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1. Introduction

Measurements in.the classicai,'the macroscopic world assume the velocity
of the probe (light) to be infinite and the interacfion between the probe and
the object of measurement to be negligible. The iaws governing the motions of
particles derived on the above assumptions are Newtonian and lead to classical
mechanics. In nen-relativistic quantum mechanics one .assumes the velocity of
the probe to be infinite but allows interaction between the probe. and the
particle by way of Heisenberg's uncertainty principle. For most measurements
on the lighter elements in the periodic table, non-relativistic quantum
mechanics is sufficient, since the velocity of an eleégpon,is small éoﬁpared
tg that of light. For the heavier elements in the periodic table (Ag, Hg, Pb,
Tl, etc.) the picture is entirely different. As a result of neavy nuclear
charge fbr the heavy atoms, the inner electrons attain suchvhigh velocities
comparable to that of light that non—relativistic quantum mechanics is far
from adequate.

Relativistic quantum mechanics neither assumes infinite probe velocity
nor iénores the interaction between the probe and the object of measurement.
Thus,vthe difference between non-relativistic quantum'results and relativistic
quantum results arises from the true velocity of light. One cah-define
relativistic effects, in general, as the difference in the results obtained
with the true velocity of light and infinite velocity of light.

Relativistic effects can be further divided into a number of categories
such as the mass-velocity éorrection, Darwin correction, spin-orbit
correction, spin-spin interaction, Breit interaction, etc. The mass;velocity
correction 15 the correction to the kinetic energy of the electron arising
from the variation of its mass with velocity. One of the consequences of the

finiteness of the velocity of light (as can be shown from the laws of the



special theory of relativity) is the variation of the mass of a particle with
its speed. - This is especially significant as the speed of the particles
approach the speed of light. This variation with velocity in turn affects the
kinetic energy of the particle. The spin-orbit correction arises from the
strong coupling of the spin of the electron with the oﬁbital angular

momehéum. ‘This is especially large for electronic states of heavier atoms
which-arise froh open shell configurations. The Breit interaction is the two-

eléctron'counterpart of the spin-orbit interaction. The Darwin correction is

a characteristic outcome of the Dirac relativistic equation and there does not .

seem to be a simple physiéal explanation fop this effect.

Relativistic corrections make significant impact on the electronic,
properties ‘of heévy atomszandvmoleéules,containing heavy--atoms. . The inner s
orbitals are the closest to the nucleus and thus experience the high nuclear
charge of the heavy atoms. Thus, the inner s orbitals shrink as a result of
mass-velocity correction. This in turn, shrinks the outer s orbitals as a
result of orthogonality. Consequently, the ionization potential is also
raised. TheAp orbitals are also shrunk by mass-velocity correction but to é
lesser extent since the angular momentum keeps the electrons away from the
nucleus. Howevér, the spin-érbit interaction splits the p shells into
P,,;. and P,,/, subshells and expands the p,,, subshells. The net result is
that the mass velocity and spin—orbit interaction tend to cancel for the
P,/, shell but reinforce for the P,,,.

Spin—oEbit interaction plays an important role in the eleétronic and
spectroscopic properties of states arising from open shell electronic
configurations. Thus, the contribution of spin-orbit interaction to the
ground state of Au is small but to Pb i3 large. Spin—orbit interaction not

only splits the electronic state into substates but mixes states which would
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not mix invthe absence of spin-orbit interaction. This is well illustrated by
the lead atom. The ground state of the vaatom would be °P in the absence of
spin-orbit interaction. In addition, the 'D and 'S states arise from

the 6p? electronic configuration., However, the spin-orbit interaction splits
the ®P state into P,,» P, and 3P, states. The *P,-%P,, *P,-’P, splittings
are large, 78&9 em~! and 10650 cm™!, r‘especti&ely.2 The spin-orbit
interaction also mixes *P, with 'S, among other states. Similarly, *P, mixes
with !D,. This mixing is sometimes referred to as spin-orbit contamination
and is quite large for heavy atoms. The *P,-*P;, *P,-?P, splittings for the
carbon atoam are only 16 em™! and 44 cﬁ“ , respectively.? Thus one can‘éee
the dramatic contribution of relativistic effects for atoms and molecules
containing very heavy atoms. In fact, the rare gas compound RnF is predizted
to be ionic, Rn'F~ based on the spin-orbit interaction of Rn'.?

Spin-orbit interaction alters the spectroscopic properties of molecules
containing héavy atoms to a considerable extent. Even if a molecule has a
closed shell ground state, the excited states may arise from open shell
electronic configurations in which case the spin-orbit interaction not only
splits the excited states but mixes different excited states whicnh would not
mix in the absence of spin-orbit interaction. This leads to a number of
interesting features in the potential energy curves such as shoulders,
bakriers, double minima, etc., thch are attributed to relativistic avoided
crossings. This aspect of relativistic effects is discussed ih the third
section of this chapter. The color of gold is attributed to relativistic
effects which splits the 5d shell. of gold and raises itsvenergy. The golden
color results from the 5d-fermi level'trangition which coﬁtrasts its color in
comparison to silver.® The Lamb.shift, Breit interaction, etc., are more

important if one is considering fine structure calculations. They are

.
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normally ignored if one considers electronic and spectroscopic properties in
the valence region.

Relativistic effects alter the chemical bonding of molecules containing
héévy atoms to a considerable extent. 1In some cases the bond is strengthened
while in other cases it is weakened. Consider the dissociation energies of a
few molecules to get some insight into the effect of relativistic corrections
on D, values. fhe dissociation energy of Au, isvhigher than Ag, in contrast
to the usual trend of a lower De fbr the heavier elements of a group in the
periodic table. This anomaly is caused by relativistic contraction and
stabilization of the 6s orbital of Au. On the other hand the relativistiec
spin—obbit interaction weakens the bond in the case of Pb, by 50%. The
calculated dissociation energy for Pb, with the inclusion of spin-orbit
interaction is 50%~of the value obtained without spin-orbit interaction.*

The lanthanide contraction (the decrease of radii from La to Lu) is
usually attributed to incomplete shielding of the 4f shell. However, as
pointed out by Pitzer and coworkers® this effect is in part attributable to
relativistic effecté; If one compares the non-relativistic Hartree;Fock and
‘Dirac-Fock resuits, Qne obtains a contribution of about 27% from relativistic
effects.

In recent yeaﬁs a number of papers have abpeared in the chemical
literaﬁure which deal with relativistic effects in atoms and molecules. Some
of the earlier developments in this area have been reviewed by Pyykko’? and
Pyykko and Desclaux® and Pitzer?. A NATO conference proceedings edited by
Malli'® lists a number of papers by experts in this area on several topics:
pertaining to relativistic effects in atoms, molecules and solids. More
recently, an issue of the International Journal of Quantum Chemistry was

devoted to the proceedings of the Finland conference on relativistic
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effects.!! Krauss and Stevens'!'? have reviewed the use of effective potentials
which include relativistic effective potentials. Chr;stiansen, Ermler and
Pitzer!?® have recently reviewed relativistic effects in chemical systems. The
above reviéws have outlined the varibﬁs developments and applications in
relativistic quantum chemistrf. Since the appearance of the above reviews a
nuhbeb of developments and new applications have emerged in this area.

Earlier reviews on this topic could not cover all applications in this area in
detail as a result of space limitation among other reasons. The present
review emphasizes the methods and very recent applications of relativistic

quantum chemistry to molecules of spectroscopic interest.

2. Methods of relativistic quantum chemistry

The starting point of most of relativistic quantum mechanical methods is
the Dirac equation which is the relativistic analogue of the Schrodinger
equation, Before Dirac's formulation, an obvious way of starting relativistic

quantum mechanics would be the Einstein energy expression shown below.
o¢ * pcc | (1)
One could insert the appropriate quantum mechanical operators for E and p and

obtain a differential equation. The resulting differential equation, known as

the Klein-Gordon equation, is shown below.

where

fatb iy
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where, T = ¢ = 1.
The resulting equation is covariant to the Lorentz transformation, a
fundamental transformation under which all relativistic equations must be
invariant. However, p = ww* obtained from the Klein-Gordon equation can be
negative which leads to difficulties in interpreting p, the conventional
probability density.

Dirac discovered an equation now well Known as the Dirac equation in an
attempt to-.overcome the above-mentioned difficulties of the Klein-Gordon
equation. The reasoning behind the derivation of .this equation is that in
order to prevent the occurance of negative charge densities one must avoid
time derivatives in the charge density and . the resulting.equétion-must‘be
completeiyvsymmetric in the treatment of spatial and temporal coordinates.

The resulting equation is shown below for a single electron in a central

coulompoic field.

HDw = Ew’

where

Hp = (a = p + 028 - z/r)

where the op's are the 2x2 Pauli matrices and I is the 2x2 identity matrix.



The Dirac hamiltonian for a many-electron atom can be written as

1

Hy = L h (1) + T — ,
i 1< Tij

o1

where hD(i) is the one electron Dirac hamiltonian, hD(i) = a; . p; + B, ¢? -

1

Note that the above hamiltonian ignores the 2-electron relativistic Breit

interaction. Introduction of the Breit interaction as a perturbation shows

that it is very small in the valence region.

However,

the Breit interaction

appears to be more important for the properties of core electrons for which

this makes significant contribution.

Since “the ohe—particle Dirac hamiltonian involves uxi matrices instead of

scalar functions and differential operators, the solution of the Dirac

equatibn is a vector of four components. This is referred to as 4-component

. spinor.

where

spinors, C(& 1

m-g
YA

is a spher

2

It takes the form

ka(er‘b) = Z
g =

ical harmonic,

1 Pnk(r) ka(8’¢)

°r 1Q, (P x_yp(8:9)

1
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(?J, are the Pauli

J; m—o,0) are the Clebsch-Gordan coefficients, and k is the

relativistic quantum number.

A

is defined as

k= |

It is defined as
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The Q,x's are known as the small components and P,,'s are the large
components. They satisfy the following coupled differential equations for a

central force field v;

dp kP

_nk nk _ 2 _ a
T " { 3" alv(r) Enk) } an =0
dQ kQ
nk nk
dr r *“[.”?? Enk]Pnkzo

Thus one can solve the Dirac-Fock equation to obtain the relativistic energies.
and four-component spinor wave functions.'

Desclaux!* ﬁas developed a computer code to solve the many-electron
Dirac*Fock.equétion‘for atoms in a_numerical self-consistent method. In this
method the relativistic hamiltonian is approximated within the Dirac-~Fock
method ignoring the two-electron Breit interaction. The Breit interaction is
introduced as a first order perturbation to energy after self-consistency is
achieved. Relativistic wave functions and energies calculated this way are
available for a number of atoms.®

The non-relativistic limit (¢ + «) of the two coupled radial Dirac
equation reduces to the Schrodinger equation if the small compbnents an are
eliminated. Thus, the small component is a measure of the magnitude of
relativistic effects in these systems. While the small components make
significantvcontribution in the core region, the effect of these components in

the valence region is ignorable. This was illustrated by a comparison of the



relativistic and_non—relativistic}radiél solutions for the 6s prbital of Pb by
Lee, Ermler and‘Pitzer.ls' We reproduce their comparison in fig. 1. As one
can see from that figure the effect of small component is very small in the
valence region.
The effect of.small components on the properties of molecules have béen
o studied by Schwarz!® to é high order using the Foldy-Wouthuysen
| transformation. Schwarz has demonstrated ﬁhat the contribution of the small
components to chemical properties is ignorable. Thus one éan ignore ihe small
components if one is considering chemical properties. Examples of 4-component
atomic spinors are shown in the review paper by Pitzer.®
Relativistic calculations can also be carried out using the Pauli
hamiltonian.! The Pauli approximation divides relativistic effects into
different categories thereby facilitating evaluation of different types of
relativistic correction. The Pauli hamiltionidn can be written in the absence
of magnetic field as

Hgp = Hy + Hp + Hyy * Hgo * Hgg

Ho = non-relativistic hamiltonian

Hy = + 5 [v%v] (Darwin)
. 2
H = -2 3 Pu (mass velocity)
MV 3 i y
H _ QZ [ T 2 (? 2 ) 1 Pind -3 ) (2 hd ] : nit)
so = 2tz by n S - I == rx Py (S w259 ] (spin-ordit)
1 r‘i 1=} rij

wnere a is the fine structure constant, and



vThe Pauli hamiltonian is ideally suited for carrying out relativistic
cobfeétions as first order perturbation to a non-relativistic hamiltonian. In =
recent years, several authors have considered inclusion of the Pauli terms in o
variational (SCF) calculations.?771? Wadt, Hay and coworkers?°T2% yse the
Pauli hamiltonian in deriving relativistic effective core potentialé; The
choice of appropriate bas;s sets is crucial in using the Pauli hamitonian in
polyatomic relativistic calculations. Gaussian basis functions with large
exponents are important. It has been noted!’,2% that the mass-velocity term
of the Pauli hamiltonian leads to divergence in the fegion close to the atomic
nucleus. Cowan and Griffin!? avoid this divergence in their numerical SCF
calculations by restricting the wave function flear the nucleus by a two-term
-series expansion. For Gaussian basis sets the total Pauli kinetic energy
contributions for the s functions with exponents of the order of 1/a? or
larger become negative, resulting in unrealistic wave functions and energies
if corrections above first order in a? are included. Nevértheless, this can
be avoided if one cohtracts heavily such high exponent s functiéns with
functions having much smaller exponehts.

Several authors. have considered a number of approximéte solutions to the

Dirac equation. One such method is the use of the Foldy-Wouthuysen

transformation!® (see, for example, Morrison and Moss?®*). Upon application

<

of a unitary transformation of the form shown below to the Dirac hamiltonian,
one can transform the Dirac hamiltonian to a form for which the solutions have

only the large two components.
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H = exp(is) Hp exp(-is),

where s is an hermitian operator. Kuttzelnig?® has also recently emphasized
the importance of the Foldy-Wouthuysen transformation in order to avoid a
variational collapse fof finite basis sets with the Dirac hamiltonian.
Desclaux and coworkers?? have formulated a relativistic one-center approacn
based on the Dirac hamiltonian; this method, however, is applicable iny for
hydrides.

Kim?® has formulated a relativistic Hartree-Fock-Roothaan equation for
the ground states of closed‘shell atoms using Slater-type érbitals.
Relativistic effects. in atoms have been reviewed by Granp.29 Malli and
coworkers®°T?? have formulated a relativistic SCF method for molecules. In
this method“four—component spinor wave functions are obpained variationally in
a self-consistent scheme using gaussian basis Sets.

Lee and McLean?®",35 have considered full-reiativistic all—eiectron
solutions to the Dirac equation for AgH and AuH. In this method, UY-component,
all-electron spinors are obtained using a LCAS-MS (linear combination of
atomic spinor-molecular spinor) method. These authors employ a Slater type

basis for AgH and AuH. However, such relativistic all-electron calculations

"do not seem to be practical for molecules other than diatomic hydrides at

present.
The Breit two-electron correction’®® arises from the relativistic magnetic
retardation between two electrons. The Breit operator, which describes this

interaction, is

11



yhere a; and o, are Dirac matrices, r,, is the distance between the electrons
1 and 2. The eigenfunction of Hgp, is thus a 16—component spinor, since each
electron has a 4-component spinor function. The Breit interactiop is of the
order a? (a is the fine structure constant). Although its contribution is
signifiégnt in the core, the effect of Breit correction in calculating
chemiéal and valence-level spectroscopic properties appears to be sm;ll. The
Breit interaction is normally intfoduced as a first order perturbation to the
Dirac h;miltonian. Further, inclusion of Breit interaction in the Dirac
hamiltonain would lead to results that are not consistent with the laws of
quantum electrodynamics since the Breit interaction is not Lorentz-
invariant. Thé effect of Breit interaction on -chemical propgrties have not
yet been studied in full detail. Stevens énd Kréuss37,3° have developed a
semiempirical.scaling method which corrects for two—electronvscreéniﬁg of the
valence spin-orbit by core. The total Breit cdrrection to the spin—oﬁbit
splittings are about 15% ip the first row and 5% in_the second row,

Pyykko and coworkers??,“° have formulated é relativistic extended Huckel
method for molecules. This method incofporates relativistic éffects by a
systematic parémetrization using Desclaux's atomic relativistic Dirac-Fock
calculation.® The Dirac-Fock atomic enérgies and the off-diagonal elements
" are proportional to the product of the overlap matrix element in the
relativistic |& sjm> basis. Pyykko and ;oworkers“°"““ have applied this
metnod to a number of molecules.

Dirac—Siater multiple ya (DS-MS xa) method is an approximate way of
introducing relativistic corrections. Case an;j'coworker's"z—"s have used this
method in a number of studies. This method has been recently reviewed by
Case“? and earlier by Pyykké.’ The readers are referred to these two reviews

for furtner details.

12
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We nowbbriefly consider the symmetry aspects of relativistic quantum
chemistry. With the introduction of spin-orbit interaction, the appropriate
group of the hamiltonian is the double group of the molecular point group.

This arises from the fact that spin is no longer a good quantum number. The

double group contains twice the number of operations in the molecular point

group. In this group, rotation by an angle € + 2w is not considered

equivalent with the Eotation by €. The group has twc sets of irreducible
representations. The first set is for the ihtegral spins which correspond to
the ofdinary irreducible representations of the point group but extended to
tbe double group. For half-integral spins additional representations are
generaﬁed which are not members of the set of irreducible representations of

the point group. The first use of the double group is in correlating non-

.relativistic electronic states into relativistic states,‘ An equivalent

correlation is the cofrelation of the states without and with spin-orbit
interaction. For example, consider the B, state of PbH,. Since ghe spin-
orbit interaction on Pb is quite large, this state would be split épart into
finer relativistic states. The states which result from 3B, are obtained by
&)

2
first correlating the spin state (triplet, D ) into the sz group and then

'multiplying the resulting spin representations with the spatial symmetry. The

2

2v

which upon multiplibation with B, results in B, + A, + A,. Thus the ’B, state

correlation of the triplet into C gives rise to A, + B, + B, representations

of PbH, is split into three states in the presence of spin-orbit interaction
which are of A,, A, and B, symmetry. If one considers the 2B, state of PbH:

one obtains a different picture. The doublet correlates with the E,,/,

2

representation in the C2V

group. The overall symmetry is thus E,,,, which is
not a part of the character table of C2v' Oreg and Malli®*7,“®”*? have

censidered symmetry aspects of the construction of spinors for polyatomics

13



which are symmetry-adapted in the double group of the molecule. These methods
have been used in the Dirac-Fock theory of openshell as well as closed shell
molecules.®? |

An important and reliable method for carrying out relativistic quantum
calculations is the relativistic effective potential method. A number of
groups have considered the generation of both relativistic and non-
relativistic effective botentials. Krauss and Stevens!? have recently
reviewed the use of effective potentials in quantum chemistry. Readers are
referred to that review for additional details bertaining to this topic. "In
this review we consider the methods of relativistic effective potentials.

The objective of the effective potential method is to represent the
interacticn of the valence electrons with the core electrons by an effective
potential thereby reducing the number of electrons significantly in quantum
calculations. The effective potentials must prevent the collapse of the
valence electrons into the core. Effective potentials cén be relativistic og
non-relativistic depending on the nature of the wéve function from which they
are generated. .Relativistic effective potentials can be generated by either
semiempirical or ab initio methods. We first briefly review the ab initio
methods.

Many of the effective potentials (relativiétic or non-relativistic) ére
generated using the Phillips-Kleinman transformation.?° In tnis method, the
explicit core-valence orthogonality contraints are replaced by a-modified
valence hamiitonian° If one replaces the potential generated by core
electrons by a potential V, then one can write the one-electron valence wave

equation as
(h e Vo) o =Eo,

14



where <¢ ]¢c> =0, H¢_ =E ¢c.* Phillips and Kleinman®° suggested that ¢v

can be written as

It can be easily seen that for any Xy ¢v is orthogonal to ¢c theréby
satisfying <¢V]¢c> = 0 . If one substitutes the above expression for ¢V into

the one-electron eigenequation one obtains
- (h + Vg + VEP) Xy = vav’

Vep I [E -EJ | ¢.>< 0]
VEp thus obtained is often referred to as the Phillips-Kleinman pseudé
potential; while Xy is known as the pseudo orbital. |¢c><¢cl is the
projegtion operator corresponding to the core orbital ¢c. Thus the

' operator ¢ |¢c><¢é| is the projection operator of the core orbitals. If the

o]
p's_are derived based on a non-relativistic atomic wave function, they are

Vg
known as non-relativistic effective core potentials. There are also several
non~relatiyistic model potentials which are not strictly derived from ab
initio methods. For a review of these potentials, see Krauss and Stevens."?
Ab initio relativistic effective core potentials can be derived from a
number of methods. We briefly review these methods. Lee, Ermler and
Pitzer'® nave formulated a method for deriving effective potentials from the
'numerical Dirac-Fock calculaﬁions of the aCOms.A We start with this method.

The solution of the Dirachock equation is a set of 4-component

spinors. If the spinors are partitioned as core and valence spinors then one

15



can write the overdll many-electron relativistic wave function for a single

configuration as
R SO S TS B R

where A is the antisymmetrzer, w? ceo w; are core orbitals, m being the number
of core electrons and wr, w; . w: are the valence orbitals with n being the
number of wvalence electfons. _The total Energy ET can be partitibned into
core, valence and cbre-valenée interaction éhetgies. In symbols,

EBr = Eg + Ey * Egy

It can be shown that

R,..Rel; R
Ev ¥ Ecv = <wlev va>’
Rel . . . 1
H, = L { (1) + L (3 (1) = K (1) b+ 2 —

i c i<j ij

where the indices i and j run over valence electrons. For an orthonormal set
of valence orbitals it can be shown that the DHF equation for a single

electron is given by

[hD * (Z: l:JC“ KC]] 1J)V B eVWV * g wCCCV !

where ccv's are the off-diagonal Langrarge multipliers given by
cv

€ = <wv|hD + i(Jc- KC)]wc>

16
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If one defines the core projector and the pseudo orbital in the same way as
done in the Phillips-Kleinman method, for relativistic spinor wave functions
one obtains relativistic pseudo orbitals and relativistic effective potentials

which are given by

- R R R R R
Xy =V, v Zay, ., ¥, = (1-P)x,» P =1 |wc><wc|
e c
VRPK - - PHrel _ Hr'el P+ PHr‘el P+ e P,
v \ v v
where -~
Rel RPk R
(Hy LR S S
core R . core RGPK
(hD + U ) Xy = EyXys it u = i (JC Kc) + V

The relativistic effective potentials thus formulated involve 4-component
spinor prbjectors. As mentioned earlier the effect of small combonents in the
valence regions is rather small and one can neglect the small components in
considening<chemical and spectroscopic properties. Alternatively one can make
the Foldy-Wouthuysen transformation!? to eliminate the small components and
obtain a correction to the large comonent; for valence spinors this correction
is so small that it can be neglecﬁed. Thus one can use the nbnrelativistic'
kinetic energy operator along with the relativistic large components in an
equation from which valence-level, relativistic core potentials aré

generated. Thus, for a single valence electron

17



where XQ is a two—-component pseudowavefunction containing only the large
radial components.
With more than one valence electron, this equation becomes

1

A EP
L 5 =

vz - -t U o+ W(XQ’ x&l)] x; = g

1
viy
where W(x'v, x'v,) is the sum of Coulomb and exchange interactions of a given

pseudo-orbital x'v with all other valence pseudo-orbitals X'v' .

EP

The effective core potentials UV

are not the same for pseudo-orbitals of
different symmetry._ Thu$ one can express the REP;s as products of angular
projectors and Eadial functions. In the Dirac-Fock approximation, the.
orbitals with different total j but which have the same % value are not

degenerate, and thus, the potentials derived from the Dirac-Fock calculations

would be j-dependent. The REP's can thus be expressed by introducing the Lj-

dependent radial potentials Uzip, as
@ L+1/2
uREP - ¢ L uREP () |2gm><aim],
%= 2]

0 j=|e-1/2|

where |2jm>'s are Pauli 2fcomponent'spinors.
The expression for the relativistic effective potentials involves an
infinite sum over &. This requires calculations of the radial potentials for

all the excited states of the atom, which is impractical. HoQéver, the radial

REP

2 ; cease to change significantly with £ and j after these numbers

functions U
exceed those of electrons in the core. Consequently, it is a good

approximation to stop at a maximum & and j values denoted by L and J,

respectively. The modified relativistic effective potential can be written as

18



- + s )
FE L ) LZ1 ’ 12/2 b i - ot - e <agn].
2=0  j=[e-1/2] me-j ™Y
One can test alternate values by a'Series of actual calculﬁtions. It is our
experience that L should be at ieast one higher than the maximum £ value in
the core. Thus fok example, desirable minimal values of L for Sn and Pb are 3
and 4, respectively.

Pitzer and coworkers'S 52755 have carried out relativistic calculations
on a number of diatomics such as Xe,, Xe2+, Tl1H, Au,, Au:, PbS, PbSe+, ete.
These calculations were carried out with LCAS-MS (linear combination of atomic
spinor-molecular spinor) approach with the relativistic effective
potentials. Many of these calculations were at the level of single
configuration SCF. In the earlier calculations, the spin-orbit cdupling wags
ignored at the SCF stage and introduced using a semiempirical procedure. |

These early calcuations used effective potentials obtained by the
Phillips-Kleinman method®® (see the review of Krauss and Stevensi?®) wherein
the pseudo-orbitals are taken to be linear combinations of the atomic orbitals
of the same £ and j. This method tends to underestimate the repulsive region
of the potential energy curves. There is no reason that the pseudo-orbital
must Dbe Linear combinations of core and valence orbitals. Christianseﬁ; Leé
and Pitzer®® have proposed a method for constructing pseudo-orbitals in which

the pseudo orbital is represented as

r NZ Cirl, for r

I
"3

w
"3

¢l(r), for r

where rg is a match radius,and ¢1 is the all-electron Dirac-Fock orbital. In
this method the coefficients C;s are determined by matching the value and the

first three derivatives of the Pl and ¢2 at rp with the condition that Pg is
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normalized. The match radius is minimized subject to the condition that

?2 can have only one maximum and two inflection points. Pseudo orbitals
derived this way are called shape-consistent because the resulting pseudo-
orbital is identical to the Hartree-Fock (Dirac-Fock) orbital in the valence
region. In Fig. 2, we reproduce a comparison of this pseudo-orbital and the
corfesponding orbital obtained using the Phillips-Kleinman method for the
chlorine atom as done by Christiansen, Lee and Pitzéf(CLP).s6 As one can see
from that figure‘thé maximum of the Phillips—Kleinman orbital is at smaller
radius than the all-electron orbital or that of the CLP orbital.

The relativistic effective potentials obtained with the methods described
above are numerical pbtentials.' However, for polyatomic calculations a
gaussian analytic fit of such potentials is mére desirable since multicentered
integrals over gaussians can be obtained easily. Kahn, Baybutt and
Trulhar®? have suggested the following gaussian expansion of numerical

potentials.

N .
RP.:P(r‘) -l r c. r'toexp (- a.r2)
2 . i i
r i=0

REP
ULJ (r) UQJ

where Ci's, ni’s, and ui's are chosen so as to obtain the best fit for the
numerical potentials.

The relativistic effective potentials can be averaged with respect to

spin. The averaged relativistic effective potentials can be written as

L
P .
AREP PPy v 1 e - U] i,

v L

(r) ~ "L
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. Where

GAREP L T rg gBEP 4 (1) UREP

% 27+1 %,0-1/2 z,z+1/2(”)]

The resulting potentials involve the ordinary spherical harmonic projector as

“opposed to 2-component spinor projectors. These potentials include all

relativistic effects except the spin-orbit interaction. These potentials
resemble nqn—relativistic effective potentials in their form and'can thus be
introduced into non-relativistic SCF or MCSCF calculations. Schwarz and
coworkerss® and Ermler et al.®® have suggestéd that the spin-orbit operator
can be obtained és the difference of different j but same 2. The resulting
spin-orbit operator is simply the difference of 2+1/2 and 2-1/2 relativistié

effective potentials. The spin orbit operator thus derived can be written as

.

L-1 L+1/2
HO = ¢ auREP(pm) { e £ [2,2+1/2,m> x <2,8+1/2,m|
L. 28+1
g=1 -2-1/2
2-1/2
2+1
- 3T g [£,2-1/2,m><8,0-1/2,m| } ,
£+
-9-1/2
REP REP REP
U (r) = Uy Barya(m) = Uy (™)

The spin—orbit operator derived this way can be ab initio in that if it is
derived from relativistic ab initio potentials. It can be introduced in
molecular calculations. Pacios and Christiansen®® have published gaussian
analytical fits of averaged relativistic effective potentials and spin-orbit

operators fof Li through Ar. The relativistic potentials of other élements
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are also being tabulated.®!?

The relativistic effective potentialé derived from the numerical Dirac-
Fock wave functions have been employed in a number of quantum calculations
with considerable success. We will review a number of such calculations and
results in the next section. We now consider other methods of generating
.relati;istic effective potentials.

'ﬁa&, Wadt and coworkers?°72% 62 63 derive relativistic effective
potentials from the Pauli hamiltonians after omitting the spin-orbti term.
Cowan and Griffin have suggested é procedure for the inclusion of the mass-
velocity and Darwin terms of the Pauli hamiltonianvinto a variational SCF
calculation. Sihce Hay and Wadt db not include spin-orbit interaction in
their effective potentials, these potentials are analogous to‘spin—averaged
relativistic potentials. ‘Hay and Wadt?2~2* have published recently gaussian
fits of relativistic effective potentials withdut spin-orbit interaction for
all the elementa in the periodic table. Also, included in these papers are
the optimized gaussian basis sets of these elements for~polyatomic
calculations. The results of the Hay-Wadt poteﬁtials compare reasonably well
with the averaged relativistic effective potehtials derived from the Dirac-
Fock calcﬁlations. However, thesevpotentials do not provide for an ab initio
spin-orbit operator which gan.be introduced variationally either in a MCSCF or
a CI scheme. The spin-orbit interaction is introduced in the final step as a
perturbation Qsing the semiempirical method.?!

Schwarzwand coworkers®®,%*7%% have developed a relativistic model
potential method. In this method the relativistic effective potential is
expressed as follows:

eff core

v =V £ I [2jm. > v, (r) <jm |,
rel rel %,j.mj J 23 J



.where Vpe1(r) and ng(r) are parametrized as

v (r) = ~Zeff + Aexpn(ar)
rel r

’

sz(r) = B_ . exp (-ngr).

L3
where Zeff is the effective charge of the atomic core. The parameters

a, Blj’ A, sz, are obtained so that the effective hamiltonian reproduces
valence~electron spectrum of the alkali~like systems. The resulting effective
potentials are spin-dependent and they include spin-orbit interaction.
Schawarz and coworkers®® have developed a complex two and four-index
transformation over two-component spinors which enable introduction of thegé
potentials in MCSCF or CI calculations. These authors®®™7° have applied the
relativistic model botential method to a number of molecules containing heavy

~

71 have considered the use of

atoms. More recently, Mark, Marian and Schwarz
relativistic Dirac-Breit approach to estimate the fine structure splittingsvof
F, and F: . Schwarz and Chu’? have considered relativistic contributions to
ionization energies and bond lengths with semiempirical as well as ab initio
Diréc Fock calculations. Esser??® has recently developed a relativistic MRCI
method for many electron wave functions. He has presented the unitary group
formalism and applications to heavy atoms such as Pb, Hg, etc.

We now briefly review a number of methods of relativistic calculations
using effecﬁive potentials. As mentioned earlier Pitzer and coworkers carried
out their earlier relativistic calculations using a single configuration SCF
spinor scheme.327%®3% (Christiansen and Pitzer’* introduéed REPs in MCSCF-LCAS-
MS spinor calculaticns. These calculations were carried out by a modification

of the BISON-MCSCF code to accomodate relativistic two-component spinors. The
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first calculation along these lines was carried out on the ground state of the
T1H molecule,’“. This MCSCF calculation included 5 sbinor configurations.
Christiansen and Pitzer7377% havevcarried out such MCSCF calculations on

T, T2:75 and polarizabilities of the Rb and Cs atoms.’® Other calculations
which compare effective potential and all-electron methods have also been
carriea out.’?,®® This MCSCF-spinor scheme is restricted in that it could
accomodate only 10 configurations. This was, however, adéquate for the ground
state properties of molecules such as T1H. Christenﬁen and Pitzer’* obtained
80% of the experimental dissociation energy using this method.

While the MCSCF spinor approach with up to 10 configurations provides a
reasonable picture of bonding for some of the molecules such as TlH, for other
molecules like szy this approach is far from adequate. This is a result of
large mixing of configurations arising from both correlation and spin-orbit
interaction. Thus an approach which can accomddate a large number of
configurations is more desirable. Further, the method should enable
calculations of several excited states. .Christiansen, Balasubramanian and
Pitzer®! have developed a relativistic configuration interaction method. In
this method the relativistic effective potentials are ayeraged with respect to
the spin at the SCF stage. Thus at this stage relativistic effects such as
mass-velocity correction, Darwin correctidn, etc., are included, but, the
spin-orbit interaction is not introduced at this stage. However, this spin-
orbit operator is obtained as the difference of %+1/2 and 2-1/2 potentials as
described ea;lier. The spin-orbit integrals over MO's with this SO operator
obtained this way are introduced as one-electron integrals at the CI stage.
The spin-orbit integrals over real cartesian basis sets can be imaginary and

thus, the introduction of these integrals at the SCF or MCSCF stage would lead

to a complex Fock operator. Although the CI integrals are imaginary, the CI
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matrices are diagonaiiied only once. This procedure could be called
relativistic CI methgd or SOCI method. This provides for a method of
introducing spin-orbit interaction variationally rather than the conventional
perturbative scheme. Further, this method allows for mixing of configurations
which would not mix in’the absence of spin-orbit interaction. The method has
been tested on a number of diatomics in the past few years. These results
will be reviewed in the next section. R. Pitzer and Winter®? are considering

relativistic CI calculations of UF6, NpF6 and PuF6 with this method.

4, Applications to molecules containing heavy atoms

In this section we consider applications of relativistic quantum methods
to calculations of properties of’molecules containing heavy atoms. 1In recentﬁ
years a number of authors have made relativistic éaléulations of the
electronic and spectroscopic properties of a number of molecules using the
met hods ogtlined in the earlier section. There are excellent reviews on
applications of relativistic calculations to a number of molecules?™13 42 83=se&
While we review some of these calculations foé completeness, additional
details on these calculations can be found in these reviews.  In the present
chapter we review more-recent developments in this area. We will divide
molecules into several categories aﬁd discuss the calcglétions in each
category. Sections U4A and UB consider homonuclear and hetero diatomics,
respectively, while Section 4C considers polyatomics and miscellaneous

applications. The heteronuclear diatomics that we consider here include

hydrides, halides, and oxides.
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A. Homonuclear diatom;cs containing very heavy atoms

One of the first relativistic calculations.on very heavy diatomics were
carried out by Pitzer and coworkers$® on the ground state of Au,. For this
molecule, the spin-orbit contribution is small in comparison to other
relativistic contributions such as mass velocity and Darwin corrections. The
Au, molecg;e exhibits primarily 0y bonding arising from the overlap of s
orbitalé;i An importént result of this calculation is that the Au, bondvis
stronger than Ag, bond as a result of the relativistic contraction of the s
orbital. Ermler, Lee and PitzerS% carried out calculations of several excited
states of Au2; For the excited states the spin-orbit interaction pléys a more
important role; it was introduced by a semiempirical procedure. These.
calculations employ the Phillips-Kleinman potentiais which tend to
underestimate the repulsive region of the potential energy curves, thus
predicting short bond lengths. Zeigler et al.®® ﬁave carried out Hartree-
Fock-Slater calculations»of Au, as well as other heteronuclear diatomics
containing Au and Ag. Ross and Ermler®® have recently reported calculations
on Ag,, Au,, and other Ag, Au-containing molecules. They have carried out
SCF, MCSCF and CI calculations on these molecules with the revised
Christiansen-Lee-Pitzer potentials. These calculations have shown that the
relativistic bond.contractions for Au, and Agz are about 0.2 & and .05 A,
respectively. Thése célcqlations empioy a triple-zeta s, double-zeta p and
double-zeta d basis, but the f functions which seem tQ play‘a significant role
for these sy;tems are not included. Further, core-valence correlations which
weke not included, may be important for these systems. As a result of these
approximations the;r calculated dissociation energies with MCSCF and CI
‘schemes are 1.00 eV'and 1.47 eV, for Ag, and Au,, respectively, in comparison

to the experimental value of 2.08 eV for Au,+ McLean®’ has also carried out
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non-relativistic all-electron calculations for Ag,.

Christiansen and Pitzer’® carried out MCSCF calculations on
T, and TQZ in Q-w coupling scheme. They carried out calculations on 3 low-
lying w-w states and 3 A-s states. These calculations revealed that the
ground state of.Tzz, is the O; state and is essentially repuisive with only a
shallow minimum at long distance. The O; and 1u states are slightly higher in
energy. The Tz:; ion, however, has a 1/2g state which is bound by 0.58 eV at
this level of calculations. Christiansen®® carried out relativistic
chfiguration interaction calculations on T, with the method described in
reference 81. These extensive calculations also produced only weak binding
for the ground state of TL,. 'Christiansen®® also recaléulated_the
experimental dissociation energy by correcting the partition function of lef
The revised experimental D, for TR, is about 0.37 eV (+0.15). Pitzer®® has
reViewed.tﬁe earlier calculations on T%, and Au,.

The Pb, and Sn, molecules are considerably more complex’phan Au, and
T, in that even the atom needs to be treated in an intermediate coupling
scheme. Both correlation and spin-orbit contributions are large for these
systems, but the spin-orbit contribution for Pb2 is much larger than for
Snzf Balasubramanian and Pitzer®,®? have carriéd out relativistic CI
calculations on Pb, and Sn,. Results of our calculations on Pb, and Sn, are
shown in figures 3-6. OQur calculations enabled interpretation of
experimentally observed laser-induced fluorescence spectra Of Pb27°731 | Tpe

experimentally observed X, A, and C states were assigned to O 1g,~and O;

+
8'
states. The B state was reassigned to the O; state. The ground Oé and low-

- 2 2
lying 1, state are type c analogues of ’Zg (¢ 7 ). However, the assignment of

g u
any state of Pb, to any particular spin-orbit component of a A-s state has

limited meaning because of large spin-orbit contamination of several A-s
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states. in fig. 7 we show the fractional CI populations of varioﬁs A-s states
as a function of internuclear distances for the 0; gfound state. As one can
see from these figures, A-s populaﬁions in Pb, change dramatically as é
function of internuclear distance. It is further interesting to note that at

a short distance, the Og states of both Pb, and Sn, exhibit an avoided

o 2
crossing resulting from L (O;) with ogwJ (O;, 1g) configurations. This

results in a shoulder in the O; curve at short distance. The Sn, is

2

described reasoﬁﬁbly well in A-s coupling; As one can see from figure 7, the
spin-orbit contamination for Sn, is rather séall and thus the ground state |
is 52; (o+g‘). The J = 0 state of the Pb atom is 88% (’P ) and 12% ('S ).
Similarly, the J = 2 state of Pb atom is 70% (°®P,) and 30% ('D,). The
corresponding percentages for the J = 0 and J % 2 states of én are 97% (’PO),
3% (’SO) and 97% (°P,) and 3% ('D,). Thué correlation is more important for
Sn than spin-orbit interaction, while both correlation and spin-orbit
;nteraction are important for the Pb compounds. For the Pb, dimer the spin;
orbit interaction destabilizes the bond by almost 50%. The calculated De
values for Pb, and‘Sn2 (0.88 eV and 1.86 eV) are in good agreement with the
experimentél values?27 9" (0.88 eV and 1.94 eV). After the completion of these
calculations, an experimental value of R, for the ground state of Pb, was
repdrted by Sontag and Weber.®S® The calculated value of Re = 2.97 A agrees
very closely wiﬁh the subsequent experimental value of 2.930 A.

Pacchioni?® has recently carried out calculations 6n the low-lying states
of Sn, and Pb,. This author gives the impression that he. is the first to
carry out a comparative ab initio CI calculation on these systems. We would‘
like to clarify this fuarther. First, his calculation starts with the Hafner-

Schwarz model potentials in comparison to our relativistic ab initio

potentials derived from numerical Dirac-Fock solutions of the atoms.
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Pacchioni's calculations ignore spin—orbit interaction. Our calculations
include spin-orbit interaction in a relativistic CI scheme in comparison to
the non-relativistic CI of Pacchioni. Thus, he obtains a De approximately
twice the experimental value which he corrects by a semiempirical scheme to
arrive at a value close to our calculated value with a relativistic CI. Our
calculations have élearly demonstrated the need to carry out an intermediate
coupling CI calculation for Pb, as a result of large spin-orbit
contamination. Calculations without spin;orbit, such as Pacchioni's have
little relationship to the real Pb, molecule.

Chriétiansen97 has recently carried out relativistic CI calculations on
the ground state of Bi,. His calculations have shown that although the ground
state of ‘Bi, is dominantly ‘Z; (arising from the U;Wu“ triple bonding
configuration), it is significantly contaminated by 3n8 (about 25%). The
calculated D, value of Bi, (2.3 eV) is in reasonable agreement with the
experimental value of 2.04 eV. The computed Re value is about 0.16 bohr
longer than the experimental value. This seems to be the general trend in a
limited relativistic CI scheme which is adequate to describe other properties
but somewhat less accurate in calculating bond distances and dissociation
eﬁergies, It is believed that this discrepancy in.calculated bond distances
arises from the d-correlation. More extensive calculations are warranted to
confirm the origin of calculated longer bond lengths.

Celestino and Ermler?® have carried out calculations on ng and T%Hg.
Calculations on Hg, were carried out with a full 4-electron CI within 16 of:
the 22 valence and virtual orbitals. The spin-orbit intéractioﬁ is ignored at
the CI stage but introduced after CI using a semiempirical scheme. For the
TAHg molecule, CI calculations included full correlation of 5 outer electrons

with some restrictions. These authors have carried out calculations on a
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large ngmber of low-lying states.

Stevens, Basch, and Krauss®? have carried out calculations on a number of
light diatomic¢s such és P, and Cl, among other molecules like'éio, CH., etc.,
to test the reliability of effective potentials. They have also generated ab
initio effective potentials and compatible basis sets for the first and second
row atoms.?? Other calculations on homonuclear diatomics which use
relativistic methods include'Cuioo , and ILOI . Relativistic ab initio
calculations hé#e'been carried out on noble gas dimers and ions such as

Xe!, Xe,, etc.%0, 61027105
B. Heteronuclear diatomics containing very heavy atoms

Among the heteronuclear diatomics containing heavy atoms, a number of
hydrides have been séudied. Desclaux and Pyykko have studied a number ofA -
hydrides using the one-center ndmerical Dirac-Fock method, 27, 1067103 Thesel
‘,calculations provide an insight iqto the magnitude of relativistic effects on
the bond lengths; however they are not useful fbr dissociation ehergies as
they break down at long distances.

Hay et al.!'!° have carried out effective potential calculations on AuH
which yield the relativistic bond contraction 6f 0,26A. The dissociation
energy of AuH.is increased by 0.5 év as a result of relativistic
contributions. They also presented calcuiations for AuCl, HgH and HgCl,.
Zeigler, Snijders and Baerends®® have carried out penturbatiohal relativistic

calculations on a number of heteronuclear diatomics such as HgH+, CdH+, ZnH"

AuH, AgH, CuH, CsH.
Lee and McLean3“,?%® have carried out all-electron Dirac-four component

spinor LCAS-MS-SCF calculations on AgH and AuH. The relativistic effects

increase the dissociation energies by 0.08 eV and 0.42 eV in these molecules,
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while the bond lengths contract by 0.08 A and 0.25 & these valﬁes for AuH
confirm the earlier effective potential calculatiﬁné“°.

Lee, Ermler and PitzerS® have carried out SCF calculations
in w-w coupling on T1H, PbSe and PbS among other diatomics. Christiansen and
Pitzer carried out MCSCF LCAS-MS spinor calculations on T1H.7*

Christiansen, Balasubramanian and Pitzer®! have carried out relativistic
confiéuration interaction calculations on the six low-lying states of TlH. In
these calculations, spin—orbit interaction is introduced at the CI stage with
the spin-orbit operator derived as a difference of %+1/2 and £-1/2
relativistic effective potentials. The properties of the two lowest 0% states
are in very good agreement with the experimenta} results. In addition, these
calculations yielded shallow minima in certain excited states of T1lH in -
agreement Qith provisional interpretation of spectra. The calculated
equilibrium bond length (1.99 A) is somewhat longer than the experimental
value of 1.87 A. This discrepancy was in part attributed to the lack of d
correlation. However, this is yet to be confirmed. The calculated
dissociation energy (1.81 eV) is in reasonable agreement with the experimental
value of 1.97 eV.

Balasubramanian and Pitzer!'!,}!2 also made relativistic CI calculations
on a numbervof low-lying states of PbH and SnH which enabled interpretation of
the eléctronic spectra of‘these molecuies. The low-lying eleétronic states of
PbH (372 (I1),5/2) exhibit interesting avoided crossings. ThéA3/2(II) state
is “Z;/z at short distances, but at long distances it becomes a mixture
df 2n,/2, 2A3/z and other A-s states. The 5/2 state is 2A5/2 at short

distances, but it becomes “Hs/z at very long distances.
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Balasubramanian!!?® has recently reported relativistic CI calculations on
four low-lying w-w States of BiH arising from the o272 electronic
configuration° These calculations enaSled the assignment of the_X(O+), A(1)
ande(O+) states which were observed experimentally. The potential energy
cdﬁ%é of the 2 state exhibits a barrier resulting from the avoided crossing
of‘"A2 with 5L, . The experimental D, value of this molecule is uncertain
since it is estimated from the predissociation of the E(O+) State
into 2D,/2 + 251/2 atoms. In another investigation more extensive
relativistic CI calculations have been carrfed out''“* on 10 low-
lying w-w States of BiH (0%, 1, 2, o*(I1I), 1(II), 2(1I), 0", 0'(III), 3,
O+(IV)). Potential energy curves of the excited states of this molecule
exhibit Jery interesting properties such as shoulders, barriers, etc.‘ Fig. 8
shows the potential energy curves of some of the low-lying states of BiH. 1In
fig. 9 we show the relativistic CI population of the 0'(IV) (EO") state of
BiH. As one can see from fig._9; thisvstate exhibits a number of avoided
crossings. The spin-orbit contaminations of these states are quite large. In
another investigation Balasubramanian!!’ has carried out felativistic CI
calculations of 8 low-lying states of BiH" (172, 372, 1/2(11), 1/2(111),
3/2(11), 3/2(I11), 5/2, and 5/2(II). The ionization potential of BiH" was
calculated to be 8.08 eV. The exctied states of BiH Show interesting
relativistic évoided crossings. The calculated D, of BiH" is about 1.05 eV-in
comparison to the neutral molecule whose De value is about 2.2 eV. Since
the n orbital of BiH is essentially non-bonding one might expect the Dy values
of BiH and BiH' to be about the same. However, at the dissociation limits,
the spin-orbit stabilization of the “83/2 of the neutral atom is substantially
smaller than that of the 3PO state of the ion. The ground state of the Bi

neutral atom (“S,/z) cannot be split but is lowered by 0.03266 hartree-atomic
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units when the spin-orbit operator is inecluded. The ground state of Bi+

(’Po ) is stabilized by 0.0859 atomic units in comparison to *P without the
spin-orbit term. Thé Do values of BiH and BiH' obtained without spin-orbit
interaction are 2.06 eV and 2.17 eV, respectively. Thus the De value of BiH'
is lowered considerably by spin-orbit interaction.

Chapman, Balasubramanian and Lin''® have carried out relativistic CI
calculétions on the six low-lying states of HI. These calculations enabled
‘the assignment of absorption continua near 46,000 cm™!, 23,000 cm™! as well as
bands which extend from 55,000 ecm™!. Calculations of a number of low-lying
states of HBr (0%, 0%(1I), Oo*(1II), 1, 1(II), 0", 07 (II), 2, 2(II), O (III))
have just been completed.'!? These calculations were carried out with an
extended triple zeta basis set since the 07(III) and 2(II) states dissociaf%
iﬁto Rydberg atoms. These calculations have not only enabled the assignmenf
of experimentally observed bands but also predigted several new transitions
which are yet to be observed.

Wang and Pitzer'!!® have carried out. relativistic CI calculations on the
five low-1lying spates of PtH as well as PtH'. The calculated dissociation
energy is about 2.45 eV in comparison to the experimental value of 3.44 eV,
There are three states of nearly equal energy. In each case there is a sigma
bond and a single vacancy in the 5d shell of Pt. The calculations indicate
the 2As/2 state to be lowest with the 22,/2 higher by 1008 cm™! and the

2(n o+ A)s,. above 2As/z'by 2742 cm™! , But these differences are so small
that furthef-refinement of the calculations might change the order. All three
states are known exper‘iment:ally.”9 but the present measurements leave many

uncertainties. A tentative value of 1300 cm™! has been given for Te of the

3/2 state with the 5/2 state at zero.
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Balasubramanian and Pitzer'2°,!2! have carried out relativistic CI
calculations on eleven low-lying states of PbO and SnO with the objective of
interpreting chemiluminescent spectra resulﬁing from Pb + 05, Sn + N,0 and
other reactions. These calcualtions enabled the assignement of a number of
experimeqtally observed bands. Calculations of low-lying states of
isoelecb?bhic PbS and SnS have also been carried out.!'?? Balasubramanian!??

reported relativistic CI calculations on the low-lying states of PbO*, Sn0+,

PbS+, and PbSe’. These calculations confirmed the breakdown of Koopman's
theorem for Sn0 and PbO which had péeviously been noted by Dyke et al.!'2?“ For
Sn0 and PbO, Koopman's theorem predicts the 22+ state to bé the ground_sﬁate,
while the actual ground state of these‘molecules is zn,/z. Actually, ét very
short distances the 22* state is lower than the 2?II. state. At near equilibrium
geometries -this ordering is reversed thch'results in an avoided crossing in
the 1/2 state of Pb0' and Sno*. The breakdown® of Koopman's' theorem was
explained based on orbital relaxation effects. However, for PbSe+, it was
noted thap the orbitél relaxation effects are not large enough to affect the
ordering. Thus Koopman's theorem correctly predicts the 2] state to be the.
ground state of Pbse”.

Balasubramanian'®?3 carried ouﬁ relativistic CI calculations on the loQ—
lying stateé of T1IF. There istconsiderable experimental-interést in the
photoionization 6? vapors of relati?ely non-volatile materials such as the
thallous halides. The thermodynamic and spectroscopic dissociation energies
of this molééule do not agree, which seems to suggest the existence of
barriers in the excited states. Relativistic CI calculations of the potential

energy curves of 9 low-lying states of TI1F arising from ’Z+, n, *m, 3t ,

+ . .
L , and *A were carried out.!'?*® These calculations confirmed the existence

of barriers in the excited states of TlF which arise from relativistic avoided
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crossings. iCalculations on a number of low-lying states of ICl and 1C1" have
also been carried out.‘zg;‘z’ These calculations enabled interpretation of
the electronic spectra of‘these.molecules. |

Relativistic CI calculations of the low—lying states of PbF were recently
carried out.!'?® The assignments of the experimentally observed A and B states
were ambiguous as a result of the existence of a number of low-lying states.
Relativistic CI calculaﬁions of these states enabled the assignment of A and B
states to 2Z*{/z and 2Z}“/Z(II). The calculations of the B state, which is a
Rydberg state, were cartied'out with an extended triple zeta basis set. "The
ground configuration 2% is split into ZH,/Z and 2H3/2 states with a spin—-orbit
splitting of about 7895 cm™!., Basch and Topiol!?® ha?e carried out
calculations on AuCl and PtH in addition to HgCl,.

Laskowski and Langhoff!3?° have carried out calculations on Crl using
averaged Eelativistic effective potentials. Similar calculations have been
carried out on Cs0!3! as well as CsH'!?2., Krauss and Stevens!??,!3®" carried’
out SCF calculations on UO, UH, UF and their ions. Krauss and Stevens!?s
have investigated the electronic structure of Fe0 and Ru0 using relativistic
effective potentials. Relativistic configuration interaction calculations of

low-lying states of BiF have been completed.}!?$®

C. Relativistic Calculations of Polyatomics and Miscellaneous Applications
Relativistic calculations of a number of polyatomic molecules have been
carried out.by both semiempirical and ab initio methods. Many of the earlier
calculations have been reviewed by PyykkS7 as well as by Christiansen, Ermier
and Pitzer'? ., The semiempirical methods include the relativisticAextended
Huckel method, relativistic xa method etc. Most of the ab initio
qalculations on polyatomics intially omit the spiﬁfohbit interaction. This ig
int;oduced at a later stage as a perturbation or by a semiempirical schemé.
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One bf the very interesting earlier calculations on polyatomics was
carried out by Wwadt!3? on ThO, and Uo§2 . While the U0%? ion is linear,

ThO, is bent. There is a greater 5f participation in UOZ? in contrast to
ThO,, and this seems to be the reason for the change in structure. Wadt notes
that earlier semiempirical calculations on these molecules yielded results
which do not agree with his accurate ab initio calculations.

Another interesting molecule is the cyclooctatetraene sandﬁich complex,
U(CgHg),. The 5f contribution is important to the stability of uranium-
containing molecules. Semi-empirical calculations have been carried out on
this molecule as well as other actinocene compounds.!3?®,!'3°  Relativistic
c;lculations on UF,,. pr‘6 and PuF¢ have been reported.!*°~1%*

_Case and coworkers“®,“® have reported calculations on Pt clusters and
their reactivity with CO uSing rela;ivistic Xa methods. :Noell and-Hay”S have
carried out SCF'calculations on Pt complexes saqh as‘Pt(NH3) using the REP's
generated from Pauli hamiltonians. Hay“’6 has also studied the Pt-ethylene
complex. Similar calculations have been. carried out .by Basch and Céhen"’7 on
PtCO.

Collignon and Schwarz!“® have studied the changes of molecular structures
as - a result of relativistic effects. They have carried out calcuations on
PbCl,, PbH,, Pb,H,, TeH,, éon and ''“EH, using relativistic SCF
pseudopotential method. Spin;orbit interaction changeé the bond angle by less
than a degree in these systems with the exception of !!'“EH, where the bond
angle is iné}easéd by 2.3°.

Relativiétic calculatioﬁs have made an impact on biological compounds
recently. Miller et al.'*?® have recently investigated the binding of
cis-Pt(NH,):2 to the bases of DNA (guanine (G), cytocine (C), adenine (A) and

thymine (T)). Electronic and geometrical structures of Pt(NH,),Cl,, Pt(NH,),X
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and Pt(NH;),XY (X,Y = sz, OH ) have also beén investigated recently by Basch,
Krauss and Stevens.!®°

Pitzer and Winter‘““’have developed a computer code for including the ab
initio spin-orbit operator in polyatomic'célculations. In this hethod the
spin-orbit integrals are evaluated using the difference of &+1/2
and £-1/2 potentials over gaussian basis sets. The procedure is being tested
on UFUF,, NpFy and PUF, . |

Ross, Ermler and Christiansen!®! have reéently carried out ab initio EP
calculaiions of spin-orbit coupling in the group III A and group VII A
atoms. The spin-orbit splittings.are computed with the operator represented
as the difference of 2+1/2 and -1/2 effective potentials. Comparisons were
also made with the all-electron Dirac-Fock results as well as the first ordef“
pe}turbation calculations. These ‘authors have shown that the first order
>perturbation results could be in error by 9% in'comparison to the Dirac-Fock
results and that“the EP spin-orbit operator yields accurate results.

Self-consistént Dirac—-Slater calculations of molecules and embedded
clusters have been recently reviewed by Ellis and Goodman.'®? Relativistic
band structure calculations have also been carried out.'3? Dirac scattered
wave calculations have been carried out on a number of inorganic complexes
such as w(co):s“ and WZCl:“.lss The electronic structure and geometries of
X,H, (X - 0, S, Se and Te) have also been investigated récently.‘ssv

Malli'®” has investigated recently the use of Dirac-type functions (DTF)
as basis seﬁé for relativistic Dirac-Fock-Roothaan éalculations for atoms.
. The well-known Slater—type functions with non-integral principal quantum
numbers are special cases of DTF's. Recently, self-consistent relativistic
Thomas-Fermi equaﬁions for heavy atomic ions have been formulated.!®?®

Matsuhita et al.'3? have reported ab initio spin-orbit splittings of
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the 3P ground state of the Se atom using the Pauli spin-orbit term. The}
obtain spin-orbit splitting as a perturbation to MRSDCI wave function. = The
relativistic Pauli integrals over gaussian basis sets are evaluated by the
procedure proposed by Chandra and Buenker.!©°,18! Similar calcuations have
also been made on CBr.!'®2

Balasubramanian and coworkers®®® have carried out relativistic CI
calculations on the collision of Kr with Br'. The collisioﬁs of rare gas
atoms with heavy halogen ions are the‘topics of a number of investigations.
(For a brief review of recent progress in experimental and theoretical works
in this area see reference 164). Krauss, Stevens and Béschlss have very
recently carried out EP calcuiations on AgH and AuH. Their results are in

very good agreement with all-electron Dirac-Fock calculations.
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Fig. 1. Relativistic (DHF) and nonrelativistic (HF) radial components of

6s wavefunctions of Pb. Only the small component of DHF is labeled.

48

<



] T : 1
ﬂ Phillips -Kleinman
’-/
. 0.5 —
g
o
: .
o Hartree - Fock
A~}
2
€ O
=
°
a
O
-0S5+— —
'match
L | |
0 1.0 2.0 3.0
R (bohr)

Fig. 2. A comparison of chlorine 3s pseudoorbita1§ generateq fwi'th the
Christiansen-Lee-Pitzer method and the Pthips-K]emman pseudo-
orbital and the all-electron Hartree-Fock orbital.

49



E (10°em™)

Fig. 3. Calculated potential curves for the g states of Pb,.
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Fig. 6. Calculated potential curves for the u states and the ground
O§ state of Sn,.
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