it is more convenient to define a. 

correlation function R(Yl'Y2) 

p(l) p(2) over d2P(1) d2 (2). 
-L P..L 

as the ratio of C to the integral of 

Thus the function R(Yl'Y2) is 

- 1 . (E.18) 

The advantage of R(Yl'Y2) is that it measures the fractional correla

tion and so treats favored and unfavored portions of phase space 

equally, whereas C(l,2) given by (E.1S) or C(Yl'Y2) given by 

(E.17) can be small because p(1,2) and pel) p(2) are small, even 

thoughp(1,2)/p(1) 0(2) ~ 1. 
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4. Energy-Momentum and Other Sum Rules 

The strict requirement of conservation of 4-rnomentum between 

the initial and final state in every collision event leads to a 

family of "sum rules" involving inclusive cross sections or normalized 

densities (Chou and Yang, 1970; DeTar, Freedman, and Veneziano, 1971; 

Predazzi and Veneziano, 1971). The simplest of these involves the 

single-particle densities. The 4-momentum of theinitial state can be 

written as 

L pY p(!) d¢. 
l. 1. 

(E.19) 

(i) 

where the sum is over all contributing types of particles and 

~ = 0,1,2,3. The right-hand side of (E.19) is just the summing up 

of all the momenta in the final state. If we multiply both sides by 

crab we see that (E.19) is a relation between the O-particle inclusi 'Je 

cross sectiotiand an integral over the l-particle inclusive cross 

section. There is a fairly obvious generalization relating the 

n-particle inclusive cross section to the (n + I)-particle ones. 

Consider the process a + b ~ (1 + 2 + '" + n) + anything with its 

cross section dna(1,2, ... jn)!d¢l d¢2~' .d¢n' For fixed momenta 

Pl'P2,'" 'Pn' the momentum of "anything", namely 

P = Pa + Pb. - (PI + P2 + ••. + Pn)' can be thought of as being built 

up in the manner of (E.19) by a sum of integrals over the various 

inclusive cross sections for (n + 1) particles in the reaction, 

a + b -+ 0- + 2 + 3 + ••. + n + (n + IV + 'anything. Thus we have the 

general sum rule, 

, . 

•• 
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(E.20) 

where the sum is over the different particle types chosen as the 

(n + l)st particle. Evidently, (E.l9) is (E.20) for n = O. 

The most. usef'ul of these sum rules are the n = 0 and n = 1 

forms. ,The n,. 0 one is (E.l9). The n = 1 expression is 

This can be written in terms of the correlation function (E.l5) with 

the aid of (E.l9): 

(E.2l) 

The existence of a nonvanisning value on the teft-hand side of (E.2l) 

shows .that . Cab (l,2) cannot be i~entically zero. Particie production 

cannot be completely uncorre:lated emission. ' Some correlations are 

imposed merely by energetics. 

Similar sum rules can be written for any conserved additive 

quantity. Denoting such a quantity by Q (Q = el~ctric c~arge, 

z-component of isospin, Q¥percharge, baryon number, etc.), the sum 

rule reads 

." 

" + c. 'a "b 

-18-

(E.22) 

The manner in which different regions of phase space contribute to the 
, 

sum on the right-hand side is discussed for electric charge in 

Sec. III.2(f). 

, 
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