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ABSTRACT 

This paper describes the application of the method of 
"Multiple Interacting Continua" (MINC) to the simulation of 
oil recovery in naturally fractured reservoirs. A generalization 
of the double-porosity technique, t~.- MINC-method permits a 
fully transient description of interporosity 8ow, using numeri
cal methods. The method has been successfully applied in the 
past to geothermal reservoir and chemical transport problems. 

In this paper, we present examples to demonstrate the 
utility of the MINC-method for modeling oil recovery mechan
isms and field applications in fractured reservoirs. Specifically, 
results for water imbibition m individual matrix blocks 
obtained with the MINC method are compared with results 
from the conventional double-porosity method and with calcu
lations using a detailed discretization of matrix blocks. The 
MJ~C-calculations are found to be accurate to better than I 
percent at all times, while double-porosity results can have 
large errors for matrix blocks of low permeability or large size. 
In addition, the MII\:C-method is used to match published 
results for five-spot water8oods, and to study the coning 
behavior of a single well in the north China oil field. All 
results show that the MINC-method provides accurate predic
tions of the behavior of naturally fractured reservoirs, while 
requiring only a modest increase in computation work in com
parison to the double-porosity method. 

I. INTRODUCTION 

The study of 8uid 8ow in naturally fractured petroleum 
reservoirs has been a challenging task and has made consider
able progress since the 1960's because many fractured hydro
carbon reservoirs have been discovered and put into develop
men t in the past decades. Most papers treating 8ow in frac
tured reservoirs consider that global 8ow occurs primarily 

References and illustrations at end of paper. 

through the high-permeability, low-effective-porosity fracture 
system surrounding matrix rock blocks. The matrix blocks 
contain the majority of the reservoir storage volume and act as 
local source or sink terms to the fracture system. The frac
tures are interconnected and provide the main 8uid 8ow path 

· · · d od . II 1•2 to IDJeCtiOn an pr UCtiOn we S. 

Due to the complexity of the pore structure of fractured 
reservoirs, there is no universal method for the simulation of 
reservoir behavior. Several different double-porosity models 
(DPM) have been developed to describe single-phase and mul
tiphase 8ow in fractured media3-ll. Usually, analytical 
approximations are introduced for the coupling between frac
ture and matrix continua. For example, it is commonly 
assumed that a quasi-steady state exists in the primary
porosity matrix elemen.ts at all times. 

Very little work has been done so far in studying tran
sient flow in the matrix blocks or between matrix and fracture 
systems either numerically or experimentally. As a. generaliza
tion of the double-porosity concept, Pruess and Narasimhan 
developed a. "Multiple Interacting Continua" method 
(MINC)7, which treats the multiphase and multidimensional 
transient 8ow in both fractures and matrix blocks by a numer
ical approach. This method was successf\!,llv applied to a 
number of geothermal reservoir problems6 · 1 ~,IJ The MINC
method of Pruess and Narasimhan 7 involves discretization of 
matrix blocks into a sequence. of nested volume elements, 
which are defined on the basis of distance from the block sur
face (Fig. la.). In this way it is possible to resolve in detail the 
gradients (of pressure, temperature, etc.) which drive inter
porosity Oow. This discretization technique was later adopted 
by Gilman ll for 8ow in fractured hydrocarbon reservoirs, and 

14 h . I . f by Neretnieks and Rasmuson for c em1ca transport m rac-
tured groundwater systems. 

In the present paper, we appl·r the MINC-method to 
study oil recovery mechanisms in fractured reservoirs, and to 
obtain insight into the behavior of water-oil 8ow during the 
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mechanism of oil production in waterHooding or waterconing 
of fractured reservoirs15 For multiphase How, pressure, 
viscous, gravitational, and capillary forces should all be taken 
into account. In order to understand the roles played by the 
three kinds of forces, we have studied the imbibition process 
with the MINC method, the conventional double-porosity 
method, and with a detailed explicit discretization of matrix 
blocks. The comparison of the results from the three methods 
shows that the MINC-method can give an accuracy of better 
than one percent at all times, while the double-porosity 
approximation with quasi-steady interporosity Bow can pro
duce large errors, especially for matrix blocks with low permea
bility or large size. 

We also apply the MINC-method to match published 
data of a five-spot water-Hood4•9, and the observed coning 
behavior of a well with bottom water drive in a fractured oil 
reservoir1 i. Satisfactory results have been obtained for the 
two examples. In both the imbibition study of individual 
matrix blocks and field-scale applications, the MINC-method is 
found to give more reliable history matching and behavior 
predictions for the simulation of fractured reservoir than the 
conventional double porosity method (DPM). 

In most previous analytical or numerical studies of multi
phase How in porous media, it has been taken for granted that 
the matrix system can be treated as a single continuum with 
(locally) uniform pressure and Huid saturation distributions. 
To our knowledge, no studies have been published for multi
phase Bow about how much error will be introduced by this 
treatment, and under what conditions the quasi-steady 
approximation for interporosity flow is acceptable for engineer
ing applications. The app!!cability of the DPM method is dis
cussed by analyzing the results from individual block imbibi
tion studies and field-scale examples with MINC and DPM in 
this paper. Through the work of this paper, it is found that 
the DPM method is often not suitable for the simulation of 
oil-water imbibition processes in naturally fractured reservoirs. 
Depending on reservoir Buid and rock properties, DPM may 
either overestimate or underestimate imbibition oil recovery 
from matrix blocks, especially for matrix blocks with low per
meability and large size, or for high oil viscosity. In some 
special cases, the results from MINC and DPM calculations are 
very close either because of similarities in individual block 
response predicted from either method, or because of the com
pensatory effect of global flow in the fractures on individual 
block imbibition response in field-scale modeling. In general, it 
will be difficult to determine the suitability of DPM for a given 
reservoir problem. It is suggested that individual matrix imbi
bition studies be carried out with various possible reservoir 
parameters, using DPM approximation as well as explicit 
discretization, before applying DPM to actual reservoir simula
tion. Comparison between DPM and EDM results for indivi
dual matrix blocks may provide clues for the accuracy to be 
expected from the DPM approximation in field studies. When 
changes in water saturation in the fractures are rapid, as may 
often happen in coning problems, or in response to rate 
changes, it is usually necessary to account for the transient 
Bow inside the matrix blocks, a.nd between matrix and frac
tures. 

2. MINC-METHOD 

The method of "Multiple Interacting Continua" (MINC), 
a generalization of the double-porosity techuique, is applicable 

for numerical simulation of heat and multiphase fluid flow in 
multidimensional fractured porous media. The method per
mits treatment of multiphase fluids with largP. and variable 
compressibility, and allows for phase transitions with latent 
heat effects, as well as for coupling between fluid and heat 
flow. By dividing the matrix into subdomains, the transient 
interaction between matrix and fractures is treated in a realis
tic way. The numerical implementation of the MINC-method 
is most easily accomRlished by means of an integral finite 
difference formulation 8. 

An important point of the MINC-method is the genera
tion of computational grids20 . A fractured reservoir is at first 
partitioned into "primary" volume elements (or grid blocks), 
such as would usually be employed for a porous medium. The 
interblock flow connections are then assigned to the fracture 
continuum, and each primary grid block is sub-divided into a 
sequence of "secondary" nested volume elements, which are 
defined on the basis of distance from the matrix block surfaces 
(Fig. la). With these sub-continua it is possible to represent 
the transient flow in the matrix blocks, and transient inter
porosity flow between matrix and fractures. For problems 

involving strong gravity effects (e.g., gas injection), it is possi
ble to define more general flow connections which allow for 
gravity drainage into fractures, and for global flow through 
matrix-matrix contacts. 

The MINC-method contains the double-porosity approxi
mation as a special case. It can be implemented simply by 
defining only one matrix continuum, and using an appropriate 
nodal distance for matrix-fracture flow (see Appendix A). 

The simulations reported in this paper were carried out 
·with a. code "STMFLDl"*, which solves simultaneous mass 
balance equations for two hydrocarbon components and water, 
as well as a heat balance. ST~IFLDl employs an integral 
finite difference technique for space discretization, and a fully 
implicit first-order time discretization. The resulting non
linear algebraic equations are solved by Newton-Raphson itera
tion, using a sparse version of LU-decomposition for the set of 
linear equations arising at each iteration step19. STMFLDI 
has a capability for simulating thermally enhanced oil recovery 
in fractured reservoirs, but was in the present work used only 
for isothermal oil-water two phase How. 

3. IMBffiiTION Oll.. RECOVERY 

Imbibition displacement of oil by water in relatively tight 
matrix blocks is a basic oil reco\·ery mechanism in fractured 
reservoirs, owing to the fact that most of the oil in place is 
present in the low permeability matrix system, and flows into 
the fracture system under viscous, gravity and capillary forces 
during oil production. Detailed simulations of individual 
matrix blocks surrounded by water and oil are presented in 
this section to study oil recoHry mechanisms and to demon
strate the validity of the Mll'\C-method. The MI!'\C results 
are compared with predictions from double-porosity and 
explicit-discretization methods (DPJ\·1 and EDJ\1; see Figs. 1 b 
and lc). Two kinds of matrix blocks, cubic and cylindrical. 
are modeled, and similar results are obtained. Relative per
meability and capillary pressure data, and other parameters 
used are shown in Tables I, 2 and 3. 

•dtuloped by K. Pru~!\5 
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RESULTS 

EDM is used as a comparison standard for MINC and 
DPM because EDM can take into account all the mechanisms, 
viscous, gravity and capillary effects. Figure 2 shows a 
schematic profile of a matrix block of cylindrical shape for 
MINC and EDM calculations. 

Oil recovery versus time is shown in Figures 3a, 4a, and 
5a, calculated from l\1INC, DPM and EDM for the three data 
sets given in Tables 1, 2, and 3. In Figure 6 we present oil 
recovery results for a cubic matrix block, using the data set of 
Thomas et ai.9. This is virtually identical to the results for a 
cylindrical block, given in Figure 4a. After many calculations 
with various matrix sizes and parameters, we have found that 
there is almost no difference in ftow behavior between cubic 
and cylindrical matrix blocks. 

Comparing the oil recovery calculated by the three 
mt>tbods, it can be found that the t-.1INC-method is accurate 
enough to simulate the water-oil imbibition process, while the 
DPM approach can give very large errors because it neglects 
transient ftow in the matrix. In all cases we have studied, 
there is excellent agreement between the MINC and EDM 
results. It is interesting to note that the l\1INC-method 
requires only a modest increase in computational work in com
parison to DPM because of the one-dimensional treatment of 
How in the matrix, and saves much more computer time and 
storage than ED:\!. 

As shown in Figures 3-6, there is a large difference in oil 
recovery between the MINC (or EDM) and DPM results. 
From the curve of imbibition rates (How rate of oil from 
matrix into fractures) versus time in Figures 3b, 4b and 5b the 
cause of the difference is apparent. The imbibition rates are 
quite different between the two methods at early time, because 
DPl\1 underestimates the capillary gradient near the matrix 
block surface. In fact, in DPM the initial differences in capil
lary pressures between matrix and fractures are assumed to 
occur over a quasi-steady How distance D, which is much 
larger than the nodal distance we employ for the first matrix 
continuum in the .l\fiNC-method (see Appendix A). Subse
quently the Ml:'\C-method predicts a buildup of water satura
tion near the matrix block surface, which diminishes the capil
lary pressure gradient driving interporosity How, as well as oil 
relative permeability. This results in a steeper decline in 
imbibition rate than that predicted from the DP.l\1 approxima
tion, in which all saturation changes are averaged over the 
entire matrix block. Therefore, at intermediate times, DPM 
overpredicts imbibition rates. Eventually, for very large times, 
the DP~I imbibition rates decline below the MINC-predictions. 
This occurs simply because fort - oo all approximations must 
converge to the the same total oil recovery, corresponding to 
attainment of capillary equilibrium between matrix and frac
tures. The relative lengths of the "early", "intermediate", and 
"late" time period, and the magnitude of deviation between 
~fi:'\C and DPl\·1, depend on formation parameters, PVT pr<:>
perties, and initial conditions. 

The agreement bt>wteen Mll"C and EDM is excellent 
throughout. This is further substantiated in Figure 7, which 
compares the water saturations calculated in Mll"C approxi
mation for a certain distance from the surface of a cylindrical 
block (st>e Fig 2) with the detailed predictions of EDM. It is 

seen that the MINC-method underpredicts water saturations 
near the "corners", where imbibition effects through the 
cylinder mantle ,overlap with those through the upper (or 
lower) cylinder surface. Away from the corners, imbibition 
effects are slightly overpredicted by the MINC-method. The 
deviations are such that the saturations computed in MINe
approximation agree extremely well with the average satura
tion at a given distance from the block surface obtained in 
EDM. Figure 7 shows that this holds true even when gravity 
effects are included, as long as saturations are uniform over the 
block surface. This result confirms a theoretical prediction by 
Pruess20 

Ejfecl.8 of Matrix Block Size and Permeability 

In Appendix B we show that, as far as interporosity ftow 
is concerned, a change in linear matrix block size by a factor a 
is equivalent to a change in block permeability by a factor 
ljo2, provided gravity effects are small in comparison to capil
lary effects. We have verified this by comparing calculations 
for cylindrical and cube-shaped matrix blocks of widely 
different permeability and size. This result makes it possible 
to plot imbibition oil recovery in terms of a dimensionless time 
to, which is proportional to (k/L2)t (see Figure 8). 

One of the most difficult problems in history matching 
and performance prediction of fractured reservoirs is to 
determine the matrix block size because it cannot be measured 
directly, so that the parameter usually bas to be established 
after tedious history-matching calculations. The equivalence 
between changes in matrix block size and permeability facili
tates practical application of .the MINC-method to actual 
reservoir problems and history matching. A computational 
grid for a .l\1INC-model of a How system needs to be generated 
only once for a given matrix block shape; changes in matrix 
block sizes can then be implemented simply by appropriate 
adjustments in matrix permeability. 

The same holds true when considering not just one kind 
of block shape, but a distribution of block shapes and sizes, 
based on some stochastic fracture distribution. As was shown 
by Pruess and Karasaki21 , the effective shape of a distribution 
of blcick sizes can be conveniently represented by means of a 
"proximity function" PROX(x), which represents the fraction 
of matrix material present within a distance x from the frac
tures. Knowledge of the proximity function is sufficient for 
defining all geometric parameters of a computational grid in 
the MINC-method. Based on the discussion of Appendix 8 it 
is clear that scaling of all matrix block dimensions in any dis
tribution of shapes and sizes by a factor o will be equivalent 
to a change in matrix block permeability by a factor 1/oz 
(provided gravity effects in interporosity How are small). 

4. A FIVE-SPOT EXAMPLE 

In order to demonstrate the application of the Mll"C
method to a field-scale problem, we present a comparison with 
previous calculations of Kazemi et al.4, and Thomas et al.9, 
for five-spot waterHood. In this problem water is injected into 
one-quarter of a live-spot pattern at a rate of 200 STB/D, and 
the production rate of total liquid is set at 210 STB/D. Reser
voir dimensions and properties are given in Table 4. 

3 
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For the treatment of the flow between matrix and frac
tures, Warren and Root2 have derived an equation for the 
shape factor u for single-phase flow, based on the quasi-steady 
flow assumption, 

u,;;, 4N(N + 2) 
L2 (4-1) 

\\'here N is number of normal sets of fractures; (N = 1, 2 or 
3), and 

for N = 1 
for N = 2 (4-2) 

for N = 3 

Kazemi et a.l. and Thomas et al. both employed the 
quasi-steady approximation, introduced by Warren a.nd Root, 
and gave different formulae for the matrix shape factor u. 
Kazemi et al. proposed, 

(4-3) 

and Thomas et al. suggested 

(4-4) A 
Q=--

LVm 

It should be noticed that the shape factors calculated 
from the three equations above for a. cubic matrix block are 
quite different. As mentioned in the previous sections, the 
matrix block size makes a. difference in flow behavior of imbibi
tion oil displacement, and so does the shape factor since it is 
related closely to the matrix block size. The simulation results 
for different u may lead to remarkable differences in the per
formance prediction. 

In the present five-spot example, Kazemi et a.l. used a. 
va.lut' of u = 0.084, which according to Equation (A.5) 
corresponds to a. nodal distance of D = 5.833 ft. A com
parison of our simulated water-oil ratios with the results of 
Kazemi et al. and Thomas et a.!. 9 is shown in Figure 9. For 
tht' first two years, our calculation using u = 0.08 is in excel
lent agreement with the curves of Kazcmi et al. and Thomas 
et al, and shows slight deviations at later time. The curve for 
u = 0.36 in Figurt' 9, based on Warren and Root's shape fac
tor. is lower for the first three yt'ars, and has a more rapid 
increa.~e during the later production period. We also carried 
out a ~11 :'\C~calcu lation for this problem, using a discretization 
of five continua. Surprisingly, the results for produced water· 
oil ratio turned out to bt' virtually indistinguishable from those 
obtained in double-porosity approximation with u = 0.36, 
even though over much of the five-spot pattern the saturation 
distributions are quite different in both cases. How can a tran
sient and a quasi-steady approximation for interporosity How, 
which give substantially different imbibition response for indi· 
vidual matrix blocks (compare Fig. 3a). end up yielding nearly 
indistinguishable water-oil ratios in a five-spot ftood? The 
answer is that the aggregate response of many matrix blocks in 
a Hood problem tends to compensate for differences in indivi
dual block rt'sponse. In the prest'nt case, the double-porosity 
approximation gives more rapid oil recovery from an individual 
block over virtually tht' entire time period of interest (see Fig. 
3a). Therefore, iro tht' double-porosity calculation matrix 

blocks near the injector will take up more water and deliver 
more oil than predicted from the MINC-method, so that 
blocks further downstream from the injector will "see" more 
oil and less water in the fractures. Therefore, those more dis
tant blocks will give smaller imbibition rates. From this con
sideration it is clear tha.t there will be a. general tendency for 
aggregate effects of blocks to compensate for differences in 
individual block response. The fact that this compensation is 
virtually quantitative in the present case is to be considered 
fortuitous. 

5. A CONING PROBLEM 

In this section, the MINC approximation is used to match 
the observed coning behavior of a. well in the north China. oil 
field. The data have been previously analyzed by Chen whose 
basic reservoir model is axially symmetric, the symmetry axis 
coincides with the well. The upper part of the reservoir is the 
oil zone, the middle is the transition zone, and the lower part 
is the water zone. Near the top of the water zone there is a 
horizontal thin impervious break. The bottom water is sup
plied from the lowest surface of the cylinder on which the 
pressure is maintained at a constant value. The top and the 
external border of the cylinder are sealed - i.e., there is no flow 
across the boundaries. The data used are shown in Table 5. 

As given in Table 5, Chen used u = 0.1068, which 
corresponds to a cubic matrix block with L = 23.7 ft. In the 
history match simulation, parameters are calibrated from the 
water-cut data of the first 200 days of production, and the 
water-cut data after 200 days are used for checking the 
predicted results. 

The results of the history matching and the behavior 
prediction a.re shown in Figure 10, computed by Mll'\C and 
DPM from the data of Table 5, respectively. Both models give 
a reasonable match for observed performance; differences 
between DPM and MINC are small in this case. 

8. ON THE VALIDITY OF THE DOUBLE
POROSITY METHOD (DPM) 

For practical simulation applications it would be prefer
able to use the simpler DPM approximation whenever possible, 
and to resort to the more complex MI:'\C-description only in 
cases where the accuracy of DPM is poor. In this section we 
examine in more detail the conditions for which acceptable 
accuracy can be attained with the DP~! method. The limita
tions of DPM can be seen best when comparing the temporal 
evolution of imbibition rates in individual matrix blocks with 
the more accurate MINC-prediction. As was discussed above. 
one can distinguish three time periods (see also Figures 11 b, 
13b, Hb): 

(1) a.n early period, in which DPM underpredicts imbibi· 
tion rate, because it underpredicts the capillary gra
dients at the matrix block surface; 

(2) a.n intermediate period, in which DP~! overpredicts 
imbibition rate, because it underestimates buildup of 
water saturation nt'ar the matrix block surface; and 

v 



;.r 

A Multiple-Porosity Method for Simulation of Naturally Fractured Petroleum Reservoirs 

(3) a. late time period, in which DPM again underpredicts 
imbibition rate, because in the intermediate time 
period (2) the block has moved closer towards even
tual capillary equilibrium with the fractures than 
would be predicted from MINC. 

The relative lengths of these time periods, and the magnitude 
of deviation between DPM and MINC in them, depend upon 
formation and fluid properties. Generally speaking, differences 
tend to be larger (DPM less accurate) for small matrix permea
bility, large ma.rix block dimensions, large matrix porosity, or 
large oil viscosity. This can be seen bl comparing the imbibi
tion results obtained for Chen's data. 7 (Figures 10.11) with 
those calculated for a modified data set, in which matrix per
meability was decreased from 5 and for O.I md, and porosity 
was increased from 5 percent to 20 percent (Figure 12-I3). For 
the original data. of Chen most matrix blocks are in the "inter
mediate" time period (2) during the water coning process with 
relatively minor differences between DPM and MINC (see Fig
ure Ilb). For the modified data most matrix blocks are in 
time period (I) (see Figure I3b), with very large differences 
between DPM and MINC. 

Reservoir response is in general more complicated than 
indi\"idua.l block response, because it involves a superposition 
of effects from many matrix blocks. Depending upon their 
location in the reservoir relative to the water table, and to 
injection and production wells, different blocks will be at 
different periods of the imbibition "cycle". Aggregate imbibi
tion response of many blocks in a. reservoir ma.y be similar in 
DP!\f and MINC, even if individual block responses are rather 
different. This behavior was observed in our simulations of 
Kazemi's five sv>t waterflood example, where DPM and MINC 
gaH virtually indistinguishable results even though individual 
block response predicted from DPM differs considerably from 
the MINC results (Figures I4a, 14b). The explanatio~ here is 
that with. time the matrix blocks near the injector move into 
stages (2) or (3) of the imbibition cycle, while the blocks closer 
to the production well remain in stage (I) for a longer time. 
Overall reservoir response tben tends to average out the 
differences existing in each stage. 

For practical reservoir simulation problems, it would be 
desirable to be able to evaluate the accuracy to be expected 
from DPM without actually going through a reservoir-wide 
MINC-calculaton as well. It may be possible to accomplish 
this by plotting individual block imbibition data as shown in 
Figure 15. Here we have shown the ratio of recovery predic
tions from MINC and DPM as a function of total recovery. 
This presentation of the data removes the somewhat spurious 
dependence on real (physical) time, instead emphasizing the 
connection between total recovery and accuracy of DPM. 
(Note that an explicit discretization calculation for an indivi
dual block could be used instead of the MINC-calcula.tion, 
with virtually indistinguishable results.) Figure 15 shows why 
DPM for the modified data of Chen strongly underestimates 
oil recovery (overestimates WOR): all matrix blocks are in con
ditions that plot above ORM/OR0 = 1. For Chen's original 
data, as well as for Kazemi's data, the ORMfOR0 ratio reaches 
1 for substantially smaller oil recovery. In these cases, there
fore, some matrix blocks will have ORM/OR0 > 1 while others 
will have ORM/ORd < I after a relatively modest r!covery 

period. In this situation differences in individual block 
response will tend to average out, giving a. favorable situation 
for applying DPM. 

'1. CONCLUSIONS 

1. The conventional double-porosity method can give 
large errors for simulation of oil recovery from individual 
matrix blocks or from a reservoir by water-oil imbibition 
mechanisms. The errors increase rapidly with enlargement of 
matrix blocks or fluid viscosity, and with decrease in rock per
meability. 

2. The method of "multiple interacting continua." 
(MINC) takes into account the transient flow of fluids both in 
the matrix system and in the fractures. Comparisons with cal
culations using a detailed explicit discretization of matrix 
blocks have shown that the MINC-method gives accurate 
predictions for water imbibition. 

3. Results of five-spot waterflood and coning simulations 
indicate that the aggregate response of many matrix blocks in 
a reservoir has a general tendency to compensate for 
differences in individual block response. This suggests that the 
dou hie-porosity method with quasi-steady approximation for 
interporosity flow may be applicable even in cases where its 
basic assumptions are poorly justified. 

4. An estimation of the suitability of the double-porosity 
approximation for water flooding and coning problems can be 
obtained by comparing quasi-steady and transient imbibition 
predictions for individual matrix blocks. 

NOMENCLATURE 

A interface area of matrix block, [L2
1 

Anm interface area. between volume elements n and m, [L2] 

b formation volume factor, [L3jL3j 

c compressibility, [Lt2 /MJ 

D distance between nodal points, [LJ 

DJ nodal distance for the innermost matrix node, [LJ 

F mass flux, [M/L2·tj 

h time level index 

k absolute matrix permeability, [L2J 

k component index (k =oil, water), [L2j 

k# relative permeability to the ,8-phase 

L characteristic dimension of matrix block, [LJ 

L,. matrix block length, [LJ 

L1 matrix block width, [LJ 

L. matrix block height, [LJ 

M accumulation term in mass balance equation, [M/L3
1 

P pressure, [M/L·t2
1 

Pewo capillary pressure, [M";Lt2
) 

S saturation 

time, [tj 

V m matrix-block volume, [L3 j 

5 
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v. volume of grid block n, [L3] 

X mass fraction 

Q scale factor (Appendix A) 

J.l viscosity, [ M/Lt] 

p mass density of fluid, [M/L3
] 

q matrix shape factor, [L-2] 

~ porosity 

Subscripts 

b 

m 

n 

0 

w 

bubble point 

fracture 

matrix 

indt>x number of volume element 

oil 

watt>r 

/3 phast> 
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Appendix A: Relationship Between Double-Porosity 
Matrix Shape Factor and Geometric Parameters of the 
Integral Finite DifFerence Method. 

Warren and Root (1963) wrote a quasi-steady approxima
tion for interporosity !low in single phase conditions as follows: 

Opm km -
tPmCm at= tT P (Pr- Pm) (A.1) 

The bars indicate averages over matrix and fracture continua, 
respectively. The parameter tT (Warren and Root used the 
notation a) is a "matrix shape factor" (Thomas et al., 1983), 
which characterizes the matrix block surface area per unit 
volume. 

To obtain the relationship between tT and the geometric 
parameters used in an integral finite difference description of 
interporosity !low, consider the point differential equation for 
How in the matrix blocks 

0Pm . km 
tPmCm-- = d1v - 'VPm at 11 

(A.2) 

Integrating over one matrix block we obtain: 

0Pm km --
V¢>mcm-0 =A- ('VPm)_ 

t lA 
(A.3) 

In double-porosity approximation (two continua), the pressure 
gradient at the block surface is approximated by the following 
finite difference expression 

(-) ~ Pr- Pm 
'VPm.....,. ~ --

0
-- (A.4) 

with D being the distance of the matrix nodal point from the 
block surface. Comparing Eqs. (A.1), (A.3) and (A.4), we 
obtain 

A 
tT= --

VD 
(A.5) 

For matrix blocks in the shape of cubes, Warren and Root give 
tT=60/L 2· Noting that A/V = 6/L in this case, we obtain a 
nodal distance D = L/10 for quasi-steady !low. Different 
values of tT which have been proposed for multi-phase !low can 
be accommodated in the integral finite difference representa
tion by simply calculating the corresponding nodal distance 0 
from Eq. (A.5). 

Appendix B: Dependence of lnterporosity Flow on 
Matrix Block Si:te 

Let us consider a scale change for the matrix blocks in which 
all distances between points change by the same common fac
tor 

I - I' =a/ (8.1) 

Such a scale change will not affect the shape of the blocks. In 
order to evaluate its effect on interporosity How, we consider 
the governing mass balance equations for matrix-matrix or 
matrix-fracture !low. Ignoring gravity effects, we have 

M.H+l - M.H - .O.Vt ~ Anm F ntm = 0 (8.2) 
D m 

where 

k t kp 
--~ Xp- Pp (Pp,m- Pp,.) 
o.m " lAp 

(8.3) 

Thus, the permeability and geometry parameters appear in 
(8.2) in the group 

k~ 
v.o.m (8.4) 

Suppose that the total number of matrix blocks in grid block 
V0 is 11. Under the scale change (8.1) this number will change 
to v = vja3 . The surface area per matrix block will change 
from Anm/11 to a 2A0 m/" , so that the total surface area will 
become 

= V a2Anm =_.!._A 
V 0 om (8.5) 

All nodal distances in the matrix will change according to 

. (8.6) 

Note that for a matrix-fracture connection the same equation 
holds, because the fracture nodal point will be on the block 
surface, so that the entire group (8.4) will change as follows: 

k ~ = .!._ ~ (8.i) 
VaDam a2 v.o.,;, 

Thus, an increase in linear matrix block size by a factor o is 
equivalent to a reduction in matrix permeability by a factor 
o 2. This result holds for arbitrary (fixed) block shapes, and in 
fact for arbitrary distributions of block sizes. Nowhere in the 
above discussion did we need to require matrix block sizes to 
be identical. 

When gravity effects are included no simple block size
permeability relationship is possible. For a gravity term in 
F nkm• the geometric data would appear in the group 

k Anm - k Anm' = !_ A,,m 
v. v. Q v. 

For gravity contribution to flow, an increase in linear matri~ 
block size by a factor a is equivalent to a decrease in pernwa
bility by the same factor. As matrix block sizes increas~. 

therefore, the contribution of pressure forces to flow will 
diminish more rapidly than the contribution of gravity forces. 
This indicates that gravity forces may often be unimportant 
for imbibition in small matnx blocks, but may be very impor
tao t for large matrix blocks. 

7 
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Table 1. 

Relative Permeabilities and Capillary Pressures 

for Data Set 1 (Kazemi et al., 1976) 

Sw krmf krof Pcwof krwm krom Pcwom 

(psi) (psi) 

0.000 0.000 1.000 4.000 

0.100 0.050 0.770 1.850 

0.200 0.110 0.587 0.900 

0.250 0.145 0.519 0.725 0.000 0.920 4.000 

0.300 . 0.180 0.450 0.550 0.020 0.705 2.950 

0.400 0.260 0.330 0.400 0.055 0.420 1.650 

0.500 0.355 0.240 0.290 0.100 0.240 0.850 

0.600 0.475 0.173 0.200 0.145 0.110 0.300 

0.700 0.585 0.102 0.160 0.200 0.000 0.000 

0.800 0.715 0.057 0.110 

0.900 0.850 0.021 0.050 

1.000 1.000 0.000 0.000 

v 
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Table 2 

Parameters for Data Set 2 {Thomas et al., 1983) 

Relative Permeability 

Sw krw krow pcwo 

(psi) ... 

0.200 0.000 1.000 50.00 

0.250 0.005 0.860 9.000 

0.300 0.010 0.732 2.000 

0.350 0.020 0.600 0.500 

0.400 0.030 0.492 0.000 

0.450 0.045 0.392 -0.40 

0.500 0.060 0.304 -1.20 

0.600 0.110 0.154 -4.00 

0.700 0.185 0.042 -10.0 

0.750 0.230 0.000 -40.0 

Original bubble point, psig 5,545 

Slope of b0 above Pb, voljvol-psi 0.000012 

Density of stock-tank oil, I bm/cu ft 51.14 

Slope of the Jlo above Pb, cp/psi 0.0000172 

Gas density at standard conditions, lbm/c:u ft 0.058 

Water formation volume factor, psig 1.07 

Water compressibility, vol/vol-psi 3.5 (lo-5) 

Water viscosity, cp 0.35 

Water density at standard conditions lbm/cu ft 65 

·~ ..... 
Matrix compressiblity vol/vol psi 3.5 (lo-6) 

Fracture compressibility, vol/vol psi 3.5 (lo-6) 

Matrix permeability, md 1 

Matrix porosity, % 30 
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Table 3 

Parameters for Data Set 3 (Southern California Oil Field) 

Relative Permeability 

Sw krwm krom pcwom 

(psi) 

0.000 1.000 0.000 355.55 .. 
0.037 0.850 0.000 141.59 

0.040 0.840 9.42E-11 124.25 

0.049 0.811 2.41E-8 105.77 

0.059 0.779 2.72E-7 88.27 

0.073 0.735 1.95E-5 70.85 

0.095 0.571 1.32E-5 53.42 

0.099 0.659 1.72E-5 51.77 

0.133 0.558 9.85E-5 35.92 

0.201 0.411 8.41E-4 21.54 

0.259 0.303 2.82E-3 14.38 

0.351 0.173 1.13E-2 7.155 

0.380 0.142 1.51E-2 5.568 

0.455 0.0785 3.55E-2 3.082 

0.554 0.0285 8.31E-2 1.543 

0.524 0.0104 0.138 1.232 

0.800 0.000 0.405 0.872 

0.900 0.000 0.577 0.730 

1.000 0.000 1.000 0.205 

Matrix porosity (%) 20 

Matrix Permeability, md 1 ~ 

Fracture permeability, md 10,000 

Rock compressibility voljvol-psi 3x1o-5 v 

Initial oil saturation 0.60 

Oil density, I bmjcu ft 60.99 

Oil viscosity, cp 90 
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Table 4 

Data for Five-Spot Problem of Kazemi et al. {1976) 

Initial Pressure, psia 

Thickness, ft 

Grid dimensions 

Grid spacing, .D.x=.D.y (ft) 

Fracture porosity (%) 

Matrix porosity (%) 

Fracture permeabilty (effective), md 

Matrix permeability, md 

Matrix shape factor, sq ft -2 

Water compressibility, vol/vol-psi 

Bubble point pressure, psia 

\Vater and oil formation volume factor at the 

bubble point, RB/STB 

Slope of b0 above Pb, voljvol-psi 

Fracture compressibility, vol/vol-psi 

Water viscosity, cp 

Water density, psijcu ft 

Water injection rate, STB/D 

Total productton rate, STB/D 

3,959.89 

30 

8 X 8 

75 

1 

19 

500 

1 

0.08 

3.03(10-6) 

0 

1.0 

0.0000103093 

3(10-6) 

0.4444 

0.3611 

200 

210 
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-Table 5 

Parameters for the Coning Problem 
i7 (Chen, 1983) 

Relative Permeability 

Fracture Matrix 

0.0 0.0 1.0 

0.1 0.052 0.764 

0.2 0.111 0.592 

0.3 0.182 0.439 

0.4 0.271 0.328 

0.5 0.367 0.239 

0.6 0.470 0.163 

0.7 0.586 0.103 

0.8 0.715 0.057 

0.9 0.854 0.017 

1.0 1.0 0.0 

Perforated thickness, ft 
Thickness of oil zone, ft 
Thickness of water zone, ft 
Well radius, ft 
Well drainage radius, ft 
Radius of the impervious break, ft 

Porosity 
Permeability, mel 

3.869 

1.906 

0.896 

0.540 

0.370 

0.277 

0.205 

0.135 

0.085 

0.043 

0.0 

Compressibility, pst 1 

\'ertiealjhorizontal permeability ratio 
!\latrix shape factor sq ft- 1 

Viscosity, cp 
Specific gravity 
Compressibility, psi- 1 

Formation volume factor, RB/STI3 

0.280 

0.324 

0.368 

0.412 

0.456 

0.500 

0.544 

0.588 

0.632 

0.676 

0.720 

0.0 

0.016 

0.034 

0.052 

0.070 

0.092 

0.113 

0.131 

0.154 

0.178 

0.200 

Fracture 
0.008 
3,500 

0.0056 
0.55 

Oil 
15.8 

0.8-156 
0.00000-l 

1.05:3 

0.940 

0.705 

0.544 

0.431 

0.348 

0.276 

0.207 

0.149 

0.092 

0.034 

0.0 

3.869 

2.773 

2.077 

1.579 

1.195 

0.868 

0.612 

0.384 

0.213 

0.085 

0.0 

68.2 
369.1 
984.2 
0.328 
984.2 
439.6 

.~/latrix 

0.05 
5 

0.0 
~ 

0.1068 

Water 
0.3 

1.02 
0.0 
1.0 
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