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Abstract 

Kinetics of Aqueous Polysulfide Solutions: 
Part I. Theory of 

Coupled Electrochemical and Chemical Reactions, 
Response to a Potential Step 

Philip Lessner, Jack Winnick, • Frank R. McLarnon 
and 

Elton J. Cairns 

Applied Science Division 
Lawrence Berkeley Laboratory 

and 
Department of Chemical Engineering 

University of California 
Berkeley, CA 94720 

January 1986 

The equations and assumptions that allow the derivation of the analytic form of the current 

transient for a small potential step are discussed. The equations are generalized so that they are 

applicable to the electrode reaction: s00 + ne- +=! srR where S0 and sr are not necessarily equal. 

Then a system with a homogeneous reaction in solution coupled to the electrode reaction is con-

sidered. The treatment includes the case of a solution-phase homogeneous reaction that takes 

place at a rate comparable to that of the heterogeneous reaction. The current response to a 

potential step in the linear overpotential region is solved numerically for both a first-order homo-

geneous reaction and a homogeneous reaction involving dissociation-dimerization. Using this 

model the exchange current density and diffusion parameter of the heterogeneous reaction can be 

determined as cant the rate constants of the homogeneous reaction. It is shown that there is a 

range of parameters where the electrode current response is most sensitive to the values of the 

homogeneous rate data are discussed. the results for the two homogeneous kinetic models are 

e.;; qualitatively similar but differ quantitatively. 

•Present Address: Georgia Institute or Technology, Department or Chemical Engineering, Atlanta, Georgia 3033Z 
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Introduction 

Many electrode reactions of technological interest are multi-step combinations of elementary 

chemical and electrochemical reactions. For design purposes it is necessary to determine species 

concentrations, exchange current densities and homogeneous kinetic parameters. If the solvent 

does not decompose and the electrode reaction and mechanism do not change over a sufficiently 

wide range of potential then there are several well-developed techniques for determining these 

parameters (1-3). However, techniques such as sweep voltammetry yield useful information only 

at potentials far from the equilibrium potential. 

Energy conversion and storage devices (such as batteries) typically operate at low overpo

tentials in order to maximize energy efficiency and they often use electrolytes that are concen

trated mixtures of several species. These characteristics suggest the use of DC relaxation tech

niques (such as current and potential step) which can often be used to obtain both diffusion and 

kinetic information in the low-overpotential region. Nagy (4) has recently analyzed the applica

bility of these techniques and determined the maximum measurable rate constants. 

One of the key assumptions employed in the derivation of th ... analytic current-time tran

sient for small potential steps is the existence of only one rate-determining step. The reaction 

sequence considered in· this paper has two slow steps which occur at comparable rates. One of the 

rate-determining steps is a homogeneous reaction that occurs in the bulk solution. The other slow 

step is part of a multi-step electron transfer sequence at the electrode. The homogeneous rate 

constants, the exchange current density, and the diffusion parameter can be determined by fitting 

current-time transients to experimental data. Part I of this work discusses the effect of the homo

geneous reaction rate on the current response at the electrode as well as the range of parameter 

values that can be determined. Part II of this work (5) makes use of this analysis to determine 

homogeneous rate constants, heterogeneous rate constants and species concentrations in the aque

ous polysulfide redox system. 
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Background and Formulation of the Problem 

Before the potential step is applied, the solution is at a uniform composition. At t=O, a 

small potential step (versus a reference electrode) is applied. A one-dimensional geometry is 

assumed with the x coordinate denoting the distance from the working electrode surface. If at the 

working electrode the multi-step electrode reaction 1 

S0 0 + ne- ~ srR, (1) 

takes place the current will follow the transient given by (4,6,7) 

i = Wexp (.>.2t) erfc (.>.t~) (2) 

if the following assumptions hold: 

1. The electrolyte is well .. supported 
2. Reaction 1 has only one rate-determining step 
3. No diffusion of intermediates into the bulk occurs 
4. No strong specific adsorption is present 
5. Rise of the potential across the double layer is fast 
6. Non-faradaic processes do not contribute significantly to the total current. 

In the linear overpotential region W and .>. have the following definitions: 

(3) 

(4) 

The diffusion parameter, ·[ :
02 +~6rrsr-

2

-) 
Do Cob Dr Crb 

io 
and - can be determined from W and .>.. Before 

II 

deriving the equations for the reaction sequence of concern in this paper, it is useful to examine 

the assumptions and equations that allow the simple analytical expression, Equation 2, to be 

derived. 

Assumptions 1 and 3 allow a simplification of the material balance and flux equations and 

assumptions 2 and 4 are consistent with the assumed form of the electrode kinetic expression. 

10ther species can participate in the electrode reaction. Their concentrations are assumed to be higher than those 
or 0 and R and they therefore do not contribute to the concentration overpotential. The reaction given here and the 
equations derived represent a generalization or the reaction 0 + ne- ;::! R where the overall stoichiometric coefficients are 
not necessarily equal. 
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The flux equation for dilute solutions can be written (8): 

(5) 

Since convection is not expected to play a role at very short times, the last term of Equation 5 

can be eliminated. The first term on the right hand side of Equation 5 is transport of ions by 

migration in the electric field. Only if assumption 1 holds can this term be eliminated. The 

material balance for species 0 or R can then be written: · 

(6) 

If Reaction 1 has only one rate-determining step2 and it is assumed that none of the inter-

mediates are strongly adsorbed then the relation between current density and surface overpoten-

tial is: 

. . , { [ aJ''Ia ] [ -ac:F''Ia ] } 
1 = 10 exp ~ -exp RT (7) 

This is the multi-step Butler-Volmer equation. The transfer coefficients and the reaction orders 

are related to the stoichiometry of Reaction 1 and the stoichiometric number by (9,10,11): 

Zra- Zrc = Sr 

The exchange current density, i~ , contains the Burface concentrations of species 0 and R: 

(8a) 

(8b) 

(8c) 

(9) 

The constant in Equation 9 is independent of the concentration of 0 and R, but depends on the 

rate constant of the rate-determining step and the equilibrium constants of the quasi-reversible 

steps (9,10). The relationship between the transfer coefficients, a, and the mechanism of the 

overall reaction has been discussed by Bockris, et a/. (9,10). 

2-fhe other steps in the electrode reaction are assumed to be in quasi-equilibrium. 

,.,__,. -- ... -·- ~ ~··-
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The concentration overpotential in a well-supported electrolyte is: 

= RT [ ln [ Co I x=o l l [ Cr I x=o l ) 
f1c nF So C -Br n C 

ob rb 
(10) 

Equation 10 neglects a small term which is of the order of the reactant concentration divided by 

the supporting electrolyte concentration (8). In addition, activity coefficient variations between 

the bulk and 'surface of the electrode are ignored. 

Equations 7-10 can be combined (11) to give: 

(11) 

In Equation 11, io contains the bulk concentrations of 0 and R. If the size of the potential step is 

sufficiently ·small then Equation 11 can be linearized (11): 

. _ nFio [ RT [ { Co I x=o }- { Cr I x=o 1 } l) 1 - -;:_RT '7a+'7c- nF So Cob 1 Sr Crb (12) 

The conditions under which this linearization is valid for de relaxation techniques has been dis-

cussed by Nagy (14). 

Three additional equations are needed to derive Equation 2. A voltage balance between the 

working and reference electrode: 

V - Eeq = iR. + '7a + '7c (13) 

a relation between the faradaic current3 and species flux: 

i = - nFDo aco I 
So ax x-0 

(14) 

and a relation between the fluxes of 0 and R at the surface: 

Do aco Dr acr 
---+---=0 
S0 ax Sr 8x 

(15) 

Equation 2 is the solution to Equation 6 (for species 0 and R) subject to Equations 12-15 and the 

3Anodie eurrent and overpotentials are taken to be positive. 



boundary conditions of semi-infinite linear diffusion. It is applicable after the non-faradaic 

current due to the charging of the double layer has decayed to a small value (::::::4RsCdi)· The 

maximum time of observation is set by the decreasing amount of kinetic information as time 

increases (the total overpotential is dominated by concentration rather than activation overpoten-

tial as time increases). At longer times, natural convection may also influence the current. 

Nagy (12) has derived a form of Equation 2 where assumption 5 can be relaxed. In this case 

the equation obtained is similar to Equation 2, but it contains an additional parameter-- the rise 

time of potential across the double layer. Under certain conditions (4) neglecting this can lead to 

considerable error in the determination of the exchange current density. Nagy has also considered 

the case where both faradaic and non-faradaic contributions to the current are taken into account 

explicitly (4). 

I_ 

Equation 2 is also applicable in the non-linear overpotential range, but then W and .>. will · 

not have the meanings given by Equations 3 and 4 and uncompensated solution resistance cannot 

be taken into account explicitly ( cf. Bard (13) and Macdonald (3) ). Nagy (14) has considered 

the case where an equation similar to Equation 11 replaces Equation 12 and has accounted for the 

uncompensated resistance. A numerical solution is required. Where the parameters are deter-

mined by a non-linear least squares fit (for example MINPACK-1 (15)), substantially more com-

puter time is needed for this case than for the linear case. Holub (16) and Susbielles (17) consider 

the linear overpotential case where specific adsorption cannot be neglected. In that case the elec-

trode kinetic expression needs to be modified to take into account surface excess charge. They 

obtain an equation that is similar to Equation 2, but has extra terms that account for this specific 

adsOrption. 

Macdonald (3) presents a solution for a coupled chemical-electrochemical reaction where the 

overpotential is large enough so that the electrochemical reaction is under diffusion control only. 

The concentration of species 0 at the electrode surface is zero. The homogeneous kinetic parame-

ters can be obtained from the current transient, but no information about the electrochemical 

kinetics can be derived under these conditions. 
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In this paper, we consider the case of Reaction 1 coupled to a homogeneous chemical reac

tion which occurs at a rate comparable to that of Reaction 1. The potential step is small enough 

to make Equation 12 valid. Table I shows the reaction sequence for two homogeneous kinetic 

cases. In Case I the homogeneous reaction is first order. In Case II it follows dissociation

dimerization . kinetics. These reactions may be multi-step so long as the overall kinetics 

correspond to one of these cases. 

The chemical reactions can be accounted for explicitly by adding the homogeneous reaction 

terms shown in Table I to Equation 6. For Case I this leads to a set of linear equations; for Case 

II some of the equations are non-linear. The following electrode reaction is considered to obey the 

assumptions that make the multi-step Butler-Volmer equation valid. The set of boundary condi

tions for the problems are completed by specifying that species Y is electr~inactive in the poten

tial range of interest. 

For ease of solution and interpretation it is desirable to make the equations and boundary . 

conditions dimensionless. The parameters W and X as defined by Equations 3 and 4 are us.ed in 

the non-dimensionalization. These are the parameters that would be derived if the preceding 

chemical reaction was not a factor. Table II shows the definitions of the dimensionless groups and 

variables. Table ill lists the dimensionless form of the material balances, initial. conditions and 

boundary conditions. For the solutions presented in this paper, the diffusion coefficients of all 

species are set equal a8 are the stoichiometric coefficients. Then only the first four groups in the 

first column of Table II will affect the i• vs. t• curves. 

The sets of parabolic partial differential equations were solved by casting them into finite 

difference form. Central difference approximations, with a truncation error 0(.6.x2), were used to 

approximate the space derivatives and the Crank-Nicolson implicit method was used to average 

the time derivative (18). This method is stable for all finite, positive values of .6.t/ .6.x2 . In Case 

II the equations are non-linear. They were linearized about a trial solution so that only linear sets 

of finite difference equations needed to be solved (8). The BAND program, developed by Newman 

(8,19), was used to set up the matrix arrays. 
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Results· and D iseussion 

There are four parameters to be determined from a set of experiments: the exchange current 

density and diffusion parameter that characterize the electrochemical reaction and the forward 

and backward rate constants that characterize the chemical reaction4
• The values of the first four 

dimensionless groups in Table II plus the time interval of observation will determine the type of 

information obtainable for a given system. 

We will use an example to illustrate the effect of a slow homogeneous reaction on the 

current-time response at. an electrode. The electrochemical system is characterized by the param-

eters listed in the first column of Table N. The square points in Figure 1 were calculated from 

the numerical model (first-order kinetics). The limiting cases of no coupled homogeneous reaction 

(kr=O, solid line) and very fast homogeneous reaction (kroo, dotted line) are shown. The 

current-time responses for these limiting cases are calculated from Equation 2 using the diffusion 

parameters shown in the second column of Table N. The diffusion parameter for the fast homO-

geneous reaction (kroo) is obtained from Equation 4 by replacing Cob with Cyb· The usual 

method of obtaining the kinetic ai.d diffusion parameters is a non-linear least squares fit of the 

data to an assumed form of the current-time transient. The last column of Table N shows the 

result of using Equation 2 to fit the data over three different time intervals. The dashed line in 

Figure 1 is the non-linear least squares fit for the time interval 0-3.5 milliseconds. 

Since Equation 2 dOes not describe the current-time response of the system over the entire 

time interval, the values of exchange current density and diffusion parameter obtained from the 

least squares fit will depend on the time interval selected. This can result, for example, in calcu-

lated species concentrations that do not correspond to actual species concentrations in solution. 

The exchange current density is underestimated because of the "flattening" of the current-time 

transient at longer times. 

11( the eq~~ibrium constant is k_nown then only three parameters are adjustable because the rate constants are re

lated by Keq=k;;". 

~: 
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At t-O the homogeneous reaction does not influence the current response because the boun

dary layer thickness is zero. As time increases, the homogeneous reaction will have an increas

ingly important effect. The last column of Table N shows the effect of changing the time interval 

over which the non-linear least squares fit to Equation 2 is carried out. The fit to the short-time 

data will give a calculated response at longer times that will be below the experimental currents, 

but will produce exchange current density and diffusion parameter values that approach those of 

the unperturbed electrode reaction. These values can then be used as starting values in a least

squares fit using the model that includes the slow homogeneous .reaction, with data over the full 

time range. 

It is useful to construct dimensionless working c~rves that can be used to determine the 

range of accessible rate constants and diffusional information. If a numerical simulation is carried 

out for Case I, and for a given Cob/Crb• kr/>..2 and Keq but different values of v*, all the curves 

· will have the same shape. In fact., all the curves will collapse into one if ji* ,IV' I is plotted versus 

t•. The appendix of this paper shows why this behavior is expected. The cathodic and anodic 

responses, for potential steps of equal size, are mirror images of each other. Fo~ Case II, t jv* 

will, in general, not be independent of v*. However, under the conditions where the linearization 

of Equation 11 is valid, It fv*l for different values of v* do not deviate from each other by more 

than a few hundredths of a percent. In order to facilitate comparison among figures 

t{l+Cob/Crb)jv* is plotted versus t•. The (l+Cob/Crb) term is multiplied by i*J'I so that curves 

with different values of the group Cob/Crb will have the same value of intercept. These dimen

sionless working curves are presented in Figs. 2~4. 

The case of most practical interest is where the electroactive species 0 is in much smaller 

concentration than species Y, and therefore Keq is small. At small values of Keq ( <:::::::10--4), the 

back reaction dominates and the shape of the current transient is determined by kb/.>. 2 and 

Cob/Crb· The group kb/.>. 2 is obtained by combining groups 3 and 4 from column 2 of Table II. 

Figures 2 and 3 show the dimensionless current transients for Case I and Cob/Crb of 0 and 1, 

respectively. The bottom curve in each figure shows the response when no preceding reaction 
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takes place (kr=O). In Figure 2 the curves becomes almost flat as the homogeneous reaction rate 

increases because both Y and R are in excess. Only at short times is any transient behavior 

detectable. In Figure 3, 0 and R are present in small and equal quantities, and at high homo

geneous reaction rates the concentration overpotential due to the depletion or production of R 

(depending on the sign of the potential step) dominates the shape of the current transient. There 

is a range of kb/A2 where the response of the system is most sensitive to the homogeneous kinet

ics. For each curve there are values of t • where homogeneous and heterogeneous kinetic para~e

ters can be optimally determined. 

If we imagine a system where some information is available on the exchange current density 

and species concentrations in the electrochemical reaction, then curves of the types shown in Fig

ures 2 and 3 can be used to determine the range of measurable reaction rates for the homogeneous 

reaction and the time window needed for observation. Estimates of exchange current density and 

species concentrations allow A to be calculated, and t• can be transformed into a dimensional 

time. For each curve there is a interval in which the electrode response is not significantly 

influenced by the homogeneous reaction. A better estimate of W ancJ. A using Equation 2 can be 

obtained in this interval. Using these estimates the full mathematical model can be used to fit 

the current response over the longer time range where the homogeneous reaction does significantly 

change the current response. The current response will be most sensitive to the values of the 

homogeneous rate constants in the middle range of the curves in Figures 2 and 3. This will be the 

region where this technique is most applicable. 

If the homogeneous reaction scheme of Case II is considered at small values of Keq the 

curves will be qualitatively similar to those for Case I. The groups that determine the current 

response at the electrode are kbCob/A 2 and Cob/Crb· Figure 4 shows the normalized current tran

sients for the condition of Cob/Crb = 0. There is a quantitative difference in response for Case I 

and Case II, even when kbCob/A2 = kb/A2• The range of homogeneous rate constants for which 

the current response is most sensitive to the rate of the homogeneous reaction is also somewhat 

different. 
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Summary 

The results presented here represent an extension of the small potential step technique to 

include reactions which have two slow steps, one of which is a homogeneous reaction in bulk solu-

tion. The material balances and boundary conditions are presented for homogeneous reactions 

following first-order kinetics or a dissociation-dimerization kinetics. At short times the current 

response at the electrode follows the current-time response given by Equation 2 (or modified ver-

sions of it (4)). Over a longer time interval a fit of experimental data to Equation 2 will give 

species concentrations and an exchange current density that are erroneous. Using the full numeri-

cal model, the correct diffusional and rate data for both homogeneous and heterogeneous reactions 

can be obtained. For a particular system the type of information that can be obtained will 

depend on the time available for observation and the values of the dimensionless groups listed in 

Table ll. Figures 2-4 .should be of help in determining the information obtainable for .a given sys-

tem. 

Appendix 

If the potential step can be simulated by a combination of linear partial differential equa.,-

tions (POE's) and linear boundary conditions it will be shown that i•;v- is independent of V'. 

This result will also apply to systems with no homogeneous reactions (Equation 2), and slow 

homogeneous reactions with zero- or first-order kinetics. 

A set of linear POE's and boundary conditions can be reduced to a set of ordinary 

differential equations and algebraic equations by a Laplace transform technique (20). From Equa-

tions Ill-1 and Ill-3 plus boundary conditions lll-8 and II-9b we can obtain: 

- • - • kr 
Co = Af(s,x ,~,l<eq) (A-1) 

From the transform of Equation lli-2: 

(A-2) 
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The constants A and B can be related by ill-9a. Using that boundary condition and the relation 

between current density and concentration gradient (and assuming for illustrative purposes that 

all diffusion coefficients are equal and the stoichiometric coefficients are equal): 

..,... 
1 == ~~------------------~r ar 

- Cob ax• Cob of 
s f-----(1+-)-

Crb &g Crb ax • 
(A-3) 

ax· 
All the functions and derivatives in Equation A-3 are evaluated at x • ==0. The right hand side of 

Equation A-3 can be denoted by h. The inverse transform of Equation A-3 can be taken: 

... 
~ == h(t•,cob/Crb,kr/>.2,Keq) (A-4) 

Therefore t ~ is independent of V. l·. ;fj' 
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Nomenclature 

Roman 

C, concentration (mole/cm3
) 

cdh double layer capacity (F I cm2
) 

D, diffusion coefficient (cm2/sec) 

12 

Eeq• rest potential of working electrode with respect to reference electrode (volts) 

F, Faraday (96,487 C/eqU.iv) 

i, current density (A/ em~ 

io, exchange current density referenced to bulk concentrations (A/ cm2
) 

~ , exchange current density referenced to surface concentrations (A/cm2
) 

Keq, equilibrium constant 

kr, forward rate constant (sec-1) 

kb, reverse rate constant (sec-1 or liters/mole:.sec) 

n, number of electrons 

N, flux (mole/cm2-sec) 

R, gas constant (J/mole-K) 

Rc,, R,., homogeneous reaction rates (mole/cm3-sec) 

R., uncompensated solution resistance (ohm-cm2) 

R,, linear reaction resistance, RTv/nFi0 (ohm-cm2) 

s, Laplace va.riable 

s0 , sr, stoichiometric coefficients for overall reaction 

t, time (sec) 

T, temperature (K) 

u, mobility (cm2-mole/J-sec) 

V, potential difference between working and reference electrodes (volts) 

W, defined by Equation 3 (A/cm1 

x, distance from working electrode surface (em) 

z, multiple of electron charge 

'~ 



... 

Za, anodic reaction order 

zc, cathodic reaction order 

Greek 

aa. ac, transfer coefficients 

'Ia, activation overpotential (volts) 

f1c 1 concentration overpotential (volts) 

.>., defined by Equation 4 (sec.Jtl) 

v, stoichiometric number 

~. potential (volts) 

Subscript8 

b, bulk 

i, species i 

o, species 0 

r, species R 

Y; species Y 

Superscripts 

*, dimensionless variable 

13 
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Case I 

1st Order Reaction 

Y~O 

S0 0 + ne- ~ s,R 

Ro=-Ry=kc<Jy-kbCo 

15 

Table I. Reaction Schemes 

Case IT 

Dissociation-Dimerization Reaction 

Y~20 

S0 0 + ne- ~ s,R 

Vl R0 =-Ry=krC:r-kbc; 
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Table II. Dimensionless Variables 

Dimensionless Groups 

LV 

3. v ·· I ~q II 
.... ~q, case ; C' case 

ob 

kr 
4. i2 

Definitions 

nF V=
RT 

• AX 
X =-=:12 

Do 

• Cy 
Cy=-. 

Cyb 
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Tabl~ ill. Dimensionless Equations 

Case I Case IT 

First-Order Reaction Dissociation-Dimerization Reaction 

Material Balances Material Balances 

(ill-1) 
• 2 • aco a Co 2krCob ( • •2) --=--+ C -C at• ax·2 K .A2 Y o 

eq 

(ill-2) 

(ill-3} 

Initial Conditions 

. . . . c. at t =0, X ~0: Co =1, Cr =1, y =1 

Boundary Conditions 

ac· 
__ Y =0 
ax· 

(ID-4) 

(ID-5) 

(ID-6) 

(ID-7) 

(ID-8) 

(ID-9a) 

(ill-9b) 

(III-9c) 
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Table N. Parameters For Figure 1. 

Reaction Parameters Derived Quantities 
Results of Fit 
to Equation 2 

i0 / v = 1 mA/ cm2 W = 0.5 mA/ cm2 0<t<3.5 ms 

V = 12.8 mV v- = 0.5 i 0/v = 0.73 mA/cm2 

Diffusion Parameter -
n=l Rr = 0.5 ohm-cm2 1.09x109 cm2-sec12 /mole 

cob= 0.1 mM >. = 33.1 sec-112 O<t<2 ms 

crb = 10 mM Diffusion Parameter - i0 /V = 0.83 mA/cm2 

3.2xl09 cm2-sec12 /mole 

kb/>. 2 = 0.913 Diffusion Parameter -
Cyb ==1M 1.66x109 cm2-sec12 /mole 

D = 10-6 cm2/sec if kroo O<t<1 ms 

K = 10_. eq >. = 0.331 sec-112 i0 /V = 0.92 mA/cm2 

kr = 0.1 sec-1 Diffusion Parameter ·- Diffusion Parameter -
3.2x107 cm2-sec12 /mole 2.26x109 cm2-sec12 /mole 



List of Figures 

Figure 1: 0, calculated from numerical model using parameters in Table N; -----• kc-=0; 
---, least-squares fit of Equation 2 to points. 

Figure 2: Case I kinetics, Cob/Crb=O, kb/.>. 2 as labeled. 
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