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ABSTRACT 

The scaling function F2 (ill) is calculated for the highly 

inelastic neutrino and antineutrino reactions from the rcN total 

cross sections on the basis of the generalized scaling sum rules. 

with the optimum values for the IBrameters determined in a previous 

analysis the integral fodX (F2 vp(x) + F/P(x» saturates almost 

canpletely the inequality of the IBrton quark model. The ultra-

precocious linear rise of the total cross sections for the neutrino 

and antineutrino reactions is a natural consequence of the generalized 

scaling sum rules. 

* This work supported in pl.rt by the U. S. Atanic Energy commission. 

1. DYNAMICAL PICTURE OF SCALING 

It has been pointed out that the scaling function F 2 (ill) may 

be smoothly extrapolated from the deep inelastic limit to the small 

Q2 region with a suitably modified scaling variable [1), (2). We first 

review for a pedagogical purpose how this transition from the deep 

inelastic region to the shallow ine~stic region takes place dynamically 

and what the IBrameters involved in such an extrapolation mean. 

The matrix element we consider is 

(1.1) 

I -+ ) where " p is the one-nucleon state with momentum p, and In) is 

an arbitrary state connected through the Fourier component of the 

current Jo(i,t).TO make the following argument definite and relevant 

to the calculations we will attempt later, let us choose the isovector 

axial vector current for Jo(i,t) • We usually go to the infinite 

momentum frame so that the dynamical statement may become relativ,.. 

-+ 2-*2 
istically invariant. When q = 0 or Q ( • q) = 0, the transition 

matrix element 

(1.2 ) 

is rewritten through the IBrtially conserved axial vector current 

hypothesis in terms of that between the nucleon and the state In} 

absorbing the pion, 

where 

(1.2 ) 

2 2 
P = m , 

frc T np 
M 2 _ m2 

n 

M is the invariant mass of the state 
n 

fTC cos 9C is the pion decay constant defined through 

(1.3) " 
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(i = 1, 2, and 3) with Q
C 

being the Cabibbo angle, and T is the np 

invariant pionic transition matriX element. The absorption of. the pion 

may lead the nucleon to the nucleon, the baryon resonances, and the 

continuum states. 
.. 2 

summed over n with fiXed Mriis, up to 

the incident pion energy, proportional to the lIN total cross sections. 

We find from the 1(N scattering the shape of LIT 12 5(M 2 - s) as 
n np n 

a.functi.on of s. 

As Q2 increases from zero to nonzero (positive) value, the 
a 

matriX element (1.1) varies in such a way that the transitions from the 

nucleon to the states In) of small Mn 2 decrease to the amount that 

the axial vector form factors falloff, while the transitions to the 

2 continuum states of large Mn would increase in a way compensatory 

to the decrease. In other words, the transitions are confined mainly 

·22 
to the lower excited states at small values of Q J .but as Q 

increase the tranSition "leaks" out to the higher continuum states. 

How fast this leakage takes place depends on how fast the axial vector 

form factors to the baryonic states In} fall off. When the form 

2 factors become negligibly small at some large value of Q, the 

transition is almost completely thrown into the higher continuum states. 

2 In the deep inelastic limit Q ~ 00, all the transitions to the 

states of finite invariant mass M ,vanish so that only the states of 
n 

Mn2 
= O(Q2) ~ 00 contr1bute to the transition matriX elements .• 

Constant core terms are not allowed for the form factors .if the scaling 

functions approach zero as m = 2mv/Q2 -+ 1, for if there· were core 

terms for a large number of the transition form factors, they would lead 

to F2 (m = 1) ~ O. The asymptotic behavior of the form factors is 

thus closely related to the threshold behavior of the scaling functions 
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The generalized scaling means that the scaling function F2 (m) 

smoothly extrapolated with the variable 

(1.4) 

should describe on average 
2 the function v W

2
(V,Q) all the way from 

2 2 Q = 00 down to Q = O. 
2 The plorameter a determines how fast or 

how violently the transitions to the lower baryonic states are blown to 

2 
the higher continuum states as Q increases. 

2 The smaller a is, 

the farther the transitions are blown away. The other plorameter Mf 
causes the overall shift of the invariant masses of the states In). 

This is significant only for the states of Mn:t M. More quantitatively 

speaking, the transitions to the band of squared mass ~ 2 
+ 51 at 

Q2 = ~ 2 are brought to the wider band of 

Q~ 2 Q_ 2 
~ - J. (_2 2 2 

+ ~2~--'::::2:- ~ - m - a ), (1.5) 
~ +a 

when Q2 increases from ~ 2 to ~ 2 (> ~ 2 ). As Q2 increases, 

. 2 
the transitions to a narrow band in M at lower energies get shifted . . n 

to a broader band in Mn2 at higher energies (see Fig. 1). The 

generalized scaling thus describes appropriately the "leakage" 

phenomenon for the matrix element of the Fourier c~Dent of the 

current [5). The same argument goes through for the vector currents 

where the transitions to the excited states are c.omplete1y forbidden at 

2 Q = 0 because of the exact conservation of current. 
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2. ADLER'S NEUTRINO SUM RULE 

The neutrino sum rule derived by Adler [6] is based upon the 

equal-time commutators of the time-components of the currents •. It is 

• far more fundamental than other sum rules derived in specific models [7]. 

Recently some people have cast doubt on the validity of Adler's sum rule 

, in the light of the so far analyzed data on the neutrino reactions [8], 

[9], [10]. When one c0lllp3.res the sum rule with the experimentally 

observed scaling functions, the crucial point is how fast the sum rule 

converges in ill •. A typical valence quark model [ll] says that the 

9Cf{o saturation is obtained only as high as at ill = .300 '" 500. 

We will dispute this awfully slow convergence of the neutrino 

sum rule from the vieW]?Oint of the generalized scaling. To do so, we 

remind you that the Q2 = 0 limit of Adler's neutrino sum rule is the 

Adler-Weisberger sum rule. It is known from the measured n:N total 

cross sections that the Adler-Weisberger sum rule is saturated up to 

9Cf{o around the incident pion energy '\I = 5 GeV. If we relate the n:N 

scattering and the highly inelastic neutrino reactions through the 

generalized scaling, the averaged curves of the n:N total cross sections 

at the laboratory pion energy v is equal to the scaling functions 

F 2 (ill) of the neutrino and antineutrino reactions (strictly speaking, 

the strangeness-conserving p3.rts only) at ill = (2m'll + if )/a
2 

ap3.rt from 

a known proportional constant given by theory. For the neutrino sum 

rule to be saturated up to 90% at ill = 300, the p3.rameter a2 must be 

as small as 0.03 Ge -rI, provided that rl- = 0.5 '" 2 Ge -rI. We would have 

correspondence between amplitudes with different Q2 through the 

generalized scaling variable 

2m'll + tl 
ill = 

Q2 + 0.03 Ge-rl 
(2.1) 

2 
For Q ~ 0.1 Ge-rland v 
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> 2 '" 3 GeV, the variable ill would 

already be close enough to 2mv/Q
2 

; the scaling would be reached as 

early as at Q2 ~ 0.1 GevF. In the region of Q2 where the scaling 

is approximately realized, the vector and axial vector form factors 

must be negligibly small according to the argument in the previous 

Section. In the case discussed above the form factors would have to be 

almost zero at Q2 ~ 0.1 Ge-rl. This clearly contradicts with the 

experimentally observed form factors [12], [13], [14] 

G
V

{Q2) . [ 2 r 2 

1 + Q ' 

0.71 Ge-rl J (2.2 ) 

r 
Q2 r FA (Q2) l 1 + 

0.85 Ge-rl 

We conclude that the very slow convergence of the neutrino sum rule is 

incaD.p3.tible with the generalized scaling. Turning the argument around, 

2 
we predict from the value for a determined later in this p3.per and 

also through the independent analysis of the shallow inelastic electro

production data [2] (a
2 = 0.2 '" 0.4 Ge-rl) that the 9Cffo saturation is 

to be reached around ill = 30 '" 50 corresponding to '11= 5 GeV through 

(1. 4). 
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SUM RULES FOR F 2 (w) AND ltp ( 
0tot v) 

The generalized scaling makes the strong statement that F2 (w) 

can be smoothly extrapolated by means of (2mv + if)! (Q2 + a2 ) down to 

the small Q2 region in the entire region of w. According to the 

analysis based on the Deser-Gilbert-Sudarshan representation [151, [161, 

the generalized scaling is likely to hold for the Regge asymptotic 

amplitudes at w » 1 [171, [181. We assume here that only the 

large w region of F2 (w) may be extrapolated to the small Q2 

through the replacement of 

w - w' 

region 

(3.1 ) 

This is a much weaker version of the generalized scaling, since the 

earlier version [11, [21 amounts to assuming that the rarameters a2 

and if are common to all the asymptotic powers. We now derive sum 

rules involving F2 (W) and the ltN total cross sections. 

In the large w region, we call it the Regge region from now 

on, F2 (w) is shown in the analyses of the Bethe-Salpeter equation 

[191, the Deser-Gilbert-Sudarshan representation [201, and summation 

of a series of perturbation diagrams [2l1to behave at w -+ CD like 

(3.2 ) 

where ai(o) is the intercept of the ~th Regge trajectory and ~i is 

related to its residue. The Regge asymptotic exransion with Q2 fixed 

of the scattering amplitude is similarly written as 

2 a i (0)-2 
)' i (Q )v , (3.3 ) 
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2 where 'Y i (Q ) behaves like 
a (0)-1 

~i(2m/Q2) i 2 as Q -+ CD. The 

generalized scaling weakened to the higher Regge asymptotiC amplitudes 
a. (0)-1 
~ only is therefore that ~i w may be extrapolated smoothly on 

average to the small Q2 region by the replacement of w with 

w' = (2mv + if) / (Q2 + a 2) • The rarameter if does not have much 

significance there since ~ is related to the ratios of the leading 

power in vto the Khuri satellite terms. 
2 The Regge residue )'i(Q) 

in (3.2) through 

/ \ai (0)-1 

( 
Q22m 2 1 

+ a / 

is related to ~i 

~i ' (3.4) 

where a2 is a rarameter to be determined from the experimental data. 

2 Although most generally a may be different from one trajectory to 

2 another, we will later take a dependent only on the height of the 

intercept a i (0) for simplicity. In rarticular, a2 
will be set to 

the same value for the p and f trajectories. As was emphasized in 

the previous work [22 J, the ratio of the Pomeron contributions- in 

F2 (W) and vW2 (v,Q2) is independent of a2 and ~; 

lim F
2

(w) = lim 
W-+CD v-+oo 

In fact, this relation is true for any correspondence between 

v so long as w-+oo at 

'Yi(O) = ~i (2~) 
a 

from (3.4), and therefore 

and 

F (w') '" 2 L 
i 

v = 00 • For the other trajectories. 

ai(O)-l 

w and 

(3.6) 
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VW
2

(V,Q2) -L t3
i

(22inV 2 \(Xi(O)-~ (3.8) 

i Q; +a } 

If we choose w' (2m~ +if)I(Q2 + a
2

), the difference 
(Xi (0)-2 

F
2

(W') - VW
2

(V,Q;2) falls off as fast as v It looks that with 
~ ", . 

if chosen to be zero all the Regge asymptotic powers are exactly 

. " 2 
. canceled so that F

2
(w') becomes the local avera-geo!' Vw

2
(v,Q) in 

the entire region of w'. Howeyer, it would be too optimistic to 

. 2 
expect that this should happen, for the p3.rameter a may well be 

dependent on the trajectories. It is more practical to shift 2mv 

by if so as to absorb the first Khuri satellite as much as possible. 

. 2 
On the assumption that a should depend only on the intercepts 

(Xi (0), we are able to write down the sum rules for the crossing 

'symmetric B.lld antis~tric amplitude; 

rf. 
1 

and 

2m 
- -2--2 

Q + a 

o , 

(3.9) 

where v
O

(Q2) is to be below the nucleon pole, F
2

VP(w) and "F
2

vP(w) 

refer to the strangene.ss conserving axial vector pu-ts of the scaling 

functions in the ant:l,neuti"ino and neutrino reactions. In Eq. (3.10) 
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Wmax and Vmax are let to infinity, keeping the relation 

w max 

2mv + if max 

The first Khuri satellite term of the Pomeron does not contribute to the 

absorptive pu-t, so the left-hand side converges when the leading powers 

of the Pomeron and the f-meson trajectory are canceled out. The sum 

ru.lesof higher mcments may be written on a stronger assumption. We 

will discuss them later in connection with the phenomenon referred to 

as the ultra-precocious scaling in the neutrino reactions. 

The first sum rule (3.9) is nothing more than the content of 

Adler's sum rule. Dynamics is put in when we require that the left-

hand side of (3.9) is saturated sufficiently well around v = a .few GeV. 

By. numerical canputation the 8~ saturation is attained at v = 2 GeV 

for the Adler-Weisberger sum rule 

~ 0.8. 

, 
It is therefore natural to expect that the left-hand side of (3.9) is 

also saturated enough at Vmax = 2 GeV or equivalently at 

Wmax = [2m )( (2 GeV) + if] /a2 • This is a dynamical input based on 

our knowledge in the rcN total cross sections. It means that the 

averaged or S1D9Qthed vW
2 

(- )(v, 0) coincides with F2 (in) through the 

correspondence (1.4) semilocally in the resonance region (v ~ 2 GeV) 

and the asymptot1creg1on (v ~ 2 GeV) sepu-ately. 
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The neutrino reactions involve both the vector and axial vector 

;:aling functions apart from the vector-axial vector interference term. 

,ince the scaling function of the vector current is the same as that of 

~ne axial vector current in all of the existing models and theories, we 

;ake it for granted in the following ~umerical analysis. The currents 

:ontain small mixture of the strangeness changing components. We 

:onsider the 6, S = 0 parts only by either ignoring the small 6, S = 1 

~rts or separating them out. The Cabibbo angle 9C-is to.be factored 

rut. The partially conserved axial vector hypothesis relates as 

+ 
f -2 cr~o~(v) :rt v w/p(v,O) (4.1) "4 :rt 

cr~o~( v) 
:rt f -2 vp 
"4 v W2 (v,O) (4.2 ) 

:rt 

rhere 1{2 f:rt cos 9
C 

= 0.97 m:rt and VW2 's are the 6, S 0 parts 

)nl~ including both the vector and axial vector currents. 

Let us look at-the crossing antisymmetric amplitude first. The 
1 

\egge asymptotic behavior of the amplitude .implies a term like (1)-2 as 

~ ~ 00. Near the threshold (1) = 1 the scaling functions, especially 

should behave like 3 .«(1) - 1) provided 

;hat the isovector electromagnetic form factor of the nucleon falloff 

like (Q2 f2 as Q2 -+ 00 (3), (4), [23 J. We therefore postulate the 

;erm 

:n addition to this term we introduce another term 

(4.4) 
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which represents the p' trajectory or the first Khuri satellite and 

everything else. The sum of (4.3) and (4.4) 

( ) _l 1 3 
F2 - «(1) . = . A (1) 2 (1 - CD ) 

1 3 
(1) ) 

must be subject to the scaling limit of Adler's sum rule 

foo 

F 2 (-) «(1)) ~ = 2 • 

1 

(4.6) 

From this Section on, the scaling function F2 (±)«(1) denotes the sum of 

the vector and axial vector terms. Equation (4.6) sets a restriction 

0;457 A + 0.051 B 1 • 

Then we assume that (3.9) is saturated sufficiently well at v = 2 GeV 

which is 

reads 

where 

just above .the several conspicuous resonances. 

4 f 2 
:rt +--

:rt 

(1) 
max 

[2mv X (2 GeV) + r.f )/a2 • 

The sum rule 

(4.8 ) 

It has been shown in the previous analysis (22) that the value of a
2 

around 0.3 Gel- leads to the best fit to the F2 (7P) «(1) + F2 (7n) «(1) in 

the large (1) region. The amplitude is insensitive to the other 

pl.rameter tl- in the Regge region. The fit to the shallow inelastic 
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electroproduction data in the small m region suggests that Mf is 

somewhere between 0.5 Gel and. 1.5 Gel [1 J. 

By substituting the :rrN cross sections we have found. the right-

~ hand side of Eq. (4.8), 

r.h.s. of (4.8) = 1.53, (4.10) 

which means that the Adler-Weisberger sum rule is saturated up to 

76.5%. Substituting (4.5) into the left-hand side of (4.8) we obtain 

another restriction on A and -B. Combining this restriction with 

(4.7), we are led to a set of values for A and. B given in (4.5) . 

a.s :f\mctions of a
2 

and Mf. For a
2 = 0.3 Gel and ; = 1.0 Gel 

which are considered. to be optimum, we obtain 

A = 0.71 and B = 13.3 • (4.11) 

By changing if from 0.5 Gel to 1.5 Gel we find. that A and B 

change typically t(5 ~ 10)% for a
2 

kept between 0.2 Gel and. 

0.4 Gel. A and B are a little more sensitive to variation of 
2 a . 

2 
As a varies by t 0.1 Gel around. 0.3 Gel, A and. B are affected 

up to 5(f{o and. 3\1fo; respectively. However, the variations of A and B 

are largely compensated when one takes the sum of the two terms in (4.5). 

We next turn to the crossing symmetric amplitude. The func

tional form of the symmetric amplitude is suggested again by its Regge 

asymptotic behavior and the threshold behavior. We postulate 

F (+) «(I) = F vp(m) + F vp(w) 
222 

1 3 1 1 3 
C(l - 2") + Dw-2 (1 w) (4.l2 ) 

(.l\ 

The first term was proposed phenomenologically in the fit to the 

... 14-

existing data [24]. The coefficient C is the Regge residue of the 

Pomeron, which is determined independently of the values of a
2 

and 

Mf as [22] 

C 

4 f 2 
':rr 

:rr 

1.59 

- + 

(4.13 ) 

for o:rr p(w) o:rr p(w ) = 25 mb. The other coefficient Disgoing 

to be determined through the sum rule (3.10) with v max = 2 GeV, 

2m 2 
:rr 2 

-"'T gA 
a 

8mt 2 
:rr 

+ --2- --------- dv , 
:rra v 

(4.14) 

where w 
max 

[2m X (2 GeV) +Mf ]/a2 • The right-hand. side of (4.14) 

turns out through the substitution of the experimental data to be 

r.h.s. of (4.14) = 9.16 Gel/a2 (4.15) 

A value of D is searched for in the left-hand. side of (4.14) so as to 

achieve the equality with (4.15). Again for a
2 = 0.3 Gel and. 

Mf = 1. 0 Gel we obtain 

It is 

D 2.86 • 

interesting and important to evaluate 

fa' F2 H(x)dx ( 4.16) 



-15-

where 
-1 

x = ru '. The CERN neutrino experiment has given [24] 

(4.17) 

\olith our form (4.12) where C = 1.59 and D = 2.86, 

(4.18 ) 

The agreement with experiment is very good. The right-hand side of 

(4.18) is not put in by hand nor derived from any other indirect 

information in the deep inelastic lepton reactions, but it has been 

calculated through the rrN total cross sections. 
2 

When we vary a and 

~ as a 2 = (0.3 ± O.l)Ge,j- and ~ = (1.0 ! 0.5)Ge,j-, we see 

fairly large variation in D. For instance, in the two extreme cases 

we find 

D 1.48 

D 6.00 

for 

for 

a
2 

= 0.2 Ge,j- and ~ = 1.5 Ge,j- , 

(4.19) 

a
2 

= 0.4 Ge'" and ~ = 0.5 Ge'" • 

(4.20) 

2 
The dependence on a is particularly strong. We may therefore con-

sider the experimental information (4.18) as another restriction 

imposed on the parameters a~ and' ~. It is encouraging, however, 

that the values for a2 and ~ determined in the separate analysis 

[22] leads to a very good agreement ,with (4.17). 

To summarize, we have obtained the scaling functions 

( ) ), 1 3 '3/2 1 3 
F2 - (w) = 0.71 w- 2 (1 - -) + 13.3 w- (1 - -) , 

ru ru 
(4.2l ) 

and 
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F (+) (ru) 1 3 1 1 3 
1.59(1 -2" ) + 2.86 ru-"2 (1 ) 2 ru ru 

where 

F '\Ip(ru) 1 [F (+) (ru) F (-) (ru)] 
2" + 2 2 2 

F2
VP (ru) = 2!. [F

2
(+)(ru) (-)( )] - F2 ru • 

The optimum values for the parameters in the generalized scaling 

variable are: 

2 
a 0.3 Ge,j-

(4.22 ) 

(4.23 ) 

(4.24) 

(4.25) 

(4.26) 

We have plotted in Fig. 2 the curves for , F2 yp(ru) and F2 YP(w) given 

by (4.21) - (4.24) and also tabulated in Table 1 the scaling functions 

versus ru. Main differences from the curves obtained in Reference [10] 

are: 

(i) The large w limit (x -0) is approximately 1?1> smaller 

than that in [10]. 

(11) Both F2
VP (w) and F

2
YP(ru) approach their ru- 00 limits 

- + 
rr p( )' rr p( ) from above, just as 0tot 'II and ("tot'll do. 

,; . 

'I 
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5. COMMENTS AND DISCUSSION 

The two sum rules (4.8) and (4.14) have been derived, one for 

the crossing anti symmetric amplitude and one for the symmet~ic amplitude 

If the generalized scaling variable ill = (2mv + if)/ (Q2 + a2 ) works 

for all the Regge terms. in ill with the same values for if 
2 

and a·, 

we could write down more sum -rules of higher moment. For the crossing 

anti symmetric amplitude 

- ( 22.2 r(.ax 
_ \ Q +. a i ~ _(Q2 ) 
\ I 0 , ' 

V
2"'2 (- l(V,Q2 ldV] = q 

(5.1) 

(2mv + if)/(Q2 + a2 ) and n is zero or any positive max 

integer. The sum rules of even moment in ill depend on whether or not 

there exist nonsense wrong signature poles at J = 0, -2, -4, •• , in 

the complexJ-plane, and whether or not their residues are 2 Qdependent. 

Although the nonsense right signature pole at J = 1 is proved in the 

current algebra to have the Q2 independent residue, the proof does not 

apply to the wrong signature poles. The sum rules are written in the 

2 case of Q independent residues as 

[ 

. v 

[

max / )2n+lf max 1 -
lim . F (-)(ill L2ndw r~ . _ v2n+~ (-)(v Q2)dV = a. 

2 JW - \ 2 2 2 ' J 
ill -+ CD \ Q + a v ( Q2 ) 

max \ 0 (5.2) 
v -+CD 
max 

With (5.1) and (5.2) combined together, 

is really the average ofVW
2 

(-)(v,Q2) 

the scaling function 

locally. The local average 

suggested in [1] and [2] would hold accurately, The p1.rallel argument 

is made for the crossing symmetric amplitude. Corresponding to (5.1), 

there would exist the sum rules 

lim [f"'" F 2 (+ 1 (ill )m2n"" 

ill "'001 max 
v ... cix> 

max 
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The sum rules resulting fromQ2 independent residues of the wrong 

signature poles are written a~ 

lim 

ill ... CD 
max 

v "'00 
max 

In the recent analysis of the CERN data [l~ 1 the total cross 

sections· of the neutrino reactions, in p1.rticular of the antineutrino-

nu~reaction, rise linearly in the incident neutrino (antineutrino) 

energy E. It looks as if the scaling were reached ultra-precociously 

as compared with Q2:::: 2 Ge-..l- in the deep inelastic 

electroproduction done by SLAC-MIT. At Q2 ~ 0.4 Ge-..l-, however, the 

vector and axial vector form factors are still about half the values at 

2 
Q = O. or Therefore, the scaling is ~ reached at Q2 ~ 0.4 Ge-..l-

less. The neutrino cross sections look.more like a series of peaks and 

humps due to the nucleon and the other baryon resonances. The linear 

rise of the total cross sections is indicative of the fact that the 

wiggly cross sections of the antineutrino reaction at lower energies 

may be integrated over v and smoothed out into the scaling limit 

curve. We will _look into this phenomenon a little more quantitatively. 

The double differential cross sections are written as 
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r 2 
G2m E y WI 
--2 1 (1 - Y - U )v W + -- + y(l 

l 2mE 2 (1) 1((1) 

where (1) = 2mv/Q2, y = viE, E is the incident neutrino (antineutrino) 

energy, and WI and W3 are the two others of the invariant functions 

of v and Q2.. By integrating this over v and Q2, we get 

v ( 2 E W2 v,Q ) + ::r W, (V,Q2) " ~ (1 - ;E) W3 (V,Q2)] • 

(5.6) 

The first term within the square bracket in the right-hand side may be 

rewritten through (5.1) with n = 0 and (5.4) with n= 0 as 

2mE [' dZ [max "'" (1 _ ;"Z) '2 (a' )/m , 

where 

(1) 
max 

and the new variable Z = Q2 12~ has been introduced. In the limit of 

E .... 00 (5.7) reduces to 
-1 . 1 1 

2mE L' dZ iZ 

.;2"", F2 (m) • 2mE 1 dy 1 dx '2("')' 

This is what we obtain by first going to the scaling limit. However, 
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the limit really means that -1 
(1)ma.x -+ Z • It is sufficient to 

have 

m/2E, and 

According to the preceding analysis, IIi - m2 I is between 0 and 

0.5 Gel, and. a2 is around 0.3 Gel. Therefore E = 2 '" 3 GeV is 

enough to satisfy (5.9). The first term is already close enough to 

its scaling limit at E = 2 '" 3 GeV. The second term in the right

hand side of (5.6) is shown in an analogous way to be close enough to 

its scaling limit for E satisfying (5.9), namely 2 '" 3 GeV, if the 

sum rules (5.2) with n = o and (5.3) with n = 0 hold valid. 

The third and fourth terms may be argued in pu-allel if we 

postulate the generalized scaling sum rules for WI (v, Q2 ) and 

VW
3

(v,Q2) corresponding to (5.1) to (5.4). We thus come to the 

conclusion that the total cross sections of the neutrino and anti-

neutrino reactions should start rising linearly in E as early as at 

E = 2 '" 3 GeV provided that the wrong-moment sum rules of the lowest 

order hold valid as well as the right-moment one. The observed linear 

rise of the total cross sections, referred to as the ultra-precocious 

scaling, supports strongly the generalized scaling sum rules of, at 

least, the lowest order. 

". 
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Table 1: The scaling i'unctions F2
VP (ro) and F2

VP (ro) of 68 = 0 . 

8ee the formulae (4.21) - (4.24) in the text. The functions are tab

ulated in the variable x - l/ro. 

x = l/ro F?((I)) F?(ro) 

0 0.80 0.80 

0.05 1.20 0.93 

0.10 1.34 0.86 

0.15 1.40 0.76 

0.20 1.44 0.62 

0.25 1.38 0.53 

0·30 1.31 0.43 

0.35 1.21 0.33 

0.40 1.08 0.26 

0.45 0.94 0.19 

0.50 0·79 0.14 

0.55 0.64 0.096 

0.60 0.50 0.058 

0.65 0.37 . 0.041 

0.70 0.25 0.025 

0.75 0.16 0.014 

0.80 0.089 0.008 

0.85 . 0.041 0.003 

0·90 0.013 0.001 

0.95 0.002 0.0005 

1.00 0 0 
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FIGURE CAPrION8 

Fig. 1: Correspondence under the transform through the 'generalized 

scaling. The shaded areas in the top and bottom figures are 

to be the same. 

Fig. 2: F2 vp(ro) and F2 vp((I)) of 68=0 given by (4.21) - (4.24) 

in the text. They are plotted in x :; 1/(1). 

.. 



< 
.... t';,.. 

2: I < n I J I p> 12 8 ( P~ - M~ ) 
n . 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

\ 
\ 

\ 
\ 

\ 

\ 
\ 
\ 

\ 
\ 

\ 
\ 
\ 

\ 
\ 
\ 

\ 
\ 

\ 
\ 

N II ': * * INN ...... . 

Fig. 1 

f" 

Small 02 

M~ 

Large 02 

M~ 
XBL 737 - 3332 

I 
N 
\J1 



-26-

o 
• 

:3 
........ 

l!)-
• o II 

)( 

N 



r------------------LEGALNOTICE---------------------. 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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