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ON THE ACCURACY OF THE MINC APPROXIMATION 

Introduction 

C. H. Lai, K .. Pruess and G. S. Bodval:"sson 

Earth Sciences Division 
Lawrence Berkeley Laboratory 

University of California, Berkeley 
Berkeley, CA 94720 

Modeling of transport process in fractured media is mathematically very difficult 

because of the complicated geometries and t~ansport processes involved. 'Pruess ;nd 

Narasimhan (1982) have developed an extension of the double~·poros'ity method (Baren

blatt, 1960; Warren and Root, 1963), referred to as meth~d of ;'im.iltiple interacting coh-. 

tinua" (MINC), which can handle tninsi·ent' inter-porosity flow of fluid and h:eat iri frac-' 

tured porous media. The MINC approximation assumes that, due to.high,permeibili"t)" 

and low storativity of the fractures, any changes of thermod'ynamic conditions in a frac-

tured porous medium will propagate rapidly in the fracture network, while migrating 

only slowly into the low-permeability rock matrix blocks. Therefore, the. changes of ther-

mody~amic ;onditions i.n the rock matrix blocks will depend primarily on the distance to 

the nearest fracture. In light of this and by neglecting gravity effe'cts, fluid and lieat flow 

in the rock matrix blocks may· be treated by a one-dimensional approximation. This 

concept is applicable to regular as well as irregular matrix blocks (Pruess arid Karasaki, 

1983) . 

In numerical simulations, the MINC method partitions rock matrix blocks into sets 

of nested volume elements (Figures 1 and 2). Thus, the interactions between fractures 

and the rock matrix can be described by one-dimensional mass and energy conservation 

equations. When applicable, this approximation can save substantial amounts of 
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computer time and storage in comparison to the more detailed discretization by conven-

tional finite difference methods. However, the accuracy of the method employed needs to 

be tested and justified (Pruess et al., 1982). In general, mass and heat flow are not per-

pendicular to the fracture surfaces, especially near fracture intersections ("corners"), and 

hence can not strictly be considered one-dimensional. To study this "corner" effect, we 

have considered some idealized geometrical configurations and simple boundary condi-

tions, for which exact solutions as well as solutions based on the MINC approximation 

are available in analytical and semi-analytical form. 

Case 1: Fluid Flow in a Porous Cube 

The test case considered is for isothermal, slightly compressible fluid flow in a 

porous cube (or, equivalently, heat conduction in an impermeable cube). A constant pres-

sure, Pb, is maintained at the cube surfaces, and an initial pressure of zero is assumed 

everywhere. With the MINC approximation, fluid flow in a cube can be approximated by 

a one dimensional model, as shown in Figure 3. The basic model represents one-sixth of 

a cube, with the surface area for flow decreasing from D2 (D is the side length of the 

cube) at the edges of the cube to zero in the center. Thus, the total mass flow at the 

cube surfaces will be six times that given by the one-dimensional model. This one-

dimensional. approximation leads to a differential equation whose form is identical to the 

heat conduction equation in a system with spherical geometry. The dimensionless pres-

sure and flow rate for this problem using the one-dimensional approximation is given by 

Carslaw and Jaeger (1959): 

(1) 

and 

(2) 

'.I 
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The same problem can be solved exactly in three dimension. The dimensionless transient 

pressure and flow rate is given by (Carslaw and Jaeger, 1959): 

and 

P 64 00 00 00 (-1)1 +m +n--1 (2l--1)rrx 
P0 = - = 1 - -

3 
~ ~ ~ cos .....___,'--

pb 11" 1 =lm =In =d2l-1){2m -1)(2n -1) D 

cos (2/ ~)1ry cos (2/ ~)1rz exp{ - k-ilt 
2 

[(21-1)2 + (2m -1)2 + (2n -1)2]} 
¢!JeD 

(3) 

.,(2 2 kt 
exp{--[(21-1)2+(2m -1?+(2n -1)] 2 } 

4 , <f>c IJ(D /~) 
(4) 

In the above equations, (x, y, z)- coordinates are measured from the center of the cube 

and parallel to the edges. The dimensionless pressures at a distance z = 0.3D for the 

MINC approximation and for the exact solution are plotted versus dimensionless time in 

Figure 4. The figure clearly indicates that in the center of the plane z = 0.3D (ie., for 

x 1 = ; = 0, y 1 = ~ = 0) the pressures from the MINC approximation are somewhat 

higher than the exact pressures, but in the corner of that plane (x 1 = y 1 = 0.3) they 

are somewhat lower. The discrepancies are not large (about 10-15%). What really 

matters, however, is not the detailed pressure distributions inside the cube, but the total 

(areally integrated) flow rate at the cube surface. Figure 5 shows that the flow rate at 

the cube surface using the MINC approximation agrees very well with the exact solution. 

Case 2: Fluid Flow in a Rectangular Porous Slab 

To further test the MINC approximation, a comparison was made for fluid flow in 

two-dimensional rectangular matrix blocks with side lengths A and B for different 

aspect ratios f3 = A j B. The same initial and boundary conditions are used as in case 1. 
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With the MINC approximation, the basic model (Figure 6) of a rectangle will be solved. 

The governing equation describing the mass conservation in the domain of the basic 

model can be expressed as: 

C' { 5 a ( S)d } _ a(Sdzl/Jp) 
q,J - q + 8z q z - at (.5) 

where q is mass flow rate, ¢J is porosity, p is fluid density, t is time, and S is the cross 

section surface area in the z direction expressed as: 

S = 4z +A- B (6) 

Substituting Eq. 6 and Darcy's law (q = - pk \lP) into Eq. 5, the governing equation 
JJ 

describing slightly compressible fluid flow in the domain of the basic model can be 

expressed as: 

1 aP 
1 az 

z + "4(A -B) 
(7) 

where c is fluid compressibility and k is intrinsic permeability of the medium. The ini-

tial and boundary conditions are: 

P (z ,0) = 0 (8) 

(9) 

(10) 

In terms of dimensionless parameters, the governing equation and the initial and 

boundary conditions can be written as: 

a2Po 1 aPo aPo 
--+---=--

art2 11 art ar 
(11) 

, . 
• 
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where 

PD =0 

A-t-B 
PD (17 = ---:uJ,r) = 1 

8Po --1 A-B =0 atl q=4B 

11 
= z + l/4(A -B) 

B 

T= 

5 

(12) 

(13) 

( 14) 

(15) 

(16) 

(17) 

In the Laplace domain, the solution of Eq. 7 subject to the given initial and boundary 

conditions is: 

(18) 

where p is the Laplace parameter. The dimensionless mass flow rate at the surface of 

the rectangle can be obtained from Eq. 18 by evaluating the pressure gradient at the 

surface: 

(19) 

where qD is :~ . In this study, the ,solution for dimensionless flow rate in real space is 

obtained by numerical inversion of Eq. 19 (Stehfest, 1970). The exact solution for this 
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two-dimensional problem is given by Carslaw and Jaeger (1959): 

cos 
(2/-l)7rx (2m -l)1ry 

A cos B 

(20) 

and 

(21) 

Figure 7 shows that the dimensionless mass flow rate across the surface of the rectangle 

obtained from the MINC approximation for different aspect ratios (,8) compares well with 

the exact solution. The agreement becomes close when the aspect ratio is increased, 

because this will diminish the "corner" effects neglected by the MINC approximation. 

Conclusions 

The method of "multiple interacting continua" is based on the assumption that 

changes in thermodynamic conditions of rock matrix blocks are primarily controlled by 

the distance from the nearest fracture. We have evaluated the accuracy of this assump-

tion for regularly shaped (cubic and rectangular) rock blocks with uniform initial condi-

tions, which are subjected to a step change in boundary conditions on the surface. Our 

results show that pressures (or temperatures) predicted from the MINC approximation 

may deviate from the exact solutions by as much as 10-15% at certain points within the 

blocks. However, when fluid (or heat) flow rates are integrated over the entire block sur-

face, MINC-approximation and exact solution agree to better than 1%. This indicates 

that the MINC approximation can accurately represent transient inter-porosity flow in 

fractured porous media, provided that matrix blocks are indeed subjected to nearly uni-

form boundary conditions at all times. 
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Figure 1: Idealized model of a fractured porous medium 
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Figure 2: Computational mesh to model transport processes m fractured porous media 

employed by the MINC approximation 

11 



Matrix 
Block 

Basic 
Element 

T 
D 
l 
1 

XBL826- 2260 

12 

Figure 3: Ba.sic model for a porous cube using the one-dimensional approximation 
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