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Abstract 

We derive a general expression !or the beat-resonant coupling o! 

electrostatic modes in a Vlasov plasma. •The result for the coupling of two 

modes has a simple structure: the appropriate momentum gradient of the 

equilibrium particle distribution is weighted by a positive coupling coeffi­

cient and averaged over the resonance surface in momentum space. The 

contributions of all the resonance surfaces are then summed. This basic 

structure had been previously exhibited only for specific homogeneous 

plasma models. The present theory, which unifies and greatly simplifies 

these individual treatments, is based on a variational formulation of the 

Vlasov- Poisson equations. Using Lie transforms, we re-express the varia­

tional principle in oscillation center variables, and then obtain the non­

linear wave dynamics from the independent variations of the wave phase and 

the wave amplitude. The power of the method is then applied to a strongly 

magnetized, strongly inhomogeneous, nonneutral plasma model. 
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I. Introduction 

We present a deri~tion of the beat-resonant coupling between two 

electrostatic waves in a nonuniform Vlasov plasma. This process,--which is 

also known as nonlinear Landau damping or induced scattering, has been 

studied in less general settings by various authors. l-lO Our derivation 

involves two ingredients. We use a variational formulation of the Vlasov­

Poisson model
11

-
14 

which describes the particle dynamfcs via a phase 

La . 15- 17 Th d . d. ~ th f L" space grang1an. e secon 1ngre 1ent u e use o ~ trans-

forms 18 -ZZ to construct a canonical transformation to oscillation center 

variables. This change of variables is facilitated by the form invariance 

of the particle Lagrangian under canonical transformations. 

Theoretical work on beat-resonant coupling dates to the earliest 

studies of quasi-linear theory and the development of weak turbulence theory. 

Most previous studies have treated infinite homogeneous plasma models, 

'd d. 1 h d d "bd 1 1-5,7,8,10 an accor 1ng y t e mo es were escr1 e as pane waves. 

Discussions of inhomogeneous equilibria have assumed sufficiently weak 

spatial dependence to justify an eikonal form for the waves. 
6

• 9 (An exception 

is the unpublished workz
3 

of ~ohnston wh.ich discusses nonuniform plasma 

quite generally.) 

Our derivation is considerably more general, allowing us to treat 

waves in plasmas of arbitrary inhomogeneity, including, in particular, 

equilibria of bounded extent. Accordingly, we do not assume that the modes 

involved are of plane-wave form; rather, their spatial structure is left un-

constrained. In particular, we are able to treat both the global eigenmodes 
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of the system (satisfying realistic boundary conditions) and complicated 

disturbances driven into the plasma by external sources. 

, We do make several key assumptions which limit the generality of 

the results. The waves are assumed to have sufficiently small amplitude 

that nonlinear effects may be treated perturbatively and that the time scale 

of the linear frequencies is short compared to the nonlinear time scale. 

We neglect the linear damping of the waves in the derivation of the beat-

resonant coupling. These approximations are familiar from previous 

theories of nonlinear wave interactions. 
10 

Beyond these assumptions, the 

particle motion in the unperturbed plasma (no waves) is assumed to be 

integrable. This requires three invariants; the specification of these 

invariants will depend en the characteristics of the equilibrium. If the 

unperturbed particle trajectories are non-integrable, then even the study 

fth 1. d . t . d•!f• lt• 31 • 32 
o e 1near wave ynam1cs presen s maJor· 1 1cu 1es. 

The oscillation center description has been previously used to study 

7,18,24-28 
various nonlinear plasma problems. Our work stands in closest 

relation to Johnston's oscillation center theory of induced scattering
7 

in 

h 1 d . . h . h 23 Th omogeneous p asma an 1ts extens1on to t e 1n omogeneous case. e 

salient distinction between the present derivation and Johnston's work is the 

use of a variational principle to obtain the dynamical equations for the wave '" 

action. Johnston directly calculated only the energy change of the beat-
• 

resonant particles. The equations for the wave amplitudes were then 

inferred by positing appropriate Manley-Rowe relations. We are able to 

derive these relations as consequences of the wave dy~mics. 

4 



The variational principle we employ is similar in spirit to Low's 

variational principle! 
1 

but differs by utilizing a phase- space Lagrangian to 

describe the particle motion. 
16

• 
17 

This phase space formulation provides 

a Hamiltonian description of the particle dynamics and allows one to exploit 

Lie transform methods without sacrificing the self-consistency required 

between the fields and particles. Recent appreciation of this advantage has 

motivated applications of the variational principle to gyrokinetic formalism, 
14 

covariant pondermotive theory, 
29 

and relativistic guiding-center plasma 

30 
theory. 

We now discuss the organiz.ation of the paper. The next section 

formulates the variational principle (1). In section m, we choose a form 

for the electrostatic potential which tailors the variational principle to the 

situation of weakly interacting waves and explicitly introduces the wave 

amplitudes and phases as fields to be varied. In section IV, we define the 

oscillation center transformation which eliminates the primary wave oscil-

lation in the particle motion. The variational principle is then re-expressed 

in oscillation center variables (30). In section V, we carry out the varia-

tion in the oscillation center representation. This yields the slow-time scale, 

nonlinear wave dynamics (54), and we specifically focus on the beat-resonant 

coupling (53). In section VI, the general formula (53) is evaluated for a 

simple model of a magnetically confined, pure electron plasma. 
33 

Compli-

cations introduced by bounded equilibria are discussed. Section VII sum-

marizes. 

5 
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ll. The Variational Principle 

Our theory is based on the variational principle 65 = 0 defined by 

the action functional: 

The notation in (1) is as follows: z denotes a point in the six dimensional 
0 

single particle phase space. An initial or reference distribution of particles 

is described by f (z ). The phase space Lagrangian for the particles, 
0 0 

I • e- H, is expressed in terms of the action-angle variables (I, 9 ), their 
#'l#tt; ~ #f/IIIIW....., 

derivatives e = d9 /dt, and the single particle Hamiltonian H( I, e. ~ ). The ,.., ....., ~ ~ 

action-angle variables in (1) are regarded as functions of (z , t). The field ~ 
. 0 

is a function of (x, t) where x denotes a point in 3-dimensional (physical) - -
space and t is the time coordinate: we assume ~ satisfies some prescribed 

boundary conditions. 

The choice of action-angle variables for the single particle Lagrangian 

is motivated by the foresight that we will be assuming a plasma equilibrium 

with integrable single particle dynamics. However, for the purposes of 

formulating the variational principle, action-angle variables are not required. 

Any other canonical set of variables could be used without changing the form 

of 5, or more generally, the particle Lagrangian could be expressed in terms 

of noncanonical variables. 
34 
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The Hamiltonian is the sum of kinetic and potential terms: 

H(I, 8, ~) = H . (I, 8) + fd 3x P(x; I, 8} ~(x; t) 
- - -lt1n - - - - .... -

(2} 

3 
Here p (x: I, 8) is the single particle charge density, p = q 6 (x- R (I, 9)), ,., ....., ..... ,.,_ ,..,,._., ,..,., 

where R(l, 8) is the spatial position of a particle with phase space coordi-...,-
nates (I, 9). For multiple species, the particle action in (1) must be --
summed over species. 

The independent variation of I (z , t) and e ( z , t}, subject to the 
- 0 - 0 

constraint 6_!= 0 at t=t
1 

and t=t
2

, yields Hamilton's equations for a 

particle, 

. 
9 = 8H/8I - - (3) 
I = -aHtae - -

In the variation of S with respect to ~, we assume that 6~ = 0 on 

tne boundaries and obtain Poisson's equation 

2 f 3 3 V ~ = -4 TT d 9 d I P(~; l• !> f(.!,,!, t) • (4) 

The Vlasov distribution f in (4) is defined in tertns of f (z ) and the solu­
o 0 

tion to (3} by 

I I f 6 3 e' 3 1 !(I, e,t) e d z f (z) 6 ( -9(z ,t))6 (I -I(z ,t)); 
-- ooo --o --o 

(5} 

this implies the Vlasov equation 

aft at + {f, H J = o , (6) 

in terms of tne canonical Poisson bracket {f, H). 

7 



m. W_eakly Nonlinear Waves 

We now consider a plasma characterized by a slowly varying equilib-

rium supporting small amplitude, weakly damped, weakly interacting waves. 

In applying the variational principle, we assume a form for ~(x, t) appro--
priate for such a plasma; the potential is the sum of an unperturbed potential 

~ (x) ("e" =equilibrium), the potential o! the primary modes ¢ (x. t) 
e- m-

(''rn''= modes), and the potential o! the nonlinear beats ~b(~, t) (''b" =beats): 

(7) 

The unperturbed potential ~ (x) is independent o! the modes (zero 
e-

order in the mode amplitudes). In reality there are, of course, nonlinear, 

quasi-static corrections to ~ (x ), but these are not required for the beat-
e-

resonant coupling and we neglect them. 

The primary modes are represented by 

-iCl (t) 
¢ (x, t) = ~ A (t) e 

11 'I' (x) +c. c. , (8) 
m- ~ n n-

n 

-i a. (t) 
where A (t) is a slowly varying amplitude, e 

11 
is a rapidly varying 

n 
th 

phase, and 'I' (x) the spatial function o! the n- mode. Both A and a. 
11- 11 11 

are real-valued functions of time; 'I' may be complex-valued. We assume 
n 

here for simplicity that the waves are normal modes of the plasma; in 

Appendix A we discuss how to treat external sources. 

When 'I' is a normal mode, its frequency 
n 

ci e w = w (O) + ~w (t) 
n n n n 

B 

(9) 



(O) f 1" th "th nl" ti has a constant term w rom 1near eory, W1 no 1near correc ons 
D 

1:::t. w (t) which vary on the slow time scale. 
n . 

The beats between primary waves, which depend on the phases, are 

represented by ~b(~, t). It suffices to consider second order beats of the 

form: 

[ 

-i (a. + a. ) -i(a. - Cl ) ] n m n m 
A A e "' (x) +e "'-(x) +c.c •• nm nm- nm-

* Here "'nm = "'mn , "'niii = "'mii , and we let "'nii e 0 since this term 

(10) 

represents a slowly varying correction (i.e. no phase) to the unperturbed 

potential ~ • 
. e 

With this form for ~, the Hamiltonian (2) is the sum of a zero order 

piece, 

(11) 

a first order perturbing term, 

(12) 

and a second order perturbing term, 

• (13) 

Inserting (7) into (1), we can effect the variation with respect to 

~(x, t) by independently varying each of the functions ¢ , A , a. , "' , 
e n n n 

"' , "' - • Since the amplitudes A are assumed small, stationarity nm nm n 

( ~5 = 0) must be satisfied at each order in A .. 
D 

9 



By transforming (1) to oscillation-center variables, the variation 

6S/6a. = 0 yields the desired beat-resonant coupling. We discuss this in n . 

the following sections. The evaluation of 65 = 0 before transforming to 

oscillation-center variables is presented in Appendix B; we describe two of 

those results here to indicate how the dielectric response enters. 

To state these results concisely requires some additional notation • 

.. 
Let X( w) denote the susceptibility operator defined by 

"" 31 3 1 [J 3 ~ -1 * ] X,(LC) A(x)= -(Zn) d x d I (a. f ){w •• w-iO) p.(x';I) p.(x';I) 
- • Je J J-- J--J 4lllld f!llftd ,., ,., 

A(x 1
) -

- (14) 

·where f (I) is the unperturbed distribution function, a. denotes the differ-
e- J 

entia! operator j • 
8
8

1 
• w. = a. h • and p. (x; I) is ;e Fourier coefficient 

- 1 Je 3--- ~ -'("' iio8 .... .. A/ A# 

of P(x; I, 8) = '-' e.c..- P.(x:I). We maywrite x(w) ='X (w) +iX (w) ,.,., ,.., ,., • J ~ ....., 

. th PI J.l" f ul- 35 .. . H "ti ("'') d . ustng e ·erne J orm a to separate X 1nto ermt an X an anti-

Hermitian (i x') terms. 

* Now combining (7) and (1), the variation 65/6"' (x) = 0 yields (B9), 
n -. 

the linear mode equation: 

(15) 

Since the damping of the primary modes is neglected x'(w~O)), rather than 

.. (0) 
X(W ), appears in (15). 

Jl 

The variation 65/6~ -(x >* = 0 yields a similar result (B7) for the 
nm-

shielded beat potential 

10 



2 ... 4/ 3 "' * -1 V '11 _(x) -4TT 'X.{W -)'11 -= -i(2TT) d 1 ~ P.(x,l) C- .(I)(w.-w --iO) 
nm nm nm . J - - nm, J - J nm 

J - - -- (16) 

where w _ E w (O) - W (O) and C - • is the Fourier coefficient of C - (B6 ). 
nrn n m nm,J nm 

From Johnston's ~arlier discussion 
7 

we know that physically the right-hand 

side of (16) represents the sum of the "polarization charge density" and the 

charge density due to the beat pseudo-potential which acts on the oscillation 

centers. 

Introducing the Green function
36 

associated with (16), 

[ 
2 .. ] , , 

V - 4TT'X.{W) G(x,x, w) = 6(x-x) . ,., ,., ,., ....., (17) 

we have 

'11 -(x) = -i(2n)
4
/d

3
x' G(x,x 1

; w -)fd
3
I"' P.(x 1 ,I\*c- .(I)(w.-w --iO)-l 

nm - - nm ~ J - :.1 nm, J ...., J nm 
J - - --

The shielding of a1J - is seen in the eigenfunction representation of G, 
nm 

where {A ) 
~ 

-

- I • A (x , w) A (x , w) 
I "' ~- ~-Q(~' ~ ' w) = - ~ ---.:....---£-( w...:._) ---

~ ~ 

. 37 
are the eigenfunctions (assumed complete), 

2 .. 
(V -4TTX(W))A (x,W)=-t (w)A (x,w) 

~- ~ ~-

and A~ are the adjoint eigenfunctions 

11 

(18) 

(19) 

(20) 

(21) 



The adjoint susceptibility is defined by {X(w)1' ¢
1
,¢

2
) = {¢

1
, x(w) ¢

2
) where 

{ ¢
1
,¢

2
) = J d3

x ¢:¢2 o We assume J d 3
x lA 1.11

2 = 1 and an adjoint normal~ 

ization such that {A , A ) = 1 
1.1 u 

Physically £ (w) may be interpreted as the dielectric response at u 
th 

frequency w to the 1.1- component of an electrostatic perturbation. This 

interpretation is motivated by noting that (15) implies £
1 (w (O)) = 0, where 
n 11 

£ (w) = e'(w) + ie•(w) is given by 
n 11 n 

f 3 2 
e (w) = d x l v~ I + 4TTX (w) , 

1l 11 D 
(22) 

X (w) = { ~ , i.Cw) ~ ) 
n n 11 

(23} 

Thus undamped normal modes correspond to eigenfunctions with eigenvalue 

.zero, and the normal mode frequencies are given by the zeros o! the real 

part o! t ( w}. 
11 

IVe Oscillation Center Variables 

For a particle oscillating in the field o! an electrostatic wave, the 

d . t. 7. 18' 24- 28 . 1 h d oscillation center escnp 1on 1s ana ogous to t e gui ing center 

description o! a gyrating particle. We shall use a Lie transform to construct 

the oscillation center representation. The efficiency o! Lie methods !or con-

structing canonical transformations is well known, the technique having been 

. . 18-22 
descr1bed by vanous authors. We only outline the construction here. 

The oscillation center transformation is a canonical, time -dependent 

rna p A (8 , I} = ( e', I') to oscillation center variables (8 ', I'). At is con-
t..., ...., """-' tlfl1ttt!ll -- ,., 

structed to ensure that the dynamics, re-expressed in (8', I') variables, is - ,.., 

12 



\o' 

free of the rapid, first order oscillations due to the waves in f/J • Because . m 

At is canonical, we may regard it as generated by the now of an auxiliary 

Hamiltonian vector field with Hamiltonian W(9, I, t). --
In practice, the calculations associated with the transformation may 

be expressed directly in terms of W(9, I, t), derived as a perturbation series 
..... -

.. 0 • • {0) {1) {2) . 
1n the wave amphtudes: W = W + W . + W + • • • • We requ1res only the 

.. 
first order term; the zeroth term is set to zero to assure that the new variables 

reduce to the original particle variables in the absence of the waves. Thus 

W = W(l); we henceforth omit the superscript. 

Th W . d . d f 20 
e generator 1s eterm1ne rom 

a~+ {W,h 1 =-h 
"'" e m 

• {24) 

By assuming that h is integrable (i.e. independent of 9 ), and neglecting the 
e -

time dependence of A {t) and ci (t), this is easily solved. Let 
n n 

-i a. ~ ij. e 
W = ' A e n W ( 9 , I ) + cc. , and W = ~ e - - W • (I) ~ n n ..... ...., n . n, J ..... 

n J ..... ..... 

then 

-lj 3 W j = i(W.(l)- W) d x P.(x;l)"' {x). 
n, J n J- - n -. ,., ...., ..., 

(25) 

Since we are neglecting the linear damping of the primary waves, only the 

principal value c~ntribution ( w j - w n,-l of the primary resonance is kept. -
The problem of incorporating primary resonant particles into the oscillation 

t · ha. b d" d h t• 1 b D 18 • 24• 38 
cen er representahon s een lScusse ex aus 1ve y y ewar. 

13 



20 
Given W, standard perturbation theory provides an expression for 

the new Hamiltonian K{ 9, I, t). The terms in K needed to describe the - -
beat-resonance interaction are: 

where 

K(.!, .!• t) = be !.!I + J d
3 
x ~b I!, t) P! l!i,!, .!• t) . 

1 + Z [W, hm J (26) 

A 1 
P{~;~,!_,t) = P(~;~,,!.)+ {W,p)+ 2 {W, {W,P)}+··· (27) 

is charge density kernel for oscillation centers. The expression for p is a 

"rnultipole" expansion of the physical charge density about the oscillation center. 

The first term in (27) is the charge density if the particle is lc,cated at its oscil-

lation center. The next term {W, p) is a first order correction due to the dis-

placement of the particle from its oscillation center; {W, {W, p)) is a second 

order correction and so on. 

Finally the Vlasov distribution function transforms as 

1 
f(!• !• t) = F(At(_!, !J.t) = F(!, ~· t)- {W,F} + 2 {W, {W,F}} + ••• (28) 

where F( I, 9, t) is the oscillation center distribution function. Note that at --
t=O, f(I, 9, t=O) = f (I, 9) = F (A 

0
(!, 9)) where F (I, 9) = F(l, 9, t=O). 

-- o-- o t= -- o-- --

To rewrite the variational principle in the oscillation center description 

requires only that the particle Lagrangian be transformed. The Lagrangian 

fields for particles (I, 9) and oscillation centers (I', 9 ') are related by #IIW,.,., ~ ~ 

14 



A (9(z ,t), I(z ,t)) = (9'(z 1 ,t), I'(z 1 ,t)) 
t- 0 ..... 0 - 0 - 0 

(29) 

where z 1 = At 
0

(z ). In words, (29) equates the new variables 9 1 ,1~ 
0 = 0 - ...., 

evaluated at the new initial condition z 1 to the particle variables 9, 1 
0 - -

evaluated at z 
0 

and then mapped by At , the oscillation center transformation. 

The form of the phase space Lagrangian is invariant under a canonical trans­

formation, 
15

• 17 and the Jacobian of the transformation is unity. Thus insert-

ing (29) into (1) yields an oscillation center variational principle 5 1 satisfying 

5 1 
( I 1 , 9 1

, 4?) = 5( I, 9 , 4?) where , ~ ....., ....., 

5 1 (1 1 ,9 1 ,4?) =1t
2
dtfjd

6
z F (z) [I'(z ,t).e'(z ,t)-K(I 1 ,9'.~>] +-

8
1 
fd

3
xlv4?!

2l 
-- { ooo -o -o -- TT 

t . " 
1 

(30) 

From this point, we shall drop the primes on oscillation center quantities. 

V. The Oscillation Center Variational Principle 

The qualitatively new feature of the transformed variational principle is 

its explicit dependence on w = ci through the resonant denominator in W (9, I), 
n n n- ...... 

which enters 5(!, 9, 4?) through the Hamiltonian K. Our central concern --
therefore is the variation 65/6'J. = 0 which will yield the amplitude dynamics. 

n 

... We shall also require the oscillation center dynamics and the Vlasov equation 

for F. 

As before, 65/69 = 0 and 65/6! = 0 give Hamilton's equations, but - -
now !or the oscillation centers, 

15 



i = -8K/8a - -
9 = 8K/8I 

(31) 

- -
In terms of the solution to (31), F( a, I, t) is related to F (a, I) by 

-.... o- ..... 

F(9', I', t) = Jd
2
z F (z ) 6

3
(9'- a(z ,t)) 6

3
(1'- I(z ,t)) 

.... - o o o - -o -- o 
(32) 

which is equivalent to 

:+{F,K)=O, F(a, I, t = 0) = F (9 , I) • 
lf/IW, 0,.,....., 

(33) 

* It can be shown that the variations of S with respect to ¢
0 

, lJI 
11 

, and 

(:!:) * 
"'nm reproduce the results of Appendix B. The variation with respect to 

A is described at the end of this section. 
n 

We now perform the phase variation 65/6 a. • Let t denote the 
ll 

Lagrangian of (30) 

t =Jd
6

z F (z )[I· 9- K]+ Jd3
x lv~I 2 /8TT, 

0 0 0 - -
(34) 

then a !./8 tl. = J defines a canonical momentum, conjugate to the phase, 
n n 

which we shall refer to as the action of mode n. The phase variation 65/6 a. = 0 
n 

leads to the Euler-Lagrange equation for J , 
n 

i = 8!./8a. 
n n (35) 

To focus on the slow time ecale, we implicitly assume that (35) has been time 

averaged to remove rapidly oscillating phases. 
39 

This could be formally 

achieved by a coarse graining in time. 

16 



In evaluating J = 8.t /8W for the left hand side of (35), we simply 
11 n 

note that w appears only in K , n 

J = - Jd
3
I d

3e F (I , 9 ) 8K(I, 9, t)/8W 
n o o o -o -o - - 11 

: -J d
3
I d

3e F!!: .!_, t) 8K/8W u 

= - -2
1 
Jd

3
I d

3 e F < I> -8 
8 

{ w, h J + h. o. t. e- w m 
n 

(36) 

Here F is the zeroth order piece of F, given by F (I) = f (I) from (28}. 
e e..... e .... 

In (36} we require only the slowly varying terms of {W, h ) to obtain the 
m. 

lowest order contribution to J (time averaged). From our definitions of 
n 

W (25)and h (12), 
m 

with coefficients, 

Thus (36) becomes, 

where 

'AA L n m 
n,m 

n m n m 
[ 

-i( a. +a. ) -i(a. -a. ) ] 
e K + e K _ +c. c. 

mn nm 

(37) 

(38) 

(39) 

(40) 

• K = (K - + K -) 
n nn nn 

(41) 

17 



. 25-29 
The K- 'X theorem which relates K ( e, I ) to the real linear n--

susceptibility X 1 (23) provides a simple physical interpretation for (40). In n 

our notation, the theorem states 

With (42) and (22), our result for J becomes 
n 

A 
2 ae 1 

J = 4n -a n ( w (0)) + h. o. t 
n TT w n 

n 

(42) 

(43) 

Thus the magnitude of the lowest order contribution to J is the "plasmon 
. n 

density. 11 3 • 
10 

(To check this interpretation one can easily show that the 

second order mode energy is w (O) J with J given by (43). 
40

) 
n n n 

We now evaluate a!/a a. , the right side of (35), keeping those terms . D 

3 2 
which contribute to beat-resonant coupling. The electrostatic term, d x IV'~ I p 

contributes only rapidly varying terms to a! /8a. and may be neglected. This 
n . 

leaves 

= -J d
3

I d
3
e F(.!_. !.· t) a:n r~ {W, hm] + Jd

3
x P¢b]+h.o.t. 

(44) 

For the beat-resonant coupling, the relevant terms in K carry the 

-i(a. * a. ) 
beat phase e n m o At second order, these terms may be written: 

18 



... 

1 !3 2' [ ~i(a. -a.) -Ca. +a) ] 
-
2 

{W, hm) + d x P ¢b = A A e n m T _ + e n m T +c. c (45) 
nm . mn nrn • mn . 

where 

T = K + /d3 
X p"' (X ) nm nm urn- (46) 

(47) 

I 

and the summation r is primed to indicate that when n =m the terms with 
nm 

%i(a. -r.t ) 
phase e n m are neglected. 

To obtain a slowly varying contribution to (44) we combine (45) with the 

appropriate second order, driven response in F given by 

(48) 

We solve (48) using the approximation that A and w are time-independent, 
n n 

and select the causal response by assuming that w has a small imaginary 
n 

part which damps the wave as t ... -•. For the Fourier coefficients of F, 
il·j 

F = l: e F. ( l, t), this gives 
j ! --

F. = (8. f ) "\:'A A 
J J e L n m 

- - nrn 

T • e 
nm,J -

-i(a. +.a ) 
n m 

-i(a. -a ) 
n m T _ • e 

nm,.,t ---------+---------w. - (w + iO) w - (w _ + iO) 
J nm j urn - -

* 
i(a - C1 ) 

n m (T _ .) e 
nm, -J 

* i(Cl + a ) 
(T .) e n m 

nm, -J 
+ -----.;.;._----~- + -w • + (w - iO) w • + (w _ - iO) 

J nm J nm - -

19 
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where T • is the lh Fourier coefficient of 
nm,l. ...., 

and w - = w (O) - w (O) 
nm n m 

With (45) and (49), we find !rom (44) 

at=-iA2"'A2(ar)3/d31~(8!)[1T +T 12( 1 - 1 ) 
a~ n L., m 4 j e mn,j mn,j w.-(w +iO) w.-(w -iO) 

n m J ...., . ...., ...., J. urn J nm - -

I 

=A 
2 

" A 
2 

c r + r -> u L., m urn mn (50) 
m 

35 
where the resonance denominators have been evaluated by the Plemelj formula, 

and we have used the identities 

* 6 ( w • - w - )(T _ .) = 6 (w • - w _) T _ • 
J nm mn,J J nrn mn, -J 

(51) 

- - -
6(w.-w. )T • = 

J urn mn,J 
6(w.-w )T • 

J urn mn,J 
(52) 

- - - -
to obtain the couplings, 

2 
5 ( w. - w ) IZT • I 

J urn mn,J 
(53a) 

- ...., 

r -=(2rr)
4 L Jd

3
I(8.f) 6(w.-w _., IZT- .1 2 

0 

nr.n • J e J nrn nrn,J 
J _., ~ ~ 

(53b) 

-
Combining (35) and (50} gives the action-transfer equation: 

j = A 
2 ~' A 

2 c r + r -> 
u uL m nm nm 

(54) 
m 

which describes the amplitude dynamics. 
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.. 

The form of the coupling is very simple. Consider (53b): for each 

beat-resonance w. - ( w (O) - w (O)) = 0, we integrate the action gradient of the 
J n m -

equilibrium B. f over the resonance surface with a weight I2T - .1 2 
which 

J e mn.J 
- th -reflects the strength of the j- Fourier component of the beat disturbance pro--

duced by primary modes u and m. Then all such resonances are summed. 

There are two distinct contributions to the weighting factor I2T _ .1 2 . 
. . . nm,J -lbe unshielded contribution arises from {W,h ) in the oscillation center 

m 

Hamiltonian, while the other contribution arises from the shielded, self-

consistent beat potential (18) "' - • We shall evaluate these contributions 
nm 

for an example in the following section. 

Our derivation shows that the modulus-squared form of the weight 

. . 11 E 1 d" 4 • 5• 8 f b t . . h" h arlSes qu1te genera y. ar y stu 1es o eat-resonan 1nteract1on w 1c 

did not use the oscillation center representation, were ~ble to demonstrate 

this form for only the simplest models and even then with very much greater 

effort. 

There are· conservation laws associated with (54). From the relations 

(51), (52), UJ • = -w. , w = w , and w - = -w - , we find the sym.metrie s 
-J J nm mn urn mn - -

r = r and r - = - r - . nm mn mn mn 
(55) 

This implies a simple result for the action transfer of two modes interacting 

via these couplings: 

(56) 

21 



Thus, !or example, J + J is conserved by the coupling r-. That (56) 
n m urn 

should also apply to many modes in the randoJ? phase approximation is clear 

from the preceding derivatione 

By combining (43) and (56), we can recover the usual Manley-Rowe 

relations. 
3

' 
7 

0! course, whether the process described by r (or r -> 
nm nm 

is interpreted physically as induced scattering or wave emission/absorption 

depends on whether is conserved by the 

. t . 3, 7 1n eractlon. 

Before turning to the example, we briefly discuss the variation 

6S/6A = 0, which determines .6w in (9). From (30) we have 
n n 

The electrostatic contribution is (after time averaging), 

/ 3 a 2 /3 2 
d x SAn lv~l = 4An d x lv"'nl +h.o.t. 

From (26), (37 ), and {45) the oscillation center contribution may be 

written, 

~~ "' 3! 3 * [ -i(a.n-a.m) * + L A L (2TT) d l(F .{I, t)) e (T _ • + (T _ .) ) 
m . J- mn,J mn, -J 

m J . - - --
-i(a. +a. ) J n m 

+ e (T .+ T .) + c. c. 
nm,J mn,J - -

zz 

(57) 

(58) 

(59) 



I 

where, as before, the prime on the summation t 
m 

indicates that !or m = n 

* the term (T - • + (T - .) ) is omitted. 
nn, J nn, -J .... 

* Inserting (F.) 
..L 

!rom (49), and 

time averaging we find that only the principal value contribution of the beat 

resonance contributes, 

f
d6

z F (z )BK/BA = 2.A fd
3

I d
3
e! K +A ,, A 

2 
(0 + n -) (60) 

o o o n n e n· n L m nm nm m. 

where 

(61) 

-
o _ = 2(21'T)

3 2:. jd3ua.r >IT_ . + (T _ .>*1 2tcw.-w -> (62) 
nm . J e nm, J mn, -J J nm 

J ..., "*"~ • ..., ., -
From (22) and the K-'X. theorem (42) we note that 

ae' 
n 

=-llw aw n 
1l 

(63) 

since £ 
1 

( w (O)) = 0. Thus adding (58) and (54) gives, !rom ()S/6A = 0, the 
n n n 

second order frequency shift d~e to the beat-resonant interactions: 

8£ I 

n -llw = 2TT aw n 
n 

I ' 2 
A co + n -> m nm nm m 

(64) 

Since our derivations are based on the variational principle (30), it is 

interesting to note that our results !or the wave action-transfer (54) and non-

linear frequency shift (64) are consistent with the canonical relations !or 

23 



action-transfer and frequency shift described by Sturrock using a Hamiltonian 

d · · ! d · 
41 

I t" ul (J ) escr1phon o wave ynam1cs. n par 1c ar. • a serve as action-
D. n 

angle variables for mode n and we may rewrite (54) and (64) .in the form 
42 

(65) 

ci - w ( 0) = .6 w = a HI 
n n n BJ 

(66) 
n 

if we assume the beat-resonance inter.action Hamiltonian H 
1 

is, 

1 J 3 .. with z {W, hm] + d x P ¢b given by (45). 

That (65) reproduces (54) is clear by inspection; to recover (64) from 

(66) we write aH1/aJ = (BH
1
/BA )(BA /BJ ) and use BA /2J 

n n n n n n 

2TT(A (Be' taw f 1 
from (43) to obtain 

n n n 

(64) follows immediately. 

A Be' 
n n 
--.t.w = BH /BA 

2TT aw n I n 
n 

24 

= 

(68) 



VI. Application to a Bounded, Single Species, Guiding Center Plasma 

R . . 43,44 h h ecent experunents ave explored t e confinement of a cylindrical 

electron plasma in a field geometry which is nominally axisymmetric. A 

strong, uniform axial magnetic field provides the radial confinement and the 

axial confinement is provided by electrostatic fields which are due to nega-

tively biased end cylinders. Since the plasma is nonneutral, ther·e is a radial 

electric field which produces an azimuthal EX B drift rotation of the plasma. - -
For typical experimental parameters the cyclotron frequency, plasma fre-

quency, and rotation frequency satisfy w ">> w >> wr • The plasma c p . 

dynamics can be modeled by a drift kinetic description of the electron guiding 

33 45 
centers. • 

The radial confinement of such a plasma is intimately related to the 

cylindrical symmetry o: the system. To understand this link. it is useful to 

introduce the canonical angular momentum (conjugate to the azimuthal angle w) 

of the electron guiding centers, 
17 

1 eB 
= --z-;- 2 

i 

2 
r. 

1 
(69) 

where r. is the radial position of the i th electron guiding center and -e is 
1 

the electron charge. We have taken the vector potential A~(r) = ~ Br. corre-

sponding to a uniform axial magnetic field. l1 the system is cylindrically sym­

metric, P.T. is conserved and !: r .2 
is fixed. The mean square radius of the 

.. i 1 

guiding center plasma can increase only if the angular momentum decreases. 

An investigation of external sources of angular momentum is therefore of 

25 

.. ,, 



utmost importance for an understanding of the radial transport and confine-

ment. 

It is believed that small asymmetries in the confining electric and 

magnetic fields cause a significant torque (dP &il /dt 'I O) in the experiments 43 

and mechanisms allowing such asymmetries to transfer angular momentum 

33,46 
to the plasma have been proposed. Among the nonlinear mechanisms 

33 
which have been conjectured is the coupling of a field asymmetry to a 

collective mode via the beat-resonant interaction. If this interaction were 

strong enough to destabilize the mode, then the angular momentum of the 

plasma could be significantly changed by the angular momentum of the grow-

ing mode. 

A quantitative analysis of this particular process has been hindered 

by the complexity o! the beat-resonant coupling when derived using non­

Hamiltonian perturbation theory. 
3

• 
8 

In this section, we evaluate our general 

expression (53) for the drift kinetic model used in previous studies. 
33

•
45 

The angular momentum transferred to the plasma when a mode is driven 

. 47 
unstable by a field asymmetry has been recently studied in detail using 

the general form of the coupling in (53). 

In the model mentioned above, we take the plasma equilibrium to be a 

cylindrically symmetric, quiescent electron column of length L with periodic 

boundary conditions. There is a uniform magnetic field in the axial direction 

B = Be and a radial equilibrium electron field E = (- a:p I ar) e • The 
- z -e e r 

electron guiding centers stream freely along the magnetic field and EX B - -
drift azimuthally. There is a perfectly conducting wall at radius R 

0 

26 
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justification o! this model is discussed in references 33 and 45. 

Since cylindrical coordinates will be used for both the guiding center 

phase space and three dimensional physical space, we shall write guiding 

center variables. e. g. (R, 'if, Z), in upper case and let (r, +. z) denote a 

point in physical space. The guiding center Hamiltonian is 

(70) 

where~= ('i',Z) and !,.=(Pq,,Pz) arecanonicalcoordinates. (Weassume 

for simplicity that L = 2TT so Z is an angle.) The charge density 

p(x; I, e) = -e 6(~ -if) 6(z- Z) 6(r- R)/r has the Fourier expansion ---
--L 
ij. 9 

p(x; I, 9) = e p(x;I) ,., ....., """"' ,., __, (71) 
j 

...... 

with 
-ij • e 

2 
P.(x; I)= -e e- ..... 6(r-R)/(2TT) r (7 2) 
J- -

In (7 2), e = ( ~, z) are the azi~uthal and axial coordinates (lower case) in -
physical space. Finally, let l and k denote the integer components of j -
so that j . e = 1 ~ + k.z • - -

We will consider only two modes and the beat-resonance associated 

with the di!!erence frequency w~O) - wi0 >. For the coupling r lZ in (53b) 

we require T 1z from (47): T 12 = K12 + jd
3
x p~lZ, where K

1
2 = 

~ {wl, Jd3xp~;} 



For this model, the susceptibility operator (14) may be rewritten 

using (7 Z) so that for an arbitrary function, 

t\(x) -
" ij . e = L,. e - _. A .(r) , 

j l.. -
(7 3) 

Note that the resonance denominator is the familiar drift kinetic resonance, 

with 

8h 
• e 

w =J ·­j _ 8I --
Bh 8h 

e e 
=l-+k-=1W +kv 

8P"' 8P z r 

where v = z is the parallel velocity; the momentum gradient is 

8! 8! 1 ( 8f l 8! ) e e e e a f = k-+1-=- k----
j e 8P 8P,,, m 8v rw 8r 
- z "t' c 

Therefore the eigenfunctions introduced in (ZO) have the form 

+ij. e 
A = e - -T) (r; w) where ~ = (j, p) and p = 1,Z,3, ••• indexes the 
~ ~ -

radial eigenfunction, T) , which satisfies 
'-1 

[ 2 J ] 1 c! d 1 z z -1 
--c! r-d ---:;-- k + 4TTe mw dP (8.! ){W.eW- iO) T) (r,w) = -£ (w) T) (r~w) 
r r r "" c z J e J .u 1.1 u 

r - -
(74) 

with boundary conditions T) (r = 0) finite and T) = 0 at the wall r = R • 
- ~ u 0 

Standard theorems assert that the set of solutions, to such a non-self-adjoint 

boundary value problem, is complete. 
48 
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The primary modes in (8) which satisfy (15) have the !orm 

+i,i G !. (O) (0) 49 
"' (x) = e n 1"1 (r,w ) where Tl (r, w ) satisfies (74) with 
n- n n n n 

(wj-w-i0)- 1 replacedby (w. -w(O)f 1 and e =0. Weassumehere 
ln n "-' - -

for simplicity that even if "' represents an externally driven mode (see 
n 

Appendix A) it still has a unique 1.
11 

valueo For such modes, J d 3 
x p 4J n = 

iln•! (0) 
-e e Tl (R; w ) and the Lie generator (25) is 

n n 

-1 ii.n•2 (0) 
W = -i e (w. - w ) e 1"1 (R; w ) 

n . l.n n n n 
(75) 

Hence the unshielded term in T 
1 
z is 

2 i (j 1 - j 2> • e 
e - - -KlZ = - T e . 0 12 (76) 

where 

(77) 

The remaining contribution to T 
1
2 is the shielded beat potential 4J

1 
Z 

given by (18). From (B6) we obtain the charge density source c
1
2 for the 

beat potential, 

2 i <1.1 -i.2> ·! * 
C - = i e e (N - - (N - ) ) 

12 12 21 (78) 

where 

29 



(79) 

From (7 3) one easily sees that the adjoint eigenvalue problem (Zl) 

- ij • 9 * 
has solutions A· ( x • w) = e - - T} (r. w) with normalization 

u- 1.1 

R 
(ZTT)Z J 0 

T}U(r. w)
2

rdr = 1. With the adjoint solutions, we construct 
0 

the Green function (19} and then evaluate the beat potential from (18),-

-~12(x)=(-Ze/mz}26 •• -J· Au II II Al,(x~w12)/tu(w12) 
- II J d 1 z 1 ... 11 ... z ... ...., ... ..., ...., ~ 

where 1.1 = (j. p), 1.1. = (j .• p.) , and 
- 1 -1 1 

Finally. the shielded contribution to T
12 

is 1 

where u = <1 1 ·l.z. p). 

Thus the full coupling. obtained by summing (76) and (BZ), is 

z 
2T- = e lZ [ 

z z 
-0

1
2 + (4e /m ) 

30 

i(j -j )·9 
-1 -Z -e 

(80} 

0 (83) 



There are several interesting features to (83). First, the motivation 

for the definition of A in (81) is the resulting simple correspondence 
· tJ,Ul,IJZ 

with the three-wave coupling for this model. 
33 

Taking into account notational 

differences, 
50 

one finds A = M. • • where M. . • 
tJ, tJl,IJZ !P•LlPl·-LzPz !_P•2,tPl-_:2Pz 

is the three-wave ma.trix element defined in reference 33. Thus ~ lZ is the 

result of a three-wave interaction in which the third wave (~ lZ) is not a 

normal mode, consequently the effective coupling is smaller due to shielding 

-1 
£ U ( w 

1
z:> • This interpretation is familiar from simpler homogeneous 

plasma models. 
4 

The radial summation 'E in the shielded beat potential is not familiar 
p 

from homogeneous plasma theory; it arises from the radial inhomogeneity of 

the equilibrium f (P,
1
• , P ). The equilibrium is homogeneous in the azi­

e "t' z i j. e 
muthal and axial directions which permits modes of plane wave form e - -

i( j 1- j 2>. e 
and implies the beat wave (80) will also be of plane wave form e - - -

in the ~ and z coordinates. However, the radial dependence of f re­
e 

quires a more complicated radial dependence in the primary modes, and 

their beat excites!.!! the radial modes T)U (r, w 
1

z:>·. This is reflected in the 

summation 'E in (83). 
p 
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Vn. Conclusions 

We have derived the beat-resonant coupling for small amplitude 

electrostatic waves in a Vlasov plasma. Our key assumption, besides weak 

nonlinearity, is the requirement of integrable particle dynamics in the 

unperturbed plasma. 

The derivation reformulates and generalizes Johnston's oscillation 

center theory of induced scattering by utilizing the variational principle (30) 

for an oscillation center plasma.. We obtain the action-transfer equation and 

nonlinear frequency shift in canonical form. 

The coupling has a simple structure; in particular, we easily obtain 

the weighting factor 
* z . 

IT - . + T - .1 in modulus-squared form. 
nrn.J . mn,J - - This 

form has previously been obtained only for homogeneous plasma models, and 

it allows us to readily derive the Manley-Rowe relations satisfied by the beat~ 

resonant interaction. 

The formalism bas been applied to a drift kinetic model of an electron 

plasma. This is a specific example of an inhomogeneous Vlasov equilibrium 

for which previous non-Hamiltonian derivations of the beat-resonant coupling 

have required considerable labor and yielded results of great algebraic 

complexity. 

Acknowledgments: Three of the authors (J.D. C., A. N. K., C. 0.) were sup-

ported by the National Science Foundation under Grant No. PHYSZ-17853, 

supplemented by funds from the National Aeronautics and Space Administration. 

We were also supported by the Department of Energy under Contract No. 

DEFG03-85ER53199 (J.D. C., C. 0. ), Contract No. DE-AC03-76SF00098 

(A. N. K. ), and Contract No. DE-AC03-76-CH0-307 3 (C. 0. ). 

32 



Appendix A 

In conjunction with our ansatz (7) for ~(x, t) we may adopt various -
boundary conditions. Let D denote the region containing the plasma and 

8D denote the region boundary. 

The simplest possibility is a time-independent boundary condition 

v (X) (x E aD) appropriate to the equilibrium ~ (x). 
e-- e-

For this 

choice, 

~ (x) = V (x) 
e- e-

for X E an -f> (X, t) : 0 
m-

Here the primary waves ~ (x) vanish on aD and correspond to normal 
n-

modes of the plasma. 

(Al) 

A second type of boundary condition, relevant to recent experiments 

on electron plasmas, 
34 

arises when an external voltage is applied at the 

boundary to excite waves. When this applied signal is peaked at a single 

frequency w we have a boundary condition of the form V(x, t) = V (x) + 
o - e...., 

-iw t 
(G(t) e 0 v (x) +c. c.) which is satisfied by assuming, for X E an, 

0- -
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¢ = m 
A e 

n# 1 n 

¢ (x) = V (x) 
e - e-

-iW t 
G(t) e 

0 v ( x) 
0-

-i a. 
n ~ (x) = 0 

n-

(A2) 

Thus one o! the waves in ¢ is driven by the external signal and all others 
m 

are normal modes. Note that !or the driven mode we have A
1 

= t1 and 

a.
1 

= w 
0 

t so that these !ields are completely determined by the boundary 

conditions and accordingly are not varied in calculating 65 = 0. 

Evidently more complicated external sources can be treated in a 

similar way. 
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Appendix B 

ln this Appendix, we discuss the variation 65 = 0 using the form 

for ~ given by (7) but without transforming to oscUlation center variables. 

This is instructive because the results obtained from the amplitude and phase 

variation depend on whether one uses particle variables or oscillation center 

variables. We also wish to provide a derivation of the equations for the 

primary mode potentials (15) and the beat mode potentials (16). For these 

purposes it is sufficient to evaluate the stationarity condition for the slow-

time scale (i.e. neglecting terms with rapidly varying phases) and at lowest 

order in the wave amplitude. 

* We first consider the variation of 5 (1) with respect to ~ -(x ), and 
tun ...... 

* find from 65/6~ _ = 0, 
urn 

A 2 A 2 v 2 ~ -/2:rr+AA e n m d
3
Id

3
8pf(l,8,t) = 0, 

i(a. -a. ) J 
nm nrn nm . --

(B 1) 

* ln obtaining (Bl) we took into account the identity ~ - = ~ - . mn mn 

For the second term in (Bl), we require the driven response in 
-i(a. -a. ) 

f( I, 8, t) proportional to A A e n m • This response is found from 
..._ - n m 

the second order Vlasov equation (6), 

(B2) 

where h , h and h are given by (11) - (13) and f(l) satisfies the first 
e m o 

order equation, 

(B3) 
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We solve (BZ) and (B3) neglecting the time dependence of the amplitudes A 
n 

and the frequencies ci.n e This gives for f(l) , 

!(1) = - {W, f ) 
e 

(B4) 

in terms of W (ZS), and !or the Fourier coefficients of i 2
) , 

-i(CI - C1 ) 
In (BS) we retain only the term with the beat phase 

n m 
e . The second 

term in square brackets, C - • , is the Fourier coefficient of C _, 
nm,J nm 

which arises from the inhomogeneous term {il), h ) in (BZ). 
m 

With f given by (BS), we may rewrite (Bl) as 

v
2

"' --4TTX(w -)"' -=-(Zn)
4
ifd

3I LP.(x:I>*c- .(w.-(w -+iO))-l (B7) 
nm nrn nm . • J - - mn, J J nm 

J - - --
.. 

where X( w) is the susceptibility operator (14). This is the desired equation 

* 
for the beat potential; the variation with respect to "' ( x) leads to a 

nzn-

similar result. 

• The primary mode potentials are determined by 65/6"' = 0 in a 
n 

similar calculation. We first obtain 
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-ia. 
n 

then substituting for f the first order response (B4) with phase e gives, 

(B9) 

For normal modes we may also vary S with respect to A and a. 
n n 

The amplitude variation, 6S/6A = 0, gives the dispersion relation £
1 

( w(O)) = 0 
n n n 

!or the linear frequency. 

For S expressed in particle variables, there is no explicit dependence 

on the frequencies ci • The variation with respect to a. gives the Euler-
n n 

Lagrange equation d/dt(a !./Oi ) = at/a a. where .t denotes the Lagrangian 
n n 

of (1 ). Unlike the oscillation center Lagrangian (34), we now have 

a!/ a 6. = 0, and consequently the phase variation in particle variables 
n 

implies a!./Ba. = 0. If we evaluate a.ttaa. , without neglecting the linear 
n n 

damping of the primary modes a-priori, then 

J 6 . 
8!./8a. =- d z ! (z ) 8H/all. 

n oo o n 

(BlO) 

where £ • is the imaginary part of the dielectric (ZZ). Thus stationarity re­
n 

quires the linear damping to be negligible. Stated differently, by ignoring 

the time dependence of A when integrating (B3) we have assumed the linear 
n 

damping is negligible on the fast time scale. Our evaluation of 6S/6a. = 0 in 
n 

(B 1 0) reflects this assumption. 
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