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MONOCHROMATOR SYSTEMS 

LECTURE 3: 

Malcoim R. Howells 

Centea:- foa:- X--a:-.ay Optics, Lawa:-ence Bea:-keley Laboa:-ator.y 

1 Cyclota:-on Road, Bea:-keley, Califoa:-nia 94720 

1. INTRODUCTION 

We discuss general pa:-operties of monocha:-omatoa:-s and give some useful 

for.mulas for optical design. We do not have space to discuss 

paa:-ticular insta:-uments but we give faia:-ly compa:-ehensive a:-eferences. 

An excellent comprehensive a:-eview is given by Johnson.24 

2. DIFFRACTION GRATINGS 

We consider only the most useful type of ga:-ating which is a Rowland 

reflection ga:-ating. The groove pattern consists of the intea:-section 

of the substrate sua:-face with a set of paa:-allel equispaced planes. 

The notation for dealing with it is shown in fig 1. The basic rela

tionship between the angles of incidence (a) and diffa:-action <B> is: 

rnA= d(sina + sinB), (1) 

whea:-e A is the wavelength. a and B have opposite signs if they 

aa:-e on opposite sides of the not"mal. Appaa:-ently there aa:-e an infinite 

numbea:- of a,B paia:-s coa:-a:-esponding to any given A. Thea:-efoa:-e, we 

ar.e fa:-ee to impose a a:-elationship between a and B. The following 

rf~lationships are used: 

~ ._1,__ The on:-J?!.!!_ze conditiQ_f! 

Foa:- a saw tooth grating with angle eB we can require that the 

diffracted ray be fot"med by a specular a:-eflection off the blaze 

facet. In this case 

Q t B 2eB (2) 

Eliminating Q between (1) and (2) gives 

mA = 2dsine8 cos(B+9B) (3) 

Noti.ce that (3) is the Bragg condition for the blaze facets as Bragg 
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Fig. 1 Notation for diffraction by a grating 
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Fig. 2 Notation for analysis of diffraction by a toroidal grating 
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planes with spacing dsin8
8 

2.2 Fixed in and out directions 

This means 

<k-~ = 28 = constant 
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(4) 

where 28 is the included angle between the in and out directions . 

8 is always positive. Eliminating o between (1) and (4) gives 

m~ = 2d cos8 sin(8+~) (5) 

(8+~) is the angle between the diffracted ray and zero order. Thus 

(5) allows the possibility of a linear wavelength drive if the grating 

is rotated by a sine bar mechanism whose zero position (line of drive 

perpendicular to the sine bar) corresponds to the grating being at zero 

order. The wavelength scan ends at o=90° (positive order) or ~~90° 

(negative order). This happens at the so called horizon wav£!length ~ 

where 
2 

~ = 2d cos 8 

2.3 Constant incidence angle 

(m=±1) 

With <k constant (1) give ~ directly 

2.4 Constant focal distance (of a plane grating) 

We show later that this requires 

r 

Again eliminating o between (1) and (7) leads to 

[m~ _ ] 2 
sin~ = 1 - K(1-sin2~) d. 

2. 5 Applications • 

(6) 

(7) 

(8) 

Equations (3), (5) and (8) can readily be inverted to give ~ (and 

t.hence o) for any ~. The following monochromator systems used for 

synchrotron radiation applications are based on the above conc(~pts 
1 2.1 Hunter et al double plane grating monochromator (PGM) 

2.2 

2.3 

2.4 

Kunz2 et al PGM 

Mijake et al3 PGM, West et al4 PGM, Howells et al 

(PGM) 5
, Eberhardt et a16 (PGM), all gr·azing incidence 

toroidal grating monochromalors (TGM's) 7
, Seya-Naroioka8

•
9

, 

most aberration reduced holographic spherical grating devices. 
10 spectrographs, Grasshopper monochromator Essentially all 

11 Petersen : SX700 PGM, 12 
Brown et al UMO: PGM 
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3. FOCUSSING PROPERTIES OF A TOROIDAL GRATING 

Consider- a tor-oidal gr-ating with r-adii R(major:-) and p(minor:-) 

illuminated by a point sour-ce (A) in its symmetr-y plane. Assume p 

is chosen to cor-r-ect astigmatism at some wavelength in the wor-king 

r-ange. The ar-r-angement and notation13 ar-e shown in fig 2. The 

Gaussian (par-axial) image point is B0 . The r-ay via the point 

P(x,w,i.) on the gr-ating sur-face ar-r-ives in the Gaussian image plane 

at B. When P is at or- near- the gr-ating pole (0) the par-axial 

appr-oximation is good and the r-ays unite at B0 • As P gets fur-ther

away fr-om 0, the par-axial appr-oximation begins to fail and aber-r-ations 

become significant r-esulting in the point B moving away fr-om B0 in a 

way which depends on the co-or-dinates ,w,!l. of P .. We char-acter-ise 

this situation by calculating the optical path function14 (F) in the 

for-m of a power- ser-i.es in w,!l. as follows13 

F - Foo + wF'ol + l/2w2Ii'2o + 112!1.2Fo2 + 112w3F30 

+- 112wi. 21<'12 + l/8w4F'40 + ... (9) 
wher-e 

Foo [' +- r:-' (9a) 

Fo1 -= 
m>.. sine& - sinl3 Gr-ating eqwition (9b) 

d 

1<'20 = L T Defocus (9c) 

Fo2 L s Astigmatism (9d) 

F3o L sine& T 
[' 

Coma (9e) 

F12 - L :>ine& s 
[' 

Astigmatic Coma (9f)· 

F4o L 4sin2e&. T T2 s Spher-ical aber-r-ation (9g) ·- + 
r:-2 [' R2 

and T 
COS2Q COSQ s 1 COSQ 
---- -R ' [' [' p 

The L implies that a second expr-ession must be added that is identi-

cal to the fir-st except for- the r-eplacements r:-->r:-' and e&-+13. The 

condition for- a focus in the plane of disper-sion is fr-om equation (9c) 

cose& cos2J3 cosl3 
--r:--- -- -R-- + -·-·~- -R ;: 0 (10) 

This equation can be satisfied in var-ious ways which we discuss below. 

3 . 1 ___ The Row lanA_ C i._rc 1~ 

Suppose we put r:- ~ RcosC&, r:-• = RcosJ3. This sets the two br-ackets 
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in (10) separately equal to zero and implies that A and 80 lie on a 
. 15 

circle of diameter R : the Rowland Circle. From (9e) coma also 

vanishes in this case. For an astigmatism corrected toroid satisfying 

the Rowland condition, the remaining aberrations and hence the 

resolution become dominated by astigmatic coma according to (9f). If 

astigmatism is not corrected as for example in the spherical grating, 

then the expansion (8) is no longer adequate. This is because the 

assumption of a point source and approximately corrected astigmatism 

justified the omission of all tenus depending on the field variables 

at both sou~ce and image. Without the corrected astigmatism 

assumption we must include tenus depending on 6z in fig 2. The 

result of doing this is a more complicated wt 2 term16 1n (9) 

which turns out to give much smaller contributions to the resolution 

which are negiigible compared to the spherical aberration. The latter 

therefore becomes the dominant aberration of the spherical grating 

Rowland mount. 17 •18 From this argument it is clear that spherical 

gratings have better resolution than toroidal ones in all cases. 
. 19 20 3.2 The Wadsworth mount1ng • 

(10) is satisfied if r = CD and · 

r• = Rcos2p · 
cosa+cosp 

(11) 

For a given a (ll) defines a focal curve which is rather :flat in the 

region of P=O allowing a useful working region for normal incidence 

applications. 

3.3 The 2lane grating 

If R = CD in (10) one has 

r• cos2p 
(12) = - r-r 

cos Q 

Showing that there is a virtual image distant r' behind the grating. 

To have a fixed image at the exit slit one can design optics to keep 

r• fixed by choosing a and P values that satisfy equation ( 7). 

11 This is lhe basis of theSX700 monochromator. 

3.4 Approximate solutions 

It has been found convenient for ultra high vacuum engineering of 

monochromators to have a simple rotation about a fixed axis as the 

only motion for scanning wavelength. In its simplest form, this 
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arrangement would have r and r' fixed. The configuration would be 

designed by choosing two wavelengths ~1 and ~2 for which an exact focus 

is desired. e is then chosen on reflectance arguments, d on horizon 

arguments (equation (6)) and then the o and ~values corresponding to 

~1 amd ~2 would be found from (5) and (4). (10) then gives two 

linear equations to be solved for rand r'. The optimum way to choose 

~1 and ~2 is discussed in reference 21. Refinements to this 

procedure are to have exit and entrance slits that move to maintain 
22 focus over a finite range and to choose a spherical grating instead 

of a toroidal one to exploit the superior resolution of the former. 

3.5 Focussing in the plane perpendicular to the dispersion plane 

Failure to focus perfectly in the z direction in figure 2 indicates 

some cylindricity in the nominally spherical wavefront and is known as 

astigmatism. In the grazing incidence toroidal grating systems of 

interest to us astigmatism can be corrected at one wavelength by proper 

choice of p, i.e. p is chosen so that F02 = 0 which means 

p = coso+cos~ (13) 

In fact, when lol + 1~1 = const, (coso + cos~) is a slowly varying 

function 7 so that, in practice, a p value chosen according to (13) will 

give sufficiently good astigmatism correction over the whole range .. It 

is this capability that has caused toroidal gratings to be preferred 

over spherical ones for many synchrotron radiation applications in the 

past few years. 

4. OTHER ABERRATIONS 

We do not give a detailed treatment here. References 14 and 23 give 

lucid general explanations. Reference 24 gives a full account with 

synchrotron radiation applications in mind. Fig 3 gives a feeling for 

the type of image one gets from toroidal grating systems. Four 

aberrations are visible 

(i) The non-zero width in the symmetry (dispersion) plane is due to 

defocus(F20 > 

(ii) The large curvature to the right is due to astigmatic coma (F12 > 
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Fig. 3 Results of a typical ray trace for a toroidal grating. 
Various aberrations are evident as discussed in the text. The 
constants Cz2• C2o are the same as Fz2 , F2o etc. 
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(iii) The weak curvature of the line labelled as due to rays from 

the bottom edge of the grating is due to coma (F30> 
(iv) The non-zero height of the image is due to astigmatism. 

5. QUANTITATIVE ABERRATION CALCULATIONS 

The importance of the optical path function is that it enables the 

eo-ordinates of B, (6y,6z) in fig 2 to be calculated. Furthermore 

it gives a decomposition of the displacements (6y,6z) into 

contributions 6yij t Azij from the various aberrations. Thus 

r• aFij 
6y·. = ---- (14) l.J 

cos~ aw 

6Zij = r• 
aFij 

(15) 
at 

6y ~.6Yij 
r• aF (16) = - ----

l.J cos~ aw 

Az = ~.6Zij r• aF (17) - -
l.J at . 

These equations are proved except for the cos~ factor, which is due 

to grazing incidence, in references 14 and 23. 

Of course for monochromators the most interesting quantity to 

estimate is the resolution. This is easily derived from (16) as we 

now show. 

6. DISPERSION AND RESOLUTION 

By differentiating the grating equation with respect to ~ at constant 

~ we find the angular dispersion 

(
d>..) = dcos~ 
ap- ~ m 

(18) 

Let us now define a co-ordinate q in the plane of the exit slit in 

direction 6y (fig 2). Apparently dq = r'd~. So using this and 

(18) we obtain the reciprocal linear dispersion 

(
d>..) dcos~ = 10-3d(!)cos~ Almm 
aq ~ = -rorr-- mr'(m) (19) 

For the Rowland case cos~tr• = 1/R in (19) giving a constant value 

for the reciprocal linear dispersion. 

If we consider a monochromatic source (d>..=O) then the grating 

equation gives us cos~d~ = - cos~d~. If the source and image 

\-I . 

r 
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&izes a~8 sands' respectively then do= s/r, da = s'/r' and we 

get an exp~ession for the magnification H{~) = s/s' 

H(~) = coso r' ( 20) 
cos(J r 

we 88e that H(~) = 1 fo~ all ~ fo~ the Rowland case. Botice that' 

H(O) • ~·tr, as expected, and H(~) > H(O) fo~ negative o~de~ and 

H(~) < M(O) fo~ positive o~de~. 

suppose we a~e imaging a monoch~omatic source with ze~o width 

ent~ance and exit slits. This is possible in the geometrical optics 

view of imaging. Suppose the sou~ce moves a small distance s. Then 

we have do = sl~. In addition f~om {1) 

So A~= 

dcoso 
m 

sdcoso (21) 

This is the slit width (o~ sou~ce size) cont~ibution to the 

~esolution. By a simila~ a~gument the exit slit cont~ibutes an amount 

{22) 

we see that A~ = sd/mR for the Rowland case and similarly for 

A~s·· The aberrations contribute an amount which for each ray is 

given by· setting s' in (22) equal to Ay so that 

A~A = Aydcosa = ~ aF <23 > 
mr' m ay 

It is unusual in grazing incidence systems to be close to the 

diff~action limit. However, with synchrotron sources planned that 

produce diffraction limited beams well into the VUV plus the 

increasing use of the partial coherence properties of synch~otron 

radiation for _coherent imaging expe~iments we must consider it. It is 

proved, for example, in reference (14) that the diffraction limited 

resolution A~D of a grating with B grooves is given by 

. (24) 

In the event that the optical system of a monochromator is imperfect 

this will add a further contribution to the resolution. Suppose the 

line spread function due to imperfections is of width h then the 

.resolution contribution will be 

hdcosa 
A)..LSF = (25) 

mr' 



- 10 -

Equations (21) - (25) give the five main contributions to the 

resolution of a monochromator. The actual resolution function is 

obtained by convolving the five resolution functions together. The 

width of the overall resolution function is therefore usually 

estimated by combining the five widths quadratically. 

1. PHASE SPACE ACCEPTANCE 

Suppose th~ grating in fig 2 has width w0 . The beam of light 

illuminating the grating has emittance c given by 

£ = 
w0 cosu 

r 
. s 

Setting w0 = Hd and expressing this from the view point of the 

illuminating beam, 
A(AAs) = H AAs/4 (26) 

where A(AAs) is the phase space acceptance. If AAs is in 1 

then A is in !.radians. The 1/4 comes from our wish to be compatible 

with accelerator physics and define phase space in terms of half 

widths and angles. 

This is an important equation. It shows firstly that the acceptance 

varies with the slit-width-limited resolution. It also shows how to 

compare the phase space of the synchrotron source with the phase space 

of the monochromator. We know that if the emittance of the photon 

beam from the source is larger than A(AAs) by some factor F, then 

one must sacrifice a factor F in flux to work at that resolution. We 

show in figure 4 a plot which in this authors opinion is the proper 

way to show the resolution - flux trade-offs of a particular 

monochromator working with a particular source and is also the proper 

way to compare the characteristics of competing monochromator designs. 

The monochromator whose data are plotted in fig 4 is under construc

tion at Lawrence Berkeley Laboratory. It is a 55 meter, Rowland 

Circle device using a water cooled spherical grating in a conventional 

TGM mount. The included angle (26) is 174° and the overall length 6 

meters. 

All the curves refer to the use of full aperture for the 180 mm wide, 

1100 l/mm grating. The ultimate resolution displayed is the 

spherical aberration limit. The actual resolution should equal the 

spherical aberration limit in the region 15-251 and be less good 

r 
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Fig. 4 Comparison of the source emittances and the acceptance of the 
spherical grating monochromator under different operation 
modes. The solid curves l, 2, refer to SPEAR (54 pole wiggler 
for 3 GeV and l. 3 Tesla at normal operation ( 1), and w1 th the 
low emittance upgrade (2), curve 3 refers to an -ALS bending 
magnet. The long-dashed curves show the acceptance when the 
entrance slit of the monochromator is set for constant energy 
resolution AE. Usually a monochromator is operated with 
fixed entrance slit width which results in the dash-dotted 
acceptance curves. Both sets of curves are based on the 
assumption that the resolution is slit width limited and that 
the grating is always at full aperture (18cm width). The 
ultimate resolution of the monochromator, which is given 
mostly by the spherical aberration (short-dashed curve) and 
partly by the diffraction limit, is indicated by the shaded 
area. This figure shows which resolution can be achieved and 
how much of the incident flux is therefore lost. 
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outside that. The figu~e tole~ance ~equi~ed is about lpR which 

should be achieved fo~ a spherical su~face, however, achieving an 

adequate finish may be quite challenging. The most difficult 

p~actical p~oblem is mechanical stability ove~ the 6 mete~ length. 

F~om (26) we see that the ~esolution-luminosity p~oduct (RLP) (o~ 

mo~e p~operly the ~esolving powe~-phase space acceptance p~oduct) is 

given by H~/4 in the slit-width-limited ~egime. The ~esolution 

luminosity p~oduct is intended to be a figu~e of me~it to compa~e 

competing designs so if we always wo~k in the slit-width-limited 

~egime then the design with the la~est » wins. A more useful way to 

inte~~et the ~esolution-luminosity p~oduct is as the ultimate 

~esolving powe~ (~/A~) times A(A~) so we get 

A~ 
RLP = »~ ~ (27) 

which is a function of ~ and A~ which can be plotted fo~ given 

inst~ents fo~ compa~ison pu~oses. 
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Fig 6. Example of a two dimensional finite element calculation. Left 
pic~ure shows the mesh of points describing a 6 mm diameter 
water channel in a copper alloy mirror, at a distance 2 mm 
from ~e optical surface. An approximately gaussian power 
load with a = .85 mm, peak power density 5 w/mm2 is 
applied symme~rically. Center picture shows the isothermals 
calculated by the finite element program ANSYS at 2°C 
intervals. The hottest point on the optical surface is the 
center point at 72.5°C. The water surface is at 58°C on the 
hot side, 39°C on the cold. Right hand picture shows the 
stress contours (Von Mises equivalent) at 4xzo6 Pa 
intervals. Maximum stress occurs at the center and is 
9.12xlo7 Pa(= 13200 psi), hence the use of the special 
copper alloy: Glidcop (see reference 49) 
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Fig 7. Plots of (a) 6TAB, (b) maximum slope error and (c) maximum 
stress as a £unction of the parameter a with parameter b = 
0.243 (see inset diagram). All these quantities .are expressed 
in the natural units defined in the text. 
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