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OPTICAL SYSTEMS FOR SYNCHROTRON RADIATION 

(A Series of Four Lectures) 

LECTURE 1: 

INTRODUCTORY TOPICS 

M. R. Howells 

Center for X-ray Optics, Lawrence Berkeley Laboratory, 

1 Cyclotron Road, Berkeley, California 94720 

1. INTRODUCTION 

In this lecture we consider various fundamental topics which underlie 

the design and use of optical systems for synchrotron radiation. We 

choose to adopt the point of view of linear system theory which acts 

as a unifying concept throughout the series. In this context the 

important optical quantities usually appear as either impulse response 

functions (Green's functions) or frequency transfer functions (Fourier 

Transforms of the Green's functions). 

2. SUMMARY OF LINEAR SYSTEM THEORY 

Consider a generalised system in which an input signal i(t) leads to an 

output signal o(t). If i 1 leads to o1 . and i 2 to o2 and if, in 

addition, the input ai1+bi2 leads to an output ao1+bo2 where a and b 

are arbitrary constants, then the system is said to be linear. The 

input signal i(t) = 6(t-t ) is of special importance and the corres-o 
ponding output signal o(t) = g(t,t ) is called the impulse response 

0 

function or Green's Function. It should be understood as the signal at 

t due to a delta function input at t . The impulse response function 
0 

contains a full description of the properties of system. 

Any arbitrary input can be synthesised from a series of delta func­

tions and hence using the superposition principle expressed in the above 
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definition of linea~ity we can w~ite the output quite gene~ally as 

+en 
o(t) = I i(t0 ) g(t,t0 ) dt0 (1) 

In addition to linea~ity many systems have the additional p~ope~ty 

that g(t,t ) = g(t-t ) i.e. that the ~esponse to a delta function 
0 0 

input at t 1 is the ~ as the ~esponse to one at t 2 apa~t f~om a 

shift of t 2-t
1

. Fo~ example, in a well co~~ected mic~oscope the 

~esponse to a point sou~ce of light in the object plane is a diff~ac­

tion blu~ in the image plane. If the point sou~ce is shifted the 

diff~action blu~ is shifted co~~espondingly but ~etains the same shape. 

Such systems a~e called shift inva~iant and fo~ these cases (1) becomes 

+en 
o(t) = I i(t0 ) g(t-t0 ) dt0 (2) 

we ~ecognise this as a convolution integ~al and f~om the Convolution 

Theo~em we immediately have 

O(w) = I(w).G(w) (3) 

Whe~e 0, I and G a~e the Fou~ie~ T~ansfo~s of o, i and g. Fo~ 

Linea~, Shift Inva~iant Systems (3) defines the FREQUENCY TRANSFER 

FUNCTION G(w) which is seen to be the Fou~ie~ T~ansfo~ of the 

impulse ~esponse function8 . 

We have not so fa~ given any pa~ticula~ physical meaning to the 

independant va~iable t. Howeve~ fo~ cases whe~e t ~ep~esents time an 

additional ~est~iction applies to the system because the~e can be no 

output until afte~ the input i.e. 

g(t-t
0

) ~ 0 fo~ t < t
0

. (4) 

Such systems a~e called causal and we shall see late~ that the 

~est~iction (4) leads to the ~equi~ement that the ~eal and imagina~y 

pa~ts of G(w) fo~ a Hilbe~t T~ansfo~ pai~. 

We now conside~ two examples of Linea~ Shift Inva~iant Systems which 

a~e ~elevant to optical system design. 

3. DAMPED HARMONIC OSCILLATOR 

Conside~ an elect~on bound so that its natu~al oscillation f~equency is 

w and lightly damped with with damping constant r. The impulse 
0 

~esponse function is the ~esponse to a fo~cing function -e! o(t) 

i.e. the solution1 to the equation. 

.. 



- 3 -

(5) 

In view of the non-zero inertia·of the system we need a sine solution: 

-e~ _r t 
~(t) : g(t) = e ~ sinw0 t 

mw 
(6) 

0 

By taking the Fourier Transform we arrive at the Frequency Transfer 

Function 

G(w) = -e~ 1 (7) 
m w2-w2+iwr 

0 

~ now represents the amplitude of a sine wave input to the system. 

4. FREE SPACE PROPAGATION OF AN OPTICAL FIELD 

Suppose we know the amplitude distribution of a wave over some plane 

surface l of finite area and general point P(x',y') and we wish to 

find the amplitude distribution over another plane surface parallel to 

I, distance z downstream from it and having general point Q(x,y). 

According to the Rayleigh - Sommerfeld diffraction formula2 

UQ(x,y) = 1 I u (x' y') expikr cose dx'dy' (8) 
ill P • r 

where PQ : r, k = ~and e is the angle between PQ and the normal 

to l· We recognise that (8) is a linear superposition integral_ like 

(1). To simplify (8) we approximate cos9=1 and r=z in the 

denominator. In the exponent we approximate 

r = ... ] (9) 

With these simplifications which are variously known as the Fresnel, 

Gaussian or Paraxial approximation (8) becomes 

u (x y) = eikz fu (x' y') exp i•[cx-x•)2+ (y-y•>2]dx'dy' (10) Q, n:z-lp , ~z 

We note that (10) is now a convolution integral (like (2)) and can 

finally be written, using * to represent convolution as 

where 

and 

U ( ) = eikz U (x ) * ( ) Q x,y n:z- P ,y w x,y:z 

i1rx2 
w<x,y:z) = w<~:z) = exp --rz-

~ = ix + jy. 

(11) 

(12) 

The function w<~:z) is known as an Optical Propagator or Vander Lugt 

Function. These functions provide a convenient shorthand for problems 
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in Fourier Optics and an extensive algebra has been worked out for 

them3 . 

5. OPTICAL PROPERTIES OF MATERIALS: ELECTROMAGNETIC THEORY 

Let us take as a starting point the exact form of Maxwells equations 
4 as stated for example by Born and Wolf We now make the following 

additional assumptions about the properties of the material we are 

considering: 

i = o~ Ohms law 

jext= Pext = 0 no external currents or charges 

P = X E no non-linear electric or - e-
~ = Xm~ magnetic effects 

medium is isotropic. 

Taking these together with the following equations5 

Q = ~ + 4~~ = c~ 

~ = ~ + 4~~ = ~H 
We have 

c = 1 + 4~x e 
1 + 4~x m 

x and x are the macroscopic electric and magnetic suscepti-
e m 

bilities respectively. Otherwise the notation is standard as in 

(13a) 

(13b) 

(13c) 

(13d) 

(13e) 

(14) 

(15) 

(16) 

(11) 

references 4, 5 and 6. Using (13a), (13b), (14) and (15), Maxwells 

equations reduce to a single wave equation6: 

2 c~ a2~ 4•o a~ 
v ~= z-:-:z+ -z-

c at c at 
(18) 

26 iwt If we now assume a time dependance e i.e. a/at _ iw 

then we get the space dependant equation 

2 2 4 
fJ2E + ~ (c - i ~0 ) E = 0 - c2 w -

(19) 

indicating a simple harmonic plane wave with complex propagation 

constant k given by 
R2 = k~ ~(c - i~) (20) 

where w is the angular frequency and k0 = ~ Since k nk where n = 
c 0 

n-ik is the complex refractive index of the material, we can write26 

for non magnetic materials (~=1) 

(n-ik)2 - 2 .4~o = n = c - 1-­w (21) 
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so that 

(22) 

Alternatively we can represent the last term in (21) as the imaginary 
part of a complex dielectric function c = c1-ic 2 where 

(23) 

Another common notiation is n = 1-6-i(L In all cases the real 

part represents dispersion; changes in phase velocity, wavelength etc. 

compared to vacuum. The imaginary part represents absorption. The 

plane wave solution to (19) thus becomes25 

E = E exp-i[nk .r-~t]exp-kk .r (24) - --o --o - --o -
The linear absorption coefficient ~ is given by 

~ = 2kko = ~ (25) 

In considering these optical constants it is important to note that 

for ~ > 100 eV, 11-nl = 161 << 1 and k = P << 1. 

6. THEORY OF DISPERSION 

Initially let us represent an electron in an atom as a damped harmonic 

oscillator with a single natural frequency as in equations (5) - (7). 

Then we can see that we have an atomic dipole moment ~ = -e~ = n~. 
The complex atomic polarisability n is thus from (7) 

n = ~2 1 
m ~2-~2+ir~ 0 

(26) 

The macroscopic polarisation E = Hn~ where H is the number of oscil­

lators per unit volume, so that from (13c) Xe = Hn and from (16) 

or 

c = 1 + 411'Nn 
411'Ne2 

c((.l)) = 1 + 
m 

1 

2 2 ·r 
~ -~ +1 ~ 

0 

(27) 

The behavior of the dielectric function in equation (27) is shown in 

Fig. 1. 

In order to be more realistic we need to recognize that atoms effec­

tively contain many oscillators of different natural frequencies, each 

frequency corresponding to the energy of an allowed electronic 

transition. Suppose there are n atoms per unit volume and each 
0 

contains g oscillators of natural frequency ~ . In this case s s 
N = n0~gs and (27) becomes 

411'n0 e gs 
C((.l)) = 1 + -- l 

m s ~~-(.1)2+ir~. 
(28) 



Fig 1. Behavior of the real and 
imaginary parts of c = c1 - ic2 
for N oscillators per unit volume, 
each with resonant frequency ~0 , 

according to equation (21) 

- 6 -

0 c: ... 
as 
m 

-Totai 
-·- Coherent 
-·-Incoherent 
--- Photoelectric 

101 1o2 1o3 

Photon energy {keV) 

Fig 2. Sample x-ray cross section 
data from reference 12. The curves 
show cross sections for photo­
electric absorption, coherent and 
incoherent scattering and the total 
cross section for gold. Note that 
in the entire region of interest 
here absorption is the dominant 
process 

{J & 6 tor Nickel 

Normal ---.<---... / 
Dispersion 

(3 

1.0 10.0 100 

XBLIY-11274 

Fig 3. Values of ~ and & for nickel in the range 1-lOOA taken from 
reference 19. Notice the Kedge at 8.3 keV and Ledges at 0.86 keV. The 
inset shows a rectangular pulse and its Hilbert Transform. one can see the 
similarity in the effects of a step in the two cases. 
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In view of this derivation it becomes clear that c(~)-1 is the 

frequency transfer function for the material as the linear system, with 

K<~> as input and ~(~) as output. 

From (27) we can see the limiting behavior of c(~) for ~ >> ~ 
0 

i.e. electron binding forces negligible: 

lim {;(~) 1 = 
c.rWD 1- ~ 

~ 

411'Ne2 
where ~ = --m--- and wp is known as the plasma frequency 

(29) 

This description represents a crude model for dealing with free 

electrons and it has relevance in describing the interaction of low 

energy photons with conduction electrons. In this case it is know as 

the Drude model. It is also important as the asymptotic form of 

c(~) for deriving sum rules20. 
Ultimately the most important property of our oscillators is their 

strength as scatterers of an incoming wave. To calculate this we 

first observe that an incoming transverse electromagnetic wave creates 

an oscillating dipole whose dipole moment is perpendicular to the wave 

propagation direction (the axis, say) and has dipole moment ~~ which 

is given by (26). The field at an axial point distant r from the 
7 dipole is E where . 

p 

E - ~2~(t-f> 
!:!JJ - c2r 

-substituting for ~(=~~)from (26) we get for our oscillator 
2 2 r · 

_ e ~ ~(t-c-> 

gp - mc2r ~2-~2+ir~. 
s 

(30) 

Suppose now the electr.on oscillator were to become a free electron. 

This would be achieved by setting ~ ~o. r~o. Then (30) would become 
s 

gp• = e 2 E(t-~) (31) 
mc2r - c 

We can now calculate the scattering strength of our oscillator relative 

to a free electron. This quantity is known as the SCATTERING FACTOR 

of the oscillator fs· 

fs = -~2 
~2-~2+i~r 

s 
Now using c = ~~/211' and 

From (29) and (30) fs = gptgp• or 

(32) 

the classical electron radius r given by 
0 

r 0 = e2/mc2 (28) becomes 



r(w) = 1 - n°~0~2 L gsfs 
11' s 
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(33) 

Appa~ently the quantity ' gsfs is an int~insic p~ope~ty of an atom. 

It is called the atomic scatte~ing facto~ and is usually w~itten as 

f=f1+if2. Substituting this in (33) we have 

r(w) = 1- n°~0~2 (f1+if2) 
11' 

(34) 

and using (22) and (23) with 1-n=~ and k=~ both small we finally get 

(35) 

~ = ~ono ~2f = A~2f 
z,r- 2 2 

(36) 

-6 ~ o-2 13 
whe~e A= 2.72 x 10 H A , ~0 = 2.818xlo- em, 

3 and p is the density in gm/cm and M the atomic weight. 

A knowledge of f 1 and f 2 o~ thei~ equivalents is ext~emely impo~tant 

in designing optical systems and the~e a~e extensive tabulations in 

the lite~atu~e. Because of its di~ect ~elationship to the absorption 

coefficient and the absorption c~oss-section c, f 2 is easie~ to 

measu~e and is mo~e widely known and tabulated than f 1 . Fo~ ~e­

fe~ence we ~ecall that the linea~ absorption coefficient is given by 

~ = 4{~ = 2~ ~n f = n c 
0 0 2 0 

(37) 

In the next section we show that since c(w) is a f~equency t~ansfe~ 

function of a casual system, its ~eal and imagina~ pa~ts must fo~ a 

Hilbe~t T~ansfo~m pai~. Anticipating this ~esult we find14 

(38) 

This is the ~elation usually used to de~ive ~ o~ f 1 values f~om a 

set of measu~ements of ~ o~ f
2

. (38) has two te~s the fi~st o~ 

"no~al dispe~sion" te~, which desc~ibes the dispe~sion fo~ an atom 

comp~ising Z f~ee elect~ons and the second o~ "anomalous dispe~sion" 

te~m which desc~ibes the ~esponse of the ~esonant system consisting of 

the oscillato~s. The second te~ becomes negligible fo~ f~equencies 

much la~ge~ than the la~gest ~esonant f~equency. 

We show in table I a su~vey of the main compilations of optical 

constants data fo~ both VUV and x-~ay ene~gies. In figu~es 2, 3 and 4 
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we show typical data from such sources. In using these data we offer 

various points to be noted : 

(i) Unique values of f
1 

and f
2 

only exist for photon wavelengths 

somewhat larger than the atomic size. For shorter wavelengths,the 

useful quantity for us is the scattering factor near the foreward 

direction. 

(ii) The above theory was written with photon energies above 100eV 

in mind. In this case the allowed transitions having significant gs 

values in (28) are essentially from atomic bound states into the 

continuum. This is not a necessary restriction and transitions 

dominated by solid state effects, interband, intraband etc can be 

included without changing the formalism except that & and P (1-n and k) 

may no longer be small. 

(iii) Tabulations above 100eV depend on measurements or 

calculations that are specifically atomic in character. They do not 

include anything to account for solid state effects such as EXAFS, 

XANES etc. Generally speaking they also make no attempt to follow the 

functions when they are rapidly varying near absorption edges. 

Behavior in these regions is usually approximated as a sharp step. 

(iv) Significant disagreements among the various sources and 

between theory and experiment are quite common. Efforts continue to 

improve this situation. The following32 gives an idea of the 

accuracy with which optical constants are known: 

Below 1 keV 

1-5 keV 

Above 5 keV 

30-50~ inconsistencies among theories, 

sparse experimental data 

Sources agree within 5-10~, occasionally 20~ 

Sources agree within 2-5~ except within 10~ 

above threshold when variations are 10~ for 

low Z, 5-10~ for high Z. 

(v) In some wavelength ranges f 1 values are hard to find. To 

get f
1 

values in these ranges one can either apply equation (38) or 

utilize the universal dispersion curves provided by Parratt and 
10 Hempstead Either way considerable effort is involved. 

(vi) Optical constants of compounds and mixtures can be calculated 

by taking the weighted averages of the elemental constituents. This 

procedure is obviously good only when atomic effects dominate. 
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Fig 4. A sample from the tabulation of Henke et al. (reference 14 (U)) 
showing f1 and f2 values for aluminium. 
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Fig 5. The contour c used in equation (41) 
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1. KRAMERS KRONIG RELATIONS 

-Since c(~)-1 is a frequency transfer function there must be a 

causal, shift inv~riant impulse response function g(t-t0 ), so that 

- +m 2 . &(~)-1 = J g('t)e- 111~'td't (39) 
-CD 

where 't = t-t and g('t) = 0 for 't < 0. Suppose for the moment 
0 

that~= ~1+i~2 .(39) then becomes 

c(~)-1 =+j g('t)e-2~i~1't e2~~2't d't 
-CD 

(40) 

It is apparent from the last term of the integrand in (40) that for 

't > 0. The integral remains bounded only if ~2 < 0. Thus 

;(~)-1 is analytic only in the lower half plane. We also consider 
that ;(~)-1 ~ 0 as 1~1 ~CD. This is because ;(~)-1 

represents a physical property of a material and no material is 

elastic enough to respond to an input at infinite frequency. 

With these understandings the integral 

I= J c(~')-1 ~· 
~·-~ c 

(41) 

9 (with the contour c shown in fig 5) must, by Cauchy's Theorem , be 

equal to zero. Defining integrals that go clockwise round the 

contour as positive we get 

I = Ilarge circle + Ireal axis - i Ismall circle (42) 

or substituting values 

~·-A 

0 = 0 + J 
-CD 

1 
+ J - 2·2~i{&(~)-1} 
~'+A 

where the value of the last term follows from Cauchy's integral 

formula9 . Taking the limit of (43) as A~O we get the result 

&(~)-1 = ~ p ~ c(~')-1 d~· 
1~ -CD ~ -~ 

where P indicates the Cauchy principle value. Taking real and 

imaginary parts of (44) with c=c1-ic2 

&1(~)-1 =-! p ~ &2(~') d~· 
~ -CD ~·-~ 

and 
1 +m &1 c~· )-1 

= - p l d~· 
~ -CD ~-~ 

(43) 

(44) 

(45) 

(46) 
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The signs of (45) and (46) would be reversed25 for & = &1+i&2· 

(45) and (46) are a form of the Kramers-Kronig23 relations for 
&(w)-1 and indicate that the real and imaginary parts of &(w)-1 

indeed form a Hilbert Transform pair24 The same proof is applicable 

to any causal frequency transfer function. It is usual to apply 
27 certain arguments and rewrite (45) and (46) as 

(41) 

(48) 

where a(o) is the d.c. conductivity. 

It is not possible to identify the refractive index directly as a 

frequency transfer function, however we can still get Kramers Kronig 

relations for it by the following argument28. n(w) is analytic in the 

lower half plane since n2 = & and an analytic function of an analytic 
function must be another analytic function. Thus the main argument for 

&(w)-1 can be used for n(w)-1 and (47) and (48) can be shown to become28 
(SJ 

n((t.))-1 =- l PI k(w')w' dw' 
1t o w•2-w2 

(SJ 

k(w) = 2w pI n(w')-1 dw' 
1t o w' 2_w2 

(49) 

(50) 

Useful dispersion relations for many other quantities for example the 

amplitude reflectance6 can be worked out and are important for ana­

lysing optical data. Reviews can be found in references 6, 20 and 28. 

There are further restrictions on the form of the optical constants 

which can be traced to the fact that all physical systems have some 

inertia and so their impulse response functions must be zero at time 

zero. Such restrictions are called inertial sum rules and are 

reviewed in reference 20. The best known sum rule is the "f-sum rule" 

and we can derive it easily by considering the high frequency behavior 

of, for example, n(w). Equating the square root of (29) to the high 

frequency limit of (49) we immediately get 
(SJ 

I w k(w)dw = ! ~ 
0 4 

(51) 

In view of (39) it is not surpising that the t~o behavior of n(w)-1 

can be studied by considering ~. 
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Veigele 13 all elements 
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TABLE 1 

Constants 

absorption 

ct"oss sections 

only ditto 

ditto 

f1 & f2 

f1 & f2 

Kit"z et al. 

steps 

Haelbich and 

I wan 

16 Rat"e gas sols p 

alk halides 

Enet"gies Gt"id spacing 

103-1o6ev 10-2~ 

102-1o
8

ev 

102-1o8ev 

100-2000eV* 

10-20'1. 

10-201. 

-2.51. 

100-2000eV{f
1 ) -101. 

30-10000eV{f2 ) {lines) 

100-10,000eV 102 ot" 

-5-SOOOeV 

{vadable) 

103 

Weave!:" et al. 17 Most metals c1c 2nk -.1-30eV 

gt"aphs 

only 

.05eV 

Im{!) not"mal R {vat"iable) 
& 

Hageman et al. 18 Mg Al Cu Ag ditto plus 

Au Bi C Al2o3 Neff 

Zombeck and 

Austin 

Palik {ed) 

Sasaki** 

Hettdck 

Auet"bach and 

Tit"sell 

Henke and 

Schattenbut"g 

Biggs and 

Lighthill 

19 Ni,Au,Pt, n, k 

gt"azing R 

20 11 metals, n, k 

14 semi cons, 

12 insulatot"s 

21 all elements f 1 & f 2 
22 Ni,Au,Ru,Pt, n, k 

It",Rh,Os,Re,W gt"azing R 

29 all elements f 1 & f 2 

30 elements 

1-32 

31 all elements absorption 

ct"oss-sections 

* data up to 10,000eV on digital stot"age 

**computed values using Ct"omet" and Libet"man code 

4 -.01-5x10 eV 

100-10,000eV 

IR-2000eV as 

appt"opdate 

.1-2.89! 

100-10,000eV 

10-501. 

10'1. 

vat"ious 

.01A 

101. & 

gt"aphs 

100-10,000eV gt"aphs & 
digital 

stot"age 

100-1500eV pat"ametet" 

fits 

pat"ametet" 

fits 
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