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ABSTRACT 

The activation energies characterizing a kinetic process are derived 

from the slopes of the Arrhenius diagrams obtained by plotting rate 

constants versus reciprocal temperature. Those rate constants correspond to 

the shifts along the time axis needed to superpose the successive isotherms. A 

general method based on CHEBYSHEV interpolation is proposed for the 

optimization of the superposition of the experimental data points. This 

method is applied to determine the activation energies of the graphitization 

kinetics of the interlayer spacings of pitch coke and pyrocarbon samples. 
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In kinetic investigations, a sample initially in a state 0 at a temperature 

e0 is "instantly" brought to a temperature e1, and the time evolution of a property 

P is followed at that temperature. This process is repeated at higher temperatures 

e2 > eu ... In graphitization studies, i.e., investigations or the thermal 

transformations or an artificial carbon that is structurally disordered into graphite, 

the degree of evolution can be written as 

1 1 
- a: [ el - e2 1 (1) 

where k (ei) is the rate constant corresponding to the temperature ei and a a 

constant independent of the property P • A rule first suggested by FISCHBACH 

[1 1 and then developed by P A CAUL T (21 states that two isotherms corresp9nding 

to temperatures e 1 and e2 are "affine " with respect to time, i.e, they are 

superposable by a translation ~ along the time axis, with 

Consider two sets 

1 1 ( :r . ' 11 • ), 
I I 

i = 1, N 1 and 2 2 
( X· , 11 · ), 

' ' 

(2) 

(3) 

of N 1 and N 2 experimental data points corresponding to isotherms taken at 

temperatures e1 and e2 respectively, as shown on Figure 1(a). If the ordinates '!/; 

are decreasing in value, the verification of the rule stated above requires 

~11 = ~ - 11J :1: 0 
1 l 

(4) 

Equation ( 4) implies that the two sets of points overlap if shifted along the :z axis. 

e2• 
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The question which then arises is how to estimate the shift which yields an 

optimum superposition of the two sets of points, since the data are generally 

shifted by hand and visually compared. However, graphical perception has been 

shown [3] to follow basic principles that have a non-negligible influence on the 

display of data, even though a visual fit is equivalent to a polynomial fit. For 

instance, the difference between the ordinates of two superposed curves is encoded 

by the vertical distances between the two curves. According to CLEVELAND and 

McGIT..L [4], it is difficult to evaluate vertical distances because visual comparisons 

tend to extract minimum distances which lie along perpendiculars to the curves. 

Curve differences can thus be poorly if not differently perceived. Examples can be 

found in the literature. FLA:NDROIS and TINGA [5] assess that the superposition 

of FISHBACH's isotherms [6] for which an activation energy of 260 kcalfmole has 

been derived is just "as good" when an energy of 160 kcal/mole is adopted. Also, 

the same authors estimate that the activation energy of 164 kcal/mole calculated 

by PACAULT and GASPAROUX (7] could very well be taken as 235 kcal/mole, 

with a superposition that is "as good ". The necessity of having a method of 

eliminating the subjective perception of the superposition of curves is therefore 

evident. Such a method is described below. It consists of three steps. 

1 - The first step is the numerical fit of the two sets of points with a functional 

form. Such an approximation is provided by a CHEBYSHEV series written as 

polynomials 
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m1 

P 1(z) =~a~ xi 
m2 

and P 2( x ) = ~ a~ x i {5) 
i=o i=o 

where m 1 and m 2 are the degrees of the polynomials P 1( :r ) and P 2( :r ) respectively. 

In the example illustrated in Figure 1(a), m 1 = m-2 = 3. In most applications 

however, m 1 and m 2 range between 3 and 5. The choice of the CHEBYSHEV \. 

approximation is dictated by the fact that the polynomials are known to give a " 

besf' fit within the interpolation interval. IC the dependence of 11 versus z is 

theoretically known, , = ~:r ), then the function ~ is used to fit the experimental 

data points. However, it the data overlap interval 

(6) 

i.e., ~, is small compared to the whole range or variation of the property P, ther.. 

the fit for P 1(:r) and/or P 2(:r) must be restricted to the experimental data poin~s 

lying in the ~, interval. 

2 - The second step is the generation of two new sets of N points obtained as 

follows : a) The interval ~, is divided in N -1 intervals, ( Figure l(b) ), leading to 

N values Ji 

[ ( Yi 1 2 -Y·-Y·), • • 1 = 1, N I (7) 

with 
,, 

(8) 
v 

The choice or N is arbitrary even though it might depend on the magnitude of ~v 

and the shape of P 1(:r) and P 2(:r) in the interval ~Y. A large value of 
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N ( 10 < N < 100 ) is always preferable. b) Using a root-finder algorithm, the 

zeros of the functions [ P 1(z) - Y; ] and [ P 2(z) - Y; ] are calculated for the N values 

of Y; to obtain the two sets of Zi values 

i = 1, N and -2 
X. ' 

' 
i = 1,N (9) 

3 - The last step involves a linear least-squares fit algorithm to minimize the 

quantities 

(10) 

in order to estimate the translation ~. The process is repeated for each pair of 

successive isotherms and the master superposed curve is then given by 

. k-1 
( xk + E ti i, yk ), k = 1, n, a = 1, Ni and ti 0 = 0 

j=O, 
(11) 

where n is the number of isotherms in equation (11). The superposed curve 

resulting from the two sets of points of Figure 1(a) is shown on Figure 1(c). The 

method described above is applied to calculate the activation energies of the 

graphitization kinetics of two different artificial carbons : pitch coke and 

pyrocarbon, via changes in the interlayer spacing. The superposed master curves 

are drawn on Figures 2(a) and 2(b) for pitch cokes [8] and pyrocarbons [9] 

respectively. 

A major point to be emphasized is that the algorithm used for the 

polynomial approximation weights each of the data points according to the 

experimental error. The calculated shifts ~; which then take into account all 



errors are plotted versus the inverse of the heat treatment temperatures 8; in 

Figures 3{a) and 3{b ). 

Results indicate that the graphitization kinetics of the pyrocarbon is 

singly-activated with an energy equal to 241 ± 11 kcal/mole for "' 

2300 o C < e < 2600 o C, while the graphitization kinetics of the pitch coke is 

multi ply-activated with activation energies of 22 kcalfmole for 

1250 o C < e < 1500 o C, 54± 1 kcalfmole. for 1500 o C < e < 2000 o C and 

203 ± 24 kcal/mole for 2000 ° c < e < 2300 ° c. 

The purpose of this paper is not to comment on the physical 

significance of the different activation energies observed. The value of 

241 kcal/mole derived for the pyrocarbons is in good agreement with most of the 

kinetics .studies found in the literature and related to such materials [2,10]. 

However, it is worth noting that the errors associated with the activation energies 

obtained for the pitch coke samples rule out the hypothesis that the graphitization 

of these samples is governed by a single activation energy. 

In conclusion, a computational graphic method based on the 

CHEBYSHEV interpolation has been developed and used for the superposition of 

kinetics curves of interlayer spacings of pitch cokes and pyrocarbons. The results 

show that the kinetic process is singly-activated for pyrocarbons and multiply-

activated for pitch cokes. The method can be applied to derive the activation 

~~ . 

energies governing any kinetic process and more generally to optimize the \.· · 

superposition of any kind of data. 

e&• 
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Figure 1 : Steps illustrating the method of superposing data. 
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Figure 2 : Superposed master curves for pitch coke (a) and pyrocarbon {b). 
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Figure 3 : Arrhenius plots of the rate constants versus reciprocal temperature for 

pitch coke (a) and pyrocarbon (b). 
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