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On the Inclusion of Upper Laue Layers in Computational Methods 

In High Resolution Transmission Electron Microscopy 

Abstract 

Three different methods for computing scattering amplitudes in High Resolution 

Transmission Electron Microscopy (HRTEM) have been investigated as to their ability 

to include upper Laue layer (ULL) interaction. The conventional first order multislice 

method using fast Fourier transform (FFr) and the second order multislice method 

(SOM method) are shown to yield calculated intensities of first order Laue reflections 

with the use of slice thicknesses smaller than the crystal periodicity along the incident 

electron beam direction. It is argued that the calculated intensities of ULL reflections 

approach the correct values in the limiting case of vanishing slice thickness and elec

tron wavelength. The third method, the improved phasegrating method (lPG) does 

also in principle include ULL effects, but is severely limited as to choice of slice thick

ness and sampling interval. 

A practical way to use slice thicknesses less than the crystal periodicity along the 

incident beam direction is shown for both the conventional FFf method and the 

second order multislice method and tested on a spinel structure. It is also shown that 

the lPG method does not easily allow for a slice thickness different from the crystal 

periodicity in the beam direction. 



1. Introduction 

Because of the small curvature of the Ewald sphere most electrons scatter into 

directions given by the reciprocal lattice points lying in the zero order Laue zone 

(ZOLZ) (Fig. 1). Diffraction into upper Laue layers is a small effect, but is easily 

observed in Convergent Beam Electron Diffraction (CBED). The ULL reflections do 

not contribute directly to the image in HRTEM since the effective aperture, whether a 

real objective aperture or a virtual aperture defined by an envelope function [1], 

exclude the contribution to the image from the ULL beams. In most cases, however, 

because of dynamical scattering the ULL reflections will modify the intensity of the 

zero order Laue reflections and consequently affect the image. Where such ULL 

interactions are no longer negligible they must be included in the computation of elec

tron micrographs to give more accurate results. 
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For practical reasons most image simulations in HRTEM employ a me'hod based 

on multislicing. In this computation the specimen is considered to be sectioned into 

slices perpendicular to the electron beam and the electron wave function is calculated 

at every slice in a recursive way starting from the known electron distribution at the 

beginning of the first slice. Again for practical reasons, the crystal periodicity parallel 

to the electron beam is invariably chosen as the slice thickness provided it does not 

violate the criteria of validity for these multislice methods, [2],[3]. 

are: 

Various methods to include the effect of the ULL have been suggested. These 

1. The use of slices smaller than the crystal periodicity parallel to the direction 

of the incoming electron beam [2],[4]. 

1./ 



2. Second order multislice, using potential eccentricity within the slice [ 5]. 

3. Improved phasegrating method [6]. 

So far the degree of success of these methods in including ULL interactions have 

not been shown. It is generally believed that as the variation of the crystal potential 

along the incident electron beam direction is taken into account, the ULL reflections 

are automatically included. The degree to which this is correct is the topic of this 

paper. 

The 200 reflections in the stoichiometric spinel, MgA120 4 [00 1], described by the 

space group Fd3m (0~) [7] are kinematically forbidden. However Steeds has shown 

that they appear in experimental convergent beam electron diffraction patterns [8] and 

accredits [9] their presence to scattering from the first order Laue zone (FOLZ). This 

being the case, the ability to account for their presence would serve as a test for the 

inclusion of ULL effects in present multislice calculations. 

Additionally, with the use of small slice thicknesses it is of utmost importance 

that one correctly takes into account the potential for each slice in each of the three 

multislice calculations. Different authors approach this problem in different ways, not 

all equivalent and unfortunately not all correct, and this paper will address this ques-

tion. 

2. Theory 

The three multislice formulations that will be discussed are all approximations to 

the solution of the modified Schrodinger equation below [5] 
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(2.1) 
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where 

(j= (2.2) 

and 

(2.3) 

V is the crystal potential in volts. 

2.1 Conventional Multislice with Small Slice Thicknesses 

The conventional multislice formulation involves a recursive application of the 

following equation: 

ct>(x,y,zm + ~z) = P(x,y,~z) * [Q(x,y,zm,~z) · ct>(x,y,zm)J (2.1.1) 

where P(x,y,z) is the free space propagator, and Q(x,y,z,~z) is called the phasegrating. 

The expressions for P and Q are: 

{ 

Zm+llz } 

Q(x,y,zm.~z) = exp iO' L V(x,y,z)dz (2.1.2) 

(2.1.3) 

All information about the scattering potential is contained in Q and only reflec-

tions allowed by the Fourier transform of Q are possible. Similarly all the information 

about the curvature of the Ewald sphere is contained in the propagator the function of 

which is to keep track of the excitation errors of each reflection (in the zero order Laue 

zone), see Appendix A. 

If the crystal periodicity (c) parallel to the electron beam is used as a slice thick-

ness i.e. ~z = c, then only reciprocal lattice points in the ZOLZ together with the 
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corresponding structure factors determine the allowed reflections, as shown below. 

It is customary to define a "projected" potential as follows : 

Zm+.:U 
1 

V b(x,y,zm,~z) = - J V(x,y,z)dz 
~z z 

m 

(2.1.4) 

where V has been expressed as a Fourier series. The V(h,k,t)'s are calculated by per-

forming a sum over all atoms within the unit cell 

hx· ky· tz. 
h2 -27ri(-1 +-1 +-1

) 

V(h,k,t) = 
2 

~·9i(h,k,t)e a b c dz 
1rmeVc i 

(2.1.5) 

where (x.,y.,z.) is the position of atom no. i with an electron scattering factor Y. Vc is 
I I I I 

the volume of the unit cell. Performing the integral gives ,as also pointed out by Self 

et al. [lOJ: 

(2.1.6) 

where zmo = z + ~z/2 

Setting ~z = c/n gives the following expression for the projected potential 

21ri( hx +h) . f)/ . 
V pCzm,~z=c/n) = ~ V(h,k,f)e a b Slll7r(; n e21rifzmo/c 

h,k,t 1rf In 
(2.1.8) 

,;j 

In the case where the crystal periodicity is used as the slice thickness, ~z = c and n = l. 

In this case (2.1.8) reduces to 

21ri(~+h) 
V pCzm,~z=c) = ~ V(h.k,o)e a b 

h,k 

(2.1. 9) 

This expression shows that for n = 1, only the components of the potential with a 

reciprocal vector lying in the ZOLZ contribute to the scattering. Thus no ULL effects 



can enter in the calculation. If, however n is not 1, the expression for the projected 

potential is a sum over all reciprocal vectors with a weighting factor proportional to 

the Fourier coefficient of the crystal potential [ 1 OJ [ 11]. In principle this should allow 

for dynamical scattering between all (hkt) reflections and thus automatically account 

for ULL effects. Whether this is accurate or not will be addressed later in section 5. 

Previously the projected potential has been calculated in several ways: 
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i) Calculate the projected potential for a slice of thickness c. If a slice thick

ness of cjn is to be used, then simply divide the previously calculated poten

tial by n and use this as the projected potential for each slice. 

ii) Divide the unit cell into n volume elements which may include atom sec

tioning. The projected potential for each slice is calculated from the projec

tion of the atoms contained within the slice according to (2.1.5). The sum is 

carried out over the atoms contain·,·d within the slice. 

iii) Calculate a three dimensional crystal potential by summing over V(hkf) and 

using a three-dimensional. Fourier transform to find V(x,y,z). With 

modem computers the integral over V from z to z + Llz can easily be per

formed. 

The first approach is obviously incorrect. The second method would be correct if 

it were not for the fact that the crystal potential is periodic in c and not in cjn. The 

third method is correct, but is impractical in cases where large unit cells are considered 

because of the huge amount of computer memory (1283 = 8Mbytes) that is needed to 

store a three dimensional potential. 

A practical method to calculate the projected potential for each slice is based on 

(2.1.6) and thus doesn't require additional memory. Starting from (2.1.6) one 

v 



7 

calculates the projected potential by first summing over e. One can write 

(2.1.10) 

where 

V' (h k) = ""\;' V(h k t) sin1rf /n 27rifzm0 /c 
z n ' ~ ' ' e; e m• e 7r n (2.1.11) 

This amounts to modifying all V(h,k,O) by adding in a contribution from the ULL, as 

shown in Fig. 1. Thus reflections that were forbidden by V(h,k,O) may now be allowed 

by V'(h,k,O). The intensity of forbidden reflections will be zero for thicknesses 

corresponding to a multiple of unit cell distances c, only if there is a complete cancella-

tion from the contents of the unit cell. 

This yields an effective algorithm for dividing the specimen up into slices smaller 

than c. First, the coefficients V(h,k,t) should be formed by summing over all atoms 

within a bona fide unit cell with a periodicity c along the incident beam direction. 

Secondly, if there are n "sub-slices", it is necessary to calculate n separate phasegrat-

ings or projected potentials according to (2.1.8), where for a given n, only Zmo will 

change from sub-slice to sub-slice. The most efficient way to generate the n phasegrat-

ings depends on available computer memory. 

2.2 Second Order Multislice 

This method goes one step further and aspires to include ULL effects within the 

slice. Developed by Van Dyck [ 5j it introduces the concept of potential eccentricity 

within each slice. The equivalent to (2.1.1) is the recursive operation: 

(2.2.1) 
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where the potential eccentricity o is given as 

(2.2.2) 

The average quantity z is defined as 

Zm+tu 

zm(x,y) = I (z - Zm) V(x,y,z)dz (2.2.3) 
Zm 

In an evaluation of the real space method, Kilaas & Gronsky [3], used the above 

recursive operation to calculate both projected potentials and potential eccentricities 

from the three-dimensional crystal potential. However, the expressions 1/2(1 +o)V P 

' 
and 1/2(1-o)V P can be calculated in a way similar to the procedure described in 2.1 

for- calculating the projected potential as shown below: 

It is useful to first calculate the quantity 

Zm+tu 

· ~ V pzm = ~ I (z -zm) V(x,y,z)dz 
z ~Z zm 

(2.2.4) 

Setting ~z = cjn gives 

v z 21Ti( ~ + ~) 2 . [ . . f/ ] ~ = ~ a b ~ V(h k t)-n- lTifZm0/C lTifZm0/c _ s1n1r n (2.2_5) 
Az "-' e "-' , ' 2 ·e e e I 

h,k t 1r1 1rf n 

21Ti( hx +~) 
- ~ V.fh,k)e a b 

h,k 

One can now write: 
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(2.2.6) 

zv 21ri(~+h) 
.!.(1-o)V = V - _P - ~ [V'(h,k) - V.J...z h,k)] e a b 
2 P P D.z 

h,k 

(2.2.7) 

2.3 Improved Phasegrating Method 

This method, again suggested by VanDyck [6], is based upon a modulated 

phasegrating. The effect of the potential is considered larger than the effect of the pro-

pagator which is treated as a perturbation. In this case the wavefunction is written 

(2.3.1) 

Substituting the above expression into the equation for 4> (2.1) gives 

), z { 
O(x,y,z) = O(x,y,o) + ~7r £ dz' 'V}O(z') + iaD.z['V}V p(z')]O(z') (2.3.2) 

+ 2iu Jl.z '7.L V P(z') · 'V.L 0( z') + ( iu t.d 0( z')[ 'V.L V p( z')[2 } 

which yields a first order perturbation result for theta 

lADoZ . . { z O(z) = 0( o) + ~ 'V}O( o) + 1aD.zO( o) £ dz' (2.3.3) 

[-
1
-'V}Vp + iaD.z-

1
-('V...L Vp)2j + 2iaD.z'V...LO(o) · fz dz' -

1
-'V...L VP} 

D.z D.z 
0 

D.z 

A practical application of (2.3.3) can be formulated as follows: One considers a 

multislice approach where the specimen is divided into N slices perpendicular to the 

incident electron beam. The wavefunction after the first slice of thickness ~z is writ-
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ten 

<t>(x,y,~z) = exp{ia~zV p(~z)}O(~z) (2.3.4) 

For N slices of thickness ~z (2.3.4) becomes 

~(x,y,N~z) - exp f• Nr V(x,y,z') }B(N~z) (2.3.5) 

where 0 (N~z) is a recursive application of (2.3.3). 

The major problem in using (2.3.3) comes from solving for the integrals over 

V P(z). However, proceeding as before, one gets 

(2.3.6) 

(2.3.7) 

(2.3.8) 

zm+lll av av 
The expression for J [(--P )2 + (--P )2jdz is given as 

ax ay 

... 
zm+lll av av 

_l J [(-P )2+(-P )2] dz' = 
~z z ax ay 

m 
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0 h+h' k+k' 
2 hh' kk' 211'1(--x +-b-y) 

- (27r) ~ (- + -) e a 
h,k a2 b2 

h',k' 

X ""V(h k t)V(h' k' e')-n- __ n_ [ 211'i(f+f')Zm0 /c sin1r(f+f')/n 
ft, ' ' ' ' 21rif 21rie' e 1r(f+e')/n 

(2.3.9) 

Equation 2.3.9 is complicated by the crossterms contained within the [ ]. In the limit-

ing case flz/c goes to zero (2.3.9) simplifies to 

. [ [ )2 Zm+IU av av 2 211'i( hX +~) 
- 1 J [(-P )2 + (-P )2] dz' = - (

21r) ~.!!_ V(h,k,O)e a b 
tlz z ax ay · 3 h k a 

m ' 

[ 
211'i(~+~))] 

+ ~ ~ V(h,k,O)e a b (2.3.1 0) 

The other simplifying case is !:J.z = c. In this case one obtains as follows 

(2.3.11) 

[ 
Zm n J X (I+ -)V(h,k,O) - ~ V(h,k,t)-

2
-.-

c f*O 1r1f 

(2.3.12) 
·~· 

(2.3.13) 



av 
The expression for the integral J<--P )2dz follows from (2.3.14). 

ay 

3. Procedure 
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(2.3.14) 

Computer programs to implement the various methods were written according to 

the theory outlined in paragraph 2. and applied to the test case of a crystal of 

MgA120 4, spinel (space group Fd3m, a = b c = 8.08 A) oriented in [00 1]. In the case of 

the improved phasegrating method only ~z = c was considered since this was the only 

case that allowed the expression given by (2.3.9) to be calculated in a reasonable time. 

As with the conventional multislice method and the second order multislice method, 

slice thicknesses of 8.08 A, 4.04 A, 2.02 A and 1.0 l A were used, corresponding to n = 

l ,2,4 and 8 respectively. 
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4. Results 

The results of the computations are given in Figs. 2 through 5. Figure 2 shows 

amplitudes for the central beam and the reflections 110, 200, 220 and 400 for a slice 

thickness of 8.08 A, 2.02 A and 1.01 A calculated by the conventional multislice (FFf) 

method, while Fig. 3 shows the corresponding results calculated by the second order 

multislice method. The accelerating voltage is 200 kV and all reflections out to 

4.0 A -I were included in the calculations. The improved phasegrating method failed 

to produce reasonable results for this structure in the case of ~z = c and gmax = 4.0 A -I 

(see Discussion). 

The 110 reflection is forbidden both kinematically and dynamically by the FCC 

structure and has zero amplitude for any thickness when ~z =c. The 200 is forbidden 

by reflections within the ZOLZ, but is seen as pairs of bright lines symmetrical around 

the exact Bragg position and separated by a few milliradians in CBED patterns through 

dynamical scattering from the first order Laue zone [9]. The calculations however, are 

for a parallel incident beam and do not show any significant amount of scattering into 

the 200 reflection (compared to the 110 reflection). Within the unit cell both the 

amplitudes of the 110 and the 200 reflection deviate from zero, (n = 4,8) and only at 

thicknesses corresponding to multiples of c do they become negligibly small. The 

reflections are "forbidden" because scattering from one part of the unit cell interferes 

destructively with scattering from another part of the unit cell. Only if the cancellation 

is complete, which would require that the electron wavefunction for all scattering pur

poses remains the same throughout the cell, does the amplitude go to zero. 

Figures 4 and 5 show four diffraction patterns calculated from a 300 A thick cry

stal of MgAl20 4. In a) the slice thickness is c, while in b), c) and d) the slice thickness 
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is c/2, c/4 and c/8 respectively. The results in Fig. 4 are for the FFT method while the 

results in Fig. 5 are for the SOM method. 

5. Discussion 

The failure to give reasonable results by the improved phasegrating method is 

caused by the large slice thickness required to perform the calculation [ 12]. Because of 

the necessarily large gmax that must be used, the computation cannot be performed 

within the domain of validity for this method. Kilaas [ 12] shows that the criteria for 

validity of the lPG are more severe than that of the real space method. 

With the incident beam down the zone axis, both the first order FFT method and 

the second order multislice method fail to indicate any scattering into the 200 reflec

tions from out of the ZOLZ. Published [001] spinel CBED patterns (e.g., [9]) show pairs 

of white lines in the 200 spots, with separations of about one tenth of the 000-220 dis

tance at 100 keY. This means that crystal tilts (or incident beam misalignments) ofthe 

order of 0. 7 milliradian would be sufficient to produce significant intensity in the 200 

spots in diffraction calculations that include ULL interactions. Since many HREM 

studies are convergent incident electron beams with semiangles of up to one millira

dian, such contributions to the image need to be considered in any accurate image 

simulation. In the case of[OO 1] spinel, for example, the bright 200 lines could be 

expected to contribute pairs of 200 fringes to the image, even though the 200 reflec

tions are forbidden, thus producing an image with a different symmetry from that 

expected. A systematic study of the behavior of the diffracted beams with beam tilt is 

under way and should apart from hopefully producing the 200 reflections at the correct 

tilt, make some contribution to the debate on the crystallography of spinels [ 13]. 
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The circle of excited reflections showing up in Figs. 4a and 5a are not first order 

Laue reflections as their location in reciprocal space would indicate, but ZOLZ that are 

excited because the excitation error associated with these reflections become equal to 

1/c corresponding to the Ewald sphere cutting through the first order Laue zone. At 

this point the phase in the propagator becomes 21r, equivalent to an excitation error of 

0. This occurs whenever Hh,k,O) = 1/ L.lz. When L.lz is reduced by setting n = 2,4,and 8 

these "pseudo" ULL reflections correspond to scattering vectors larger than the max

imum reciprocal vector included in the calculations and are no longer present. How

ever a new set of reflections located on the same circle in reciprocal space now start to 

appear and this time they correspond to actual first order Laue reflections, (Figs. 4c,d, 

and 5b,c,d.) Figure 4b does not show any ULL reflections, indicating that in the case 

of the FFT method a slice thickness of half a unit cell is insufficient to give ULL 

effects in this structure. This is not true for the SOM method which show ULL reflec

tions even for n = 2 (Fig. 5b). This can only be attributed to the use of potential 

eccentricity which allow for modulations within the slice. Thus even in the case of 

n = 4 and n = 8, where both methods show the presence of ULL reflections, it must be 

concluded that the SOM method is the more accurate of the two. 

The degree of accuracy to which the intensities of higher order reflections have 

been calculated still remains to be discussed. Only as the wavelength and the slice 

thickness approach zero do the first order and the second order method accurately 

include the interactions of upper Laue layers. As pointed out in section 2 the informa

tion about the scattering potential is contained in the phasegrating while the propaga

tor keeps track of the excitation errors. Physically, ULL scattering occurs when the 

Ewald sphere approaches the first order Laue layer as shown in Fig. 1, that is when the 
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excitation error for the corresponding reflection becomes small. From (2.1.11) and 

(2.2.5) it is clear that the contribution of a particular (hkt) reflection is proportional to 

V(hkt), the Fourier coefficient of the potential, and does not depend upon its excita

tion error.ln the case where the Ewald sphere passes through an ULL reflection, say 

(1,25,1), V(1,25,1) would be summed into V'(1,25,0) with a weighting factor which 

does not depend on ~(1,25,1). Additionally the remaining V(1,25,t) are all summed 

into V'( 1 ,25,0) regardless of their excitation error. In effect the phasegrating "sees" a 

flat Ewald sphere cutting through every section of the reciprocal space. When the 

phasegrating is convoluted with the propagator the contribution of V'(l ,25,0) depends 

on ~(l ,25,0) and not on ~(l ,25, 1 ). The error in the phase of the propagator for a first 

order Laue reflection depends on the slice thickness and the electron wavelength and is 

shown in Appendix A to be 21ri\2~z~2;c. As the wavelength and slice thickness 

decreases the propagator approaches its correct value and the accuracy to which the 

ULL are included in the FFT method and the SOM method increases. 

The improved phasegrating method does not separate the effect of the potential 

and the Ewald sphere (through the wavelength) and should thus better allow for the 

inclusion of ULL interactions. However, the restriction on wavelength, slice thickness 

and sampling interval associated with the IPG, excludes the use of this method on the 

given problem. The Ewald sphere cuts through the first ULL at approx. 3.1 A -I which 

sets a lower limit on gmax' the maximum reciprocal scattering vector that must be 

included in the calculations. In order to produce reasonable results, it is necessary to 

use a slice thickness less than 1 A, but the complexity of the method does not readily 

allow for a slice thickness less than c (8.08 A). 
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6. Conclusion 

Of the three methods that are discussed in this paper, the second order multislice 

method is the most suited for inclusion of ULL reflections. The use of potential 

eccentricity permits the use of larger slice thicknesses without sacrificing the inclusion 

of ULL effects. The accuracy of the calculation of higher order reflections depends on 

both slice thickness and electron wavelength and increases as the thickness of the slice 

and the wavelength approach zero. This is true for both the FFf method and the 

SOM method. The lPG method contains 3 dimensional information even when the 

slice thickness equals the crystal periodicity in the electron beam direction, but the 

method is impractical under most conditions because of severe restrictions on sam

pling interval and slice thickness. 
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FIGURE CAPTIONS 

Fig. 1. Schematic drawing showing a segment of the Ewald sphere and its relation to 

the reciprocal lattice. The zero and the first order Laue zones are indicated 

in the figure. Large open circles represent reflections lying in the zero order 

zone, while small open circles indicate the "column" of reciprocal points 

whose Fourier coefficients of the potential are summed into the Fourier coef

ficient of the corresponding zero order reflection to give a new effective 

potential. 

Fig. 2. Amplitude vs. thickness for the reflections 000, 110, 200, 220, and 400 for 

MgA120 4 [001]. Accelerating voltage is 200 kV and the slice thickness is 

8.08 A, 2.02 A and 1.01 A corresponding to n = 1, 4, and 8 respectively. Cal

culation is by the FFT method. 

Fig. 3. Same as for Fig. 2 except that the calculation is by the SOM method. 

Fig. 4. Computed diffraction patterns for a 300 A thick specimen of MgA120 4• The 

calculation is by the FFT method and the slice thickness is indicated by the 

value of n (~z = 8.08 A/n). 

Fig. 5. The same as for Fig. 4 except that the calculation is by the SOM method. 

Fig. 6. Schematic drawing illustrating the central beam (k0) and a scattered beam 

(k 1) traversing a slice of thickness ~z. 

Fig. 7. Schematic drawing showing two scattered beams; one corresponding to 

scattering in the zero order zone and one corresponding to scattering into the 

first order zone. 
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Appendix A 

The phase that appears in the exponent of the propagator is the difference in 

phase associated with electrons traveling a distance D.z having a wavevector k0 relative 

to those having a wavevector k1 as shown in Fig. 6. This phase difference is equal to 

(Al) 

For electrons reflected into the first order Laue zone the angle a 0 is equal to, see Fig. 7. 

g..l 
ao = -- = g..l.\ 

1/ .\ 

while for electrons scattered into the first order zone, the angle is 

This gives a phase change of 

for electrons scattered into (g...L ,O), and a phase change of 

(A2) 

(A3) 

(A4) 

(AS) 

for electrons scattered into (g..!.. ' 1 ). The quantity ~ (g..!..) = 1/2>-.g]_ is the excitation error 

of the reflection (g..!.. ,0) and corresponds to the distance between the reciprocal lattice 

point (g ..1.. '0) and the Ewald sphere measured along the line connecting the center of the 

sphere with the reciprocal lattice point, see Fig. 1. The error in the phase of the propa-

gator by using the excitation error of the zero order reflection instead of the the excita-

tion of the first order reflection is thus 

(A6) 
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As can be seen from (A6) the error depends on slice thickness and electron wavelength 

and goes to zero as t::.z and .\ goes to zero. 
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