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1. Introduction 

Measurements in the classical, the macroscopic world assume the velocity 

of the probe (light) to be infinite and the interaction between the probe and 

the object of measurement to be negligible. The laws governing the motions of 

particles derived on the above assumptions are Newtonian and lead to classical 

~ mechanics. In non-relativistic quantum mechanics one .assumes the velocity of 

the probe to be infinite but allows interaction between the probe and the 

particle by way of Heisenberg's uncertainty principle. For most measurements 

on the lighter elements in the· periodic table, non-relativistic quantum 

mechanics is sufficient, since the velocity of an electron is small compared 

to that of light. F.or the. heavier elements in the periodic table (Au, Hg, Pb, 

Tl, etc.) the picture is entirely different. As a result of heavy nuclear 

charge for the heavy atoms, the inner electrons attain such high velocities 

comparable to that of light that non-relativiseic quantum mechanics is far 

from adeq~.late. 

Relativistic quantum mechanics neither assumes infinite probe velocity 

nor ignores the interaction between the probe and the object of measurement. 

Thus, the difference between non-relativistic quantum results and relativistic 

quant~.lm results arises from the tr:.1e velocity of light. One can define 

relativistic effects, in general, as the difference in the results obtained 

with the tr:.Ie velocity of light and infinite velocity of light. 

Relativistic effects can be further divided into a n:.1mber of categories 

such as the mass-velocity correction, Darwin correction, spin-orbit 

~ correction, spin-spin interaction, Breit interaction, etc. The mass-velocity 

correction is the correction to the kinetic energy of the electron arising 

from the variation of its mass with velocity. One of the consequenc~s of the 

finiteness of the velocity of light (as can be shown from the laws of the 



special theory of relativity) is the variation of the mass of a particle with 

its speed. ·This is especially significant as the speed of the particles 

approach the speed of light. This variation with velocity in turn affects the 

kinetic energy of the particle. The spin-orbit correction arises from the 

strong coupling of the spin of the electron with the orbital angular 

momentum. This is especially large for electronic states of heavier atoms 

which arise from open shell configurations. The Breit interaction is the two­

electron· counterpart of the spin-orbit interaction. The Darwin correction is 

a characteristic outcome of the Dirac relativistic equation and there does not 

seem to be a simple physi~al explanation for this effect. 

Relativistic corrections make significant impact on the electronic 

properties of heavy atoms .and molecules containing heavy atoms. The inner s 

orbitals are the closest to the nucleus and thus experience the high nuclear 

charge of the heavy atoms. Thus, the. inner s orbitals shrink as a result of 

mass-velocity correction. This in turn, shrinks the outer s orbitals as a 

res·.ll t of orthogonality. Consequently, the ionization potential is also 

raised. The p orbitals are also shrunk by mass-velocity correction b~lt to a 

lesser extent since the angular momentum keeps the electrons away from the 

nucleus. However, the spin-orbit interaction splits the p shells into 

P1 ; 2 and P3 ; 2 subshells and expands the P3 ; 2 subshells. The net result is 

that the mass velocity and spin-orbit interaction tend to cancel for the 

P3 ; 2 shell but reinforce for the P1 ; 2 • 

Spin-orbit interaction plays an important role in the electronic and 

spectroscopic properties of states arising from open shell electronic 

confi3urations. Thus, the contribution of spin-orbit interaction to the 

gro!md state of A'l is small but to Pb is large.. Spin-orbit interaction not 

only splits the electronic state into substates but mixes states which would 
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not mix in the absence of spin-orbit interaction. This is well illustrated by 

the lead atom. The ground state of the Pb atom wouid be 3 P in the absence of 

spin-orbit interaction. In addition, the 1 0 and 1S states arise from 

the 6p 2 electronic configuration. However, the spin-orbit interact ion splits 

.,.. are large, 7819 cm- 1 and 10650 cm- 1 , respectively. 2 The spin-orbit 

interaction also mixes 3 P0 with 1 S0 among other states. Similarly, 3 P2 mixes 

with 1 0 2 • This mixing is sometimes referred to as spin-orbit contamination 

and is quite large for heavy atoms. The 3 P;- 3 P1 , 
3 P0 -

3 P2 splittings for the 

carbon atom are only 16 cm- 1 and 411 cm- 1 , respectively. 2 Thus one can see 

the dramatic contribution of relativistic effects for atoms and molecules 

containing very heavy atoms. In fact, the rare gas compound RnF is predicted 

to be ionic, Rn+F- based on the spin-orbit interaction of Rn+. 3 

Spin-orbit interaction alters the spectroscopic properties of molecules 

containing heavy atoms to a considerable extent. Even if a molecule has a 

closed shell ground state, the excited states may arise from open shell 

electronic configurations in which case the spin-orbit interaction not only 

splits the excited states but mixes different excited states which would not 

mix in the absence of spin-orbit interaction. This leads to a number of 

interesting features in the potential energy curves such as shoulders, 

barriers, double minima, etc., which are attributed to relativistic avoided 

crossings. This aspect of relativistic effects is discussed in the third 
rw 

section of this chapter. The color of gold is attributed to relativistic 

ef!'ects which splits the 5d shell· of gold and raises its energy. The golden 

color results from the 5d-!'ermi levef transition which contrasts its color in 

comparison to silver. 8 The Lamb shift, Breit interaction, etc., are more 

important if one is considering fine structure calculations. They are 
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normally ignored if one considers electronic and spectroscopic properties in 

the valence region. 

Relativistic effects alter the chemical bonding of molecules containing 

he'avy atoms to a considerable extent. In some cases the bond is strengthened 

while in other cases it is weakened. Consider the dissociation energies of a 

few molecules to get some insight into the effect of relativistic corrections 

on De values. The dissociation energy of Au 2 is higher than Ag 2 in contrast 

to the usual trend of a lower De for the heavier elements of a group in the 

periodic table. This anomaly is caused by relativistic contraction and 

stabilization of the 6s orbital of Au. On the other hand the relativistic 

spin-orbit interaction weakens the bond in the case of Pb 2 by 50%. The 

calculated dissociation energy for Pb 2 with the inclusion of spin-orbit 

interaction is 50% of the value obtained without spin-orbit interaction ... 

The lanthanide contraction (the decrease of radii from La to Lu) is 

usually attributed to incomplete shielding of the 4f shell. However, as 

pointed out by Pitzer and coworkers 5 this effect is in part attributable to 

relativistic effects. If one compares the non-relativistic Hartree-Fock and 

Dirac-Fock results, one obtains a contribution of about 27% from relativistic 

effects. 

In recent years a number of papers have appeared in the chemical 

literature which deal with relativistic effects in atoms and molecules. Some 

of the earlier developments in this area have been reviewed by Pyykko 7 and 

Pyykko and Desclaux 8 and Pitzer 9
• A NATO conference proceedings edited by 

Malli 10 lists a number of papers by experts in this area on several topics 

pertaining to relativistic effects in atoms, molecules and solids. More 

recently, an issue of the International Journal of Quantum Chemistry was 

devoted to the proceedings of the Finland conference on relativistic 
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effects. 11 Krauss and Stevens 12 have reviewed the use of effective potentials 

which include relativistic effective potentials. Christiansen, Ermler and 

Pitzer~ 3 have recently reviewed relativistic effects in chemical systems. The 

above reviews have outlined the various developments and applications in 

relativistic quantum chemistry. Since the appearance of the above reviews a 

number of developments and new applications have emerged in this area. 

Earlier reviews on this topic could not cover all applications in this area in 

detail as a result of space limitation among other reasons. The present 

review emphasizes the methods and very recent applications of relativistic 

quantum chemistry to molecules of spectros9opic interest. 

2. Methods of relativistic quantum chemistry 

The starting point of most of relativistic quantum mechanical methods is 

the Dirac eq~ation which is the relativistic analogue of the Schrodinger 

equation. Before Dirac's formulation, an obvious way of starting relativistic 

quantum mechanics would be the Einstein energy expression shown below. 

( 1 ) 

One could insert the appropriate quantum mechanical operators for E and p and 

obtain a differential equation. The resulting differential equation, known as 

the Klein-Gordon equation, is shown below. 

0, 

where 
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0 

where, n = c = 1. 

The resulting equation is covariant to the Lorentz transformation, a 

fundamental transformation under which all relativistic equations must be 

* invariant. However, p = ~~ obtained from the Klein-Gordon equation can be 

negative which leads to difficulties in interpreting p, the conventional 

probability density. 

Dirac discovered an equation now well known as the Dirac equation in an 

attempt to-overcome the above-mentioned difficulties of the Klein-Gordon 

equation. The reasoning behind the derivation of.this equation is that in 

order to prevent the occurance of negative charge densities one must avoid 

time derivatives in the charge density and the resulting equation must be 

completely symmetric in the treatment of spatial .and temporal coordinates. 

The resulting equation is shown below for a single electron in a central 

co~1lombic field. 

where 

-+ 
HD (a . -+ 2 z/r) p + c 8 -

(0 
op (I -~) a = 0 ) ' 8 

op 0 

where the a 's are the 2x2 Pauli matrices and I is the 2x2 identity matrix. 
p 
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The Dirac hamiltonian for a many-electron atom can be written as 

HD = r hD(i) + r 
i i<j rij 

-+- -+-
where hD(i) is the one electron Dirac hamiltonian, hD(i) = ai • pi + Si c 2 

Note that the above hamiltonian ignores the 2-electron relativistic Breit 

iriteraction. Introduction of the Breit interaction as a perturbation shows 

that it is very small in the valence region. However, the Breit interaction 

appears to be more important for the properties of core electrons for which 

this makes significant contribution. 

z 
r. 

l 

Since-the one-particle Dirac hamiltonian involves 4x4 matrices instead of 

scalar functions and differential operators, the solution of the Dirac 

eq~ation is a vector of four components. This is referred to as 4-component 

spinor. It takes the form 

ljJnkm 
P k(r) xk (8,<J>) 

[ n m ] 
r iQnk(r) x-km(8,<j>) 

where 

1 rn-a a 
E C(! 

2 
j; m-a,a)YA (8,<j>) <P 112 • 

a= ±1/2 

Ym-a . h . 1 h . 1/2 (1) -1/2 8 (o) th 0 1 . A 1s asp er1ca armon1c, cp
112 

=a= 
0 

, cp 112 = = 1 '.are e . au 1 

spinors, C(! ~ j; m-o,a) are the Clebsch-Gordan coefficients, and k is the 

relativistic quant:1m number. It is defined as 

k 

A i::J de!'ined as 

{ j+1/2 
-(j-1/2) 

7 
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if 
if 

j=~-1/2 

j=~+1/2 • 

The Qnk's are known as the small components and Pnk's are the large 

components. They satisfy the following coupled differential equations for a 

central force field v; 

dr 
kP nk 

r 
- { ~ + 

a 

kQnk 
- -r- + a [ v ( r ) - E nk] p nk 

0 

0 

Thus one can solve the Dirac-Fock equation to obtain the relativistic energies 

and four-component spinor wave functions. 

Desclaux 1 ~ has developed a computer code to solve the many-electron 

Dirac-Fock equation for atoms in a numerical self-consistent method. In this 

method the relativistic hamiltonian is approximated within the Dirac-Fock 

method ignoring the two-electron Breit interaction. The Breit interaction is 

introduced as a first order perturbation to energy after self-consistency is 

achieved. Relativistic wave functions and energies calculated this way are 

available for a number of atoms. 6 

The non-relativistic limit (c • ~> of the two coupled radial Dirac 

equation reduces to the Schrodinger equation if the small components Qnk are 

eliminated. Thus, the small component is a measure of the magnitude of 

relativistic effects in these systems. While the small components make 

significant contribution in the core region, the effect of these components in 

the valence region is ignorable. This was illustrated by a comparison of the 
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relativistic and non-relativistic radial solutions for the 6s orbital of Pb by 

Lee, Ermler and Pitzer. 15 . We reproduce their comparison in fig. 1. As one 

can see from that figure the effect of small component is very small in the 

valence region. 

The effect of small components on the properties of molecules have been 

~· studied by Schwarz 16 to a high order using the Foldy-Wouthuysen 

transformation. Schwarz has demonstrated that the contribution of the small 

components to chemical properties is ignorable. Thus one can ignore the small 

components if one is considering chemical properties. Examples of 4-component 

atomic spinors are shown in the review paper by Pitzer. 9 

Relativistic calculations can also be carried out using the Pauli 

hamiltonian. 1 The Pauli approximation divides relativistic effects into 

different categories thereby facilitating evaluation of different types of 

relativistic correction. The Pauli hamiltionian can be written in the absence 

Df magnetic field as 

H0 non-relativistic hamiltonian 

(Darwin) 

(mass velocity) · 

',( 

2 
a z .. .. .. .. .. 

2s . ) ] H L: 
r~ 

(Li . s. ) - L: -3- (r ijx pi) • ( s. + (spin-orbit) so 2 i l i ~j l J r .. l lJ 

where a is the fine str~Jct ~1re constant, and 

9 
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v + E 
i<j 

r .. 
lj 

The Pauli hamiltonian is ideally suited for carrying out relativistic 

corrections as first order perturbation to a non-relativistic hamiltonian. In 

recent years, several authors have considered inclusion of the Pauli terms in 

variational (SCF) calculations. 17
- 19 Wadt, Hay and coworkers 20 -H use the 

Pauli hamiltonian in deriving relativistic effective core potentials. The 

choice of appropriate basis sets is crucial in using the Pauli hamitonian in 

polyatomic relativistic calculations. Gaussian basis functions with large 

exponents are important. It has been noted 17
,

25 that the mass-velocity term 

of the Pauli hamiltonian leads to divergence in the region close to the atomic 

nucleus. Cowan and Griffin 17 avoid this divergence in their numerical SCF 

calculations by restricting the wave function near the nucleus by a two-term 

series expansion. For Gaussian basis sets the total Pauli kinetic energy 

contributions for the s functions with exponents of the order of 1/a2 or 

larger become negative, resulting in unreal is tic wave functions and energies 

if corrections above first order in a 2 are included. Nevertheless, this can 

be avoided if one contracts heavily such high exponent s functions with 

functions having much smaller exponents. 

Several authors. have considered a number of approximate solutions to the 

Dirac equation. One such method is the use of the Foldy-Wouthuysen 

transformation 19 (see, for example, Morrison and Moss 25
). Upon application 

of a ~Jnitary transformation of the form shown below to the Dirac hamiltonian, 

one can transform the Dirac hamiltonian to a form for which the solutions have 

only the large two components. 

10 
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H exp(is) HD exp(-is), 

where s is an hermitian operator. Kuttzelnig 26 has also recently emphasized 

the importance of the Foldy-Wouthuysen transformation in order to avoid a 

variational collapse for finite basis sets with the Dirac hamiltonian. 

Desclaux and coworkers2 7 have formulated a relativistic one-center approach 

based on the Dirac hamiltonian; this method, however, is applicable only for 

hydrides. 

Kim2 8 has formulated- a relativistic Hartree-Fock-Roothaan equation for 

the ground states of closed shell atoms using Slater-type orbitals. 

Relativistic effects. in atoms have been reviewed by Grant. 29 Malli and 

coworkers 30
-

33 have formulated a relativistic SCF method for molecules. In 

this method four-component spinor wave functions are obtained variationally in 

a self-consistent scheme using gaussian basis s~ts. 

Lee and McLean 3 ~, 35 have considered full-relativistic all-electron 

sol!ltions to the Dirac equation for AgH and AuH. In this method, 4-component, 

all-electron spinors are obtained using a LCAS-MS (linear combination of 

atomic spinor-molecular spinor) method. These authors employ a Slater type 

basis for AgH and AuH. However, such relativistic all-electron calculations 

·do not seem to be practical for molecules other than diatomic hydrides at 

present. 

The Breit two-electron correction 36 arises from the relativistic magnetic 

retardation between two electrons. The Breit operator, which describes this 

,,~ interaction, is 

2 e ---
2r12 

... 
Cl + 

2 

11 

... + ..... -+ 

_<a_1_· __ r_1~2-)_Ca_2~·--r_1~2-)] 
2 

.r12 



where n 1 and n 2 are Dirac matrices, r 12 is the distance between the electrons 

1 and 2. The eigenfunction of HBr is thus a 16-component spinor, since each 

electron has a 4-component spinor function. The Breit interaction is of the 

order a 2 (a is the fine structure constant). Although its contribution is 

significant in the core, the effect of Breit correction in calculating 

chemical and valence-level spectroscopic properties appears to be small. The 

Breit interaction is normally introduced as a first order perturbation to the 

Dirac hamiltonian. Further, inclusion of Breit interaction in the Dirac 

hamil tonain would lead to results that are not consistent with the laws of 

quantum electrodynamics since the Breit interaction is not Lorentz­

invariant. The effect of Breit interaction on chemical properties have not 

yet been studied in f~ll detail. Stevens and Krauss 37
,

38 have developed a 

semiempirical scaling method which corrects for two-electron screening of the 

valence spin-orbit by core. The total Breit cOrrection to the spin-orbit 

splittings are about 15% in the first row and 5% in the second row. 

Pyykk~ and coworkers 39 ,~ 0 have formulated a relativistic extended H~ckel 

method for molecules. This method incorporates relativistic effects by a 

systematic parametrization using Desclaux's atomic relativistic Dirac-Fock 

calculation. 6 The Dirac-Fock atomic energies and the off-diagonal elements 

are proportional to the product of the overlap matrix element in the 

relativistic ll sjm> basis. Pyykko and coworkers_ 0 ___ have applied this 

method to a number of molecules. 

Dirac-Slater multiple xa (DS-MS xa) method is an approximate way of 

introducing relativistic corrections. Case and ·coworkers- 2 --.s have used this 

method in a number of studies. This method has been recently reviewed by 

Case~ 2 and earlier by Pyykk~. 7 The readers are referred to these two reviews 

for further details. 
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We now briefly consider the symmetry aspects of relativistic quantum 

chemistry. With the introduction ot spin-orbit interaction, the appropriate 

group of the hamiltonian is the double group of the molecular point group. 

This arises from the fact that spin is no ionger a good quantum number. The 

double group contains twice the number of operations in the molecular point 

group. In this group, rotation by an angle E.+ 2~ is not considered 

equivalent with the rotation by E. The group nas two sets of irred:.~cible 

representations. The first set is for the integral spins which correspond to 

the ordinary irreducible representations of the point group but extended to 

the double group. For hal~-integral spins additional representations are 

generated which are not members of the set of irreducible representations of 

the point group. The first use of the double group is in correlating non-

relativistic electronic states into relativistic states. An equivalent 

correlation is the correlation of the states without and with spin-orbit 

interaction. For example, consider the 3 8 1 state of PbH 2 • Since the spin-

orbit interaction on Pb is quite large, this state would be split apart into 

finer relativistic states. The states which result from 3 8 1 are obtained by 

first correlating the spin state (triplet, D(
1

)) into the c;v group and then 

multiplying the resulting spin representations with the spatial symmetry. The 
2 

correlation of the triplet into c
2

v gives rise to A2 + 8 1 + 8 2 representations 

which upon multiplication with 8 1 results in 82 + A1 + A2 • Th:.~s the 3 8 1 state 

of PbH 2 is split into three states in the presence of spin-orbit interaction 

+ which are of A1 , A2 and 8 2 symmetry. If one considers the 2 8 1 state of PbH 2 

~ one obtains a different picture. The doublet correlates with the E1 ; 2 

2 

representation in the c
2

v group. The overall symmetry is thus E1 ; 2 , which is 

not a part of the character table of c . Oreg and Malli~ 7 ,~ 8 -~ 9 have 
2v 

considered symmetry aspects of the construction of spinors for polyatomics 

1 3 
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which are symmetry-adapted in the double group of the molecule. These methods 

have been used in the Dirac-Fock theory of openshell as well as closed shell 

molecules. 51 

An important and reliable method for carrying out relativistic quantum 

calculations is the relativistic effective potential method. A number of 

groups have considered the generation of both relativistic and non­

relativistic effective potentials. Krauss and Stevens 12 have recently 

reviewed the use of effective potentials in quantum chemistry. Readers are 

referred to that review for additional details pertaining to this topic. ·In 

this review we consider the methods of relativistic effective potentials. 

The objective qf the effective potential method is to represent the 

interaction of the valence electrons with the core electrons by an effective 

potential thereby reducing the number of electrons significantly in quantum 

calcul~tions. The effective potentials must p~~vent the collapse of the 

valence electrons into .the core. Effective potentials can be relativistic or 

non-relativistic depending on the nature of the wave function from which they 

are generated. Relativistic effective potentials can be generated by either 

semiempirical or ab initio methods. We first briefly review the ab initio 

methods. 

Many of the effective potentials (relativistic or non-relativistic) are 

generated using the Phillips-Kleinman transformation. 50 In this method, the 

explicit core-valence orthogonality contraints are replaced by a modified 

valence hamiltonian. If one replaces the potential generated by core 

electrons by a potential Vc then one can write the one-electron valence wave 

eq•Jation as 

1 4 
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E <P • c c Phillips and Kleinrnan 50 suggested that <P 
v 

can be written as 

It can be easily seen that for any x , <P is orthogonal to <P thereby . . v v c 

satisfying q I <P > = 0 • If one substitutes the above expression for <P into 
v c v 

the one-electron eigenequation one obtains 

I: [E 
c 

- E J I <P >< <P I c c c 

VEp th~s obtained is often referred to as the Phillips-Kleinman pseudo 

potential; while x is known as the pse:Jdo orbital. I <P >«P I is the 
v c c 

projection operator corresponding to the core orbital <Pc· Thus the 

operator >: I <P >«P I c c is the projection operator of the core orbitals. 
c 

If the 

VEp's are derived based on a non-relativistic atomic wave function, they are 

known as non-relativistic effective core potentials. There are also several 

non-relativistic model potentials which are not strictly derived from ab 

initio methods. For a review of these potentials, see Kra~ss and Stevens.~ 9 

Ab initio relativistic effective core potentials can be derived from a 

number of methods. We briefly review these methods. Lee, Ermler and 

~ Pitzer 1 ~ have torm~lated a method for deriving effective potentials from the 

numerical Dirac-Fock calculations of the atoms. We start with this method. 

The solution of the Dirac~Fock eq~ation is a set of 4-component 

spinors. If the spinors are partitioned as core and valence spinors then one 

15 



can write the overall many-electron relativistic wave function for a single 

configuration as 

where A is the antisymmetrzer, ~~ ••• ~~are core orbitals, m being the number 

v v v of core electrons and~,, ~2 ... ~n are the valence orbitals with n being the 

number of valence electrons. The total Energy ET can be partitioned into 

core, valence and core-valence interaction e~nergies. In symbols, 

It can be shown that 

Ev + E cv 

L { h
0

(i) + r (J (i) - K (i) } + r 
i c c c i <j r ij 

where the indices i and j run over valence electrons. For an orthonormal set 

of valence orbitals it ·can be shown that the DHF equation for a single 

electron is given by 

[h
0 

+ L [J - K ]] ~ 
c c v c 

e: ,,, + r ,,, e: 
v'i'v 'i'c cv ' 

c 

where c 's are the o!'f-diagonal Langrarge m!lltipliers given by cv 

1 6 
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If one defines the core projector and the pseudo orbital in the same way as 

done in the Phillips- Kleinman method, for relativistic spinor wave functions 

one obtains relativistic pseudo orbitals and relativistic effective potentials 

which are given by 

R R 
Xv ljJ + E v 

c 

VRPK = 

where 

R ljiR R 
lljl ><ljl I acljlc (1-P)x , p E v v c c 

PHrel Hrel p + 
v v 

. f 0core 
e: X ' 1 v v 

c 

PHrel p + e: P, 
v v 

E (J _ K ) + VRGPK 
c c c 

The relativistic effective potentials thus formulated involve 4-component 

spinor projectors. As mentioned earlier the effect of small components in the 

valence regions is rather small and one can neglect the small components in 

consider.ing ch.emical and spectroscopic properties. Alternatively one can make 

the Foldy-Wouthuysen transformation 19 to eliminate the small components and 

obtain a correction to the large comonent; for valence spinors this correction 

is so small that it can be neglected. Thus one can use the nonrelativistic 

kinetic energy operator along with the relativistic large components in an 

• equation from which valence-level, relativistic core potentials are 

generated. Thus, for a single valence electron 

1 7 
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where x' is a two-component pseudowavefunction containing only the large v 

radial components. 

With more than one valence electron, this equation becomes 

e: x' v v 

where W(x' , x' , ) is the s~ of Coulomb and exchange interactions of a given v v 

pse~do-orbital x' with all other valence pseudo-orbitals x' , . 
v v 

The effective core potentials UEP are not the same for pseudo-orbitals of 
v 

different symmetry. Thus one can express the REP's as products of an~Jlar 

projectors and radial functions. In the Dirac-Fock approximation, the 

orbitals with different total j but which have the same i value are not 

degenerate, and thus, the potentials deriVed from the Dirac-Fock calculations 

would be j-dependent. The REP's can thus be expressed by introducing the ij­

dependent radial potentials U~~P, as 

where lijm>'s are Pauli 2-component spinors. 

The expression for the relativistic effective potentials involves an 

infinite sum over !. This requires calculations of the radial potentials for 

all the excited states of the atom, which is impractical. However, the radial 

REP functions Uij cease to change significantly with i and j after these numbers 

exceed those of electrons in the core. Consequently, it is a good 

approximation to stop at a maxim~ i and j values denoted by L and J, 

~espectively. The modified relativistic effective potential can be written as 

18 
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i+1/2 
;: 

j=li-1121 

One can test alternate values by a series of actual calculations. It is our 

experience that L should be at least one higher than the maximum i value in 

the core. Thus for example, desirable minimal values of L for Sn and Pb are 3 

and 4, respectively. 

Pitzer and coworkers 15 ,
52

-
55 have carried out relativistic calculations 

+ + + on a number of diatomics such as xe2, xe2 , TlH, Au 2 , Au 2 , PbS, PbSe , etc. 

These calculations were carried out with LCAS-MS (linear combination of atomic 

spinor-molecular spinor) approach with the relativistic effective 

potentials. Many of these calculations were at the level of single 

configuration SCF. In the earlier calculations, the spin-orbit coupling was 

ignored at the SCF stage and introduced using a semiempirical procedure. 

These early calcuations used effective potentials obtained by the 

Phillips-Kleinman method 50 (see the review of Krauss and Stevens'~) wherein 

the pseudo-orbitals are taken to be linear combinations of the atomic orbitals 

of the same i and j. This method tends to underestimate the repulsive region 

of the potential energy curves. There is no reason that the pseudo-orbital 

must be linear combinations of core and valence orbitals. Christiansen, Lee 

and Pitzer 56 have ~reposed a method for constructing pseudo-orbitals in which 

the pseudo orbital is represented as 

NE C.r 
i 

for 
PPS 

r 
' 

r < r 
i l m 

i 
<P2. (r)' for ~ r r m 

where rm is a match radius,and <Pi is the all-electron Dirac-Fock orbital. In 

this method the coefficients Cis are determined by matching the value and the 

first three derivatives of the Pi and <Pi at rm with the condition that ?2. is 
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normalized. The match radi~s is minimized subject to the condition that 

?~ can have only one maximum and two inflection points. Pseudo orbitals 

derived this way are called shape-consistent because the resulting pseudo-

orbital is identical to the Hartree-Fock (Dirac-Fock) orbital in the valence 

region. In Fig. 2, we reproduce a comparison of this pseudo-orbital and the 

corresponding orbital obtained using the Phillips-Kleinman method for the 

chlorine atorn as done by Christiansen, Lee and Pitzer (CLP). 56 As one can see 

from that fig>..lre· the maximum of the Phillips-Kleinman orbital is at smaller 

radius than the all-electron orbital or that of the CLP orbital. 

The relativistic effective potentials obtained with the methods described 

above are numerical potentials. However, for polyatomic calculations a 

ga~ssi an analytic fit of such potentials is more desirable si nee mul ticentered 

integrals over gaussians can be obtained easily. Kahn, Baybutt and 

Trulhar 57 have suggested the following gaussian expansion of numerical 

potentials. 

1 
2 

r 

where Ci's, ni's, and ~i's are chosen so as to obtain the best fit for the 

numerical potentials. 

The relativistic effective potentials can be averaged with respect to 

spin. The averaged relativistic effective potentials can be written as 

UAREP 
(r) 

UAREP (r) • 
L 

L 
I: 

2.=0 

2. 
I: 

m=-2. 

20 

... 



. where 

The resulting potentials involve the ordinary spherical harmonic projector as 

'• . opposed to 2-component spinor projectors. These potentials incl:.1de all 

.. 

relativistic effects except the spin-orbit interaction. These potentials 

resemble non-relativistic effective potentials in their form and can thus be 

introduced into non-relativistic SCF or MCSCF calculations. Schwarz and 

coworkers 58 and Ermler et al. 59 have suggested that the spin-orbit operator 

can be obtained as the difference of different j but same t. The resulting 

spin-orbit operator is simply the difference of 2.+1/2 and t-1/2 relativistic 

effective potentials. The spin orbit operator thus derived can be written as 

L-1 
E 

t=1 

2. + 1 
22. + 1 

t+1/2 
E lt,t+1/2,m> x <t,2.+1/2,ml 

-2.-1/2 

t-1/2 
E l2.,2.-1/2,m><t,2.-1/2,ml } , 

-2.-1/2 

The spin-orbit operator derived this way can be ab initio in that if it is 

derived from relativistic ab initio potentials. It can be introduced in 

molecular calculations. Pacios and Chri~tiansen 60 have published gaussian 

analytical ~its o~ averaged relativistic effective potentials and spin-orbit 

operators for Li thrO!Jgh Ar. The relativistic potentials of other elements 
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are also being tabulated •. 61 

The relativistic effective potentials derived from the numerical Dirac-

Fock wave functions have been employed in a number of quantum calculations 

with considerable success. We will review a number of such calculations and 

results in the next section. We now consider other methods of generating 

.relati~istic effective potentials. 

Hay, Wadt and coworkers 20
-

2
", 

62
,

6 3 derive relativistic effective 

potentials from the Pauli hamiltonians after omitting the spin-orbti term. 

Cowan and Griffr"n have suggested a procedure for the inclusion of the mass-

velocity and Darwin terms of the Pauli hamiltonian into a variational SCF 

calculation. Since Hay and Wadt do not include spin-orbit interaction in 

their effective potentials, these potentials are analogous to spin-averaged 

relativistic potentials. Hay and Wadt 22 - 2 .. have published recently gaussian 

fits of relativistic effective potentials witho~t spin-orbit interaction for 

all tht elements in the periodic table. Also, included in these papers are 

the optimized ga!JSsian basis sets of these elements for polyatomic 

calculations. The results of the Hay-Wadt potentials compare reasonably well 

with the averaged relativistic effective potentials derived from the Dirac-

Fock calculations. However, these potentials do not provide for an ab initio 

spin-orbit operator which can. be introduced variationally either in a MCSCF or 

a CI scheme. The spin-orbit interaction is introduced in the final step as a 

perturbation using the semiempirical method. 21 

Schwarz and coworkerss 8 , 
6 "-n have developed a relativistic model 

potential method. In this method the relativistic effective potential is 

expressed as follows: 

veff 
rel 

v + 
rel 

core 
l: l9.jm. > vn .(r) <9.jm.l, 

J .r.J J 2., j , mj 
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where vrel(r) and v~j(r) are parametrized as 

V 1(r) re 
-Zeff + Aexp_(~r) 

r 

where Zef~ is the effective charge of the atomic core. The parameters 

~. S~j' A, B~j' are obtained so that the effective hamiltonian reproduces 

valence-electron spectrum of the alkali-like systems. The resulting effective 

potentials are spin-dependent and they include spin-orbit interaction. 

Schawarz and coworkers 65 have developed a complex two and four-index 

transformation over two-component spinors which enable introduction of these 

potentials in MCSCF or CI calculations. These authors 66 - 70 have applied the 

relativistic model potential method to a numbet _of molecules containing heavy 

atoms. More recently, Mark, Marian and Schwarz 71 have considered the use of 

relativistic Dirac-Breit approach to estimate the fine structure splittings of 

+ 
F2 and F2 • Schwarz and Chu 72 have considered relativistic contributions to 

ionization energies and bond lengths with semiempirical as well as ab initio 

Dirac Fock calculations. Esser 73 has recently developed a relativistic MRCI 

method for many electron wave functions. He has presented the unitary group 

formalism and applications to heavy atoms such as Pb, Hg, etc. 

We now briefly review a number of methods of relativistic calculations 

using effective potentials. As mentioned earlier Pitzer and coworkers carried 

~ out their earlier relativistic calculations using a single configuration SCF 

spinor scheme.sz-ss Christiansen and Pitzer 7 ~ introduced REPs in MCSCF-LCAS-

MS spinor calculations. These calculations were carried out by a modification 

of the BISOU-MCSCF code to accomodate relativistic two-component spinors. The 
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first calculation along these lines was carried out on the ground state of the 

TlH molecule. 7 ~ This MCSCF ~alculation included 5 spinor configurations. 

Christiansen and Pitzer 75
-

78 have carried out such MCSCF calculations on 
+75 

T~ 2 , T~ 2 and polarizabilities of the Rb and Cs atoms. 76 Other calculations 

which compare effective potential and all~electron methods have also been 

carried out. 79
,

80 This MCSCF-spinor scheme is restricted in that it could 

accomodate only 10 configurations. This was, however, adequate for the ground 

state properties of molecules such as TlH. Christensen and Pitzer 7 
.. obtained 

80% of the experimental dissociation energy using this method. 

While the MCSCF spinor approach with up to 10 configurations provides a 

reasonable picture of bonding for some of the molecules such as TlH, for other 

molecules like Pb 2 , this approach is far from adequate. This is a result of 

large mixing of confi~~rations arising from both correlation and spin-orbit 

interaction. Thus an approach which can accomd~ate a large number of 

configurations is more desirable. Further, the method should enable 

calculations of several excited states. Christiansen, Balasubramanian and 

Pitzer 81 have developed a relativistic configuration interaction method. In 

this method the relativistic effective potentials are averaged with respect to 

the spin at the SCF stage. Thus at this stage relativistic effects such as 

mass-velocity correction, Darwin correction, etc., are included, but, the 

spin-orbit interaction is not introduced at this stage. However, this spin-

orbit operator is obtained as the difference of i+1/2 and i-1/2 potentials as 

described earlier. The spin-orbit integrals over MO's with this SO operator 

obtained this way are introduced as one-electron integrals at the CI stage. 

The spin-orbit integrals over real cartesian basis sets can be imaginary and 

thus, the introduction of these integrals at the SCF or MCSCF stage would lead 

to a complex Fock operator. Although the CI integrals are imaginary, the CI 
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matrices are diagonalized only once. This procedure could be called 

relativistic CI method or SOCI method. This provides f.or a method of 

introducing spin-orbit interaction variationally rather than the conventional 

perturbati ve scheme. Further, this method allows for mixing of configurations 

which would not mix in the absence of spin-orbit interaction. The method has 

been tested on a number of diatomics in the past few years. These results 

will be reviewed in the next section. R. Pitzer and Winter 82 are considering 

relativistic CI calculations of UF6 , NpF6 and PuF6 with this method. 

4. Applications to molecules containing heavy atoms 

In this section. we consider applications of relativistic quantum methods 
'; 

to calculations of properties of molecules containing heavy atoms. In recent 

years a number of authors have made relativistic calculations of the 

electronic and spectroscopic properties of a n~ber of molecules :Jsing the 

methods outlined in the earlier section. There are excellent reviews on 

applications of relativistic calculations to a number of molecules 7
-

13
, .. 

2
,

83
-

8 
... 

While we review some of these calculations for completeness, additional 

details on these calculations can be found in these reviews. In the present 

chapter we review more recent developments in this area. We will divid.e 

molecules into several categories and discuss the calculations in each 

category. Sections 4A and 48 consider homonuclear and hetero diatomics, 

respectively, while Section 4C considers polyatomics and miscellaneous 

applications. The heteronuclear diatomics that we consider here include 

hydrides, halides, and oxides. 
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A. Homonuclear diatomics containing very heavy atoms 

One of the first relativistic calculations on very heavy diatomics were 

carried out by Pitzer and coworkers 53 on the ground state of Au 2 • For this 

molecule, the spin-orbit contribution is small in comparison to other 

relativistic contributions such as mass velocity and Darwin corrections. The 

Au2 molecule exhibits primarily a bonding arising from the overlap of s 
s 

orbitals~ An important result of this calculation is that the Au 2 bond is 

stronger than Ag 2 bond as a result of the relativistic contraction of the s 

orbital. Ermler, Lee and Pitzer 55 carried out calculations of several excited 

states of Au 2 • For the excited states the spin-orbit interaction plays a more 

important role; it w~s introduced by a semiempirical procedure. These 

calculations employ the Phillips-Kleinman potentials which tend to 

underestimate the repulsive region of the potential energy curves, thus 

predicting short bond lengths. Zeigler et al. 85 have carried out Hartree-

Fock-Slater calculations of Au 2 as well as other heteronuclear diaton;ics 

containing Au and Ag. Ross and Ermler 86 . have recently reported calculations 

on Ag 2 , Au 2 , and other Ag, Au-containing molecules. They have carried out 

SCF, MCSCF and CI calculations on these molecules with the revised 

Christiansen-Lee-Pitzer potentials. These calculations have shown that the 

relativistic bond contractions for Au 2 and Ag 2 are about 0.2 A and .05 A, 

respectively. These calculations employ a triple-zeta s, double-zeta p and 

double-zeta d basis, but the f functions which seem to play a significant role 

for these systems are not incl ~Jded. Further, core-valence correlations which 

were not included, may be important for these systems. As a result of these 

approximations their calculated dissociation energies with MCSCF and CI 

schemes are 1.00 eV ·and 1.47 eV, for Ag 2 and Au 2 , respectively, in comparison 

to the experimental value of 2.08 eV for Au 2 • McLean 87 has also carried out 
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non-relativistic all-electron calculations for Ag2• 

Christiansen and Pitzer 75 carried out MCSCF calculations on 

T2. 2 and T2.; in w-w coupling scheme~ They carr i<:!d out calculations on 3 low-

lying w-w states and 3 A-s states. These calculations revealed that the 

ground state of T2. 2, is the 0~ state and is essentially repulsive with only a 

+ shallow minimum at long distance. The Og and 1u states are slightly higher in 

+ energy. The T2. 2; ion, however, has a 1/2g state which is bound by 0.58 ev at 

this level of calculations. Christiansen 88 carried out relativistic 

configuration interaction calculations on Tt2 with the method described in 

reference E1. These extensive calculations also produced only weak binding 

for the ground state of T2. 2. · Christiansen 88 also recalculated the 

experimental dissociation energy by correcting the partition function of T2. 2. 

The revised experimental De for T2. 2 is about 0.37 eV (±0.15). Pitzer 83 has 

reviewed the earlier calculations on T2. 2 and Au2• 

The P.b 2 and Sn 2 molecules are considerably more complex than Au2 and 

T2. 2 in that even the atom needs to be treated in an intermediate coupling 

scheme. Both correlation and spin-orbit contributions are large for these 

systems, but the spin-orbit contribution for Pb 2 is much larger than for 

sn2 : Balasubramanian and Pitzer .. , 89 have carried out relativistic CI 

calculations on Pb 2 and Sn 2 • Results of our calculations on Pb 2 and Sn 2 are 

shown in figures 3-6. Our calculations enabled interpretation of 

experimentally observed laser-induced fluorescence spectra of Pb2 90
-

91 
• The 

experimentally observed X, A, and C states were assigned too;, lg,.and o: 
states. The 8 state was reassigned to the 0~ state. + The ground Og and low-

2 2 

lying lg state are type c analogues of 3 Eg (o
8
rru). ·However, the assignment of 

any state of Pb 2 to any particular spin-orbit component of a A-s state has 

limited meaning because of large spin-orbit contamination of several A-s 
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states. In fig. 7 we show the fractional CI populations of various A-s states 

as a function of internuclear distances for the 0~ ground state. As one can 

see from these figures, A-s populations in Pb 2 change dramatically as a 

function of internuclear distance. It is further interesting to note that at 

a short distance, the 0~ states of both Pb 2 and Sn 2 exhibit an avoided 
.. + 2 2 + 

crossing resulting from w (0 ) with cr w (0 , 1 ) configurations. This u g gu g g 

results in a stroulder in the 0+ curve at short distance. The Sn2 is g 

described reasonably well in A-s coupli,g. As one can see from figure 7, the 

spin-orbit contamination for Sn 2 is rather small and thus the ground state 

- +-is 3 ~ (0 ). The J = 0 state of the Pb atom is 88% ( 3 P ) and 12% ( 1 S ). 
g g 0 . 0 

Similarly, the J = 2 state of Pb atom is 70% ( 3 P2 ) and 30% ( 1 0 2 ). The 

corresponding percentages for the J = 0 and J = 2 states of Snare 97% ( 3 P
0

), 

3% ( 1S ) and 97% ( 3 P2 ) and 3% ( 1 0 2 ). Thus correlation is more important for 
0 

Sn than spin-orbit interaction, while both correlation and spin-orbit 

interaction are important for the Pb compounds. For the Pb 2 dimer the spin-

orbit interaction destabilizes the bond by almost 50%. The calculated De 

values for Pb 2 and Sn 2 (0.88 eV and 1~86 eV) are in good agreement with the 

experimental values 9 ~- 9 
.. (0.88 eV and 1.94 eV). After the completion of these 

calculations, an experimental value of Re for the ground state of Pb 2 was 

reported by Sontag and Weber. 96 The calculated value of Re = 2.97 A agrees 

very closely with the subsequent experimental valu~ of 2.930 A: 

Pacchioni 96 has recently carried out calculations on the low-lying states 

of Sn 2 and Pb 2 • This author gives the impress ion that he, is the first to 

carry out a comparative ab initio CI calculation on these systems. We would 

like to clarify this f~rther. First, his calculation starts with the Hafner-

Schwarz model potentials in comparison to our relativistic ab initio 

potential:3 derived !'rom n'.lmerical Dirac-Fock sol·-Jtions of the atoms. 
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Pacchioni' s calculations ignore spin-orbit interaction. Our calculations 

include spin-orbit interaction in a relativistic CI scheme in comparison to 

the non-relativistic CI of Pacchioni. Thus, he obtains a De approximately 

twice the experimental value which he corrects by a semiempirical scheme to 

arrive at a value close to our calculated value with a relativistic CI. Our 

calculations have clearly demonstrated the need to carry out an intermediate 

coupling CI calculation for Pbz as a result of large spin-orbit 

contamination. Calculations without spin-orbit, such as Pacchioni's have 

little relationship to the real Pbz molecule. 

Christiansen 97 has recently carried out relativistic CI calculations on 

the ground state of Biz· His calculations have shown that although the ground 
+ z .. 

state of Bi 2 is dominantly 1 I: (arising from the a 1T triple bonding 
g g u 

configuration), it is significantly contaminated by 3 II (about 25%). The 
g 

calculated De value of Biz (2.3 eV) is in reasonable agreement with the 

experimental value of 2.04 eV. The computed Revalue is aboyt 0.16 bohr 

longer than the experimental value. This seems to be the general trend in a 

limited relativistic CI scheme which is adequate to describe other properties 

but somewhat less accurate in calculating bond distances and dissociation 

energies. It is believed that this discrepancy in calculated bond distances 

arises ·rrom the d-correlation. More extensive calculations are warranted to 

confirm the origin of calculated longer bond lengths. 

Celestino and Ermler 98 have carried out calculations on Hg 2 and T£Hg. 

Calculations on Hg 2 were carried out with a full 4-electron CI within 16 of 

the 22 valence and virtual orbitals. The spin-orbit interaction is ignored at 

the CI stage but introduced after CI using a semiempirical scheme. For the 

TiHg molecule, CI calculations included full correlation of 5 outer electrons 

with some restrictions. These authors have carried out calculations on a 
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large number of low-lying states. 

Stevens, Basch, and Krauss 99 have carried out calculations on a number of 

light diatomics such as P2 and Cl 2 among other molecules like SiO, CH~, etc., 

to test the reliability of effective potentials. They have also generated ab 

initio effective potentials and compatible basis sets for the first and second 

row atoms. 99 Other calculations on homonuclear diatomics which use 
100 101 

relativistic methods incl:Jde C:J2 , and I 2 Relativisti~ ab initio 

calculations have been carried out on noble gas dimers and ions such as 

B. Heteronuclear diatomics containing very heavy atoms 

Among the heteronuclear diatomics containing heavy atoms, a number of 

hydrides have been st:Jdied. Desclaux and Pyykko have studied a number of 

hydrides using the one-center numerical Dirac-Fock method. 27 , 106 ~ 109 These 

, calculations provide an iilsight into the magnitude of relativistic effects on 

the bond lengths; however they are not useful for dissociation energies as 

they break down at long distances. 

Hay et al. 110 have carried out effective potential calculations on AuH 

which yield the relativistic bond contraction of 0.26A. The dissociation 

energy of AuH is increased by 0.5 eV as a result of relativistic 

contributions. They also pres en ted calculations for AuCl, HgH and HgC1 2 • 

Zeigler, Snijders and Baerends 95 have carried out perturbational relati.vistic 

calcul'at ions on a number of heteronuclear diatomi cs such as HgH+, CdH+, ZnH+, 

AuH, AgH, CuH, CsH. • 

Lee and McLean 3 ~, 35 have carried out all-electron Dirac-four component 

spinor LCAS-MS-SCF calc:1lations on AgH and AuH. The relativistic effects 

increase the dissociation energies by 0.08 eV and 0.42 eV in these molec:Jles, 
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while the bond lengths contract by 0. 08 A and 0. 25 A these values for AuH 

confirm the earlier effective potential calculations 110 • 

Lee, Ermler and Pitzer 55 have carried out SCF calculations 

in w-w coupling on T1H, PbSe and PbS among other diatomics. Christiansen and 

Pitzer carried out MCSCF LCAS-MS spinor calculations on TlH. 7 ~ 

Christiansen, Balasubramanian and Pitzer 81 have carried out relativistic 

configuration interaction calculations on the six low-lying states of TlH. In 

these calc~lations, spin-orbit interaction is introduced at the CI stage with 

the spin-orbit operator derived as a difference of .2.+1/2 and .2.-1/2 

relativi9t~c effective potentials. The properties of the two lowest o+ states 

are in very good agreement with the experimental results. In addition, these 

calculations yielded shallow minima in certain excited states of TlH in 

equilibrium bond length (1.99 A) is somewhat longer than the experimental 

val~e of 1.87 A. This discrepancy was in part attributed to the lack of d 

correlation. However, this is yet to be confirmed. The calculated 

dissociation energy (1.81 eV) is in reasonable agreement with the experimental 

val~e of 1.97 eV. 

Balas~bramanian and Pitzer 111
,

112 also made relativistic CI calculations 

on a number of low-lying states of PbH and SnH which enabled interpretation of 

the electronic spectra of these molec~les. The low-lying electronic states of 

PbH ( 3/2 (II),5/2) exhibit interesting avoided crossings. The 3/2(II) state 
.•. 

is 
~ 

~ ;-;2 at short distances, but at long distances it becomes a mixt~re 

of 
2 
rr1/2• 

2 
~ 3 ; 2 and other A-s states. The 5/2 state is 

2 
~s/ 2 at short 

.. 
distances, but it becomes II 5 ; 2 at very long distances. 
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Balasubramanian 113 has recently reported relativistic CI calculations on 

four low-lying w-w states of BiH arising from the a2 1T 2 electronic 

configuration. These calculations enabled the assignment of the X(O+), A(1) 

and B(O+) states which were observed experimentally. The potential energy 

curVe of the 2 state exhibits a barrier resulting from the avoided crossing 

of 1 ~ 2 with 5 E~ • The experimental De value of this molecule is uncertain 

since it is estimated from the predissociation of the E(O+) state 

into 
2 
S1 1 2 atoms. In another investigation more extensive 

relativistic CI calculations have been carr!ed out 11 ~ on 10 low-

lying w-w ~tates of BiH (0+, 1, 2, O+(II), 1(II), 2(II), 0-, O+(III), 3, 

o+ (IV)) . Potential energy curves of the excited states of this molecule 

exhibit very interesting properties such as shoulders, barriers, etc. Fig. 8 

shows the poten-tial energy curves of some of the low-lying states of BiH. In 

fig. 9 we sho~ the relativistic CI population of the O+(IV) (EO+) state of 

~iH. As one can see from fig. 9, this state exhibits a number of avoided 

crossings. The spin-orbit contaminations of these states are quite large. In 

another investigation Balasubramanian 115 has carried out relativistic CI 

calculations of 8 low-lying states of BiH+ (1/2, 312, 1/2(II), 1/2(III), 

3/2(II), 3/2(III), 5/2, and 5/2(II). The ionization potential of BiH+ was 

calculated to be 8.08 eV. The exctied states of BiH+ show interesting 

relativistic avoided crossings. The calculated De of BiH+ is about 1 .05 eV in 

comparison to the ne!Jtral molecule whose De value is about 2.2 eV. Since 

then orbital.of BiH is essentially non-bonding one might expect the De values 

of BiH and BiH+ to be abo!Jt the same. However, at the dissociation limits, 

the spin-orbit stabilization of the ~s312 of the neutral atom is substantially 

smaller than that of the 3 P state of the ion. The ground state of the Bi 
0 

neutral atom c~s 312 ) cannot be split but is lowered by 0.03266 hartree-atomic 
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units when the spin-orbit operator is included. The ground state of Bi+ 

(
3 P ) is stabilized by 0.0859 atomic units in comparison to 3 P without the 

0 
' 

spin-orbit term. The De values of BiH and BiH+ obtained without spin-orbit 

interaction are 2.06 eV and 2.17 eV, respectively. Thus the De value of BiH+ 

is lowered considerably by spin-orbit interaction. 

Chapman, Balasubramanian and Lin 116 have carried out relativistic CI 

calculations on the six low-lying states of HI. These calculations enabled 

the assignment of absorption continua near 46,000 cm- 1 , 23,000 cm- 1 as well as 

bands which extend from 55,000 cm- 1
• Calculations of a number of low-lying 

have just been completed. 117 These calculations were carried out with an 
.,. 

extended triple zeta basis set since. the O+(III) and 2(II) states dissociafe 

into Rydberg atoms. These calculations have not only enabled the assignment 

of experimentally observed bands but also predicted several new transitions 

which are yet to be observed. 

Wang and Pitzer 118 have carried out relativistic CI calculations on the 

five low-lying states of PtH as well as PtH+. The calculated dissociation 

energy is about 2.45 eV in comparison to the experimental value of 3.44 eV. 

There are three states of nearly equal energy. In each case there is a sigma 

bond and a single vacancy in the 5d shell of Pt. The calculations indicate 

the 2 ~ 512 state to be lowest with the 2 E112 higher by 1008 cm- 1 and the 

2 (IT + ~) 312 above 2 ~ 512 by 2742 cm- 1 • But these differences are so small 

that f!Jrther refinement of the calculations might change the order. All three 

~ states are known expe~imentally, 119 but the present measurements leave many 

W1certainties. A tentative value of 1300 cm- 1 has been given for T of the 
e 

312 state with the 5/2 state at zero. 

33 



Balasubramanian and Pitzer 120
,

121 have carried out relativistic CI 

calculations on eleven low-lying states of PbO and SnO with the objective of 

interpreting chemiluminescent spectra resulting from Pb + 0 3 , Sn + N2 0 and 

other reactions. These calcualtions enabled the assignement of a number of 

experimentally observed bands. Calculations of low-lying states of 

isoelectrbnic PbS and SnS have also been carried out. 122 Balasubramanian 123 

reported relativistic CI calculations on the low-lying states of PbO+, SnO+, 

+ + PbS , and PbSe • These calculations confirmed the breakdown of Koopman's 

theorem for SnO and PbO which had previously been noted by Dyke et al. 12 ~ For 

SnO and PbO, Koopman's theorem predicts the 2 ~+ state to be the ground state, 

while the actual ground state of these molecules is 
2

11 3 ; 2 • Actually, at very 

+ short distances. the 2 ~ state is lower than the 2 11. state. At near equilibri~ 

geometries this ordering is reversed which results in an avoided crossing in 

the 1/2 state of PbO+ and SnO+. The breakdown'of Koopman's theorem was 

explained based on orbital relaxation effects. + However, for PbSe , it was 

noted that t.he orbital relaxation effects are not large enough to affect the 

ordering. Thus Koopman's theorem correctly predicts the 2 11 state to be the 

ground state of PbSe+. 

Balasubramanian 125 carried out relativistic CI calculations on the low-

lying states of TlF. There is· considerable experimental interest in the 

photoionization of vapors of relatively non-volatile materials such as the 

thallous halides. The thermodynamic and spectroscopic dissociation energies 

of this molecule do not agree, which seems to suggest the existence of 

barriers in the excited states. Relativistic CI calculations of the potential 

energy curves of 9 low-lying states of TlF arising from 1 ~+, 3 IT, 1 11, 3 ~-. 

+ 3 E , and 3 6 were carried out. 125 These calculations confirmed the existence 

of barriers in the excited states of TlF which arise from relativistic avoided 
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crossings. Calculations on a number of. low-lying states of ICl and ICl+ have 

also been carried out. 126
,

127 These calculations enabled interpretation of 

the electronic spectra of these molecules. 

Relativistic CI calculations of the low-lying states of PbF were recently 

carried out. 128 The assignments of the experimentally observed A and B states 

were ambiguous as a result of the existence of a number of low-lying states . 

Relativistic CI calculations of these states enabled the assignment of A and 8 

states to 
2
Ei/2 and 

2
Ei; 2 (II). The calculations of the B state, which is a 

Rydberg state, were carried out with an extended triple zeta basis set. ~rhe 

ground configuration 2 II is split into 
2
II 1 /2 and 

2
II 3 ; 2 states with a spin-orbit 

splitting of about 7.895 cm- 1 • Basch and Topiol 12 9 have carried out 

calculations on AuCl and PtH in addition to HgC1 2 • 

Laskowski and Langhoff 130 have carried out calculations on Cri using 

averaged relativistic effective potentials. Similar calculations have been 

carried out on Cs0 131 as well as CsH 132 • Krauss and Stevens 133 , 13 ~ carried 

out SCF calculations on UO, UH, UF and their ions. Krauss and Stevens 135 

have investigated the electronic structure of FeO and RuO using relativistic 

effective potentials. Relativistic configuration interaction calculations of 

low-lying states of BiF have been completed. 136 

C. Relativistic Calculations of Polyatomics and Miscellaneous Applications 

Relativistic calculations of a number of polyatomic molecules have been 

carried out by both semiempirical and ab initio methods. Many of the earlier 

calculations have been reviewed by Pyykko 7 as well as by Christiansen, Ermler 

and Pitzer 13 
• The semiempirical methods include the relativistic extended 

Huckel method, relativistic xa method etc. Most of the ab initio 

calculations on polyatomics intially omit the spin-orbit interaction. This is 

introduced at a later stage as a perturbation or by a semiempirical scheme. 
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One of the very interesting earlier calculations on polyatomics was 

+2 
carried out by Wadt 137 on Th0 2 and U0 2 • While the UOi 2 ion is linear, 

Th0 2 is bent. There is a greater Sf participation in UOi 2 in contrast to 

Th0 2 , and this seems to be the reason for the change in structure. Wadt notes 

that earlier semiempirical calculations on these molecules yielded results 

which do not agree with his accurate ab initio calculations. 

Another interesting molecule is the cyclooctatetraene sandwich complex, 

U(C 8 H8 ) 2 • The Sf contribution is important to the stability of uranium-

containing molecules. Semi-empirical calculations have been carried out on 

this molecule as well as other actinocene compounds. 138
,

139
• Relativistic 

calculations on UF 6 ,. NpF 6 and PuF 6 have been reported. 1 ~ 0 - 1 ~~ 

Case and coworkers~ 5 ,~ 6 have reported calculations on Pt clusters and 

their reactivity with CO using relativistic xa methods. Noell and Hay 1 ~ 5 have 

carried out SCF calculations on Pt complexes s~~h as Pt(NH3) using the REP's 

generated from Pauli hamiltonians. Hay 1 ~ 6 has also studied the Pt-ethylene 

complex. Similar calculations have been carried out by Basch and Cohen 1 ~ 7 on 

PtCO. 

Collignon and Schwarz 1 ~ 8 have studied the changes.of molecular structures 

as a result of relativistic effects. They have carried out calcuations on 

pseudopotential method. Spin-orbit interaction changes the bond angle by less 

than a degree in these systems with the exception of 11 ~EH 2 where the bond 

angle is increased by 2.~ 0 • 

Relativistic calculations have made an impact on biological compounds 

recently. Miller et al. 1 ~ 9 have recently investigated the binding of 

+2 
cis-Pt(NH 3 ) 2 to the bases of DNA (guanine (G), cytocine (C), adenine (A) and 

thymine (T)). Electronic and geometrical structures of Pt(NH 3 ) 2 Cl 2 , Pt(NH 3 ) 3 X 
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and Pt(NH 3 ) 2 XY (X,Y = H2 0, OH-) have also been investigated recently by Basch, 

Krauss and Stevens. 150 

Pitzer and Winter 1
"" have developed a computer code for including the ab 

initio spin-orbit operator in polyatomic calculations. In this method the 

spin-orbit integrals are evaluated using the difference of ~+1/2 

and ~-1 /2 potentials over gaussian basis sets. The procedure is beit!g tested 

on UFUF 6 , NpF 6 and PUF 6 • 

Ross, Ermler and Christiansen 151 have recently carried out ab initio EP 

calculations of spin-orbit coupling in the group III A and group VII A 

atoms. The spin-orbit splittings are computed with the operator represented 

as the di!'ference of . .2.+1 /2 and ~-1 /2 effective potentials. Comparisons were 

also made with the all-electron Dirac-Fock results as well as the first order' 

perturbation calculations. These authors have shown that the first order 

perturbation results could be in error by 9% in comparison to the Dirac-Fock 

results and that:, the EP spin-orbit operator yields accurate results. 

Self-consistent Dirac-Slater calculations of molecules and embedded 

clusters have been recently reviewed by Ellis and Goodman. 152 Relativistic 

band structure calculations have also been carried out. 153 Dirac scattered 

wave calculations have been carried out on a number of inorganic complexes 

I 5 " -a, I 55 
such as W(C0) 6 and W2 Cl 8. The electronic structure and geometries of 

X2 H2 (X = 0, S, Se and Te) have also been investigated recently. 156 

Malli 157 has investigated recently the use of Dirac-type functions (DTF) 
.. 

as basis sets for relativistic Dirac-Fock-Roothaan calculations for atoms. 

,, The well-known Slater-type functions with non-integral principal quantum 

numbers are special cases of DTF's. Recently, self-consistent relativistic 

Thomas-Fermi equations for heavy atomic ions have been formulated. 158 

Matsuhita et al. 159 have reported ab initio spin-orbit splitt.ings of 

37 



the 3 P ground state of the Se atom using the Pauli spin-orbit term. They 

obtain spin-orbit splitting as a perturbation to MRSDCI wave function. The 

relativistic Pauli integrals over gaussian basis sets are evaluated by the 

procedure proposed by Chandra and Buenker. 160
,

161 Similar calcuations have 

also been made on CBr. 162 

Balasubramanian and coworkers 163 have carried out relativistic CI 

calculations on the collision of Kr with Br+. The collisions .of rare gas 

atoms with heavy halogen· ions are the topics of a number of investigations. 

(For a brief review of recent progress in experimental and theoretical works 

in this area see reference 164). Krauss, Stevens and Basch 165 have very 

recently carried out. EP calculation.s on AgH and AuH. Their results are in 

very good agreement with all-electron Dirac-Fock calculations. 
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Fig. 4. Calculated potential curves for the u states and the ground Og state 
~ of Pb 2 • An estimated curve at the experimental Te is also given 

for the upper 0~ state. 
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Calculated potential curves for the g states of Sn 2 • An inset 
shows the details of the avoided crossin~ of the two 0~ curves, 
and the crossing of the related 1Lg and Lg curves witnout SO. 
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Fig. 6. Calculated potential curves for the u states and the ground 
Og state of Sn 2 • 
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Fig. 7. Fractional populations of various A-S configurations for Pb 2 and 
Sn 2 • 
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Fig. 8. Potential energy curves of 10 low-lying states of BiH. 
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Fig. 9. CI population of the o+(IV) (EO+) state of BiH as a f~nction of 
internuclear distance. 
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