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"I. INTRODUCTION

,

The subject of the phenomenology of hadronic interactions at

"high energies is extremely broad. 1In thése lectures it is.hecessary

~to limit the discussion to only a few topics and merely to scratch the

surface of most of these. Since my charge is to provide an introduction
on which conpurrént and subsequent lectufers  can bqild I stick to
basics. TFurthermore, my approach is down-to-earth in the.extrgmé;
Elegance and rigor take a back seat tor’%nséhaulichkeit" and intuitive

understanding. The lectures are thus aimed at plain and simple .folk.

f .
Theorists and other sophisticates may, while wincing, also benefit,

but they are not the intended audience.

In strong interactions at high energies for the past year and
a half the scene has been dominated by the great extension of the
energy range for controlled experimentation made available by the
Intersecting 8torage Rings (ISR)‘at CERN, Geneva; Switzerland, and _
the prpion synchrotron ‘at the National kccelerator Laborgt§ry,‘Batavia,

Illinois (NAL). Prior to the start-up of these facilities the highest

.available energy was at Serpukhov in the U.S.S.R. where a 70 GeV proton

beam provided a c.m.s. energy W ~ 11.5 GeV in collisions with a .
stationary nucleon. Now we have available ¢ m.s._enefgies of
W = 20-60 GeV at the ISR in proton-proton collisions and W ~ 20-27

GeV at. NAL from 200-400 GeV protons or mesons on a stationary nucleon,

target. For the firsf time we have been able to.look in detail at

truly high energy phenomena. At these energics the symbol, >>, in

the statement W >> Dy almost takes on its rigorous mathematical

' meaning, not merely the physicist's interpretation of somewhat larger

than or at least slightly greater than'! Of céurée, many of the

phenomena observed at the ISR and NAL have been: known, in outline at

1
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leﬁst, for.many years from experiments with_coémic rayé, as the experts
in that field hasten to point out (e.g., Feinberg, 1972). Nevertheless,
the weélth of detail possible with_controlled experimental conditions
and intense beams of particles has meant that gross features seen in
cosmic rajs are now firmly established and finer detgils, energy
dependences, or rare processes are being explored for the first time.

| Since the time of Rutherford elastic scattering ﬁas occupied
an honorable position amoné phenomena designed to’elucidaté.the forceé
between partiéies aqd their struéture;. .Inelastic scattering, too,
has played its role in the study of structures and excitations since
the days of Franck and Hertz. 1In particlé physics both elastic and
inelasfic scattering have been pursued continuously over the years,
but with the availability of meson and baryon beams with energies of
several GeV‘and’the attendant production of particles emphasis shifted
to the detailed study éf the complete fihal state of three, four, or
more particles. Quasi-two-bédy processes with one or two resonances
in the final state were studied, deéay correlations and energy depend-
ences observed. A tremendous amount of information was ﬁnd still is
being accumulated on these so-called exclusive processes And-évsemi—
quantitative understanding and theoietical frémework was gained. " Some
aspects of this ére summarized in Chapter II. As higher
energies became available the.most probable occﬁrrenée in a hadroniec
collision was the production of many particles. Two-body or quasi-
two-body chgnnels were relatively improbable. Attempts were made to
study‘resonance formation among the final stafe ﬁarticles and to T
intérprgt the various invariant mass piots within some theoretical
framework~(e.g., n-point Veneziano amplitudes or Van Hove phase space -

plots). At energies like Serpukhov or hiéher, however, the average

- )

e

" number of produced particles is so-large that little can be learned

from exclusive experiments--the number of degrees of freedom is just

- too great. It is neceésary to fall back on simpler things--total cross

section measuréments, topological cross sections, single particle

. production spectra (with elastic and inelastic scattering of the

inéident particle as special cases), two-particie correlations and
perhaps ;lightly more complicated situations. We speak then‘9f
inclusive éxperiments or processes. The total cross section» Gab
the zero-particle inclusive process--a + b —»anythihg. The reaction

is

a+boc+ anything, where the type of particle (c), its momentum

and perhaps spin, is all that is observed, is called a single-particle
inclusive process, and so on. Over the past three or four years
inclusive procesées have become an industry at least as large as the
quasi-two-body industry once was. Counter experimentgrs haQe found their
beam surveys upgraded in theoretical respectdbi;ity and bubble cbamber
physicists have beeA able to get publishable results from fhe tremen-

dous number of previously useless unfitted events. At first glance it

might seem surprising that much of interest could come out of single-~

particle spectra, but we will see in Chapter IIT that

simplicity'allows application of ideas closely related to two-body

- phenomenology . .

The most impértani single feature of‘hadronic interactions to
be discovered with the extension of the available energy range is the
fising toﬁal cross sect{pn for proton-proton cdzlisions {again, this
was anticipated somewhat from cosmic ray evidence (Yodh, Pal, and
Trefil, l97§)].> This raises the question of bounds on total and

differential cross sections and other aspects. These topics are
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discussed in Chap. II after a review of the basic experimental facts and
the general thebretical.framework. The Froissart bound on total cross
sections, a different treatment of the ratio of real to imaginary part
of the forward scattering amplitude, discussion of the partial wave
(impact paraméter) distribution for p-p scattering, the MacDowell-
Martiﬁ bound and the connection between the energy dependence of ampli-
tudes and their J-plane structure completés this chapter. An introduction
to inclusive processes is given in Chap. III. Again the basic facts are
presented, followed by & discussion of £he main.theoretical ideas via the
Feynman-Wilson fluid analogy. The relation betwegn the fluid analogy and
the Mueller-Regge description is outlinéd briefly, as is the "two-

component"” model of prong cross sections. A series of appendices

summarize notation and some details that would burden and disfurb the
flow of argument in phe text proper. A majJor omission is the
discussion of processes involving large transverse momenta. - Reliable
data are Just beginning to emerge and there are some fascinating theor-
etical speculations,but could take a whole lecture series.in itself.

References are cited in the. text by authors and year of publi-

. cation and are.given in full in the bibliography, alphabetically by

firét author. Papeis from conference or "summér" school proceedings
are cited in tﬁe text in the same manner, but. are listed in the
bibliography by the conference lbcaﬁion. The full citations for the
conferences are given at the beginniné of the bibliography. 1In such-a
rapidly developing field as high-energy physics the best sources of
background information and leads to more detail are the conference
proceedings, summer school notes, and the review literature (Physics

Reports, Reviews of Modern Phy.ics). Two recent books are noteworthy--

-55.-

D. Horn and F. Zachariasen, Hadron Physics at Very High Energies, W. A.

Benjamin, Reading, Mass. (1973) and R. P. Feynman, Thoton-Hadron

Interactions, W. A. Benjamin, Reading, Mass. (;972).
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IT. TOTAL CROSS SECTIONS, ELASTIC SCATTERING,
AND TWO-BODY PROCESSES

1. Basic facts and Samples of data

The most recent reviews of total cross sections and elastic
scattering are those of Diddens (1972), Giacomelli (1972), and Amaldi
(1973), and on two-body and quasi-tworﬁody inelastic processes those by
Chiu (1972), Michael (1972), Phillips and Ringland (1972), Barloutaud
(1973), and Fox and Quigg (1973). I shall lean heavily on these and other
reviews both in the topics I discuss and for excuse on the topies I omit.

While the emphasis in this chapter is more.on total.cross
section; and elastic scattering at high-energies than on processes
with nontrivialAquantum number exchanges, it is expedient to summarize
the.gross empirical facts aﬁd mein theoretical concepts fbr all two-
body processes: |

"(1) There exist SU(3) singlets and octets of mesons, and
singlets, octets, and decimets of baryons, of a variety-of different
spins and parities. Some of these mesons and baryons are stable;
apart from electromagnetic or weak decays. 'others appear as resonant
states in scattering or production experiments.

(ii) The guantum numbers of the observed meson and baryoh
multiplets can be generated by the mnemonic of the quark model, with
(EQ)"for the mesons and (qqq) for the baryons. (This particular
empirical fact will need modification as soon as any "exotic"
_resonance is firmly established.)

(iii) Two-body and quasi-two-body processes are peripheral,
showing peaking at forward directions (small t) and/or backward

directions (small u).
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(iv) -Integrated cross segtions, or differential cross sections
at fixed momeﬁtum transfer, show approximate foﬁér-lﬁw behavior in the
energy, _In particular, total cross sections seem to become constant
asymﬁtotically and obey Pomeranchuk's theorem.

' (v) Virtually all occurrences or nonoccurrénceg of peripher-
ality in a given process (iii) can be understoqd in perms of the
exchanges of the internal quantum numbérs'of the known SU(3) multi-
plets.of mesons and baryons (i). |

(vi) A modest amount of analyticity in the kinematic invariants,
plus crossing symmetry, relates the phase of an amplitude at high
energies to its power-law behavior (iv). This connection is.the same
aé, but more general than, that given by Regge pole theofy.

(vii) The known mesonic and baryonic states (i) can plausibly be
placed on Regge trajectories, and the trajectories are approximately
linear in the square of the masses. This gives great impetus to the
use of Regge exchanges to unify items (iv); (v), and (vi) into an
aesthetically pleasing whole." -

The above seven points were wriften down four years Ago (Jéckson, 1970)
and are subject to some slight modification. On item (ii) -there is
increasing"evidencé, thouéh not yet overwhelming, of the existence of
exotic baryonic resonances (SeebLovelace, 1972). 1In point (iv) the
statement that "total cross sections seem to become constant
asymptofically" should be‘omitted. Total cross sections may become
constant asymptotically or they may not. As we shall discuss
subsequently in detail, at the highest available energies total cross
sections.shdw energy dependence. If ‘they become constant ultimately,

it occurs at very much higher energies.

-8-

(a) Total cross sections

The high-energy behaviors of total cross sections of P, D,
n, n+, K, and K" on protons are shown in Fig. 1(a), taken from
ﬁenisov et al. (1971). With the exception of the K+p total cross
section, which shows a vefy slight rise, all the cross seétions fall
smoothly from 5 to 60 GeV/c incident momentum. The total cross
section differences, AU = ct(Ep) - Ut(xp) with x = p, x+, K+, >are
displayed in Fig. 1(b) on a log-log plot. The differences can be
fitted by a power-law form A0, = Ai/PZib, with n = 0.64  0.02,
0.54 + 0.02, and 0.32 £ 0.02 for (9,p), (K,K'), and (x ,x")
differehces, respectively (Table 4 of Giacomelli, 1972). This power-
‘law behavior supports the first part of statement (iv) above, and
Fig. la the now discredited second part.

.The constancy of total cross éections_at highlenergies; so
nicely indicated in Fig. la, received a jolt with the commencement
of operation of the ISR at energies equivalent to 300 to 2000 GeV
incident in the labofatory. Right from the beginning there were

rumors of large cross sections (45 to 50 mb). Furthermore, an

analysis of cosmic ray data on the very high energy proton flux at an

 atmospheric depth of 550 gm/cm2 on Mt. Chacaltya in Bolivia, compared

with the flux at the top of the atmosphere, gave evidence that the

nucleon-nucleon total cross section increased with energy significantly

‘at laboratory energies above 500 GeV (Yodh, Pal, and Trefil, 1972).

Data from the.ISR were published early in 1973 (Amaldi et al., 1973§,b;
Amendolia et al., 1973; Bracciﬁi, 1973). These and other results on
the prpton-proton total cross seciion are displayed in Fig. 2. The
dashed curve is a lower bound deducea from analysis of the cosmic ray

data. The data show that the asymptotic constancy inferred from the
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left-hand side of Fig. 2 (and all of Fig la) is oniy a local minimum

at E ~ 100 GeV and that fhe cross section rises from this minimum : !

of 38.5 mb to 43* mb at the highest ISR energy of W ~ €0 GeV. o S
For incideqt particles other than protdns, data at énerg&e; ‘ N

higher than 70 GeV are almost nonexistent. While the next year will

bging'many resulté from NAL, at present theionly véry high-energy datum

o, = 24L.0 + 0.5 mb at 205 GeV incident energy for s~ on
< 1/ -

‘protons in the NAL 30"'hydrogen bubblé chamber (Huson, 1973). From

Fig..la it can be seen that this result throws no light on the question

T YT

of constancy versus rise of the g5 p ecross section.

(v) Differential cross sections for elastic scattering

YT

The well~-known peripheral natufe of elastic scattering at high

energies is illustrated for = p, K p, and pp scattering in Fig. 3.
. ) i
For small momentum transfers the cross sections are fitted roughly by

doldt { mb/(Gevic )’}

exp(Bt) where t = --q2 is the invariant momentum transfer variable

{see Appendix A) and ‘B ~ 7.8, 8.7, and 11.5 (GeV/c)-ez for Kp, 7P,

and 'Eb,’respectively. In naive geometrical terms these "slope"

) N - . ‘ . . . ) N ~ 2
parameters correspond to an extended scattering region with roct mean v o ‘ t (Gevic)

squﬁre impact'paramefer (bz)% = (éB)% = 'V6.0389[2B(éev/c)'2ifm
~ 0.78-0.95 fum. ‘ 7 '

_ That.fhére is some structurg within'thé forward peak and aiso ) ' , ’: » .
backward peaks of various sizes is indicated by the data shown in - o | - _’
Fig. 4. The K'p differential cross section snakesbback and forth B
around the smooth and featurélgss K+p cross section. In the very
forward direction (]tl % O.E(Gév/cja, not showﬁ 15 Fig. hﬁ) the K'p
cross section iz larger and falls off.more'yapidly than the .K+p

cross section. For 0.2 < |t] < 1.0 (GeV/c)2 the K p cross section

1s smaller than the _K+p, but at ]tl ~\l.0 it crosses over and lies

. . N

Fig. 3. Differential cross sections do/dt for elastic scattering of
P, Kp, and pp at 25 and 4O GeV/c incident momentum and

0 < Jti<o0.8 (GeV/c)2 (serpukhov data, Fig. 17 of Giaéomelli, 1972).
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above the Kfp. Only beyond |t] ~ 3.5 _does it fall below and stay
much below the K+§ eross section, each having a backward peak. The
hints of diffraction maxima and minima in the XK p cross section are
mofe than hints in the pp cross section shown in Fig. Ub. By

contrast, the pp differential cross section at the same momentuh is

extremely smooth, as can be seen in the compilation of Fig. 5. _Thé

‘evidence Sf Figs. 1, 4, and 5 indicates that in geometrical terms Pr

and X p interactions correspond to larger sbsorbing regions, with

more sharply defined edges, than pp and K+p interactions.

The differentiél cross section for proton-proton elastic
scattering at vgrious energies\is summarized in Fig. 5. Tﬁe energy
dependence is quite 'striking. The smooth behavior at "low" enérgies
gradually evolves into structure at [t] ~1-2 (GeV/c)2 at ISR
energies as the cross section "shrinks" (becomes compressed to
smaller and smaller |t| values). The shrinkage of the very small
|t| region is best described by the energy dependence of the "slope

parameter" B, defined by
a do ' _
B(S,t) = *dT zn['& (S,t)J . . : (l) .

To thegextent-that‘ B changes slowly with t +this is equivalent to

- writing the differential cross section as

.
i

-~



Fig. 5. Compilation of differential cross sections for p-p elastic
scattering at various energies.

indicated at the right-hand end of each curve (Fig. 15 of Giacomelli,

1972).
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The incident laboratory momentum is

.<16-

%% (s,t) = %% (s,0) exp[B(s,t)t] . Y,

Furthermore, when we speak of the slépe parameter B(s) we mean
B(s,0), or ﬁxore commonly, some sort of an average value obtained by
fitting do/dt with an exponential in |t| at small [t]. For p-p
scattering ‘the slope parameters . B(s,t) for two different small It[
ranges are shown as functions of energy. in F1g 6. TFrom 5 GeV/e to
2000 GeV/ ¢ - laboratory momentum B increases by about 50 percent.

At high energies simple Regge theory would predict

B(s,t) = Al(t) fn s + _A2(t)’ corresponding to a straight line on

Ia/

Fig. 6. bFor Prop > 10 Gev ¢ the data are consistent with ‘such a;
variation, but a.t>ISR energies it is possible that the shrinkage haé
stofped at least momentarily. More will be said on this question in
Section 5 below. At larger |t| values, too, data from the ISR
(the W =53 GeV results are shown in Fig. 5) are cpnéistent with
littl.e energy dependence from W = 30 to 53 GeV (Strolin, 1973).

(c) Power law behavior

Part of the lore of high-energy phenoménology is that
‘dif.ferentia.l cross sections a-t fixed t, or cross sections ihtegra.ted .
over the forward (or backward) peaks, show power law behavior in
energy and that the power depend.s on't'hev reaction mechanism (Morrison,
1970). Simple Regge theory predicts, for the ex.cha.nge of a single

i
Regge pole in the t-channel,

89 (s,6) = p(r) 22 (3)

where a(t) 1is the trajectory function of the pole.
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)

and- 0.15 <« |t] < 0.5 (GeV/c (solid points) (Fig. 1k of

Giacomelli, 1972).

18-

Figure 7 shows six examples of integrated cross sections for
inelastic processes with nontrivial guantum number exchange in the
t-channel (graphs from HERA reports, Bracci et al., 1972a,b). All
these proc\esses show a narrow forward beak in t; the integrated cross
sections should, according to (3), show a power law behavior with an
exponent corresponding to a value of a{t) at some small negative
value of t. The compilers have in each case fitted a power :_Law in
Plab( « s) to the higher energy data. The six rea.ct;‘.ons, the
anticipated t-channel exchanges; and the effective values of «

deduced from the exponents, are

Reaction Excha.ng‘es Effective «
«porln P 0.41 + 0.07
' - 08t b 0.48 + 0.09
<p - 7°n A, 0.24 + 0.09
K'p - En s A, 0.28 + 0.12
1P ->pon n, Ay 0.06 t 0.05
P -»p+p . T, W, A, 0.04 + .0.09 .

The first two reactions are classic p-exchange processes. The value

O ~ 0.4-0.5 is in excellent agreement with a linear Regge trajectory

o' :%— +t that passes through the p (J =1, mp2 = 0.58 1 0.10 GeV2)
and the g (J =3, mg2 = 2.82 t 0.27 GeVZ). The third and fourth

processes involve A2 or A2 and p exchange and seem to have a
smaller effective «. Part of this may be a resuit of  broader
differential cross $ections W-rlhiCh sample more negative t values and
so smaller a(t), but there is probably a residue that is evidence

for the breaking of exact exchange degeneracy (EXD) of the even and
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Fig. 7. Examples of the energy dependences of cross sections for

inelastic processes with the exchange of mesonic quantum numbers in the

t~channel. Tbe da;a above a few GeV/c incident momentum are fitted

. . n
with a power law, PLab‘ The exponents are given on each graph

(Bracci et al., 1972a,b).
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“odd 51gnatured Regge tra;ectorles See Chaﬁter III; The final pair
of reactions, p-meson production with ard without charge transfer iﬁ
the t-channel, show a much faster falloff with energy (o =x 0%). This
behavior is consistent with pion exchange as the dominant mechanism,
at least in the forward peak, and is éupported byrthe characteristic
population of the zero helicity stétg of the p-meson.

other examples of power law behavior are less easy to under-
stand but the general trends are consistent and satlsfylng from a
Regge exchange point of view. Barloutaud (1973) cites several more

examples, including hypercharge- (K*,K**) exchange reactioﬁé.

A final observation on power law behavior is that it has been
traditioﬁal to paremetrize the total cross sections shown in Fig. la
with the form, |

-n

a; +b; Py ' ; , (*)

with n, x1/2, consistent with the intercept a(0) ~ 0.5 of the high
lying Regge trajectories {p, w, P, A2) The range of exponents
assoclated with the Ad's of Fig. lb and more particularly the ris1ng
cross section shown in Fig. 2 show that {4) is at best a rough
pargmetrization~§ver a limited energy interval.

2. Crossing Symmetry, Signature, Power Law Behavior and

Phase,Pomeranchuk Theorems

. ol

In order to discuss the phenomenology of total and elastic

cross sections there are a few basic ideas that must be mentioned.
These follow from the substitution law of field theory and from d

modest amount of analyticity in the kinematic variables. .
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(a) Substitution law

Consider the process,
A+B - C+D - (5)

vwhere the 4-momenta of the particles are au, bu, cu,
For simplicity suppose that the particles are spinless. Then there

dh’ respectively.

is one invariant amplitudé QnQ(s,t,u) describing the scattering,
where according to Apﬁendix A.5 s,t, and u are the standard
kinematic variables, s = (a + b)2 being the square of the total
energy in the c.m.s., and t = (a - c)e, u=(b- c)2 being »
momentum transfer variables. Ffom field theory ig‘is known, and it
is generally accepted as having wider applicability, that the

amplitudes for other related processes can be obtained from ‘77?(s,t,u)

by substitution according to the substitution law. For example, if

we leave the L-momenta of B and D unchanged but substitute
- - - 2 - =2
a, -8 and ¢, = C then s -s' = (a - b) , t-t'=(a~c),

uou = (c + b)2, and
YN(s,t,u) - M = PUs',t' ')

with the amplitude irn;, which is just the old amplitude 5}71,
evaluated at a different point in the (s,t,u) space, describing the

process,

C+B - A+D , . (6)

where A and C are the antiparticies of A and C, respectively.
Process (5) is called the s-channel process, process {6) the u-channel

process, vecause s plays the role of the energy variable in (5)

P2

while u plays that role for (6). The substitution (ap -)-3#,

cu —»-Ep) is called crossing or line reversal, or more specifically

s-u crossing because of the interchange of the roles of s and u.

(b) Crossing symmetry, analyticity, and signature

The idea that a single amplitude ?7l(s,t,u) can, depending
on the range of the variables, describe several processes is a very

important concept. - With s-u crossing in mind, we note that the

con traintb s+t +u-= 2 + 2 +m 2 +m 2
s u=no By c d

*
positive s requires generally a negative value of u and vice versa.

indicates that for fixed t

Thus positive u can be equally interpreted as negative s and the

s-u crossing can be viewed as a transformation from the positive s

region to the negative s region. It is useful to introdﬁce a new

variable,
1 :
I (s - w) _ (7)

which together with t can be used as kinematic variables.

For elastic scattering in the forward direction (t = 0)
v has‘the simple interpretation of the total laboratory energy of
A (or the negative of the lab energy of c).

The invariant amplitude ‘972(v,t) satisfies a dispersion

relation in v at fixed t. The dispersion relation follows from the »

* o
This can be seen most easily at high energies where masses can be

neglected. Then the constraint is s +t +u~ O and (A.16) and

(A.18) show that for large positive s, the range of t 'is
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analyticity of 6»?(v,t)_ in the cut v él&ne, as shoﬁn schematicaixy
.in Fig. 8. The cut structure along the positive and neg;tive real
.axesvétemsbfrom:unitarity ip a faﬁiligr way,‘thé s-channel thresholds
openiné“up on fhe right and fhg u-channelion the left.’ The physical
amplitude for the s-channel process A +B —->C + D is obtained by
létting\ v approach the positive real axis from above, indicéted by

v + ie. For'thg u-channel process 6‘+ B—A +D the phy;;cal region
is just below the cut fof‘ v negative.

The physical amplitudés.for the s- and ﬁ-channel processes can

-be written S | \

‘ QQQ(V + ie,f)

AN

\ s

oM (v,t)

o (8)

M 1) = Mev - te,t)

"It is useful tb consider instead of 9478 and 90?; ‘amplitudes that

éreleven and odd in vy. We thus define for complex as well as real

2

v the even and odd amplitudes:

M ,0) = TP 1) 2 D8] o

’

(Sometimes these™are called crossing-even or crossing-odd amplitudes.)

These amplitudes satisfy dispersion relations of the form,

@

MO0« 2w a0 [ iy b

v vy’ .
0

C (10)

In (10) the pole terms are implicit in the integral and the necessity

of subtractions has been ignored.

-2k

my L

3 - PHYSICAL
' . A+B=C+D

Fig. 8. The complex vy plane showing schematically the brﬁnch cut

~and pole strucfure of the scattering amplitude. For A +B =C +D

the physical region is just above the right-hand cut, for

~
-

+ B.oA +D it is juct below the left-hand cut..

-
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The distinction between crossing-even and crossing-odd

amplitudes has physical_meaning when the amplitudés are considered in

the t-channel (AC —»ED). Here t is the energy variable and s and

u are momentum transfer variables related to the scattering angie Qt’

From Eq. (A.20) we See that for elastic scattering at least (éctually

m o=m, Or m =m is sufficient)

P, P _ , '
t Py o - (11)

Since Py and p% are just functions of t, v 1is equivalent in
‘the t-channél to cos Ot. Now in discussing the dynamics of Regge -
exéhanées>in the t-channel one first consi&ers a partial wave
expahsion. Then because of the possibility of Majorana éxchange
forces (see Blétt and Weisskopf, 1%2, p; 156, for this ancienf
terminology)'gne considers sepérately the forces occurring in the even
partial waves and the odd partial waves. The Regge‘pqles that arise
from these two setg of forces are different in general.

The poles coming from the even (odd)
partial waves and having physical partic%gs with even (0dd) J values
are-called even (odd) signature Réége poles.

Becausé of the connection'(ll) between v and cos Q£ it is
evident that for t-channel exchanges even-signatufe Regge poles
contribute only to crossing-evén amplifﬁdes and odd-signature to
crossing;odd amplitudes. Examples of eVen-signaturé‘Regge Frajectories
are the P! = f with the £ me;on (f‘sz, g - 2+, m2 = 1.60 GeVZ)

as an observed physical state, the A meson (I = 1,

L 2]
L 2+, n - 1.72) and the K

with the -A

2 2

* % : l
with the K -meson (I = 5

-26- S

JP = 2+, m2 = 2.02). Some odd-signature Regge trajectories are the

p  with the p-meson (I =1,. JP =1, m2 = 0.58) and the g-meson

(1=1, F =3, u - 2.82) as physical states, the  with the

w-meson (I

7 _ »
0, gt = 1, n° = 0.61); and the K with the “K " -meson

(1 = % , JP =1, ‘h2 = 0.79) as particles.

Kc) Power law behavior and associated phase, Pomeranchuk theorems

The evidence presented in Fig. 7 shows that high-energy

reaction amplitiudes exhibit power law behavior in the energy, at least

- approximately. Such behavior has important.consequences for the phase

of the amplitudes; lThe bperati?é theorem of complex variables [for we
do'need to assume analyticiﬁy of the type displayed in Fig. 8 or Eq.

(10)] is the Phragmén-Lindelof theorem (Titchmarsh, 1950, p. 183; Eden,
l§67, p- 194). The application of the theorem is straightforward.

We pnly state the results relevant for our purposes.
Let us assume the following properties for 97?(v,t) at fixed
(1) 277(v,t) is analytic in the upper half v plane,

(ii) fn7(;,t) does not increase exponentially for |y| — o,
(111) P(v,t) - c(t) W )P as | Lo along the
positive real axis, where a(t) and B{t) are real functions of t,

(1) I (,8) >3 O En-0)P®) e v oo alon
the negative real axis. | - -
Note that «(t) and B(t) are the same in both limits, but c(t)
and c¢(t) are in principle different complex functions of t}

Application of the Phragmén-Lindeldf theorem establishes that



'Suppose that 972(v,t) is crossing-even.
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o(t) ) HOM e"i"o‘(t)‘ R (12)

Then S(t) = o(t) = () (t)

and (12) yields

tlc(t)le-'ina“)(t)/z -

: c(+)(t) Y(+)(t) i - cot 5§£;313%2>

. : | L o | (3)
vhere Y(+)(£) is real. If 97M(v,t) is odd under crossing,

3() = -e(t) = -e{(t) ana (12) gives
OIS O

(1)

., —

‘and r{7)(t) is real. The phases given by (13) and (14) are the same’

as thosé that occur for even and odd signature Regge poles. The Regge

aﬁplitudes are of the form,

(-cos 9;) + ﬁz(t) g (cos Ot)

P
(0 o o)

sin x a\P(x) :

Using (11) and a%suming that v 1is large we find

- (2)
AU IS o
sin g d(})(t) ‘
P . (15)
| i - cot x a(+)(t)/2 !

)«

a(i)(t)

i+ tan ¢ a(')(t)/e

r(f)(t) 1+ tan _i_l"“_(;) t) o

) . ’ -28-

¢ - N

The results (13) and (14) are more general, however,since they follow
even if there is a (4n Q)B(t) variation of the amplifude times the

power law behavior.

‘ _ﬂrheirésult (12) allows some oﬁhgr conclusions: .
(1) Equality of elastic differential cross sections for

particle and antiparticle séattering;

lim [%-(KB —»KB)/S—:(AB —aAB)] C = _1‘. (26)
v e L .

v

-

(ii) Pomeranchuk theorem of edu&lity of particle.and anti-

particle total cross sections:

1m [o,(AB)/0 (aB)] = 1,
V= o ‘ _

v
| /

. ] ' } ) }’-
provided «(0) = 1. Pomeranchuk's original proof, based onjy on

dispersio9 relations like_(lo), assumed bot — constant and required

the weak condition, Re 797(v,0)/1m aol(v,o)'ln v = 0. The present

pfoof permits logarithmic variation of o_, but has the stricter

t’
assumption Re €n7(v,o)/1m th(V,O) - constant (perhaps zero).

Needless to say, with the results of Fig. 2 known, there are more

general proofs (e.g., Grunberg and Truong, 1973).
) .

has been put on a firm and general focting for 2-body inelastic as

Similarly, Eq. (16)

well as elastic scattering by Cornille and Martin (1972).

The extent of the tesfing of (16) and (17) can be judged by -
inspection of Fig. 1 and 2 for total cross sections and Fig. 9 for the
differential cross sections whére the slope pa?ameter definedin Eq. (1)

. + - + - — .
is shown for =« p, » p, K p, K P, pp, and pp elastic scattering.

-,
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iCetainly'the trends of the data in these figures suppoft fhe

asymptotic validity of (16) and (17), but as the data.of Fié. 2 show

.

(LY ' )
ot ¢ Ret 3-4-5-6
3, il  Ret 3
£}

3 v CERN-IMEP (1972)
F-]
i L L s 1 5 i

+ Kp *“blu; L s
S S 2
: R
32 st . )

° , R .
o 4l Ko M7
7
i A’AALL A VU W i i e
R s PP
-~ n} '
E A e #
"z b o (1SR, Ret 7)

n_ e_’_ .

Rl

5. :

i L

'Fig..g. .sldpe parameteré for n*, Ki, and pi elaétic scattering
CTross secfiqqé oh hydrogen as a function of s, obtained from a fit
of do/dt to an exponential in t over the range 0.1 < [t| < 0.b

(C-eV/c)2 (Figure 18 of Giacomelli, 1972).
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esymptopia may be far away. Experiments with meson and antiproton
beams at NAL are eagerly awaited.

3, Proissart bound

On the basis of the analyticity in s and t contained in
the Mandelstam representation Froissart (1961) proved that the total

cross section is bounded from above according to

o, < C(4n s)z. - (18)

as s —o. The right-hand side of (18) is called the Froissart bound.
Its derivation has been generalized, simplified, made more rigorous,
'mAde plausible by many (not the same!) authors (e.g., Martin, 1963,
1966; Eden, 1967; Eden, 1971; Roy, 1972; Horn and Zachariasen, 1973).
We will ‘therefore not discuss the careful proofs, but confine our -
aitention‘to;the physical intuitive aspects.

| Suppoée that.the intera¢tion between two spinless parfiéles
is mediated by the exchange.of a particle of spin J and mass u
in‘theat—channel. Then the iowest ordér emplitude will be real and

‘ »
at high energies of the form,

2 sJ

Fpls,t) - & = - : | (29)

,

In the t-channel the single partial wave £ = J gives rise to a

numerator propertional to barrier penetration factors (ptpé)J times

PJ(cos Qt). At high energies in the s-channel, (11) leads to the

-

stated form.
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If we use the eikonal epproximation (discussed in Appendix C) as an

approximation to the full scattering amplitude, we obtain via Eg. (C.1k)

an eikonal phase,

- _ 2 J-1 '
aeikqnal(s,b) = g° s 'Ko(p.b) - (20)

The behavior of‘ % as a function of b is indicated'in the top part

of Fig. 10. Asymptoticallyvthe modified Bessel function falls off as
1 : ¥ '

exp(-pb)/(ub)2. Hence the phase shift is small compared to unity"

provided

2~ J-1
) .

b >> ubc ‘= zn(g s (1)

The Square of the partial wave scatteriné amplitude is sketched in
the bottom part of Fig. 10. It is sma;l compared with unity for
pﬁ >> b, rises to unity for ub < ubc and with the example of a real
phase shift (20) oscillates between zero and unitj for smeller values
‘of ub. The integral (B 25) defining the elastic cross section (equal
to the total here) can be estimated to be
b
o, = o a br) a®®) x 2 - 2% . (22)
el T "t = oo 2 T T - :
: o} "4

With the crltlcal impact parameter given by (21) we obtain at high

energies the estimate,

| 2,0 12, 2 . :
AN —%(J - 1)%(én s)° . , ’ (23)
" . .

Note that (23) only has meaning for J > 1. For J =1 ‘the phase

(20) is independent of s. ' This would lead to a constant cross

-30-

e
|
'
I
|
'
|
)

o | / /“1"? T~

Fig. 10. . Phase .shift 5(s,b) as e function of impact parameter (tog
and absolute square ]a(s,b)!~ of the partial wave amplitude a5 .8

function of impact.parameter (bottom).:
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section. for' J'< 1, ub, decreases with increasing s; the phésg
is small at all impact paramters and fhe Cross §ections fall with s.

While the absve examplé is éomewhat unrealistic it does show how
unitqrization via the eikonal partial wave fepresentation imposes the
Froissart boﬁnd on the fuil amplitude evenvthOugh the lowest order
approximation'(the t-channel exchange of something) hgy increase.as
a high power of s and violate the Froissart bound i£self. This is,
of course, related very intimately to froissart's original proof.

A more realistic example would have had the phase shift
becoming complex for b < b,. Then the pérti;l wave émplifude (3.26)
woﬁld raﬁidly appfoach i/2 for b < b, Using (B.25) for % and

" the above method of estimation we would still arrive aﬁ»(22) for the
total cross section, but would find o, ~ ct/z./ ] .

The exchange of a Regée pole as the loﬁest order amplitude

affords an instrﬁctive example of a complex phase shift and some.

subtleties. in impact parameter space. For definiteness,consider the -

exchange of an evén-signaiure Regge pole with amplitude,

Fy(s,t) = -p e’ ,e-iga(t) <)

where B‘ end Y -are real, B > 0, and the exponential residue is
chosen for convenience. With a linear Regge trajectory,

a{t) = a(0) + a’'(0)t, this can be written

Fpls,t) = -5(_is)a(0) eB(s)t/2\
| where ' '$ »' . )

% B(s) = ¥ +a'(0) in(-is)

-3ha

From (C.16) we deduce that the eikonal phase shift is

~

= i ﬁ;iE)gSSl:i.e'bz/EB(s)' . (25)

) s(s,b) =
eikonal B(s)

At high energies B(s) is predominantly real with a small negative
imaginary part. Thus the phﬁsé of B 1is determined almost entirely
by the factor,. 12 exp[-i % a(0)]. For 0 < a(0) <2, this factor |
hes a positive.imaginary.partf For fixed impact parameter the power

law increase in the magnitude of & implies that for 1 <a0) <2

~

the phasg shift will develop a large positive imaginary part and

21 .
e“*® 0 rapidly as s —»=. Another way to look at it is that

248 . ,
e 18 ~ 0 for all values of b less than a critical value bc that

- grows with energy. From (B.25) or (B.27) the total cross section will

be given roughly by (22). All that remains is to estimate b,.

To estimate b  from (25) we rewrite it as

‘ . v o, :
8 skonar (578) = 'Ta%?)’ exp[ @(0) - 1) n(-1s) - b%/2B(s)]. (26)
Evidently whatever the value qfi_s, the imaginary part'of 5 will be
very large until the second term in the exponent overcomes the first.

> .

This defines the critical impact parameter, o -

bc'2 = 2B(s)[a(0) - 1)¢n s : (27)

The intercept . a(0) 1is expected to'be smaller than 2 on the basis
of a theorem by Jin and Martin (1964) concerning the number of

subtractions necessary in fixed-t dispersion relations.
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Note that if B(s) were in fact independent of - s, as occurs if the

. Regge trajectory has zero slope, the total cross section would grow

only as £n s,Anot as (¢n s)2. This is jdst what we would expect

'with a phﬁée shift that was a Gaussian of fixed shape rather than an

1

exponential in impact paramter as was our elémentary particle exchange.

‘

Assuming a'(0) # O, however, we obtain at high enough energies the

estimate, . - T

v, ~ b ar(0)[a(0) - 11(sm 5)2 . K (28)

The Yukawa (exponential) force and the Regge (Gaussian) force thus
both give the same s-dependence. The Regge exchange does it in a
éneaky way, however, by having the mean square radiis of the Gaussian

growas 4n s, as.well as having its magnitude increase as a power of
s:/ _

As already implied by the earlier discussion, if>?h§ full
amplitude is described at high energies b}bé'singié Regge pdlé thgn
the Froissart bound is violated 1f a(0) > 1. since total cross
sections do not seem to decrease with energy it was natural within a
Regge pole framework to assume that £he leadinglRegge polé had
a(0) = 1. The poig, with the internalkquantum numbers of the vaéuum
(=0, I=0, Y=0, B=0,--+), is known as the Pomeranchuk pole
or pomeron. It occupies a unique position--it is the highest.lying
Regge trajectory; furthermore, it does not seem to havg any particles
associated with it andealso seems to have an abnormally small- slope
(cf. the shrinkage of the forward peak in /AU/dt for PP  scattéring,
Fig. 6). The last two points have inevitably raised doubts in many

minds as to whether diffraction scattering is properly described by &

. Regge Eglel We now tend to speak of a Pomeranchuk singularity,
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leaﬁing deliberately vague ' the type‘of singularity;in the angular
momentum plane. At some point, of course, the J-plane description
may become.so complicated as to be uneconomiéal and therefore
inappfopriate.

An alternative description of diffractive scattering is
advocated by Cheng and Wu on the bésis of a long study of massive
quantum glectrodynamics_at very higﬁ energies (see Cheng andvﬁu, 197O,I
and the references cited there). They show that the leading behavior
as s - o at small t \is giveﬁ by the "one-tower" diagrams shown in

- Fig. 11. We call the sum of leadiqg contributions of ail the one-tower

H M=

Fig. 11. One-tower diagrams in QED. These diagrams give the leading -

s dependence at high energies (Cheng and Wu,'l970).

\
’

diagrams a_single-tower exchange. The general form of this amplitude

s

3 S1+e

s £(t) | | - (29)

F(,t) ~
B (£n &) . -



-37-

vhere a -is réai}gnd positive (a = 1llx 02/32;'where a is the fine
structure constant) and n = 2 in spinor QED. In Regge lenguage this
amplitude corresponds-to the exchange of & fixed singularity (a cut)
in the J-plane with J > 1. Cheng and Wu postulate, with plausible
theoretical and physical arguments, that this singleJtOWer exchange
amélitude-is 8 Born approximation whose’two-dimensioAal Fourler
transform gives the eikonal phase. The real fuhqtion _f(t)‘ is such
tbat at large impact parameters &(s,b) a eH Lhere W < 2m, m,
Seing the mass of the "photon" (vectof meson). Apart from the
logarithmic factors in (29) the Cheng and Wu eik-ona.l phase shift :?.s
thus qualitgtivelf similar to the elementary particle exchénge (26)
with J =1 + €. In the bhenomenological fits (Cheng, Walker, and
Wu, 1973%a,b) the complicated and not totally explicit>phase shift 1s.

approximated by

\

. c ) : -.
8. (5,0 = %-fj —(E) exp{-;\,\/b2 + bojz ] . (30)

Len(-iE)]®

3

Here E 1is the lab energy of the incidenf particle, . ¢ and A are
fundamental parameters that are t?e same for all processes, while fj
and boj are different cogstants for np, XKp, and pp. scatteriné,

but the same for particle-pr9ton and antiparticle-proton scattering.
Since (30) represents only the diffractive scattering contribution,
f§t§-to total cross section data at energies of the order of 2-30jGeV/C
require an additional term, taken #o be Aj E-l/e, with Aj
different for all six processes. With 1k parameters an adequate fit

is obtained to all the total cross section daﬁa shown in Figs. 1 and 2,

obvicusly including the rising pp cross section at ISR energies.

With n = O in (30), the parameter c¢ = 0.083; with n =1, ¢ = 0.20.

‘growing radius, but the smallness of c¢ and the presence of the ™
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The fixed J-plane singulerity is only slighly above unity{ Thg

estimate analogous to (23) is

c e
A NS -

Ultimately this gives a (fn s)° behavior with o ,/%, = 1/2,

characteristic of a totally absorbing disc with a logarithmically

(4n s)n factor in the denominator makes asymptopia very far away.
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L. Ratio of Real to Imaginary Part of the Forward Scattering

- Amplitude

Variation in energy of the real part of the forward scattering

amplitude ﬁaé traditionally been associated with structure in the.
total cross section, the classical optical dispersibyiof the index of
refraction being the most familiar.example. . Experts in dispersion
reletions continue to polish the data andlthe equations in the‘reson;
ance regioﬁ.gnd extend them_té highef'and ‘higher energies. But in the
classical age (denoted, I supbose, by B.I.S.R.) when 30 or 70 GeV ﬁas.
‘cgnsidered high energy the intereét in real parts w?s nétbﬁidespread.
Above the reéonance~region (p

lab
imaginary parts,usually denoted in the literature by p(s) or a(s),

> 5 GeV/c) the ratios of real to

are small and appedr to decrease in magnitude smoothly with increasidg_

energy. The ratios tend to be nega€ive (only K p is positive; Dp
is.nearly zero), with the pp and K+p values 1a;gest in absolute
value, of order -0.3 or -0.l4 at 5 GeV/c. ;nq  =0.2 at 30 GeV/c.

The rising totalvcross section for proton-proton interactions
arouses interest in the_real'parts again. The mpnotonic decrease in -
magnitude of the ratio of real td imaginéry part is cast in déhht.
‘There is a féncy theorem (Khuri and_Kiaoshité,il965) that stétes that
if the total cross section continugs.to increase with‘enérgy then

. o E
eventually p(s) must become positive and stay positive; any approach

to zero must be from.above. .On the experimental side there are recent

ISR data (Amaldi et al., 1973a) giving slightly positive or zero
values, implyiﬁg 8 chahge of sign of p(s) for p-p scattering at

ISR energies or below.

. -4o-

We ‘discuss here a simple»"do-it=jourself"=way of understanding
and calculating p(s) . from data on the total cross section. fhe method
is not efficient (though applicable in principle) wﬁen cross sections
vary rapidly with energy, but works:admirably abo;e the resénance
region;>‘Like dispersion relations it is based on analyticity of for-
wardﬂ(or fixed t) amplitudes in energy. No integration is necessary,
héwever; only differentiation! First a small amount of elementary
compiex'variéble theory. Let f£(z) be analytic inside ;ome region of
the compléx z-plane. For points within that region, f(z + A) can be

represented by a Téylor series expansion of f£(z):

_ . _
£z +2) = £(z) +A7(z) + 2o £"(z) + .. .
, P .

Theiseries converges and represents f(z'f A) uniquely provi&ed the
point “z o+ x. lies inside the circlé of convergence'defined by the
distance from the point z to the_nearest singularity of f(z); This
Taylor'series can be represented compactly.by the forgal operator

statement,

2z 0 = em(hg) 1) - o (31)
That is all\the complex variable theory we will need.

Now consider the scattering amplitude F(v,t) for the.s-chénnel
précess, ab —aas, where v = (s - u)/hmb and t 1is the momentum
transfer variable. The u-channel process, &b — &b, is described‘ﬁy
the amplitude F(v,t). The domain of enalyticity in v. of F(v,t)
is shown schematiéa;ly in the top part of Fig. 12.> Fron thé substitu-

tion law we know that F¥(v,t) = F(-v,t), as indicated in Fig. 12 by
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the relationship of the points A and C. It is convenient to define

symmetiic and antisymmetric combihations of amplitudes,
1 .
F (v;t) = 3F(v,t) £ F(-v,1)] , (32)

F,_ is said to be even under crossing (v —-v), and F_ odd. The

s-channel process then has an amplitude,

: 3
FS(V)t) = F+(Vﬁt) + F_(V)t) ¥
while the u-channel amplitude is ] > . S (33)
F (v,t) = F (v,t) - F_(v,t)
/

We wish to compare ampl;tudes'at the points A and B‘;of Fig. 12. We

thus use the Schwarz reflection law for real analytic functions to

obtain

v .. .
Ft(velﬂ ) = F () . : N (34)
In Eq. (34) and subsequent equations I suppress the fixed argument t
for brevity.
Suppose now that we choose to use the variable & = £fn v
instead of v to describe the energy variation of our amplitudes. The

analytic structure in the & plane is sketched in the bottom part of

Fig. 12. ﬁé see that now the points A and B are related by a dis-

ce s ix X . . -
placement of ix~, i.e., v —.ve % is equivalent to & —E& + ix~. We
. te . N ‘

wish to use the Taylor series representation (31) po express the left-

N
hand side of (34), F, at the point B, in terms of the function and

its derivatives at A. Because of the branch cuts this cannot be done

instantly. We must use analytic continuation. First we express

x
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F+(§‘+ ix) as a Taylor series expansion around the point & + i %

(the center of the large circle in Fig. 12):

Fi(§+in) = eka%%) Ft<§+i%> .

Then we express F+(§ + 1 %) as a Taylor series expansion around the

point ¢ + i ﬁ (the center of the smaller circle in Fig.'12), and so

-

exp (i %E:> 7€) -

on. 'The result is

Al | o
+

F (€ + ix)

&=

+ ]2;3- + >] fi(g)

exp [i %

|

The final expression is just what we would have obtained by blind use
of the Taylor series (31) with X = ix. Our derivation lacks rigor
because, among other things, the sequence of successive Taylor series

expansioﬁs is infinite. Never mind; use the result in (3L) to obtain
d . »
e (in 3 ) R0 = ) (35)
_ Equation (35) can be put in a more symmetric form by operating on both
. .o d .
v sides with exp <;1 TaE )’
(36)

Writing out the real and imaginary parts of both sides we find for

- even amplitudes the relation,

InF, () = -tan (% §—§> Re F,(8) (37)

end for odd amplitudes,

b

Re F_(§) = tan(-g—g-g— In F_(&) . (38)

These two formal equations were notéd by John Bronzan in a talk at
Argonne National Laboratory in March, 1973. Their abplicétion to the
real world was impressed upon me by Gordon Kane. (They may be well
known to Andre Martiﬁ and others.)

‘Before using (37) and (38) for p-ﬁ scattering I make a few
obseivations. Firstly, for amplitudes having power-law behavior in vy
these relations.yield immediately the standard Regge phase of the ampli-
tude, a result usﬁally deduced from the Phragmén-Lindelof theorem (e.g.,
Eden, 1967, p. 194). The reader can check that amplitudes varying as
J’(zn v)B have the standard phase with corrections or order (£n v)-l,
as expected. The second observation is that if the functions on the
right-hand sidés of (37) and (38) are approximated by gigiﬁgipoly-

nomials in & the infinitely many differentiations implied by

w(y) - 2530 5
_ £

termiﬁate in a finite number. Thus the nonlocality inherent in the
eéuations'(ahd'equivalent to a dispersion relatian) is replaced in
practice by4a local or_semilocai connection. Note.that with a quad-
ratic approximation in £ only the first derivative contributes. Since
cross section data above the resonance region can invariably be approxi-
mated, at least locally, by a quadratic form in § or a power law in

v, Eqs. (37) and (38) yield simple connections between real and
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imaginary parts.* A corollary is that the behavior of p(¢) at any
energy is determined almost completely by the eﬂefgy variation of LA
in the immediate neighborhood. Nothing can be learned about asymptopia
from the magﬁitude or energy dependence of p(E) at finite energies.
For applications to scattering data it is convenient to intro-
duce amplitudes ' £ ~ that differ from the customary invariant ampli-

tudes by one power of v and are normalized so that

Ut = IMf . : (39)

¥For proton-proton and antiprofon-proton scattering we define

(} +0 sothat o =¢ -0 and ¢ =0, +0 . The
- g 539 + - - + -
N\, PP PP PP

corresponding amplitudes are denoted by fi(g). For the imaginary part

N =

01’.:

of the odd amplitude (actually even under crossing because of our
Qivision by v), we take the parametrization of Denisov et al. (1971):
6 = Imf_ = A[PI‘AB((}eV/r:)]-n

with a =28.4 +2.7mb and n = 0.61 % 0.03. Since Prap =V at

Serpukhov energies this power-law behavior yields

‘Re f (£) = cot (-’2119 d_(g; . - (%0)

-

=7

The use of the approximate relations Im F+ ~ - % Ty
Re F_ =~ % gE Im F_ resulting from keeping only the first term in the

Re F+ and

expansion of the tangent have been employed in the past, but not based
on (37) and (38) and not with a clear explanation of what approxima-

tion was involved, at least to my knowledge.
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*
For the amplitude f+(§) we use (38) to find’

Re £ (&) = tan(% %E>°+(§) . (1)

With a quadratic form for S

12

o, (¢) a +bE + ct> ,
we have ‘ ‘ (42)

Re f+(§)

]
noja

F o8 = Florae)) .

Then we have the ratio of real to imaginary parts for proton-proton
scattering given by
g (b + 2¢ct) - cot(-’%} o_(&)

(&) = : (43)
o 5.(€) - o_(8) |

The corresponding quantity for antiproton-proton scattering is

Z (b +2ct + cot 2 Y, (&)
o (6) - 2 o (2)-®) (1)
PP . o (&) +o_(€) :

There is a subtlety here. The usual amplitude F+(§) satisfies
(37). 1t ié obvious that an additive real constant to F+ will not
affect/the imaginary part calculated from (57). Correspondingly, the
real part computed from (41) is uncertein by a term (c/v). The
ambiguity is equivalent to an unknown subtraction constant in a disper-
sion relation or in a parametrized form satisfying analyticity and
crossing requirements (Bourre;y and Fischer, 1973). Such a contribu-
tion ;anishes exponentially (ih £). Since we are concerned only with

the high energy tehavior we shall omit it.
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The same general forms for p(E) hold for n+p ;nd n-p and
K'p and Kp scattering as for pp and Pp. The behavior of the
various p(gj in the range from 5 to 70 GeV/c cﬁn now be understood.
The "even" gmplitude f+(§) is decreasing from the resonance regiorn

towards higher energies. The real part computed from (41) is therefore

negative. For pp (and n+p and K+p) the two terms in the numerator

in (43) are both negative, giving a negative p(t) of appreciable

magnitude. For pp (and xp and K p) on the other hand, the terms

in the numerator tend to cancel, yielding a less negative (and perhaps

even positive) value for p(t).

Exerciée: Take the available q;ta on n+p and n'p total cross
sections (from the various HERA and Particle Data Group complicatiéns)
and determine p(E) for each channel from 5 GeV/c to 200 GeV/c by |
the methods of this section. Compare the results with available data

(Allaby, in Kiev 1970; Foley et al., 1969).

The results of a calculation using (42) and (43), with the
Denisov parametrization for o_(&), are shown in Figs. 13 and 1k, Two
quadratic forms in & for o+(§) were fitted tﬁ a smoothed cpﬁ(g)
plus’_a_(g). The ratio p(¢) was then cglculated using (43). The
solid and dashed'cufves_in Figs. 13 and 1k represent ghe two parametri-
zations. The available data for p{(&) above 10 GeV/c are shown in

Fig. 14. The agreement between the curves and the data is quite satis-

factory, showing the efficacy of our method. The whole calculation was

an afternoon's work with an HP®-35. The curves also agree in general
trend with a recent dispersion relatibn calculation (Kroll, 1973) and

the use of a parametrized analytic- form (Bourrely and Fischer, 1973).
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Shortly there should be results from the US-Soviet colleboration using
a gas Jet target at NAL. This experiment will span the gap between
Serpukhov and the ISR. It should locate the cross-over point precisely
(near 210 GeV, I hope!l). 3
. ‘Since (37) and (38) are unfamiliar it is perhaps worthwhile to
show explicitly the connection with dispersion relatiéns. The odd amp-

litude F_(v), for ‘example, satisfies a dispersion relation of the form

of (10):

Im F_(v')
Re F_(v) = — VP A ey .
0 v -V

If the variables are changed, with v = o lg,. v' = Yo e§+n, this
becomes ' '

® Im F_(¢ + n)dn

Re F (£) = =P

2

sinh 71

Unless Im F_ grows exponentially in .7, as eklnI with A > 1, the
integral converges very rapidly awsy from 17 = O. Excluding this cir-

cumstance, a Taylor series expansion of Im F_(g + 1) around N =0

_glves

. d n
2 1 d
Re F_(8) = = E an)(g) nt :inhnﬂ ’
n odd : 0

an expression that can be shown (exercise for the reader!) to be

equivalent to (38).
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XBL 737-1006

Fig. 13. Total cross section data for p-p scattering from Fig. 2
replotted to show two quadratic parametrizations in & = ¢n v. The

dotted curve is yet another smooth behavior at higher energies.
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Fig. 14. The ratioc p of real to'imaginary part of the forward
nonflip amplitude for p-p scattering calculated by differentiation
from the total cross section of Fig. 13. The solid, dashed and dotted

curves here correspond to the solid, dashed and dotted curves in

Fig. 13.
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5. Partial Wave Distribution for Protcn-Proton Scattering, MacDowell-

Martin Bound on B(s)

In the previous two sectionswe have focussed on the p-p

elastic amplitude at t = O. Now we consider the question of the shape

of the differential cross section. The discussion will be naive and

schematic, neglecting spin completely.

Thé ISR data at W ~ 53 GeV are shown in Fig. 5 as
the stérs w{th Eﬁab = 1480 GeV indicated. At this energy the c.m.s.
wave number is k = W/2 GeV = 5.07 W/2 T ~ 134 . A slope
parameter B ~ 10 GeV-2 (see Fig. 6) implies a mean square extent of
~ 0.9 fm. It can therefore be expected that of the order of 100 partial
waves will be sigﬁificant. The continuous impact_paramefer representa-

tion is quite appropriate.

(a) Partial wave distribution for pp scattering at ISR energies

The data of the ACGHT collaboration. (Strolin, 1973) are.
replotted on a somewhat compressed vertical scale in Fig. 15. The
data of this same group at very small lt[ values (Barbiellini et al.,
1972) are not shown, but for O.2(Gev/c)2 < |t} < O.5(GeV/c)2 they
are consistent with an exponential in t with slope parameter
B ~ 10-11 GeV™2. At 1t} < O.lﬁ(GeV/c)2 the data show & steeper
slope of order B ~ 12-13 GeV , but this detsil could not be seen
in Fig. 15.

The dashed straight lines show that the data at sméll [tl and
for 2 < ]t[ < h(GeV/c)2 can be represented by exponentials in |t|.
The dip et |t] ~ 1.5(Gev/c)2 implies an -interference between two

contributions to the amplitude. Since we know from Fig. 1k that at
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Fig. 15 Differential cross section for p-p elastic scattering at

c.m.s. energy W = 53 GeV. Preliminary data of the ACGHT collaboration

_(strolin, 1973). The dashed lines are proportional to exp(10t) and

exp(2t). The solid curve is the cross section given by a purely
imaginary nonflip amplitude whose partial wave profile is given by

the solid curve in the inset at upper right.
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t = O the real part of the nonspinflip amplitude is extremely small,
we make the simplifying assumption that the amplitude is purely

imaginary at all t values of interest. We are neglecting all other

helicity amplitudes. Thus we fit the cross section with the

expression,
. , . o
B t/2 - B t/2 .
do t 1 2
R = E}T (l + )\) e =X e (!"5)

The coéfficient Ut2/16ﬂ is the optical theorem value of do/dt at
t = 0. The solid cross section curve in Fig. 15 is (45) with
o, = ko mb, B, = 10 Gev'g, B, =2 GeV™?, and A =7 x1070. The
numbers were chosen fbr their simplicity, rather than in any #ttempt
to give a least squares fit. The integrated elastic cross section
with these parameters is 8.0 mb, in rough agreement with the value of
7.6 + 0.3 mb quoted by Amaldi et al. (1973b).

The partial wave (impact parameter)amplitude corresponding to
the scattering amplitude in (45) can be obtained by the methods of
Appendices B and C. The scattering amplitude F(s,t) is

f t/2 t/2
F(s,t) = is zﬁt {(1,4 )\).?Bl /2 . B / (6)

and its partial wave projection, according to (B.2L4) and (C.16), is

2 2
i [ -b“/2B -b“/2B
a(s,b) = _Bﬂ_tiﬁlB_I’\le -1-g_2e. 2l L)

This partial wave profile (divided by 1) is plotted as a function of
impact parameter in fm in the inset of Fig. 15. The solid curve is

the sum of the two terms in (%47), while the dashed curves are the

5l

separate contributions.  The most remarkable thing is that the distri-
bution need be only slightly flatter than a Gaussian in order to
introduce the dip-and secondary maximum. [A counter argument might be
that the secondary maximum is only ~ 10-6 times the forward cross
section and hence should be generated by a change of the order of only
.‘LO'5 times a Gaussian and so should be within the thickness of the
lines on the figure!] Similarly, the mentioned steeper slope of the
cross section at |t| < 0.15 (GeV/c)2 can be incorporated by a third
term in (45) or (47) that will cause the partial wave profile to
extend siightly farther out in the region beyond 1 fm. The calculation
of this is left as an exercise for the reader.*

The simple descriptionvcontained in Fig. 15 applies at one
energy. It is important to ask about energy dependence. It is clear
from Fig. 5 that from 20 GeV to 2000 GeV there is significant energy
variation in the cross section at fixed t. It is less cleaf over

the ISR range (500 to 2000 GeV lab equivalent). Any model based on

. the eikonal approximation (or something like it) and with a largely

" imaginary phase shift will have destructive interference between

successive terms, as in our simple description (U45), but different

It is amusing to note that the sharper peak at very small [tl can ¢
be generated by assuming a(s,b) 1s purely imaginary, using (B.5) to
solve for Im a = %(:~ -Y1 - ﬁ:), and assuming that the overlap )
function H is a Gaussian in b (Heckman and Henzi, 1972). There
is ﬁo a priori reason to favor at Gaussian for H, of course. See
Barger, Phillips, and Geer (1972) for an example of a peripheral
addition to the basic Gaussian for a(s,b) and de Groot and '
Miettinen (1973) for a more elaborate analysis with the overlap

function.



-55...

predictions about the energy dependences of the several .contributing
terms (Barger, Phillips, and Geer, 1973). 1In the Chou-Yané model* the
eikonal phase shift is energy independent and so is dc/dt. In the
Regge eikonal model of Frautschi and Margolis the eikonal phase from
the pomeron pole is (25) with «(0) = 1.  There is thus s-dependence
of tke phase through B(s) provided a'(0) # O. According to (C.16)
the 'Eﬁh power of the phase shift leads to a term in the scattering

amplitude proportional to gt

.exp[Bt/2n]. Thus the whole amplitude
shrinks logarithmically, but successive terms involve relative powers
of B-l and so cause an energy dependence in the EéEES of the differ-
ential cross section, even when plotted versus B(s)t. There are other
models, like the hybrid model of Chiu and Finkelstein, with features
intermediate between these two and still otﬁersy like that of Cheng
and Wu, with more drastic energy dependence at least asymptotlcally.
Careful measurements at NAL energies and at the ISR should aid

enormously in discriminating among models.

(b} MacDowell-Martin lower bound on the slope Egramefer B

While on the subject of partial wave distributions it is
worthwhile to consider the following question: Given fhé total cross
section_and the integrated elastic cross seétion, can anything be
said about the slope parameter B of -the forward aiffraction peak?

Intuitively we expect a correlation. The larger the absorptive

% v '

See Jackson (1970) for a description of this and the other models
and also the appropridte references. Zachariasen {1971) also
discusses the various models for diffraction scattering with emphasis

on the J-plane structure.
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diffracting object, the narrower ip angle its diffraction pattern.
This has already been remarked on in correlating the total cross
sections of Fig. 1 with the differential cross sections of-Figs. b
and 5 (see also Fig. 9). We are thus not surprised to learn. that tﬁe
answer to the question is yes (MacDowell and Martin, 196h). ‘Wé give a
slightly‘simplified derivation of the MacDowell-Martin bound using
the impact parameter description and aléo-aiscuss its limitations as
a tool for léarning about the partial wavé content of thé scattéring
amplitude. |

The bound is on the logarithmic derivative with respect to %

of the dbsorptive part of the forward scattering amplitude

(F =D + ia),

Als,t) =

| n

ab° Im a(s,b) Jo(qb) . . (48)
o .

The derivative of A(s,t) with respect to t = -q° evaluated at

t =0 is

[Q_Aé%z.’fl}t_o - 3 a° v° In a(s,b) . - (49)
- Tts 0 i '

The logarithmic derivative is thus

o
) ‘1 @° b° Im a(s,b) ]
| o B ‘
J = o0 B * ' ' (50)
' by a° In a(s,b) ; '
0 o

&g

r———
-
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Because of the optical theorem (B.25) thé_denominator in (50) is Just
the total cross section. |
The existence of a lower bound on (50) stems from the unitarity
requirement that Im a(s,b) > 0. In fact, the imaginary part of

a(s,b) is constrained to the range,
0 < Ima(s,b) < 1 . (s51)

We are thus invited to consider a variational problem subject to some
constraints. We define b2 - x, Im a(s,b) = £(x), and introduce.the

absorptive contribution to the elastic cross section,

2 2 .
Tep abs = Ly db°|Im a(s,b)| . (52)

Then we minimize (50) subject to the constraints,

Ut = )47( f(x)dx
0
g abs = | [f(x)]z ax g < (53)
0
0 < f(x) <1

This is a simple variational problem with Lagrange multipliers. The

result is that (50) is minimized if

£(x) - a( - "—9 (54)
R

58~
for x < R2 such that f(x) <1 and f(x) = 1. for smaller x. For
all hadronic scattering processes at high energies ceﬂ/ct < 0.5. From
(54) we have

a for 0 <a <1

Thus the range of interest is @ <1 and the partial wave distribution

(54) is linear in x or parabolic in b. For « <1, o = 2nR2a,
2.2 -1 2 2
Oy abs = RCG /3, and (A7 @A/dt), , = R°/12. The parameters R
and a_'can be eliminated to yield the bound,
2 2
g g
~1 dA : t t
AT 2 2 . (55)
<l dt:)téo 36n %4 abs 36r G ,

This is the MacDowell-Martin bound, apart frdm an insignificant and
totally justified simplification. '

With the knowledge that the for;ard amplitude is largely
imaginary at ﬁigh energies we can equate the logarithmic derivative of
the absorptive part to one half of the slope parameter defined by (l)f

In this regime the MacDowell-Martin bound reads

2
%

B(s,0) > Bro, - (56)

Equation (56) is & nice bound, very solidly grounded in

unitarity and nothing much else, but is it useful? Skeptics argue

~that no bound, even Froissart's, has ever had real practical use and

the less assumptions needed to prove it, the less likely it is to be

evén vaguely useful. Certainly some bounds fall into this category
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(see Roy, 1972, for the most recent and detailed compendium of all
kinds). On the other hand, a bound is a definite statement and should
at least be given a chance to prove itself. We test (56) against the
date on p-p elastic scattering. In Fig. 16 we show & compilaticn of

data on the ratio Oez/ot for p-p and g -p scattering. At

T
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Fig. 16. The ratios of elastic to total cross sections for p-p and

7 -p interactions versus laboratory momentum (from Jackson, 1973).

ISerpukhov energies and ab§Ve the p-p ratio is cez/ct ~ 0.175.
Teking this value end the total cross sections from Fig. 2.or Fig. 13,
we find ©,°/18x o_, ~ 10.1 to 11.3 (GeV/c)™® from the bottom to_ the
top of the ISR energy range. These lower bounds are to be compared
with ghe'experimental values of B(s,0) from 11.5 = 0.6 to

12.6 + 0!8 over the same range. The experimental results are only

slightly {10-15%) greater than the lower bound.
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The closeness of experiment to the bound can be put in
perspective by considering an example of an exponential fit for all t.
The differential cross section is then

52
‘% (s,t) = %; @ +0%) exp[B_.o(s)t] (57)

- where we have explicitly exhibited the value at t = O via the optical

theorem and the definition of . p. Integration of (57) over- t gives

the relation,

2 2
o, (1 +p7)

Beff(s) = - 15ﬂ 0e£ . ‘ (58)

Comparison of (58) with (56) shows that if p2 is negligible then
Bepr = (9/8)B; -

is fitted well by an exponential (or two exponentials of slightly

Since the differential cross section at small [t

different slopes) it is quite feasonable that the experimental slope
parameter is just slightly lafger than the theoretical lower bound.
In fact, to the extent that the cross section is exponential in ﬁ
éver thé renge contributing significantly to the integral anything

else is impossible.

At this point we are a little disappointed in the significance

of the MacDowell-Martin bound. The closeness of the experimental

slope to the bound is merely a consequence of an approximately Gaussian
shape in impact parameter of a(s,b); Of course, the fact that it is
roughly Gaussian and not rectangular or some other strange shape is
progress, isn't it? Yes, it iﬁ progress, but not because of the bound.
One might think, as did MacDoweil and Martin (apparently because of an

arithmetic slip), that comparison of experiment with their bound could
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distinguish between such grossly different partial wave distributions ) o 2

' 85 %% 2gay oM | T
as a Gaussian and a rectangle. Not so. From (50) it is apparent that at 16n "0 ) (60)

the slope parameter at t = O is determined by the average value of : X 2 >
) The ratio B(O)/Bmin depends on the ratio of R°/A. For R°/A = 7.0
X = b~. Requiring the first moment of a function to have a definite
we have B(O)/Bmin = 9/8. The purely imaginary partial wave distribu-
value constrains the function slightly, but still leaves almost
tion corresponding to (60) is

unlimited freedom. To drive home this point I have constructed three

~different partial wave distributions, all having the following proper- ..Ut 2 o
’ a(d) =i g I,(Rb/A) exp[-(b +R%)/2A] (61)

ties in common,

where Io(z) is a modified Bessel function of the first kind and order

o, = 38.9 mb
zero.
'Gez = 6.8mb "The three partial wave distributions are shown in Fig. 17
- -2 and the differential cross sections in Fig. 18. The distributions in
B(s,0) = 11.L Gev , :

N b are quite different in detail even though having the same ({x) and
an

the resulting cross sections are very different for |t| > 0.1, too!
B(s,0) _ 1.125

Bmin : The message is, I hope, cleai--nearness of the slope paramter B(0)

‘ to the lower bound (56) establishes little about the partial wave
The cross section and slope values are appropriate to 300 GeV labora- '
distribution. The shape of dd/dt at t % O can, of course, furnish
tory energy or W ~ 2k GeV at the ISR. The choice B/B . =9/8 is
Ty & / min / much information, as has been illustrated already in Fig. 15.
consistent with experiment and contains the Gaussian and rectangular o " :
. Lest I leave the impression of scorning bounds like the
partial wave distributions as examples. The cross section for a : ’
' MacDowell-Martin bound let me remark that (56) is useful in correlating _'
Gaussian is (57); for the rectangle it is
various asymptotic behaviors. If, for example, cez/ot -+ constant and

a0 Ute 2Jl(qR) 2 59) o - C(4n 5)2, (56) shows that the diffraction peak must exhibit rapid ., °
g _ — 59
dt 16| aR shrinkage with B ~ (4n s)° asymptotically. More on this in the next

. 2 . . section.
with B(0) = R°/h. The third partial wave distribution is a

"peripheral” one. The cross section is chosen to be of the form
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Fig. 18.» Differential scattering cross sections from the partial wave

distributions of Fig. 17. All three cross sections have the same
slope - at t = O and extrapolate to the samé optical theorem point.

For small |t| they fit the p-p elastic data at ~ 300 Ge\f

laboratory energy.
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6. Asymptotics and J-plane Structure

Although various remarks have already been made about energy
dependences of total and differential cross sections in both theory
and experiment we summarize here and also discuss briefly the J-plane
structure of some models. By J-plane structure we mean the singqlarity
structure of the t-channel partial wave amplitude analytically. continued
to complex angular momentum Jj. The dependence of an amplitude on s
for fixed t is related to the singularity structure in the J-plane
through the Watson-Sommerfeld transformations of the t-channel partial
wave series and the connection (11) between v and cos o, (see, for
example, Collins and Squires, 1968). At high energies it is possible
to replace the Froissart-Gribov formula for the analytically continued

t-channel partial wave amplitude by the simpler Mellin transform

formule,
i h
P(t,]) = as s7971 A(s,t)
1
with its inverse, ' S (62)
c+iw
AGs,t) = 5 a4y 53 F(t,9) |-
4 c=1c

In (62) c is any real number such that the vertical contour lies to
the right of all the singularities of F(t,J) and A(s,t) is the
s-channel absorptive part of the scattering amplitude (See Horn and
Zachariasen, 1973, Appendix D, for the derivation and such details

as signature.) To gain faith in (62), assume that F(t,j) has a pole

: t
at J = a(t). The second relation then yields A(s,t) sa( ), as
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expected for a Regge pole. A second order pole gives

A(s,t) « (4n s) sa(t) and so on. It is left as an exercise for the

reader to deduce the following examples:

L(t)j) A(S,t)
) (3 -t % .
(- a)-z -s¥ s

(3 - a)® 2n(j - @) (-1)" n! sa(Zn é)-n—l

(3 -a) =% s)r(-y) .

Here n 1is zero or a positive integer while v is not an integer.
The examples indicate some types of J-plane singularities and their
associated s dependences. We saw that the successive terms in the
Frautschi-Margolis (Regge eikonal) model had s-dependence
é?/(zn s)n-l, n=1,2,-++. The first term corresponds to a pole in
the J-plane, while higher terms evidently correspond to logarithmic
singularities with softer and softer discontinuities at the tip of the
branch cut. There are, of course, considerably more complicated
singularities possiblé in the J-plane. .

Two examples with increasing total cross sections.can be
mentioned. One is the self-consistent solution of a multiperipheral
model for diffractive scattering (Ball and Zachariasen, 1972). The

scattering amplitude is

2 Jl(éRo Zn(s/soi)
BRO s

F(S,t) = i
i T E,

(63)
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vhere q2 = -t. The:total cross section is 0 = hnBRoz zn(s/so)
so that the optical theorem point %% (s,0) is proportional to

(#n s)e. on the ofher hand, the diffraction pattern shrinks as

(2n 5)2 so that the integrated elastic scatteriné cross section is

constant in'energy. The J-plane structure is given by

BICTT) I -5 P R U Y ()}

' , {r?; - 1)? -,tRoe' - .
There are, for t < 0, complex conjugatebbranch points at
ac(t) =1 # iqRo. For t =0 these coalesce to give a second ordef
pole at j = 1, yielding g, oc £n s according to our examp;es
quoted above. In terms of s-channel parfial waves the ampliﬁude (63)
has a rectangular distribution in impact parameter out to
b oax = Ro zn(s/so), with a megnitude that decreases as (4n s)-l.
It corresponds classically to an absorbing disc with a logarithmically
growing radius, but with a decreasing opacity.

The other example is an amplitude appropriate to any model
that saturates the Froissart bound, e.g., the model of Cheng and Wu
(1970). At sufficiently high energy the scatteriné:amplitude is

o

R J,(qR. £n s)
F(s,t) = i —g— s(4n s)2 10

qRo‘zn s : (65)

The total cross section is 0 = 2nR02(ln s)2; oez/c£ = 1/2; the
shrinkage of the diffraction peak is as (Zn 5)2. From {62) we find

the J-plane projection to be

o]

R, ' :
R(t,3) = — [ - 1)° - w212, (66)
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with complex conjugate branch points ac(t) =1 + igR for t < 0.

0
The singularities become a third order pole at t = O and give
o, @ (£n s)e. The physical interpretation in the s-channel hes
already been discussed.

We summarize the asymptotic behavior of the various models in

the following table:

Asymptotic Energy Dependence of Various Models

s Model % %s/%  Berr 2
Pomeron pole Y -1 1
: a+bs 2 (4n s) in s (-)s2
+ secondary poles
Pomeron eikonal a - b(4n s)-l (2n s)"l in s (+)(4n s)-1
Ball~Zachariasen
(second order pole » “4in s (£n s).l (Zn’s)2 (+)(n s)°1
at t=0) /,
Saturation of
Froissart bound 2 : 2 -1
_ (£n s) 1/2 (¢n s)~ (+)(#n s)
{third order pole
at t = 0)
Chou-Yang

-constant constant constant (0)
(fixed pole at J = 1)

Comparison of the predictions of this table with the p-p data of
Fig. 2 (Ut), Fig. 16 (Ueg/dt){ Fig. 6 (Beff)’ and Fig. 1% (p) shows
several things. First of all, if one accepts the rising cross
sections of Fig. 2 the simple Regge pole model and the Chou-Yang
model are excluded. The other three models (and surely others) can

accommodate the energy dependence of O© Nothing can be said about

L
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saturation of the Froissa;t bounq unless we include the cosmic ray
evidence (Yodh, Pal, and Trefil, ;972). Figure 16 is on the face of
it peculiar. For both pp and nhp . interactions the ratio o'ez/ct
seems to becomg energy independentAat high energies andlbe quite small
(~ 0.175 for pp, ~ 0.135 for x~p). For aﬁy of the models in the
table, except Chou-Yang, we are asked to believe that this constancy
is a transitional effect vwhich will disappear at»still higher energies.
This is perhaps.plausible for Cheng and Wu (although 0.5 is a long
way off!), but less so for the Regge models. The third quantity, Beff’
displayed in Fig. 6 is also apparently in a transitional stage, at
least for any model that saturates the Froissart bound. A steady
growth with ‘#n s 1is consistent with the'Regge pole and Regge

eikonal models, although the inferred slope of the pomeron frajectory
v<§'(0) ~ O.j) is quite small. The evidence from Fig. 14 on p(s)
indicates that it is very far from its asymptétic behavior at ISR
energies and so cannot be sensibly compare& with the expectations of

the table. Its crossover to bésitive values does, of course, support
| some models.

There once was a time when theorists stated that‘asymptotic

behavior would occur at 5 or 10 GeV incident energy. From the evidence
available today one might venture to say 5 or 10 TeV, but even that

might be too low!
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III. INCLUSIVE PROCESSES

1. Preamble

As already mentioned in the Introduction, inclusive processes

of the type

a +b =-» c + anything

or

a+b - ¢ +d + anything

(and in principle more complicated processes) have become an important
aspect of high-energy experiment and theory. Partly this is by

default--very many particle states, often with several unseen neutrals,

are difficult if not impossible to study in complete detail. Partly,

however, it is by design. We have learned that in some senses
inclusive reactions are simple and amenable to theoretical analysis.
Though the basic concepts and ideas have been known for 10
years or more from the work of Amati, Stanghellini, and Fubini (1962),
Fubini (1965),rand from Wilson's Schlédming lectures {(1963), it is
only in the past four years that intensive theoretical and experimen-
tal work hag béen done. The renewed interest on the theoretical side
was proﬁpted mainly by work of Feynman (1969a,b) and of Yang and
collaborators (Benecke et al., 1969) with their ideas of scaling and
of 1imit;ng fragmentation. The reasons for the experimental interest
have already been discussed. By now hundreds of papers have been
published; numerous conferences have been held; summaries of theory
and of experiment exist in review'journals and conference proceedings.
Since these lectures are elementary and introductory I list a sampling

of the reviews and conference reports where the hungry and/or

dissatisfied reader can go for more or better information:

¥
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(a) Moétly experiment:
Wroblewski, 1970
VLander, 1971
Morrison, 1972
-and the'suﬁmary of contributed papers in Vol. 1 of the Proceedings
of the Chicago-Batavia Conference (1972).
(v) Théory and experiment:
Quigg, 1971
Van Hove; 1971
Fraéer et al., 1972
. Horn, 1972 '
J;cob, 1972

Mueller, 1972 .

For entire conferences devoted to multiparticle production processes,

. sée the proceedings of the Helsinki (1971) and the Zakopane (1972)
meetings. Other lecturers here wili»carry on the liét. In particular,
the content of Wilsoq's hitherto unpublished Cornell report (Wilson,

'1970) appears in these'procegdingsw

In this . chapter Qg discuss thg essential experirental facts and
the general theoretical frﬁmework fdf inclusive processes. Mo;t of the
treaimeht is without bias towards any éarticulér theoretical model,
although some concepts,le.g., finite range correlations in rapidity,
will be accepted as true without serious questioning. This facilitates
establishing all the essential ideas and can.be changed'in thg‘light‘
of contrary facts without undue harm. The notation and kinematics of
incluéive p¥oééssés are déscribed.in Appendix D; Defipitioné of
distributions, cqrrélation of funcfions, multiplicity moments, and

sum rules are given in Appendix E.

-

2. Basic Facts and Samples of Data

(a) Prong cross sections as functions of incident energy

As mentioned in the'Introduction, increasing energy brings_'
production of more and more particles, mostiy pions but with some
heavier particles as well. A measure of the particle production is

afforded by the values of the fopological or prong cross sections.

. These are the cross sections o - for a specific number n of charged

particles in the final state (whose ionization produces prongs or
tracks in a bubble chamber or emulsion), independent of how many

neutrals are produced. At a given incident energy the prong cross

sections are expected to be given by something like a Poisson distribu-

tion, with events having half as many or twice as many as the average

number of prongs being fairly frequent.* Figure 19 shows a typical

 set of prong cross sections (Charlton et al., 1972). They happen to

be from 205 GeV protons incident on the NAL 30" hydorgen bubble
chamber; the results from 50 and 69 GeY at Serpukhov (Ammosov et al.,
1972), 102 GeV at NAL (Chapman et al., 1972), and 303 GeV at NAL
(Dao et al.; 1972) are qualitatively similar. ‘lLater we gill discuss
the shape of the prong distributions in more detail, but now we turn
to the energy dependence.. |

The prong cross sections for pp interactions at various

energies are summarized in Fig. 20. The increasing numbers of

Completely independent emission of particles.would lead to a
Poisson distribution in the number of charged prongs. Crude imposi-
tion of charge consefvation by the assumption of pair production of
positively and negatively charged particles leads to a Poiséon disfri-

bution in the number of negative prongs (Wang, 1969).
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205 GeV pp interactions. The first and second moments are
(nch) = 7.65 % 0.17, <nch2) = T73.6 + 2.2 (from Charlton et al.,

1972).

particles produced as the energy increases is very evidgn£. Not so
dramatic but still evident is the peaking of & given cross section at
‘some energy and theﬁ its decrease. The 2-, 4-, 6-, and even the 8-
prong cross seétions are decreasing at the highest energies. Whether
these low prong number cross sections continue to decrease at higher
energies or reacg constant values is a point of considerable interest
for "two-component” models of particle production. More later on

this topic.
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For pions and K-meséns incident the data are not available at
as high energies, only up to 34 GeV for K band 50 GeV plus the one
set of data at 200 GeV (Huson, 1973) for pions, but the same trends -
and features are visible. Figures 21 and 22 show the presently existing
results (without the 200 GeV x~ data).

(b) Average number of chﬁrged particles versus energy

The average number of charged particles per inelastic collision

{n ch) is defined by

. N . ’

<nch) %inel = Z na, (67)

n

where én is the n-prong cross section ahd_the prime on the sum means
that the elastic scattering contributién (fo the 2-prong cross section
usually) is omitted. This quantity and higher moments defined
analogously are & useful way of characterizing the prong distribution.
It is obvious from Figs. 20-22 th;t (nch) is an increasing function
of energy. It is popular to plot the data on (nch) versus s in
the manner of Fig. 2 with a linear ordinate and a logarithmic abscissa.
The data then show a roughly linear rise, at least at high energies,

corresponding to

(nch) >~ ay+a ins (68)

with a, > -3,4 and a, ~ 1.94 for p-p interactions and similar

l .
values for x~p and X'p collisions. A logarithmic increase is
expected on the basis of elementary considerations (see Section 3

below), but for the sake of perversity Fig. 23 diéplays the data for

1 1
p-p interactions as a function of Q2 = (W - 2mp)2.
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Fig. 23. Average charged particle multiplicity per inelastic p-p

' A
collisions versus (W - 2mp)% - s% in ,(Gev)% (from Jackson, 1973).
The highest point is aﬁ estimate from cosmic rays.

. Nt 1 ’
At high energies Q2 -— s*. The data lie on a reasonable straight

line, <nch> ~ 1.85 Q2. This is an example of something known among
my friends as Jackson's theorem (see Fig. 18 of Jackson, 1970), the
point being that over a limited range a £n s variation can be
approximated by a power of s. Some models of multiparticlgﬂProduc-

1
tion, for example the hydrodynamic model of Landau, predict the s¥*

variation of multiplicity.
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(¢) Average multiplicity of different types of particles

as a function of_energyA A
Figure 23 shows that the Average number of charged particles
" per inelastic p-p collision is of the order of 10 to 13 at ISR
engrgies. We expect that these are predominantly pions, but it is
obyiously of interest fo.learn the composition in detail. For example,
are the proportions of K-mesons and/or antipfotons relative to~pions
constant in ‘energy, even though the total number of charged particles
increases? Or is éome (all?) of the increase above some energy
- accounted for by an increased production of K:t and D 7 A summary
of available daté is shown in Fig. 24. Several features are worthy
of note. At low energies the éharged maltiplicity is built up with
protons and to a lesser extent positive and then negative pions. Soon,
however, the pibns take over the bulk of the mgltiplicity and rise in
proportion to the ;otai. The average number of protons decreases
slightly,-from slightly less than 2 &t low energies to ~ 1.3 at
ISR energies. The K, K, and p average multiplicities are quite
small at low energies and have a steeper energy dependence than the
pions. Nevertheless, even at ISR energies (s ~ 10° - 3 x 10° Gevz),
their average numbers per collision aré_still-smallf
(n +) ~ 0.4-0.5, (m ) =~ 0.3-0.L, {n_) =~ 0.10-0.15.
K K P

There is some indication that the relative proportions of K . and K~

may be becoming s-independent at the highest energies, but the average

number of p is still growing relative to (nch>'
All of this makes most reasonable sense on the ﬁaive grounds

of energetics, with the more massive objects being produced with

1

10"

AVERAGE MULTIPLICITY OF CHARGED PARTICLES

s {Gev?)
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greater difficulty. One can ask, of course, whether the range of s
shown in Fig. 24 is plausible, or whether one might have expected a
more rapid rise from threshold and earlier development of an asymptotic
behavior. After all, at s ~ 3000 GeV it is energetically possiblé
to make 28 nucleon-antinucleon pairs! (or ~ 380 pions!). The
relatively expanded scale in Fig. 2k over which the multiplicities
rise can be -explained in part at least by the small inelasticity of
the collisions. The collision partners, perhaps with their charges
changed, carry off an appreciable fraction of the available energy.

This "leading particle” effect is exhibited in more detail in item (e)

below,

(d) Limited transverse momentum

One of the most striking features §f multiparticle reactions
at high energies is the limited extent of.the transverse momenta,
i.e., the magnitude of the component of momentum perpendicular t§ the
beam direction. On a Peyrou plot of p" vs Pl’ withvthe kinematic
boundary a circle with radius, p =~ w/é, events cluster along the
x~-axis. This behavior has been known for a long time in cosmic rays
(see,vfor example, Feinberg, 1972, and earlier references cited

'thefe). Two exémples from recent experiments.at acceleratérs are

given in Figs. 25 and 26. The data shown in Fig. 25 are inclusive

distributions in gi? for n, Ko, and A from K -p interactions

at 13 GeV/c (Barletta et al., 1973). The results in Fig. 26 are from
the ISR and show the inclusive invariant cross sections for u+, n,
K, K, p, and D at fixed pll (x = 0.16) versus gl-(Bertin

et al., 1972). Independently of whether one fits with an exponential

in p_L or ?i? one finds mean values of transverse momenta of the
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Fig. 25. Distributions in gl? for pions, neutral K-mesons and A

hyperons from K p interactions at 13 GeV/c (from Barletta et al.,

1973). (0 )pay = 64 (GeV/e).
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to the ISR data. The dashed lines show the trends of 24 GeV/c data

from CERN. (Figure from Bertin et al., 1972.)

order of (Pl? ~ 0.33 GeV/c for pions and (gl} ~ 0.4-0.5 Gev/c for

* ¥, There is very little variation in (pl) with bombarding

K or p.
energy from ~ 10 GeV to cosmic ray energies well above the ISR.

There is some variation of (pij with p" at a given energy. This

-ah-

can be understood in terms of the constraints imposed by the kinematic
9%
boundary.
The smallness of (gl) is another manifestation of a propertiy
of hadronic¢ interactions already seen in the collimated character of

tloa (GeV/c)z. Hadrons are

elastic scattering where {(-t) ~ B~
extended objects and their interactions are peripheral with the
exchange of "soft" guanta as thf dominant, mechanism. .Multiparticle
productién apparently proceeds in the same way. The multiperipheral
model (Amati, Stanghellini, and Fubini, 1962, and hundreds of subse-
gquent papers by others) is one explicit realization of this.

(e) Longitudinal behavior (in P X, or y) of inclusive

distributions

The other kinematic dimension to be considered is the longi-
tudinal momentum _p‘l or the eguivalent variables x of y [see
Appendix D,.Eqs.‘(D;&) and (D.8)]. While in the transverse direction
all types of particles tend to be limited iﬁ ?Jj in the beam direction
there are significant difference; depending on particle type and the
relétion to the incident collision partners. Figure 27 shows some
typicalrinclusive distributions in x for fixed gl = 0.8 GeV/c at
the ISR (Albrow et al., 1973). The data span the range of »
0.2 < x.< 1.0. This may appear to be nearly the whole range of x, but

the region O < x < 0.2 1is more important than it seems because of

There was for & time interest in something called the "seagull

effect", namely a dip in (gl? as a function of x at x =0. If

one evaluates ) from the invariant cross section dio/dydzpi- at

(e,
fixed y 1instead, then (gL) versus y shows a more or less monotonic
behavior away from y = 0. See, for example, Figs. 12 and 13 of

Bosetti et al. (1973).
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the phase space dx/x ([see (D.32)]. Rapidity phase space does .not

have any weighting factor; rapidity thus shows more clearly the fraction
of gvailable phase space covered. From (D.27) we deduce that at

P, = 0.8 GeV/c, x = 0.2 corresponds to Ay ~ 1.5, 1.6, and 1.9 for
n, K, and p respectively. Comparison with o2&y = Y/2 ~ 3.8 for the

range O < X < 1 shows that the particles in Fig. 27 come from regions
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of phase space close to, or at least not remote from, the incident

proton. They are all in the "fragmentation region" of Benecke et al.
(1969).

The shapes of the spectra in Fig. 27 are characteristic of
inclusive distributions at any energy. The protons are relatively flat
(on a logarithmic scale) and persist up to x = 1. In fact the eiastic
peak and its tail of diffractively produced resonances and continuum in

missing mass M2 are not visible because of a broadened resolution and

- elimination of elastic events. The region near x = 1 for the protons

is discussed in detail by Sens in these proceedings. The pion and
K-meson spectra are typical of particles different from the incident

ones. The distributions peak near x = O and fall more or less

exponentially in |$| away from that point, with negligible yields at

the kinematic boundary (x = 1). Corresponding features for e
interactions at 8 and 16 GeV/c, this time integrated over all gl?,

are shown in Fig. 28. The "leading particle" effect is visible in the

data on the left, n+p .»n+x. For negative x both distributions fall

rapidly as x —);l. This is expected because x -» -1 1is the proton
end of the scale. Thg inclusive proton spectra (not shown) peak at
X ~ -1 eand fall monotonically with increasing x, being -~0.1 lin
relative size at x ~ O and still smaller for ~ x > O.

- (£) . scaling

Feynman (1969a,b) gave a description of hadronic interactions

that leads to the conclusion that as s -+« the inclusive cross
section, expressed in terms of Ri? and x = 2p;/\/§, should be

independent of s. This is called Feynman scaling. At more or less

the same time Yang and collaborators (Benecke et al., 1969) from a

rather different point of view suggested the hypothesis of limiting
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Fig. 28. 1Invariant inclusive cross sections, integrated over p 2
+ +
for 5 p »x"X at 8 and 16 GeV/c versus x. Left-hand figure, x';

right-hand figure, s~ (from Bosetti et al., 1973).

fragmentation whereby at high enough energies the inclusive cross
section for the production of a particle c from a target (or pProjec~
tile) should be independenﬁ of the incident energy and type of the other
collision partner provided the momentum of ¢ is finite in the rest
frame of\$he target (or projectile). For x away from x = O, these
'two kinds of scalihg are equivalent, as will be shown below.
Tests of scaling or-the approach to scaling abound in the

literature (see the references cited.at the beginning of this chapter).
We refer only to Figs. 27 and 28 for an indication. The solid curves

in FPig. 27 are representations of 2k GeV/e (s = 47 GeVE) data from

" CERN while the points are ISR data &t s ~ 2000 GeV°. For the xt
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data scaling is satisfied to within 10-20% accuracy. For the protons
and K+ scaling over such a wide range in s does not occur. The K+
cross sections are rising from s ~ 50 to s 2060; while the proton
inclusive cross section falls slightly. Over the ISR range s>= 500
to s ~ 3000 GeV" the date on p+p- c +anything, c=x', 1, K,
K-, show scaling in the fragmentation region (|x| > 0.2) to an
aceuracy of 10-15% (see Prof. Sens's lectures for examples). Only
the p + p — P + anything fails to scale at ISR energies. This is

consistent with the behavior of (n_) shown in Fig. 2L.
p .
Figure 28 shows ﬂ+p ot s anything at 8 and 16 GeV/c

laboratory momentum. These energies are very low compared to the ISR
energies, but the approach to scaling is visible; Details of the

s dependence of the different regions of x need not concern us.
These energies are sufficiently low that kinematic effects (e.g., in
n+p —;n-' only events with four or more charged prongs can contribute)
can still have undue influence.

(g). Quantum number transfer

An interesting aspect of multiparticle production is the
extent of transfer éf additive quﬁﬁtum numbers such as charge, hyper-
charge, or baryon number from the region of phase space occupied by the
initial particleé to other regions in the final state. If we think of
the colliding hadrons as extended bodies of hadronic matter making
rather peripheral collisioné with & relatively small fraction of the
total energy going into particle production,.we might expect that the
"leading particles” would largeiy preserve their quantum numbers. In
the multiperipheral model this naive expectation occurs because of the

correlation between the size of possible rapidity gaps and the Regge
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infercepts of the links. Crudeiy speaking the higher the intercept the
larger the gap. Empirically {and dynamically in the models) the highest
trajectories carry the fewest nonvacuum quantum numbers. Thus baryon
number, for example, has difficulty migrating very far down the
rapidity axis in such models.

Let @ be cne of the additive quantum numbers such as charge.

Then we define the differential distribution in rapidity dQ/dy by

! as_ ¢
dQ ab 2
%inel &y = : e ;l’ 5— 4P (69)
- dy d'p, L

Figs. 29 and 30 sﬁow differential distributions in rapidity for
electfic charge. The daté of Fig. 29 are from n+p and x p inter-
actions at 16 GeV/c. These data show no narrow spikes at the extrem-
ities of the plot with zero or very‘small values between. Rather, there
is a grgdual change from one end to the other, with the negative charge
(belonging initially to the incident pion) being spread out somewhat
more than the proton's positive charge. This can be accounfed for by
the lighter mass of the pion and its greater mobility in rapidity.

The data of Fig. 30 are perhaps hore revealing. These are from p p
interactions at various energies and show the anticipated tendency as
the rapidity interval widens to have the charge cling to its initial
part of the rapidity phase space. While by no means localized
precisely, the charge does tend to stay within Sne or two units in
rapidity of the ends of the plot. This behavior is consistent with and
iends so@e support to the idea of a finite correlation length in

rapidity.

NET DISTRIBUTION of CHARGE , dQ/d€
n mtp REACTIONS

L ¥ T

L2 S

o _do (-
r*)-42 v}

do
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Cver A€

dQ
d¢ =

A i

§=-03

-

-366 -2 0 .2 . 366

~
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REDUCED RAPIDITY , §=——3*
A

Fig. 29. Differential distribution in rapidity of electric charge for

«'p and x'p interactions at 16 GeV/c (Date from the ABCCHW and

ABBCCHW collaborations; figure from Morrison, 1972).



-91-

[ (b)

€6 Gevre -

R

T

. 2 1 l"‘LL 1
- 0 V-2 3 4 -4
RAPIDITY y(TARGET)

 e)

o

[~
o

CHARGE /UNIT RAPIDITY
o

€ %

[=d
T

o A A A L 1
2 4 0 1 2 4 3 -2 4 0 1 2 3 @&
RAPIDITY y*{cm) RAPIDITY y* (cm)

Fig. 30. Differential distribution in rapidity of electric charge for
P'p interactions at P, = 6.6, 12, 24 GeV/c and W = S5k GeV

(p ~ from 1500 Gev/c) (from Sivers, 1973).

lab

3. Theoretical framework assuming & finite correlation length:

Feynman-Wilson "gas"

A very useful conceptual framework for inclusive processes is
the fluid analogy, often called the Feynman-Wilson gas. The idea is
that, since phase-space can be written dy dgql -and the kinematics

limits the possible range of y, while the dynamics effectively limits
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the range of Fﬁf the particles in a multiparticle production process

can be viewed as a fluid confined in a bottle in the y - iiL space.

‘As 8 =, the bottle becomes very long and the "motion" inside is

essentially one-dimensional. Figure 31 is a schematic diagram of the

envisioned situation. The normalized n-particle distributions defined

! : o l ! t
I LN Y] e .
t [

| e |
AN i | (
I S

Fig. 31. Feynman-Wilson gas picture. The "gas" of produced particles
is confined in phase space to the general region of the "bottle". The

length of the bottle is determined by the kinematics, while its radius‘

is governed by the dynamic limitation of El' The finite correlation
lengths at each end and in the center are indicated by La’ Ly and
L12'

by (E.5) are thought of in much the same way as the corresponding
densities in a real fluid. In particular, the essential working

hypothesis is thatvthe correlation lengﬁh in rapidity over which a

given particle can be influenced by another is finite. We see

immediately that a number of important results follow directly from
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this hypothesis. The idea ofia finite correlation length and its
consequences is contained in the work of Amati, Stanghellini, and
Fubini (1962) on the multiperipheral model and in the papers of Wilson
(1963, 1970). Wilson attributes the fluid analogy to Feynman.

(a) Limiting fragmentation and scaling at finite x

Consider the single particle inclusive density,

Pap. = Pgp (Vg = Yy Vo = Yo 7). ~(70)
In general it depends on the indicated three variables, the first being
equivalent to the c.m.s. energy W and the second and third to the
momentum D of particle ¢ in a frame related to the incident
particles. Suppose now that.particle ¢ is produced "in the vicinity"
of particle a, that is, the rapidity difference (yc - ya) is
finite as s(Y) - w. The assumption of a finite range of correlation
implies that at large enough energies particle c¢ cannot "know" what
type or 32323 particle b .is on the rapidity axis. In this circum-
stance the density (70) must. become independent of Y = Y, -~ ¥, 8nd

also of particle b:

¢ (o] - c -
%imw Dab = fa (yc - ya; P -L) = ga (x!p .L) . v
YoV f}xed (11)

The first form in (71) can be recognized as a statement of limiting
fragmentation of particle a (Benecke et al., 1969), while the second,
equivalent [because of Eq. (D.27)], form is a statement of Feynman

scaling (Feynman; 1969a,b) in the region x > O.

e

If particle ¢ 1is produced "in the vicinity" of particle b

then the limit corresponding to .(71)' has & —»b and x < O.

(b) Central plateau

Suppose that particle ¢ 1is produced in the central reéion
of Fig. 31, that is, many.correlation lengths L away from either end.
Then it wili be uhéwére of'théAidéﬁtity bfnﬁbéigion in rapidity of

either & or b. The density (70) then becomes independent of Y and

y and is only & function of glf*
e B -PE
lim P = h(p ) . (12)
Yo o ab 4
YoV 7ly
Yo V7oL

The invarient cross section in this so-called central region is flat
in rapidity and depends on the incident particles a and b only
through the factor oab' .
For p-p 1interactions at ISR ene;gies the épparent development
of a central plateau, as well as evidence for limiting fragmentation,
is shown in Fig. 32} Data from a number ofvexperiments at different
c.m.s. energies,‘but all at ?J_z 0.4 GeV/c, are plotted as a function
qf yLéb =Y, - ya.’ Limiting fragmentation to an accuracy of ’}0-205
over the ISR range can be seen from the data at Yiab < j for all
particles except possibly antiprotons. Comparison of the dashed lines
with the ISR points indicates departures from scaling at W = 6.8 GeV.
The central plateau for ni, Ki, and p seems established although a

plot of the data versus y™ instead of yLab would indicate some

One might think that there could be a possible dependence on 1y,
c
independent of Y and Ypo but the Lorentz invariance of Pab

requires that it be & function of y = Yo and y - Yp-
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Fig. 32. Compilation of single particle iﬂclusive invariant cross
sections in mb/(GeV)2 at gl-z 0.4 gev/c for p + p —c + anything
with c=x', 2, X, K, p, p at various ISR energies (and 2h GeV’c
in the lab) as functions of Vigb = Yo ~ Ya
ate scales. The center of the rapidity scale (ya + yb)/2 is at
Viab = 2.07, 3.2, 3.5, 3.97, and 4L.0" for W= 6.8, 23, 31, 45, and

53 GeV, respectively. (Figure from Bussiere, 1973.)

Note the displaced ordin-

96~
tendency for the-pleteau to rise with increasing energy by -10-20%.
The logarithmic scales in Fig. 32 and the scatter of the data points
makes this difficult to see. The conclusion from Fig. 32 is that (71)
and (72) are verified, at least at theAlo-lSﬁ level.”

(¢) Growth of multiplicity and correlation parameters

with energy
The existence of a central plateau over all but finite
regions at either end of the total rapidity interval Y implies that

as s — - the multiplicity must grow logerithmically:

(ne) = fpabc d¢c ~ const. + ﬂn(s/mé.mb) fpabc(y* = 0,'§;’L)d2pJ- .

Thus the coefficient a, in (68) is given by

Z [ pgy (7" = o,ﬁ’J_)dep a (13)

¢ charged

~
L]

Direct computation of the right-hand side of (73) from the charged

particle distributions at ecms = 90° at the ISR gives numbers in’

In his lectures at ﬁiddleton Hall Prof. Sens reportgd more recent
results with greater accuracy (~ 3-5%) that seem to show the various
inclusive cross sections following universal curves in yLab =¥, = ¥y
with a continued steady rise as (yLab)max ='Y/2 increases. Such
behavior is inconsistent with the short-range correlation picture,
provided we are in the asymptotic domain. With L ~2 and Y/2 ~ 4

+

we might expect deviations of the order of exp(-Y/2L) ~ e™? ~ 0.1,

Thus asymptopia may not be available guite yet at the ISR.
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reasonable agreement with a,, as inferred from the multiplicity as «
function of energy. '

Stodolsky (1973) has remarked on the connection between the
coefficiént ay and the limitation on P, In essence he employs the
conservation of energy sum'fule (E.l9).. For simplicity consider that
only one kind of particle is produced, that -its gu_ distribution is
more of less independent of y* and that its distriﬁ;}ion in y* can
ée approximated by a rectangle on the range,' ~%%g+vA < y* < % -A .

Then (E.19), evaluated in the c.m.s. for g@%gﬁi read®
b

b

W

2
f w cosh ¥* p(¥,y*, P )ay d P

E

12

2(w) a sinh(% - A)

w) . :
) &y we™® (7%)

12

{w) 8, exp(-glE - A) =

vwhere (w) is the average value of the transverse mass (D.5) and we

have assumed nucleon-nucleon collisions. From (74) we have

A
e’

it

(w) =~ (75)

Empirically a; x 2" for charged pérticles. If most particles are
pions and all three charged states are produced equal}y, we can expect
the total multiplicity to have a) ; 3. ﬁith IA] << 1, we f;nd

{w) ~ 0.3 GeV, in good agreement with the observed value of (gJ} for
plons. It can be argued that (75) is just an expression of conserva-

tion of energy and therefore a definition of A in terms of 8 and

(w). Nevertheless, it is an explicit demonstration of the connection
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between the multiplicity and the éktension df the.inéiﬁsifé Cross
section in transverse mpmentum and in rapidity.

The asymptotic energy dependence of the correlation parametérs
. (E.13) in the finite correlation length picture follows in the
same way as for the multiplicity. C;nsider the two-particle correlation
function €(1,2). As indicated schematically in Fig. 31, ¢(1,2)
falls rapidly to zero for ]yl'- y2| > Ly,
(E.16) defining f, integration over (yl - ¥,) with ¥, fixed will

Thus in the integral

give & finite Y-independent value. The subsequent integration over

¥, will effectively multiply by a factor Y and f, @Y= zn(s/mamb).
This same behavior occurs for higher correlation parameters, with all
but the last integration yielding a Y-independent result asymptotically
and the final integration introducing a factor of Y. Thus the
hypothesis of finite range correlations leads.to the asymptotic energy

dependence,
f, © fns . (76)

for all k. Present energies may not be sufficiently large to gest
this sort of asymptotic statement, especially for the higher correla-
tion parameters. 1In Sec. $ we discuss a mixed description of produc-

tion that differs in its predictions from (76).

4, Relation of the Feynman-Wilson gas to a Regge description,

the approach to scaling

The framework of Sec. 3 is an asymptotic one expected to be

‘valid as s - o, or better, as Y >> L. At finite energies

(5 Gev/c - 500 GeV/c lab momentum) we expect to see departures from

the predictions of {71) and (72). The energy dependences of the
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nonscaling contributiqns'can be ahticipated by invoking a Regge descrié-

tion in analogy with the Regge éheoryvof 2 -2 processes. It is '
customary tb speak of the Mueller-Regge desériptioﬁ because of Mueller's

important papér.relating one-particle inclusive cross sections tg the

discontinuity in M2 of the forward 3 —937 amplitude (Mue;ler, 1970). °

This subject is dealt wiéh in detail by other lecturers and {n tﬁe ’

I ieferénces cited at the beginning of this Chapter. I reétrict'my
explicit'disgussioﬁ of Muelierism to Fig. 33 wheferthe'stqndard set of
diagraﬁs are displayed. For the theo;ists who wish to know about the
firmness of the theoretical foundations there aie péperé by Stapp (1971)
Ian‘(197i)5 and Polkinghorne (1972). Our brief treatment below is

based on heuristic arguments of power-law behavior in the various sub-

energiésvwith little reference to the details of Regge theory.

. o |2 < £ '

a' . a a
S| = SR - O
. x B~ x~b
X ® : >

X

: € ] a \
[ [ ] a

i pl)

: , b b

Fig. 33 Schematic diagrams for Regge analysis of inclusive processes.
Top line: Conversion of the inclusive cross section for _
. a +b -c + anything, via unitarit& and analytic confinuation, into a
discontinuity (in ME, the mass squared of X) of the forward 6-
particle amflitﬁde for abc — abe. B;ttom line: VVaéioﬁs assumed Regge _
limits, gingle Regge (limiting fragmentation region), double Regge

(central or pioniiation region), triple Regge limit.
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(2)  Fragmentation region, triple Regge region

Equation (71) is the statement of scaling in the fragmentation

regioh of a. In Regge language the energy dépendence of the cross

section is expected to be éz(o)-l and the absence of any energy

variation is attributed to exchange of the Pomeranchuk trajectory with

a(0) = ap(0) = 1. ‘At finite energies other Regge singularities with

smaller intercepts will contribute. Thus (7L) is generalized to

: _ ‘ ak(o)-l

. lim 0.5 = s g (x,7) -
y -y, fixed &b o L ETTL
YcVa k .

™1

(M)

 Note that in (77) we can if we wish replace the variable x with"

s/M2 according to (D.29). On the basis of 2 -2 phenomenology where

" the dominant nondiffractive Regge exchanges-have a(0) ~ 1/2 ve

expect that in the fragmentation region a good description of the

s dependence will be given by

¢ - SO % ‘ -y
Pap. = Bol%:B). +(-S-) & (%)) - (78)

‘For the reaction Pp — D + anything (78) has been tested over the

range from 4o to 400 GQV incident enérgy at NAL (Sannes et al., 1973,

. [
"and private communication). In the range 0.75 < x < 0.9 and

0.2 <" |t]. < 0.5 Eq. (78) is quite consistent with the data; further-
more, the functions go and gl ~seem to have closgly the same shape
2 . .
in x and in .
| P
The triple-Regge region indicated by the lower right-hand
diagram of Fig. 33 is a subset of the fragmentation region correspondin

to s/M2 large, as well as s and M. Since ‘M ~ s(1 - x), the
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regioﬁ of large s/M2 has xx1". As s -« this means that there
is a large iapidity gap betweeq ¢ and the nearest particle i
"anything". Regge behavior as ;1 (t), vwhere t = (pa - pc)eé“is
expected. The cross section will thus vary as

aai(t)-l '
s

-1

for fixed M?, with the s factor coming from division by

the incident flux. But if M? is also large we expect a Regge descrip-

tion in terms of s 1.e., (M?) . In order to be a special form
of (77) there must be additional M? dependence in the form of a

o 'axi .
factor (M?) , leading to the expression

“ , o (8 (t)  a(0)
By ~ & Z B *(t)(-s—)“ 0F) :
Triple Regge s ) 1jk M2 . _
| 145k )

in (79) we have generalized somewhat by replacing azi(t) by
ai(t) + aj(t) to aliqw for interference terms and summing over i,3,k.
The scaling contribitions in (79) come from ak(o) =1 independéntly
of ai(t) and aj(t). The dependence on s/M2 or x 1s, or course,
dependent on ai(t) ‘and aj(t) as well as ak(O).A R

The triple-Regge region iS'of great interest both theoretically
and experimentally, as 1is discussed in detail by other lectupers;

(b) Central region
For péfticle cv in the central regi;n 6f Fig. 31 Eq. (72)

is the scaling stagement. At finite energies we expeét secondary
contributiéns depending on the two rapidity differences yc'- Yy and

Y and s [see Eq.

- yc, or gquivalently on the subenergies sbc ac

a
(D.17)]. The general behavior in s will be

a(0)-1
(spc)

Keeping only the leading secondary contributions, as in (78), we find

a exp{[a(0) - l](yC - yb)] and similarly for s_,.
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“(y,vy)/2
lim 6.° ~ b (B)+e © h(l)(?)
y -y ss1 2P oML 1 VL
Yoy
-(v,~v.)/2
+re &°C h§2)(§1) (80)

where the secondary functions hii)(ﬁl) depend on the Regge couplings

.0of ‘bb ~ Reggeon —sc¢ and aa - Reggeon — c. For a symmetric situation

such as pp — ¢ + anything, (80) can be written conveniégtly in terms

of c.m.s. rapidity as
. 1 v
! : SO L - *
~ % = ~ -> v .
pcentral(s’y ,gl) ~ po(gL) +\ 3 hl(gl)_cosh y/2 . (81)

There are two observations here. The first is that the s dependence

. - -1 : wl
of the approach to scaling is s-%, rather than s 2

This follows
immediately from the fact that the relevant rapidity difference is
Y/2, not Y. The second observation is that the sign of hl(gl)

governs the curvaturé in rapidity away from y = O. If the approach

"to the scaling limit in the central regilon is from above (below) then

the curvature of the distribution in y* is concave upwards

'Z(downwards). Experiment for pions or all charged particles shows a

rise wiﬁh increasing energy at y* = 0 and concavity downwards away
from y* = 0 (see Fig. 32). This behavior is quite consistent with »
(81). The rise shown by a combination of data at Py < 30 GeV and
early ISR data was compatible with a s°% variafion (Ferhel, 1972).
More recently, however, the simple behavior of (812 has been cast in
doubt by mor; extensive data frgm the ISR. These results at

y*v; 0 1in combination with lower energy data arevmore‘consistent '

e R |
with s 2 than s * (Jarlskog, 1973).
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The Question of the approach to scaling is obviously an
interesting one. The above simple remarks are just the beginnings. -
Duality and exchange degeneracy arguments can be brought to bear in
order to estimate the expected sizes of the secondary contributions.
This subject is dealt with in some detail by Roberts in his lectures.
There is also the "threshold" aspect exhibited in Fig. 24 wherein
appreciable production of heavier particles begins at higher s values
and takes longer‘to approach an approximately scaling limit. The
effect at y*': 0 1is even more pronounced than in the integrated
re;ults shown in Fig. 24. While smallest for pions, this threshold

effect is undoubtedly present at a level such that plots of data at
1

y* ~ 0 .from Plab < 30 GeV to ISR energies against s-% or s 2 are
of dubious value. Some theoretical support for the importance of a
threshold effect comes from application of two-component duality to
inclusive distributions with the consequence that the nonleading
(s-%) .contributions in (81) must be positive.
(¢) Factorization

The finite-range correlation picture for the n-particle
distributions has implicit in it the idea of factorization. Thus, in
(71) the normalized density depends on & and ¢, but not on B, and
in (72) is independent of both a and b. This means ﬁhat'the
inclusive cross section in these regions depends on b (or on & ard
b) only through the multiplicative factor LR In Regge language
this is a natural consequence of the assumption of Pomeranchuk-
singularity dominance of the total cross sections and the appearance
of the P -%b and P - aa veftices in the 3 — 3 amplitude, as

shown in Fig. 33.
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These factorization properties have been tested extensively
for the fragmentation region, mostly at energies below 30 GeV
incident in the laboratory (Chen et al., 1971; Lander, 1971; Berger,
Oh, and Smith, 1972; Miettinen, 1972; I.;a.m, 1972; Fry et al., 1972).
The overall conclusion is that factorization holds for the scaling
contribution in the fragmentation region to 10-15%. There is also
some evidence for factorization of secondary contributions {Miettinen,
1972) and for two-particle distributions (Lam, 1972).

Factorization for the central region is tested only roughly
by the analysis of the approach to scaling of ferbel (1972). More
detailed checks will be possible with Serpukhov and NAL data on
reactioﬁs initiated by pions, K-mesons and antiprotons, as well as
prbtons. There is a high probability that factorization will fail to
hold at the level of a few percent because of the presence of Regge
cuts or, in other terms, from the existenqe of. a diffractive contribu~
tion associated with the incident particles, as well as a finite-
correlation length contribution. See the next section and, in much

more detail, Harari's lectures. See also Wilson (1970).

5. Brief remarks on a two-component description

There have been .various specific models devised to describe
multiparticle reactions. These are described and references to the
literature are given in Frazer et al. (1972) and Horn (1972). The
short-range correlation picture with its explicit realization in the
multiperipheral model of Amati, Stanghellini, end Fubini (1962) and
many subsequent versions is perhaps one extreme. At the opposite

extreme is the diffractive model in its recent realizations of Adair

(1972), Hwa (Hwa, 1971; Hwa and Lam, 1971), and Jacob and Slansky
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(Jacob and Slansky, 1972; Jacob, Slansky, and Wu, 1972; Berger,. Jacob,
and Slansky, 1972) in which all the production is assumed to occur by
excitafion of the incident particles into fireballs or nova that
subsequently decay. A more reasonable view is that nature elects to
make use of both dynamical mechanisms (Wilson, 1970). There is now
suﬁport for the presence of a "giffractive” as well as & "multi-
peripheral” component in a number of experiments. Professor Sens
discusses one of these--the correlation of a proton near x = 1~ with
the angular distribution of charged particles. Another is the
behavior of the prong cross sections at different energies (Figs. 20-22)
or equivalently {(n) and fy. We will comment briefly en this aspect.
It is dealt with in more depth by Harari.

| The two-component or two-mechanism model. for prong cross
sectiop in its simplest form assumes an incoherent superposition of

a "diffractive' cross section and a "multiperipheral” cross section
for each n value. It is further assumed that the diffractive part
contributes most importantly to the low multiplicities and is indepen-
dent of energy in each topology, wﬁile the multiperipheral part is
perhaps Poisson-like in its distribution over topologies with a mean
multiplicity that grows with energy, but whose total_contribution to
the inelastic cross section is an energy-independent fraction.
Different versions of this two-component model have been discﬁssed by
many suthors (Bialas, Fialkowski and Za¥ewski, 1972; FiaYkowski, 1972;
FPiaXkowski and Miettinen, 1973; Frazer et al., 1973; Harari and
Rabinovici, 1973; Quigg and Jackson, 1972; Van Hove, 1973). The
variants differ in-detail, but agree on the essentials. There is a

relatively small, but important, diffractive component that amounts

to 20 # S% of the inelastic cross section, with the remainder as
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multiperipheral. The consequences for the prong cross sections are
sketched in Fig. 34 at the bottom. At high energies there should be
seen & clear distinction between the constant diffractive component at
low prong number and the multiperipheral component that moves out in
n roughly proportional to £n s. Estimates indicate thgt at the

highest ISR energy there might be signs of a shoulder at small n.

DIFRACTION MODEL

MULTIPERIPHERAL

DIFFRACTION  DISSOC. ~= LOW MULT.
% oIssoc. |

MUL‘TIPERIPHERAL

Fig. 34. Prong cross sections as functions of n and s. Tke
expected behavior for diffractive, multiperipheral and two-component
models are shown at upper left, upper right, and lower center,

respectively (from Morrison, 1973).

L]
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The behavior of correlation parameters in & two-component

model is of interest. First we note that in the extreme diffractive

model the logarithmically growing multiplicity is generated by assuming

o, &« :‘—12- for n <N (82)

i .
where N o s2 (or some more modést power of s). The correlation

parameter f, involves the sum of n(n - l)pn and so behaves
X

ésymptoticglly as 'f2 o N @ s2. This is in marked contrast to the

result (76) of the multiperipheral (finite-range correlation) model.
The purely diffractive model, while in reasonable accord with the data
on f2 in pp collisions at Serpukhov energies and below is in gross

disagreement with the NAL bubble chamber data at 200 and 300 GeV.

In the two-component model the diffractive part is confined

to low multiplicities and is s-independent. Thus its contributicns to

{(n) and f2 are constant in energy. All the energy dependence is by

hypothesis in the other component. Let ad and am =1 - ad be the
fractions of the two components in the inelastic cross section and

let (n)d, (n)m, foq7 fgm be the mean multiplicities and correla-
tion parameters for each component separately (normelized to the
diffractive and multiperipheral parts of the inelastic cross section,
respectively).__Ih the two-component model without interference it is
easy to show that the multiplicity and the correlation parsmeter are

given by

(n)

OLd(n)_d + am(n)m v
‘ (83)
T, = agfg +opfo, +ag (o)) - (n)g)? -

" the correlation as a function of ¥
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Now SuppOSFAthgt (n)d, f,q ore independent of energy, while (n)m,
f2 grow asymptotically as £n s. Then we find from (83) the
m .

asymptotic behavior,

{n) @ fn s

(8%)
f, « (4n 3)2 .

[For higﬁer correlation parameters one finds f, (£n s)k;]' The
Ccross ferm in f2 (83)--a long-range correlation effect~-produces
f, @ (4n s)?, even though the ingredients varied as /n s at most.
The two humps developing in Fig. 34 for increasing s are, of course,
Just a &ifferent menifestation and source of this phenomenon. The
many versions of the two-component model have little difficulty fitting
the observed correlation parameters f2 up to the highest NAL
energies.

As & final remark on evidence in support of two operative
mechanisms in multiparticle production we mention briefly the rapidity
correlations observed in pp interactions at ISR energies between

charged particles and photons (Dibon et al., 1973). The corrglation

functions. R(yl,ya) defined by Eq. (E.18) for these data are displayed

in Fig. 35. The distributions at the different ISR energies are

- qualitatively and even quantitatively similar. The open circles show

#*

»
= 0. Th
photon for Yen Q. There

appears to be a fairly important short-range correlatioh centered

about y*

Photon = y;h and having a range of the order of L ~ 2-3.

The solid points are for ka = -2.5. They exhibit a smaller short-

s * -
range effect centered at yphoton ~ y:h and alsq a long-range

correlation whose existence is ciear, but whose actual magnitude is



Fig. 35. Rapidity correlation functions R(yl,yz) defined by (E.18)
for photon-charged particle correlations in pp collisions at ISR

. . »
energies (W = 2%, 30, 45, and 53 GeV) as functions of yfhotonf The

solid points correspond to y:h = 0 and the open circles to

yzh = -2.5 (from Dibon et al., 1973).

probably not easy to establish with certainty because of errors in
normalization of the various cross sections. In spite of such
uncertainties the presence of a long-range correlation component in
the data is certain. Integration of such & contribution leads to

f,  (£4n s)2, as we have already seen.
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APPENDIX A

S-matrix formulas, cross sections, two-body kinematics

In what follows the usual units for relativistic pa.fticlev
physics and quantum theory are used: ¥ = ¢ = 1; masses, momenta, and
‘energies are expressed in GeV; cross sections are calculeted in units
of 'M-2 = (GeV)-2 and are converted to millibarns by multiplica.tioﬁ by
ﬁe magic factor 0.389. Free particle states are normalized to one
particle per unit volumé. The phase space for a single particle is
thus dj_p/(.?n)B. The convention on lL-vectors is indicated by

P“: (E:_Px: Py: Pz) and a-b = a'obo = ﬁ'g‘

1. Invariant or Feynman emplitude 977

The invarient amplitude 977 is related to the S-ma.trix through

the relation,

Sy - B - i(eﬂ)h a(’«‘).(p'3 - 1) %aa/'\ﬁ:ri (2B;) . (A1)

-T' vhere o and g are the i&bels for the initial and final states and
the product of factors (2Ei) is over all the particles in both
initial and final states. Implicit in the S-matrix element are the
conservation of énérgy and momentum delta functions. The invariant
vamplitude has these factors extracted. Its various arguments ére thus
to be taken as evaluated taking the conservation laws into account.

" 'With the presence of the square root of the product of factors ’(EEi)
and fhe single particle normalization stated above, the invariant

amplitude is Lorentz invariant, as its name implies.

-A2-

2. Decay processes a - (1,2,---,n)

The transition probability is

' 4 n, &
NGO M ST Y o gl SR O ]
a = "o, 1"eal /D:(zﬂﬁ(eEi) Ty R By Ry

(A.2)
For a two-particle final state, in the rest frame of a,
an
1 2 Pems Hems
dw = -——-I‘h) l —_— (A.3)
pa 521(2 pa mc‘2 .

where

o 2 .+ 2 - 2

cms) - llf 1 - M1 _m2 -J1 - ml————.-.me

T o Ta

If some observables, e.g., spins, are not detected, averages of the

initial state and sums over the final state are understood.

3. Two-particle collision cross section a = (1,2); B = (3,24,--->Ln+2)

The projectile is labelled #1 and the target #2 in what

follows. The differential cross section is

a
%par

b | 2 n+2 3
_ (2x) '6’726&] ,r_r d3p1
, Lr\/(pl°p2)2 y mlgmég i3 (Pr)7(2E;)

.sw‘)(z b - 5,) -
i

(a.4)

In this form the cross section is manifestly Lorentz invariant. The

’ n
factor '\/(;Jl-g>2)2 - mlgm; is called the
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flux factor*i It is obviously invariant and bas the useful values,

{ N (laboratory or target rest

frame)

'\/(1)1-172)2-111121;!22 = ' - (a5)
' Wp

cms (center of mass frame)

\
where W 1is the total energy in the cms.
For a two-body final state (m1 *my mg + mh)’ the cms

jifferential cross section is

. P, :
-do _ 1 cmsl '2 _ . (A6)
4 ons 64n"s Pems ik?éa :

2 2 :
vhere s =m " +m, + 21112(16.}1)1&b is the.square of the total energy

W in the ems. The ratio of the final to initial cms moments is

Plms s - (mj + mu)g][s - (i- mu)el
ems  \[[s - (m +m)%][s - (m - my)°]

The differential cross section expressed per unit interval in

2 2 .
invariant momentum transfer t = (pl - p3) = (p2 - pu) is

With the advent of colliding beam machines, in which thé target is
in motion and not necessaril& in head-on collision with the projectile,
there has arisen some question about the appropriateness of this flux
factor. See Newton (1966), p. 220-1, for the generally accepted
view and Martin and Spearman (1970), p. 153-4, for & different, non-

invariant convention as well as the standard result.

~=Ab-
ao 7 do 1 2
® - PP am - — Mgl™ - (a.7)
v cms “ems | ems 6Ly s Pens

Note that s pims is Just the square of the invariant flux factor
(a.5).

For elastic scattering the standard cms scattering amplitude

fcms is related to the invariant amplitude by
If = -1 Kr’l . ) (A 8)
cms 8w :

For inelastic two~body processes conventions vary, but usually an

additional factor of péms/pcms

of (A.8). Then the differential cross section (A.6) is given by the

appears on the right-hand side

absolute square of f A.
cms

L. oOptical theorem

The optical theorem that follows from conservation of

 probability (unitarity of the § matrix) is

1 7 2.3
zm Py - '\/(Pl'Pz) TP Yotal (8.9)

where Gtotal is the total cross section for the channel «. This

can be written in a more familiar form,

LHT © ‘
T otal = EI Im £(0°) {A.10)

where f£(0°) is the forward scattering amplitude (whose square gives
the differential elastic scattering cross section per unit solid
angle) in any frame moving parallel to the incident particle's

direction and Py is the incident particle's momentum in that frame.
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5. Two-body kinematics

, ) In terms of laboratory quantities (the laboratory is the
Some kinematic variables have already been defined:. We gather . . . .

r

. . . frame where particle 2 is at rest) the invarianté are
'here a summary of useful two-body quantities. The general notation is’

2 2" -
indicated in Fig. A.l for the process, ) - s = m° +my 4+ 2m2(El)1ab
+ — +m . : (All) » . 5 > )
n é3 * ‘ « . , t = B rmy - 2m?(Eh)lab ' : : (A.14)

u

m22 + “‘3’2 - 2y (Eg)ygy, -

) . - > . :
For elastic scattering or reactions in which m, = m, the momentum

! ;
transfer t simplifies to t = '2m2(Th)1ab’ where T, is the kinetic

energy ‘of the recoiling particle 4.

The invariants can also be expressed in terms of the center of

mass (c.m.s.)iﬁafiables. Let the ¢ m.s. energies and momenta of the
Py ' — — ' — - 1] [

. particles be El’ E2,>E5f Eh and Pl =P, =P, p3 =P, =P Then

Fig. A.1 - s

[{]

W - (El + E2)2‘= (E3'+ Eh)2 is the square of the total c.m.s.

. ) energy and
" The invariant variables s,t,u are defined by :

-2 2 o 2 - 2
‘ -W2 +m - om, W2 +my -omg
2 2 S ' : By = —— > By = ———/——
. o v D 2 . 2 2 2
2 2 * - E S o 2 WP .
t = (pl - p}) = (p2 - pLL) (A'lg) . ) B - * m} mh s » : E)-& = — * mh mé
- ‘ : 3 oW ‘ © o
2 2 . . . ' . .
u = (Pl - ph) .= (P2 - PB) and 7 ) ) ‘ }.(A.ls)
i i ati - » 2 1 [2 _ 2 2 2 2.2
wyfb the ponstralnt equation, P o- {s ) Q(ml +m, )s . (ml - m, ) ]
s +t +u = m12 + m22 + m32 + muz» . ' (A.13) o ’ . ) : v oy
‘ , - 2 1.]2 2 2 2 2,2
P = 538 - E(m5 +m, )s + (m3 -m)
- J
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The two momentuxi/transfer variables are

= - ' - \
t o=t - 2P (1 - cos Qcms)

(A.16)

=
]

- t :
Wen - 2PP (l + cos Qcms)

where Qcms is the angle between 5; and 5% in the c.m.s. and

) tun = (B - E5-)2 -(p - p_' _)2 .
~ ‘ . (A‘.l’?\)
wso= (B - Eu)z - (p-p)° I

" At high energies (W >> mi) some useful approximations are

2 2 2 2
W mootmy 2mym
P = é’ 1 - - I + e
W W
2 2 2 /
m - +m 2m, m
p'oa A1-2— LI 3h1‘ + e © (a.18)
W W
1 2 2 2 “ 2 1, 2 2 2 2
thin = " 3 [(ml - mg )(m2 f m, ) + E(ml m, mgm, )
( 2 . 2 _ 2 _ n 2) . ...
x \my oy -y -
\ . .
and Woin has m3 ) . Note that if m = m3 or m, =m,
tmin a s-2 and so approaches zero very rapidly at high energies.
Fér elastic scattering t . = 0, of course, and u = {(m 2. 2)2/5
€ 3 min - °? I ! = h me

min

without approximation.
The three-dimensional scalar product of the c.m.s. momenta

51 and - 5} can be expressed in terms of the invariants s,t,u:

~A8-

2 2, 2 o2
_u+(ml m,")(my" - m,")

S

' =
hpsps cos O, = t ’ (4.19)

where we have changed the notation slightly in order to discuss

channels other than the s-channel of Fig. A.l. For the t- and
u~-channel processes, where t and u are, respectivély, the squares
of the total c.m.s. energies in the two channels and the othér |
invariants are momentum transfers, the corresponding expressions are

P

‘(mle . m}é)(mzz ) mhe)
hptpécos 8, = s -u+
. & .

N (a.20)

2 2., 2 2
s+(m1 - m,")(m," - my")

u

' t= -
hpupu cos 6 = t (&.21)

The angle ©, 1is the angle between 2 and 1 in the t-chamiel c.m.s. -

of the process 1 + 3 -2 + b 6, is the angle between 1 and 3

in the process 3 +2 -1 + 4, The various momenta are the c.m.s.

values in each channel, obtained from (A.15) by substitution.
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APPENDIX B Lo : where the sum over B is over all the klnematlcally allowed two-body
/Partiai Waves, Helicity Amplitudes, I@Eﬁct Parameter Répresgntation, ‘ channels and the function G(a)( ) repvesents the contrlbutlon from
‘The material in this ﬁppendix is well known. It is brpught : " - the gpen channe;s with more thgn two particles. Sometimes (B.h) is
togéther‘here mostly to fix nqtét@on; not‘to give derivaﬁions. B -written I

1. Partial wave decompositions : . ’ ) ) 1
3 : ] JIm aﬁon)(s) = Ia(oa)(s)‘ (a)(s)

Because of the convenience of dealing with g Lorentz invariant

(8.5)

aqplitude we define the scatterlng.(or two-body reactlon) amplitude where Hz(s) contains all the contributions to the unitarity sum

?Ba(s,t) by ) - except for the elastic scattering part. Hz(s) is’the'partial wave
S, , o ) projection of the so-called overlap function (Van Hove, 196L4). If the
Fao(5:t) ' a‘)’?aa(s,t) (B.1) , Hove,
elastic scattering partial wave amplitude is written as
" . ¥ s s T4 . L . th ! . ) BN
whe?e ‘9075a is the invariant amplitude in (A.l). From (A.7) the (o) 1 [ 218,(s) . _ -
differential cross section is 8 (SZ = B7\ ¢ - s (B.6)
ac_ - ' Co - then (B.5) implies that
D= S 12 . ' ' . S ’ )
at = 5 lFaa(s’t)' ’ o \ (B 2) _ \ , "
sp N . .
: , _ , e = 1-H (s) . (B.7)
Por particles without spin Fﬁa(s,t) has‘the,Rayleigh—Faxen-Holtsmark ’ )
partial wave expansion, - i . . _ If only elastic scgttering can occur, Hz = 0 qnd the phase shift §
i is feal. If other channels are open then Sa is complex, with
1 . . : . ,
F (s t) (:pp :) E: (22 +1) agﬁa)(s) Pz(dos 9) ( : positive imaginary part. The partisl wave amplitude (B.6) thus lies.
) £=0 K o . : ) on the boundary- of or inside’the unitarity circle, a circle on an
‘*ore‘ cos © is related to t via (A.16) and la(Ba)(s) is called ‘ Argand diagram of radius 1/2 centered at the point 1i/2. -
AT ) . ‘e /. -
. ’ . 5. C o ‘t
the partial wave amplitude. . " Helicity amplitudes
The optical theorem (A.9)-can be translated into & statement ' . If the particles possess spln a convenlent set of amplltudes
about the partial wave amplitudes: _ R -are the hellc1ty amplitudes of Jacob and Wick (1959). The initial '
.. o - v . : and final states are specified by the usual kinematic variables of
2 . (x),- S Appendix (A.5) and also by the helicities 3. .of the particles. The
Im a(ou)(s) = E: Iaéﬂa)(s)l 4 GE )(s) : (B.k) . | ‘ PP ( “) o y< J P (
8 - , generalization of (B.2) for unpolarized beams is
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 where Gaua =2m, wu = 2m', and A(s,t); B(s,t) are two scelar

da 7 1 2 ’ B B

da  _ _n_, E t . - {B.

dt SP2 (251 +1)(2s, +1) 5 H)‘B}‘h!F(S’ )h‘l)‘E>| (3.8) invariant amplitudes. The convention on gamma matrices is that of
_— ¢ N )

v , Bjorken and Drell {1964). A straightforward Pauli reduction leads to
The generalization of the partial wave expansion (B.3) is

the form,
4% ) . . .
. s . .5 v
A, (F(s,8) [ AN = —_— Z 23 + YO, la (s)n )8 o 't N ~
ghy [FCs5 0) Iagng) .(pp') j (23 + 1) agny la5(s)Inn008, °(9) Fa(s:t) = (L 18(5,8) + 5,(s,8) D5 PB|x,) (.12)
(B:9)
’ where
where dwj(e) is a Wigner notation function (see the Appendix of o
) . : m+m'
Jacob and Wick, 1959) and A = A = Ay, W = Ay - Ny, While J is the £, = VE + m)(E' +n') {A + < - )B}
angular momentum. ‘ ‘ - . (B.13)
. _ + ~ + : C ] - m+ m'
3. Helicity amplitudes for O +-]é‘- -0 +% processes f = V(E - m)(z' - n') ['A + (W = )B]
Y,
tant ial f helicit 1itud is for th :
An impor in specm.+ case o elicity gmplitudes is fo e The helicity amplitudes Fx';\ are explicitly
- - - ' T 1 . .
reaction, 0 +_Jé._ -0 +_;_ or M+ B =M +B', where M stands ; | .
for meson and B for baryon. To reduce the number of subscripts F++ = F =" (fl + fz) cos -g.
we introduce a change in notation from Appendix (A.5). We put , (B.1k)
. _ o
- F = =~F = (f - f ) sin =
: - -+ 2 2
mo= oy m, = m, my = u', m, = m' ‘ + 1
A {In these express‘ions as in all our helicity amplitudes we have
= = = L = ! $ ) - B.lO . . .
B “s E, E, E} whs ‘ Eh‘ B : ( ) specialized the azimuthal angle to ‘§ = 0.)
) : The differential cross section and polarization are
) - - -y - = : 4 )
pl = q, P2 = P, p} = Q7, P)* P / - .
\ N : ' [ o 2 2 -
I RSl
In the c.m.s. we have p = - and p' = -q'. - Sp -
Th t r amplitude F, (s,t) ' ‘ (3.15)
. . <oi ampli is *
e invariant spinor amplitude 6o s, - 5 Im(F++ ¥, )
P = 5
2
lr, 15+ [F,_|

Fulrt) = B@)AG0) + HE 1 ) 3(50) 5B (3.11)

v
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Bach of the helicity amplitudes F, , , called s-channel helicity

A
émplitudes to distinguish them from t-channel helicity amplitudes
obtained by taking helicity projéctions in the process MM' - BB', has

a partial wave expansion of the form (B.9).
k. Impact para@eter representation
r . 4 R
At high enough energies, where very many partial waves are

important, the partial wave series (B.3) and (B.9).can be converted

into more convenient and intuitive integrals over impact parameter.

For large Jj and not too largg angies the Wigner rotation functions’

are apﬁrokimately,
"4 3(9) ~ J ((23 +1) sin.9> (>B.l6)
Al n o 2 .
Hhefe Jn(z) isvthe nth o?der Bessel function and ‘
n=p-A-= (Ag = %, =% +2) 1is the net helicity flip. With the .

approximation of replacing the stm in (B.9) by an integral over )

(j + %) and the use of (B.16) we obtain

‘ A L }
sny PG, ) Igng) = (-%) f2(é v3) ai v
X <7\3)\h.'a(s,j + %)I)\l)\e) Jn@(‘j + —é—)mn g) .

At high energies where t . = is negligible, (A.16) shows that

-t = q2 ~ lpp! sin® g I (B.17)

We therefore define the impact parameter b by

\/'pp"‘b =3+

o -

: o ' ' (8.18)
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and write the agrument of the Bessel function as

‘

. 1 ;. ©
2(3 + 5) sin 3 qb .

The integral over (j +.%) . then becomes. the impact parameter

representation,

-

(>~3>~u|F(~°::t)l7\l7\2> ~ 2(spp')% . bdb Jn(-qb)(xi)\“a(s,b)|)\1)\2,)..
. (o] ’
(8.19)

For particles with no spin the representation corresponding to (B.3)
15 '
: [--]
- - .
Fsd(s,t) x 2(5pp'}2 - b db J,(qb) 2g5(s,0) . - (B.20)
. 0 .

The "partial wave" projection formulas complementary to (B.19)

and (B.20) are ) §

1

: 0

Ourg la(s,0) A .Y = —2e - q dq J_(qv

3 )4 ? N 172 2(.Sppv)§k 0 n( )
x gy |F(s,t = -q2_)|>\l';\2) : ,  (B.21)

a.nd
1 ) » " ,
b = N d b = -

?ea(s’ ) ;z;;;TS% . g dg J(ab) Fea(s’t q) . (3-22?

In these integrals over momentum transfer it is assumed. that, the

amplitude falls off rapidly enough in q = WJ-t that the integrals

-~

convergef From (A.18) it can be seen that at high energies where

. {(B.19) and (B.20) are'likely to be useful the coéfficient of the

’

integrals is
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2 2 2 2
m +m, + m5 +my

. ‘ and the complex phase shift &(s,b) is given by & = a + ig, then
2(spp')2 = s{1 + e ~ s . (B.23) : ' .
2g the total, elastic and inelastic cross sections become
) : ) - .
It is sometimes useful to replace (B.20) and (B.22) by an . ' 1
) ( ) ( op = 2| d(b2)[1 - ¢ cos 2] ‘
equivalent two-dimensional Fourier transform representation, . -Jo

F. (s,t) = o &eb eiEiS’a (s,b) | re
BalSs 2 oS o, = uﬂ-[ d(bg)[e-eﬁ sin” o + (1 - e'25)2] \ . (827)
- \ . ' | O . .
and its inverse, . (B.2L) »
1 5 -iTF 2, ¢ B -
fg(s:0) = g [aTa TR (5,0 < 0) %ol = T J( A - &) )
. o _

Here 6’ and © are two-dimensional transvefse vectors. We have used

(.23) to simplify slightly. o ‘ ‘ !
For elastic scatter@ng of 'spinless particles the representation

(5.20) leads [Qia integration of (B.2) over all q2 ‘and by means of

the.optical theorem (A.9)] to the following expressions for the

elastic and total cross sections:

o, = x| a®)|a(s,p)F . : .
0
(B.25)
. o ‘
o, = Ly d(®”) Im a(s,b) .
o .

If a(s,b) is written in a form equivalent to (B.6):

a(s,b) - 3 (2P(50) ) : (8.26)
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APPENDIX C

Eikonal Approximation

For short-wavelengths scattering can be described in terms of
.a semi-classical trajectory (localized wave packets) and impact
pafameters. For the Schrédinger equation this leads to the eikonal
approximation for the phase shift as a function of energy and impact
parameter. The standard derivation of the eikonal appfoximation is
given in many places (e.g., Gottfried, 1966? p. 113£f; Glaubeib, 1959,
p. 315ff). The eikonal approximation to the wave function leads at
high energies to

W@ = WO@ el [ vE) ar| (c-1)

where 5 is the impact parameter of the incident particle and V(i)
is the scattering potential. The exponent refresents the phase
ﬁccumulated up tb thé point (Szz) by the action of the potential.
Straightforward calculation of the scattering émplitude leads to the

approximate expression,

12

. ‘ - E'_ ‘ﬂ -
PRLE) ~ e [dbe HE E?‘L ’ [eem(s’) - 1] - (c.2)

2ni

where

AB) = -my | V(B2 & | (c3)

-0
is the eikonal approximation to the phase shift. For a spherically

symmetric potential integration over azimuth in (C.2) leads to an

-c2-

expression equivalent to (B.20) with (C.3) as an approximation to the
phase in (B.26). )

The lowest order approximation to (C.2) in powers of the
potential is obtained by expanding the exponential in the integrand.
This gives

. : [ -

f(l)(?",E_’) = - %; Ex e l(? _m_-‘-x % V(@) (C.k)
which, for small angle scattering where 'R is pe;pendicular to the
incident direction, is just the first Born approximation.

. An alternative derivation of.(C.2) and (C.3) with closer
connection to the relativistic ﬁroblem is based on the Born seriés
of which (C.4) is the first term. With the definition

U(x) = -om V(f)/na, and its Fourier transform,

13 -x 13,-%X
> .
U(E&,E;) = Pxe T u(x) e , (c.5)
the (n + 1)th term in the Born series, N
w8 - ) @en , C(c6)

n=1
can be written formally'
b ¢(n+1) @)

(¥'|ucug. - -au| B

where there n+l factors of U and n Green functions G. More

explicitly, this reads
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(n+1) 1" 3 3 3 , -
1 - - 1 1 -
-——.—-—.——.——.U(q q ). .o .U( E’) .
q12 - k2 - le 1772 q22 - k? - ie qn2 - k2 -7ie qn?

(c.m)

Each potential factor in (C;7) is replaced by its representation (C.5).
Then the eikonal approximation is made by aﬁproximating the intermediate
momentum factors in all the Green function propagators as follows.
Choose the z-axis for all integrations as the incident direction ¢

[or the averége direction (K + K')/2] and define parallel and -
perpendicular components of every vector: = (% ,z), E; = (E;qun‘p.

A typical propagator is then approximated by neglecting QL :
(@ - %% - 1)t = (q_'L"‘ + q”2 o (qlle - k% - 1e) .

The amplitude (C.7) then becomes

(n+1) 3 EX 3 | 2
by £ a’x e u( d xji. dzj
1 2
O(F ,z,) | dq, et [ &%
AN Mg 2 %8 - e JL
3t
- JREEEY
; 13 ( Xy 1" .‘j.L +igy (zJ 172y .eﬂ?-xn

The integrals over the transverse components of each intermediate
momentum dequ. can now be performed to yield the product of two-

dimensional delta functions,

~ch-

n R
2 (2) - _
/T—T/(E“) XL T M)

J=1

‘This is equivalent to the semi-classical straight line path implicit

in (C.1). The integrations over the (n+l) different dngJ_ are
thus reduced to only one:
n
by f(“”') =[ f u( ,z) (e,r)’l dz, U(J_,z)
j_l.
JfE )RR
dq33| = ¢ . (c.8)

The integral over dqj.['can be done by contour integration to yield

iq(zj_l - zJ)
dqe_:_....._______—=
q2 - k2 - ie

ik|z -z I-
e 1 (c.9)

w3,

Inspection of the remaining integrals err dzJ in (€.8) with (C.9)
inserted shows that each integrand oscillates rapidly at high energies
and thus will give & negligible result unless in'eachAsqccessive
1ntegfai (Zj—l - zj)>2 0. With the approximation to small angle

scattering, (C.8) can thus be written

f(n+l) (21{)[ i .Lfl az, u(E ,z)

-z ) (c.10)

x oz, - zl) Q(zl - 22)---9(zn_l N
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_where - T = E’ E' is the vectorial niomentum transfer. The -
restriction on the ranges of integration hes a familiar counterpart in
the limitations on the time integrations in the expansion of the
8 matrix in quantum field theory. Beéause of the symmetry of the
integrand of the (n+1)-dimensional integréi the ranges of all the.

z integrations can be extended to the interval (-w,») provided we
divide by (n+l)!. Thus (C.lO) becomes

- n+l
iq.x .

-k 1 2 d1fi
- T IT f‘“‘f | = UEp0)

-0

f(n+1)

(c.11)

With the definition of U(X) and the Born series (C.6) it is directly
evident that (c.11) is thé (n+l)st term in the expansion of the
eikonal formula (C.2).

The derivation of the eikonal approximation in relativistic
field theories seems poséible in somé theories and not in others (See,
for example, Abarbanel and Itzykson; 1969; Lévy and Sucher, 1969;
Tiktopoulos and Treiman, 1971; Fried{ 1971; Cheng and Wu, 1972;
swift, 1972). In sbitevéf the_uncertainty of its fundamental basis
the eikonal method is an extrémely plausible and simple way to impose
the reqﬁirements of unitarity in the direct channel. The sfanéardi
recipe for "eikonalization” relies on the conﬁection (C.4) of the
lowest order exchange amplitude (the first Born approximation) with .
the two-dimensional Fourier transform of the phase shift A(Ev.
Explicitly, if the lowest order relativistic amplitude is FBorn(s’t)’
then the relativistic eikonal phase is [in the notation of (B.24) and
(B.26)]

-c6-

2
®eikona1(87?) = T | 49 Born(8s% = -0°) (c.12)

and the relativistic eikonal amplitude is

- 248, (s,b)-
i3-% konal‘®’
Feikona1(sst) = K%T a% &' e STORET -1).(c.13)

The eikonal phase (C.12)is in generai complex and describes elastic
scattering in the presence of competing processes. In nonrelativistic
problehs this situation is normally described by a complex optical
model potential.

For referencé we quote some sihple exampies of FBorn(s,t)
and its two-dimensional Fourier transform, s

5eikonal(s’b):

) § 8eik nal(s’b)
OFAm (c.14)

AGs)(a® + )™
AGs) (@™ + u®)? A(s)u7%-ub K (ub) (c.15)

A(s) exp[-b(s)qe/z] A(S)(:B(si)-l exp[-be/EB(s)] (c.16)

) 2
[!zx(s)i 7 ¢ < + by? > [a(s) Ko(ub)] . (c.a7)
a(q” + bu®) + 4% - g
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. APPENDIX D

Kinematics of Inclusive Processes

The process a + b < ¢ + anything is indicated diagramatically
in Fig. D.1. With the masses of a, b, and ¢ given and unpolarized

beams, there are three

Fig. D.1

kinematic variables, plus a trivial one (e.g., the azimuthal angle of
the momentum of ¢ in the c.m.s.) needed to describe the cross section.
These can be simply the total c.m.s. energy W and the components of
the momentum of ¢ parallel and perpendicular to the incident beam;_
p” and pl: This is one more variable thén in.the 22 pfoceés

of Appendix (A.5) because the missing mass M is variable, not fixed
by M= mﬁ. Nothing more really need be said, but in describing
inclusive processes séveral differént choices of variable are made

and it is necessary to move from one to the other. We summarize in
this Appendix the more important sets of varigbles and their connec-
tions. An exhaustivevcompilation of inclusive kinematics can be found

in Kasman (1972).
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1. (s, %, u, NF!
The obvious and direct extension of the two-body kinematics is

the use of any three of s, t, u, M2 as variables. The definitions of

s, t, u are given in (A.12), which in the present notation are

2

)

2 (p.1)

' 2
s = (p, + 1), t = (p, - 2)5 u = (p, - By

and

W o= (pg +my - B - (-2)

The constraint equation (A.13) reads

o 2, 2, 2 ‘
»_s‘+ t +u - y? = m- +m- +m . (p.3)

2. (s, P x)

In discussing scaling Feynman (1969a,b) intrddﬁced a reduced
longitudinal momentum variable called. x. In.the c.m.s. frame let the
momentum i? of particle ¢ h#ve components parallel and perpendicular
to the incident direction (that of particle a) denoted by pﬁ and
51: Then Feynman's x 1is defined as either
2p*
2py

* . L
x o= w” R x = - © (D.k)

Prax : o WJ;

*
where Prax is the maximum momentum permitted ¢ in the c.m.s. The

two definitions are eqbivalent at high energies. For simplicity and
definiteness we use the second form throughout.
The variables s, gl? x {plus the azimuth of 51) are an

equivalent set for inclusive processes. Note one peculiarity of the .

x variable. If pl‘ is finite then as s — o, x =0 independent of

- the particular value of . This means that for s -« a finite part
i
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of,phase space is'mappedrinto' x = 0. This can cause some conceptual
problems, as we will discuss below when we consider cross section
formulas.

3. (‘S: P_L: y)

In the c.m.s. or any othér frame K moving uniformly parallel
to the incident direction (z-axis) particle ¢ has momentum P with
components éll and 51: Ihere is another ;orentz frame K' moving
with a relative velocity E’ parallel to the z-axis in which particlé

¢ has only transverse components of momentum, i.e., 5* = ilf In

that frame, the energy of particle c¢ is E' = Wos where
' 2 2
Uc = ‘L + mc (D .5)

'is sometimes called the transverse or the longitudinal mass and is
denoted by LT k by other authors. The energy and momentum of

particle c¢ 1in the frame K can evidently be expressed in terms of

gL and B - according to
- -
p_L = p_L
p, = wsinhy » (D.6)
E = wcoshy

where w 1is given by (D.5) and the longitudinal boost or rapidity ¥

is related to B by’

y = tamhlp . (0.7)

Thus p, can be replaced by vy, and (s, RL’ ¥) can be used as the

three kinematic variables. For reference we record two more

expressions for y:

-Db4-
E + p )
;.'.. in ——”.
2N -y
v = y . - (0.8)

<E ; p”>
nl ——
w

The above expressions define the rapidity y in the frame K.
What about different frames, e.g., c.m.s. and laboratory? The laws of
Loréntz trensformations afe such that the.rapidity yl in frame Kl
differs by a constant from the rapidity % in frame K2, the constant
being the longitudinal boost that takes one from Kl to K2 according
to (D.?). This translation by a constant amount in going from one
Lorentz frame to another (along th? beam'direction) is one of the
attractive features of rapidity.
4, Rapidity and releted angular variebles

Ir PJ? >> m2

the expression (D.8) for y can be approximated

by

~ fn (}ot :) cos © | (p.9)
29.1_

where tan @ = P /p” Thus in the c.m.s. the rap1d1ty is approximately

equal to the cosmic ray angular variable,

o
1 = zn<cot —;-‘—S-> . (p.10)

Another cosmic ray angular variable is

' = - fn(ten gLab) ' (p.11;
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where gLab is the angle of emission of particle ¢ in the laboratory.
If ¢ 1is relativistic in the lab and the c.m.s. motion is also

relativistic in the lab, then the two angular variables are related by

T o= o+ zn(‘rcms) (p.12)
where T, = (1 - Bims)-l/2 ~ W/em, .

5. Invariant sub-energies in terms of rapidity differences, s and Y

The inveriant sub-energy of particlés 1 and 2 is

S1p = (pl + p2)2 . (D.13)

Using (D.6) to represent the momenta and energies this can be written

Sy0 = m12 + m22 + 2w, w, cOsh(yl - ya) - 25;1:351_ . (D.1h)
Similarly, the invariant momentum transfer,
t = (B - B) (p.15)
12 17 Pe
can be written )
t = 2 v 2 - 2w cosh(y, - v.) + 2%, D, . (p.16)
12 o Tl 12 €050y T Vp 12l
If ip_a .r;piaity difference y, - y.g- is ;afge ,then
$10 = “tp = W e"p'ylr'%' (p.17)
If we specialize to the incident particles a and b then
we have
s = mae + mb2 + 2m m cosh Y (p.18)
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where Y= Yo = ¥ is the laboratory rapidity of particle a. At

high energies, Y is given approximately by

. 1 \-
Y =~ zn(s/mamb) + O(E) . (p.19)
In this limit the repidity of the c.m.s. is
Y ~ -l-(Y - 4) (D.20)
CTems < 2 )
and the fapidities_of particles a and b in the c.m.s. are
* 1 * 1
v, = 3(Y+2), Yo = -35(Y - 28) (p.21)
where
A = zn(mb/ma) .
This is indicated in Fig. D.2 for A > 0. The maximum rapidity
interval
b a
' ' ‘
' Y-»& ! Y+a o !
! < 2 -———-—i-————- 2 — !
s . [] .
“— 8" —s | ~ & e
‘ ]
: | o i
i 1 . ¢
0 Y-o Y Y
2 .
Y cm——tm
Fig. D.2

available to particle ¢ is approximately Y, but dependinrg on its

mass it may be slightly larger or smaller than this. If c¢ is
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lighter than both a and b then the maximum and minimum rapidities

for c¢ are indicated on Fig. D.2 with

A'

fn(m_/m.)

A" = m(m/m) = A+a L

This corresponds to an absolute maximum c.m.s. :apidity for particle ¢

of

¥ = zn(W/mc) .. | . (Dﬂ?z)

The value (D.22) is attained at p = 0. If particle ¢ has a non-

'vanishing value of P the maximum allowed rapidity is smaller. The

range of rapidity is restricted to

-y ¥
Voax(P) < Y8 S Yaa(p)

where at high energies and for gl << W/2 the extreme is_given.by 

*
yma.x(IiL) s In(W/wc) .
Since most particles have relatively smali P this value is typically
smaller than (D.22) by less than unity. 'At'large EL’ of course, it

.causes.an'appreciable shortening of the range of rapidity.

6. Phase space and invariant cross section

The single-particle inclusive cross section is given by (A.k),
'1ntegrated over all final state momenta except particle c¢ and Sunmed
over all final states B that contain ¢ and are kinematically

allowed. The cross section this appears schematically as

3

go © . (Lorentz invariant) ¢'p,

ab - -(Flux factor) E (p.23)

c
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where the flux factor is given by (A.5). It is useful to define the

invariant differential cross section for a + b —;c + anything as

34 €
i’ o
ab ¢
E, dT— = Fop - _ {p.2k)
P o

It is easy to show that the invariant phase space dip/E. can be

written in terms of i{L and y as

; - S
a 2 2
o= Cp g - S (0.25)

Thus the invariant differentisl cross section is sometimes written as

3
F ¢ _ g g
d ?l?y

. - ) (D.26)

7. Relations between variables

We have the three major sets of variables (s, ?L’ y),
(s, Y x), and (s, t, M2). We give here the relations among these
variableé in the high energy limit where terms of order 1/s relative

to the leading contributions are neglected.

(a) Rapidity vy and Feynman’s x. ' g
For finite |x| (not of order 1/4fs), fixed moderate P
and large s the relation between x and y 1is

W
;l:exp(yc-ya), x>0

X = . (D'QY)‘

w
- —exp(y, -v¥.), x<0
mb b o]
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wnere w is given by (D.5) and x > 0 means that particle ¢ is

"iIn the same hemisphere as particle a in the ¢.m.s. For fixed )y
the differentials are related by dy = dx/x, as follows from (D.25)
when E is approximated by p“

(b) Relations between (t,Mz)d and (pl,x)

For finite ]xl, moderate p_L, and large s the iqva.ria.nt

momentum transfer t can be written in terms of P 1 and x as

2 2 1
t o= m (1-x)+m ( -;)-— (p.28)
provided x > 0. For x < 0, the connection is
t = - s|x| +m C T-T) +mb |x| -W . (p.28")
* .
Exactly at x =0, i.e., for p" = 0, the relation is
2 2 "
= - D.28
t = m° +m weV's ( )
Similarly, the square of the missing mass is
2
2p
2 2 L
l\f = s(1 - le) +m, (l - T§T> - T}-r- ‘ (p.29)
: ‘.
provided |x| 4is finite. For P, = O, we have instead
¥ = s-2Vsu +m?2 . (p.29*)
. c c A

It is worthwhile to note that for a given x +the minimum t

value (obtained by putting p, =0m {p.28) is

e GeD)
tmin = ma (1 - X) +mc "X

(D.30)

- -D10-

If we use x =1 = b?/s from (D.29), t in c8n be written alter-
natively as . - ‘

(mae - mca)Mz/s ,
(p.31)
w2 (M /s)°

These last expressions can also be obtained from (A.18) with appropriate
approximations. They do not hoid too near x =1, i.e., where M2 is

not large compared to the other masses.

(¢) Relations between (,t,Me) and ‘(P_L:Y)

" From (D.16) it follows that the invariant momentum transfer
is given in terms of rapidity by

2
t = m" o+ m,” - 2mw, cosh(yc - ya) . (p.32)
N
For large ch - yal this becomes
2 2 :
t 2 m© o+ B, - mw, explyc - yal . _ (D.321)

The square of the missing mass can be found in the high energy 1limit
from (D 29) and (D 27) to be a.ppromma.tely

/ _ o
w »
S[l - ;a- exp(yc - ya)] s ¥ >0

¢ 2

(D.33)

\8{1-%8@(%-%)] , yo <o .

(@) Phase space connections and invariant cross sections

In the high energy limit the differentials of the three sets

of variables are related as follows:
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ayap® = Zap® » axat » Taf a (D.3%)

This means that the invariant cross section can be written in the

alternative forms,

3 c - 3 c . c c
. ¢ d cab . a oab 1 dcab s dcab
ab dydep_L dx<12p_L wdx dt T ow g2 gy

(p.25)

The factors of x in the last two forms are present to give cross
sections per unit azimuthal angle.
-The approximate phase space in terms of x and ?l? in

(D.34) is singular at x = 0. The exact expression is dx dgl?/xo

1
2 \2 :
2 hy .
where Xg = |\ % + —E—-\ is the scaled energy. For |x| >> 2w/\/s ,

X |x| eand the expressious in (D.3%) and (D.35) are accurate. As

|x| -2 0, however, the distinction between |x| and X must be made.

Note that in integrating Fabc over any finite interval of some

variable one must multiply by the relevant phase space differential

from (D.34). Thus the number of particles seen in the interval A(%l?)
'and "Ax, integrated over azimuth, is
’ : c . 2y & =
oY = (Flux) x (Time) x Fop % 7 X A(pL) = - (D.35)

As s — o, this number is almost singular at x =0 if F £©

there.
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. -~ APFENDIX E

Distributions, Correlations, Moments, Sum Rules in Inclusive

We have defined the kinematics of inclusive processes in
Appendix D. Here we put down definitions of the normalized distribu-
tions, correlation functions, moments, énd sum rules.

1. HNormalized distributions

The n-particle inclusive invariant cross section for -the

process,
a+b o (L+2+ +-« +n) + anything . (B.3)

is defined in conformity to the single particle cross section (D.24)

as

n
d3 Uab(l,Q, +e+,n)

E,E,-+°E . (E.2)
172
n d5p1d3p2- - .d3pn

In order to compress the notation somewhat it is convenient to adopt
the notation
dipi
d¢i = Ti_ ’ (E3)

for the Lorentz invaeriaent phase space. Then the invariant cross

section (E.2) is

n
d Uab(l,Z, ‘ ")n)

. | (E.4)
df, 09, - -4,
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It is also convenient to introduce the normalized distributions,

n
do . (1,2,-+,n)
1 gbh\res )
pab(l:e)"':n) = = . (E'5)

%ab d¢ld¢2 cee d¢n

In (E.5) sometimes %ab is the inelastic, rather than total, cross

section if the elastic scattering contribution is omitted from the

.appropriate inclusive cross seqtiogs, In what follows we will

generally omit the subscripts ab. The iﬁcident particles will be

understood to be given.

2. Multiplicities and Higher Moments

' The average number of particles of type i 1is given by the
integral over all phase space of the normalized single-particle

inclusive distribution for particles of type 4:

w) = [ ot (=.6)

Higher moments are defined similarly by integrals over all phase space
of 2-particle and higher distributions. For example, the second

moments are given by
(ﬁinj ) Bijﬁi = lf‘P(i;d)d¢id¢j' oo (£.7)

The presence of (n{n - 1)) for i = j stems from the definition of
the inclusive cross section--if there are n particles of type i in
a given event, the first one can be picked out in n different ways

and the second in (n - 1). The third moment is given by
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: ) This is not actually attainable on kinematic grounds alone (see Sec. 4
(ninjnk - 513”1“k - 5'kninj - §.,n.n. + 28§, .5..0,)

i Jkiig ij ki’ below), but is & useful norm from which to measure correlations. The

anslog for the prong cross sections is a Poisson distribution,

= j’ p(i)-j_)k)d¢id¢jd¢k (E'B)

- : o n
and so on. : ' =2 . iﬂl— e_<n)
n'

p (E.12)

The analog in inclusive distributions of the‘prong cross

From (E.11) or (E.12) and the definitions of the moments in Sec. 2
sections discussed in Sec. III.2(a) are the n-charged particle distri- i :

. above it can be shown quite simply that the integral correlation
butions summed over all types of charged particles. We denote these

) ’ . coefficient for charged particles,
normalized distributions by pch(l,Z,---,n), but it should be ;

. . . : . k '
remembered that 1 stands for any charged particle in the ph = - .ee - -
er ny charged particle i e phase space £, = (nch(nch 1)--(n, -k + 1)) - () (E.13)
element d¢l, and similarly for the other particles. The various

: vanishes for uncorrelated charged particle production. The correlation
charged particle moments can be defined either through the prong cross

coefficients fk are thus useful as empirical quantities measuring
sections:
. . . the character of the n-particle distributions. Equation (E.13)
k k :
(n™) = n Un/° ’ : ) (E.9) defines f, for the charged particles, but there are obvious
n

generalizations for other situations, e.g., charged and neutral, n+,

or in terms of integrals over the various normalized distributions K+, and p, etc.

Sometimes moments for negative prongs instead of all charged
() = jpch(l) a, :
(E.lO) . prongs are presented. These moments are trivially related to the
(nCh(nCh -1)) = d[.pch(l’z)'d¢id¢2 v : o , .+ moments for all charged p?ongs because of chargg cpnservation. Let @

be the total charge in units of the proton's charge in the initial

and so onf state. Then for an event with n charged prongs, the number n_ of
¢ 3. Correlation coefficients, correlation functions , negative prongs is n_ = (n - Q)/2. This leads to the relations,
The idea of totally uncorrelated production of particles would Q
| () = pn) -3
lead to the prediction that the n-particle distribution is given by (E.14)
E.
' e 1 {n) Q !
0(1,2,+--,0) = p(1) p(2)---p(n) . (g.11) - PR A

and cérresponding linear combinations for higher moments.
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‘The integral correlation coefficients f, have their differen-

k
tial counterparts constructed from the normalized n-particle inclusive
distributions p(1,2,--:,n). The most commonly used one is the two-

" particle correlation function C(1,2):
c(1,2) = p(1,2) - p(1) p(2) . (E.15)

Evidently, the integral of €(1,2) over phase space gi#es< f2:

t - [caa g, IR R

Because of limited statistics, often correlations ar given in

only one variable, say rapidity. The two-particle rapidity correlation

function is defined by

5(y1,y2) = fC(l 2)dp(l) f) . _ (E.17)

From the experimental point of view it is more convenient to define a
correlation function R(yl,yg) as the ratio of C to the integral of

p(1) p(2) over 4 p(l) 2 (2) Thus the function 'R(yl,yz) is

(l) (57
f o(1) d f (2)

The advantage of R(yl,yg) is that it measures the fractional correla-

R(y;»¥5) (£.18)

tion and so treats favored and unfavored portiohs of phase space
equally, whereas C(1,2) given by (E.15) or E(yl,ye) given by
(E.17) can be small because p(1,2) and p(1) p(2) are small, even

though p(1,2)/p(1) o(2) # 1.
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L. Energy-Momentum and Other Sum Rules

The strict requirement of conservation of 4-momentum between
the initial and final state in every collision event leads to a
family of "sum rules" invol?ing inclusive cross sections or normalized
densities (Chou and Yang, 1970; DeTar; Freedman, and Veneziano, 1971;
Predazzi and VeneZiano,.l97l). The simplest of these involves the.
single-particle densities. The L-momentum of theinitial sﬁate can be

wiitten as

(e, + 7)) = Z ;" (1) ag; (E.19)
@ ‘
where the sum is over all contributing types of particles and
g =0,1,2,5. The right-hand side of (E.19) is just the summing up
of all the momenta in the final state. If we multiply both sides by
Tap We seé that (E.19) is a relation between_the O-particle inclusive
cross section and an intégral over the l-particle inclusive cross
section; There is a fairly obvious generalization relating the
n-particle inclusive cross section to the (h + 1)-particle ones.
Consider the process a +b - (1 +2 + »-. + n) + anything with its
cross section d“c(l,é-_,'--- ;n)/dB;aF, - +ag . For fixed momenta

pi,pé;~i',pn,‘the momentum of "anything", namely

P = P, + Py - (pl Pyt pn), can be thought of as being built

up in the manner of (E.19) by a sum of integrals over the various

inclusive cross sections for (n + 1) particles in the reaction,

' a+b — (; +2 +3 4 ... +1n + (n+ li) + anything. Thus we have the

general sum rule,
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(Pa * By - Py ~ Py = v - Pn)“ pab(l:2:°'°;n)

2: (Ppey ) °ab(1’2;"':“»n +1)ag, (E.20)
(n+l) : -

where the sum is over the different particle types chosen as the

(n +1)st particle. Evidently, (E.19) is (E.20) for n = 0.

The most useful of these sum rules are the n =0 and n =1

- forms.. The n = O one is (E.19). The n =1 expression is

byt ry e M a1 = ) [ pg (1,200,
(2)
This cen be written in terms of the correlation function (E.15) with
the aid of (E.19):

et ) = Y [rFouae, . - (e
(@) - '

The eiis£enée of ; nonvapishiné value on the Yeft-hand side of (E.21)
shows that 'Cab(l,2) cannot beriQeniically Zero. Particie\prodgctioﬁ
cannot be completely uncorrelated emission. ’ Some correlafions are
imposed merely by energetics.

' Similar sum rules can be written for any conserved additivg
guantity. Denoting suéh a‘quantity by Q@ (Q = elEctric céarge,
z-component of isospin, hypercharge, baryon number, etc.), the sum

rule reads

’

Q *Q = E: Qip(i)d¢i. . ; (E.22)
(1)
The manner in which different regions of phase space contribute to the
sum on the right-ﬁﬁnd'side is discussed for electric charge in

Sec. III.2(f).
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