
uc -3;<_
LBL-21143 . ~-I

JLawrrenrnce Iffierrll{ell®y ILSLfrn(Q)Jr~~«DJry ·
UNIVERSITY OF CALIFORNIA

Computing Division JUL 1 6 1986

LIBRARY A
DOCUMENTS S~~ION

To be presented at the 12th International
Conference on Very Large Databases,
Kyoto, Japan, August 25-28, 1986

TEMPORAL DATA MANAGEMENT

A. Shoshani and K. Kawagoe

June 1986

Prepared for the U.~. Department of Energy under Contract r·E~AC03-76SF00098

-

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

TEMPORAL DATA MANAGEMENT

Arie Shoshani
Kyoji Kawagoe

Computer Science Research Department
Lawrence Berkeley Laboratory

University of Califo.rnia
Berkeley, CA 94720

June 1986

TEMPORAL DATA MANAGEMENT *

Arie Shoshani
Kyoji Kawagoe t

Computer Science Research Department
Lawrence Berkeley Laboratory

Berkeley, CA 94 720

Abstract

In this paper we develop a framework for the sup­
port of temporal data. The concept of a time se­
quence is introduced, and shown to be an important
fundamental concept for representing the semantics of
temporal data and for efficient physical organisation.
We discuas properties of time sequences that allow
the treatment of such sequences in a uniform fash­
ion. These properties are exploited in order to design
efficient physical data structures and acceu methoda
fer time 1equences. We allo de~eribe operatiou over
time 1equences, and show their power to manipulate
temporal data.

1 Introduction

Recently there haa been a surge of interest in tem­
poral data, perhaps because memory and magnetic
disk storage costs are rapidly decreasing, and the ad­
vances in optical disk technology. In the put, tempo­
ral data was mostly delegated to archival 1torage or
discarded altogether becauae it waa too expensive or
impractical to access them on-line. While it waa rec­
ognised that historical data are of great importance

• An expanded vereion of thia paper wu iuued u LBL tech­
nical report LBL-21143. Thia work wu aupported by the
Applied Mathematical Science~ Reaearch Procram of the Of­
flee of Enerl)' R.eaearch, U.S. Department of Enerl)', under
contract number DE-ACOS-76SF00098.

ton leave from NEC, Japan. Current addreu: NEC Corpo­
. ration, Kawualti City, Kanacawa 213, Japan.

1

to applications such as data analysis for policy deci­
•ions, such applications were not viewed as euential
for a day-to-day operation. As a result, existing data
management systems are designed to support the view
ohhe most current venion ofthe database. The dom­
inant approach is one of data being updated, deleted,
and inserted in order to maintain the current version.

In reality, many applications need to maintain a
complete record of operations over the database. This
il quite obviou in m01t bu1ineu applications, such as
banking, nle1, inventwy control, and reservation sys­
tems, where the history of all transactions has to be
recorded. Fnrthermore, if this hiatory can be man­
aged aa an integral part of the database, it could also
be statistically analy~ed for decision making purposes.
In addition, there are applications that are i'lherently
time dependent. Our interest stems from such appli­
cations in scientific and statistical databases (SSDBs),
where physical experiments, measurements, simula­
tions, and collected statistics are usually in the time
domain. In such applications temporal data are es­
sential, and in many cases the concept of a "'current
venion• does not even make sense. Other applications
where the time domain is inherent include engineer­
ing databases, econometrica, surveys, policy analysis,
muaic, etc.

There is an extensive literature related to the con­
cept of time, and the support of temporal data. There
are several surveys, such as [Bolour et al 82] and
[Snodgrau .k Ahn 85], that summarise the relevant
literature. Most of the work todate concentrates on
the semantics of time, and on logical modeling and
query languages for temporal data. Little work was
done in the physical organisation area. In this paper,
we address both the logical and physical aspects of
temporal data management.

We refer to a collection of data values over time
_ as a &t,ime sequence•. Our purpose here is to de­

velop a framework for the support of time sequences, -
rather than to define precisely the details of the de­
sign. Thus, many concepts are only explained by us-

,_ t.
J

• -TSl
l

-TS2

I
I •· I - ·- ·-- ·"' .. IJ

-TS
D

Figure 1: A Time Sequence AlTay

ing examples.
In section 2, we define time sequences and illustrate

with several examples that they are a natural concept
for viewing temporal data. In section 3, the differ­
ent properties of time sequences are described. These
properties are important for operations over time se­
quences, and for their physical implementation. In
section 4, we describe operations over time sequences.
In section 5 we discuss methods for the physical or­
ganisation of time sequences. Section 6 contains a
summary and areas of future research.

2 Time Sequences

It has long been observed that a temporal value
is actually a triplet (s, t, v) where s, t, and v stand
for surrogate, time, and value respectively. Thus,
the triplet (John, March, 180) may represent John's
weight in March drawn from the space (name X month
X weight). Surrogates may be either taken from a
defined domain, such as •name• or may be assigned
automatically by the system. The important thing
is that they uniquely identify each element. We note

· that a collection of values for John over time will have
the same surrogate, and thus could be represented as
(,, (t, vt). (t, v)• represents an ordered sequence of
pairs of times and their associated values. Thus, it
is natural to think of temporal data as time ordered
sequences of pairs (t, v) for each surrogate. We call
each sequence for a single surrogate a time &equence
(TS).

It is convenient to view a collection of TSs for a set
of surrogates as a two dimensional array, aa shown in
Figure 1. We call such an array a time &equence array

2

(TSA). Note that each row of the array represents a
·TS, and that Vii represents a value associated with
some surrogate &i and some time t;. The existence
of a value Vii depends on the properties of the TS:
some TSs may have many •nun• values. A TSA made
up from such TSa will therefore be &JHirle. As an
example, consider the case of a bookstore database
where the surrogates represent books, the time points
represent days, and the values represent the number
of copies of a certain book sold in a particular day.
In that case, the two dimensional array will be fairly
spane, since only a small fraction of the books sell in
any given day.

Viewing temporal data as TSs is an important fun­
damental concept to the logical and physical support
of 1uch data. As we will see next, categorising the
Mmatic• of TS1 facilitates the 1upport of difFerent
typa of temporal data uniformly. In section 4, we di.e­
cuu operationa over entire TSAI that are both power­
ful and practical. The physical structures and. access
methods propo.ed in section 5 hinge on the ability to
treat sets of TSs collectively.

2.1 Examples

Before discussing properties of TSs, we examine a
few examples shown in Figure 2. The first three exam­
plea are from business applications and the last three
are from scientific applications. Figure 2a shows the
variation over time in the cost of a certain item (e.g.
a part sold in a shop.) Note that the cost in this ex­
ample changes every few days (shown as notches in
the time scale). If this sequence were to be presented
u the (time, cost) pairs (0,1){4,2)(7,3)(11,2){13,3) ...
,then the interpretation of the sequence is that the
cost of 1 applies to the tinle points 0 to 3, the cost 2
applies to time points 4 to 6, etc. We say that this
TS has the property of being irregular in the time
domain since the intervals between the time points
0,4,7,11,13, ..• vary. In addition, this TS has the prop­
erty of being dep-we constant during each interval.

Figure 2b represents the number of units that a cer­
tain item sold per day. Assuming that this item sells
every day, the TS is said to be regular. In addition,
this TS is discrete since data values exist only at spe­
cific time points. Unlike the previous example, where
values exists during the intervals, a discrete TS has no
values associated with intervals. Values are associated
only with discrete points.

In Figure 2c we show the sequence of a patient's
visit to a hospital. This is a special case of the irregu­
lar, step-wise constant TS, in that only two values are
used. The values can be thought of as (off, on), (0,1),
(does not exist, exist), etc. according to the applica-

·•

3 3 2 1

~ 2~ ~ I
0 2 4 6 8 10 12 14 16
a) Item cost: irregular, step-wise constant.

I I l I l
b) Items sold: regular, discrete.

0
c) Patient visits: event.

d) Detector data: irregular, discrete.

LTI I] \:J
e) Magnetic field: regular, continuous.

DC
f) Failure data: event.

Figure 2: Examples of Time Sequences

tion. This special case is important since it represents
events (a commonly occurring sequence). In addition,
event TSs can be exploited in the physical organisa­
tion of the data to achieve better storage utiliution,
as is pointed out in Section 5.

Figures 2d, 2e, and 2f show data from a typical
physics experiment. High energy particles are col­
lided and the paths of the resulting sub-particles are
recorded by detectors. Figure 2d shows the pattern of
measurements that a particular detector registers as
sub-particles go by. This pattern can be categorised
as irregular and ducrete.

The sub-particles move in a magnetic field so that
the paths of the charged sub-particles are curved.
Since the magnetic field may fluctuate, it is mea­
sured in regular intervals, as shown in Figure 2e.
(These measurements are needed later in the anal­
ysis phase in order to interpret the detector measure­
menta.) Since detector measurements are taken at a
higher frequency than magnetic field meuurements, it
is necessary to compute (interpolate) values for points
in between those taken for the magnetic field. As a
re1ult, the TS for the magnetic field is contin"o"'· In
general, determining the value o(a continuous TS at
an intermediate point may not be a simple function.

3

For example, interpolation functions may require the
values of several points to each side, not only the two
adjacent points. Thus, continuous TSs will usually
have an interpolation function associated with them.
The default is a simple interpolation of the two adja­
cent points.

Figure 2f represents the history of failures of de­
tectors. It is quite slow relative to the frequency of
detector measurements taken (the time scale is mea­
sured in hours, rather than seconds). Nevertheless,
this data is essential in order to disqualify some mea­
•urementa taken at times that a detector is close to
failing, because they may not be reliable. ThiS is an­
other cue of an event TS.

2.2 Viewing time sequences

A. can be seen from the examples above it may be
more convenient to view TSa and TSAa graphically.
The issue ol the moat appropriate user interface for
temporal data is beyond the scope of this paper. How­
ever, it is worth considering briefly how TSAs could
be represented in the context of the relational model.

One possibility is to view the TSA as a relation with
the columna: surrogate, time, attribute. This will be a
special type of an order preserving relation, where the
sequence of values in time for the same surrogate have
a speciai interpretation (i.e. that of a time sequence).
This pouibility is quite compatible with the relational
model, as TSAa can be viewed as tables.

Another poeaibility is to introduce a special tem­
poral data type, where for each surrogate a sequence
o((time, value} pairs could exist. It is more difficult
to represent such complex data types in a table form,
but perhaps a two level representation could be used.

Regardless of the specific user interface chosen, we
wish to e:mphasise here that the modeling concept of
a TSA is an important one, since it carries temporal
semantics, and powerful operators can be define over
it. We will discuss the semantics and operators of
TSAa next.

3 Properties of time sequences

There are four properties of TSs that are of interest
to us, two o(which were already observed in the ex­
amples above: regularity, type, static/dynamic, and
time unit. These properties can be represented in a
concise form in the data description part of a system.
We discuss each below.

3.1 Regularity

There are two reasons for distinguishing between
regular and irregular TSs. Firat, this is a semantic
property that is needed by the system in order to in­
terpret the TS. The sequence of time points of regular
TSs can be described concisely as part of the data def­
inition section. In addition, it is needed for operations
on TSs and among TSs. This will be discussed fur­
ther in Section 4. Second, this property is extremely
important for the physical organintion of TSs. As
discussed in Section 5, the techniques for supporting
regular TSs azoe much simpler than those needed for
irregular TSs.

regulazo TSs are very common in scientific database
applications. Moat scientific experiments and simu­
lations meuure or compute ~eriea of data values at
regular intervals, often by some mechanical device or
detector. Irregular values usually result from man­
ual measurements or from unpredictable events, auch
u the failure of a detector. Statistical databa~es also
tend to be regular, since statistics azoe usually collected
at regulazo intervals for analysis purposes. There is, of
course, the pouibility that data values azoe null (miu­
ing or unknown). TSs that contain a large number of
null values can be thought of as irregulazo TSs. The
t~nn •time aeries" refers to a regulazo TSs, and is im­
portant in statistical analysis, because special analysis
methods can take advantage of the regulazoity of the
data. On the other hand, busineSB transaction data,
such as items sold in a store, azoe typically irregular
over the time dimension.

3.2 Type

In the examples above, we have seen four types of
TSs and their semantics explained. The four types
are: discrete, continuous, step-wise constant, and
event. They seem to be sufficient to describe the ap­
plications we encountered so fazo. Other types could
be added if such a need arises.

The classification of TSs by type is important, since
it permits the treatment of TSs in a uniform way. For
example, two regulazo TSs of difFerent types, say dis­
crete and continuous can now be implemented using
the same data structures. In effect, the type infor­
mation removes the "behavioral" part of TSs from
consideration of physical organisation.

The type information is also important for opera­
tions over and among TSs. It can be used to inter­
pret TSs aa to whether a value exists for a certain
time point, and whether a value can be implied or
interpolated if it does not exist.

4

3.3 Static/dynamic

Another aspect of temporal databases that effects
their logical and physical properties, is whether the
temporal data set is static or dynamic. By "static"
we mean a data set that has been fully collected, and
no more additions over the time dimension azoe ex­
pected. Many examples can be found in SSDBs, such
as data from an experiment which were fully collected,
and azoe now ready for analysis. Similarly, many sta­
tistical databases represent collections that azoe con­
sidered complete1 such as the census data or gasoline
consumption over·the last 10 years.

On the other hand, "dynamic" data sets are con­
tinuously growing. Most busineSB data azoe dynamic
since transactions, such as sales, represent a continu­
ous proceu. Of course, one can choose to cut off the
proceSB at some point and consider the set of data col­
lected so far as a static data set. As we will see later,
dynamic databases azoe more difficult to support phys­
ically.

3.4 Time units

Regazodless of whether the TS is regulazo or irregular,
part of its semantic description should be the time
tanit. The time unit determines the interval between
time points, such as seconds, hours, days, etc. In
regular TSs a value exists for every time point, while
in irregular TSs values exist only for some of the time
points.

Every TS has a dart time auociated with it.
Cleazoly, the stazot time and the time unit can be used
tO map the real time specification of a time point (e.g
Mazoch 17, 1986) to an ordinal position of the columns
of the TSA (e.g. column 372). Such a mapping func­
tion should be supported by a temporal data manage­
ment system. Note that a end time exists for static
TSs only.

Properties summary

In summary, the following properties ahould be
identified for TSs and made part of the data descrip­
tion file.

1. Regulazo/irregulazo.

2. Type: discrete, continuous, step-wise constant,
event.

3. Static/Dynamic.

4. Time unit, stazot time, end time (end time in the
static case only.)

a) Item coat

b) Items sold

II II
c) Total revenues: item cost X items sold

Figure 3: Composition operator

4 Operations Over Time
quences

I l

Se-

One of the advantages of representing temporal
data with TSs is that it is poa1ible to specify opera­
tions over the entire collection of values of TSs (or any
desired part thereof) uaing a single operator. Con­
sider, for example, that we wish to get the revenues
per day of selling a certain book during the month
of January. This situation is illuatrated in Figure 3.
Suppose that we have a TS that reSects the variations
of the book price u shown in Figure 3a, and a sec­
ond TS that represents the number of copies sold, aa
shown in Figure 3b. We want a new TS to be gen­
erated with the desired result, aa shown in Figure 3c.
To achieve this we need only to specify the multipli­
cation of the two TSs. The effect of this operation
would be to find matching pain (in time) using the
properties of the TSs, and to perform the multiplica­
tion for all matching pain of the TSs. Furthermore,
such an operation (which we call compo1itio") can be
specified for a set of boob, i.e. it can be applied to
entire TSAs.

Operations over the time domain have been sug­
gested by several authors [e.g. Snodgrass 84, Clifford
&c Tansel 85J. Such operations (for example, selecting
a time interval) are also useful in order to specify re­
strictions in the time dimension of TSs. However, we
want to emphasise in thia section the type of opera­
tions that can be applied directly to collections of TSs.
We will only cover the functionality of such operations
in a generic descriptive fonn, u the 1pecification of
such detail would require a separate paper.

5

a) Deposits and withdrawals

~---~~--------~
b) Account balance

Figure 4: operation over a single TSA

4.1 Restriction

The purpose of the restriction operator is to derive
sub-arrays. It is the conventional restriction operator
applied to both the time and surrogate dimensions of
a TSA. For example, referring back to the bookstore
example above, we may wiah to restrict our attention
to mathematics boob and the month of March only.
The re1ult of this operation is another TSA.

4.2 Operations over a single TSA

These operators can be applied to a single TSA to
produce another TSA with the same number of surro­
gates and time points. Consider the example of Fig­
ure 4. Figure 4a shows an example TS from a TSA
that represents deposits and withdrawals to accounts.
Suppose that we wish to generate a running balance
from this TS. Figure 4b shows the result of such an
operation on the TS of Figure 4a. This is an example
of an operation on a single TSA of type "discrete•
that generates a TSA of type •step-wise constant•

In general, operations over a single TSA may
change the type, but do not change the time unit of
the original TSA. Operations that change the time
unit involve aggregate functions over groups in the
time domain. This case is discussed in section 4.5
below.

4.3 Composition

Figure 3 was an example of a composition opera­
tor. In general, two or more TSAs can be composed
to fonn a new TSA. The composition may involve sim­
ple u-ithmetic functions, or complex functions that re­
quire a program. As an example of the need for com­
plex functions with the composition operator, refer
back to the scientific examples in Figures 2d, 2e, and
2£. In this application, we need to correct the detector
data according to the magnetic field. This function re­
quires the use of a program as it is quite complex. The
corrected values need to be further composed with the

...

,_

failure data, so that we can invalidate (say generate a
null) incorrect values.

Th~ use of TSAa for such problems simplifies the
specification of the operations to be performed. A sys­
tem that supports TSAa can handle the entire pro~
lem in a clean and concise fashion (including the in­
terpolation of values of the magnetic fields.) Further­
more, the performance of such operations may benefit
from efficient storage structures and acceu methods,
such as those proposed in section 5.

The time unit of the new TSA will aaaume the time
unit of one of the original TSAs involved in the com­
position. In the example just discUBSed, the new TSA
will have the time unit of the detectors TSA. This
needs to be specified with the composition operator.

4.4 Operations over surrogate groups

Suppoee that in the boobtore example above, we
want to get the total revenues per day for all mathe­
matics books. We will have to total the revenue figure
over all surrogates of the TSA representing mathemat­
ics boob. This ia an example of an aggregate function
(sum) over a TSA that generates a single TS.

This example can be generaliaed to the case of gen­
erating totals for groups of surrogates a.c:cording to
aome grouping function, aay groups by category, such
u mathematics, biology, etc. Thia ia equivalent to
the aggregate functions in data management ayatema,
u applied to TS.Aa. The aggregate functions can,
in general, include any function over groups, auch as
standard deviation. The result of such an operator

. is a TSA that contains a TS for each group that was
aggregated. The time unit is the same as that of the
original TSA.

4.5 Operations over the time domain

This class of operations is symmetric to the previous
one, but it applies to the time domain of the TS.Aa.
Aggregate operations in the time dimension cause the
time unit to change. Suppose that we wish to get the
total revenue per month for all mathematics boob
sold during 1985. The result would be a TSA with
time points representing months for the year 1985.

In thia cue, we need the capability to describe
groupings in the time domain; The meet commo~
cue, we believe, will generate regular TS.Aa, since
time is organised in a hierarchy of regular groupings,
such as second, minute, hour, day, etc.

5 Physical Organization

Several authors [e.g. Lum et al 84, Ahn 86] have
pointed out that storage efficiency is the key to the
practicality of supporting temporal data. The rea­
son is that history data can be very large relative to
the current version of the database. Therefore, the
design of the physical organisation should take ad­
vantage, whenever poesible, of the properties of tem­
poral data so as to minimise the amount of storage
uaed while maintaining reasonable access time. One
obvious property that can be exploited is that while
new data may be appended, changes to previous data
are rare. A few changes (updates, deletes, and in­
sertions) may be made in order to correct mistakes,
but then the data stay practically unchanged. Thus,
non-updatable data structures can be used to achieve
better storage and access efficiency.

Other properties of TSa were discussed in Sec­
tion 3. Two of these properties, •regular/irregular"
ad •ataticjdynamic•, effect greatly the design of the
physical structures. Their effect is discuued brieB.y
below.

5.1 Design goals

It is easy to visualiae the goals of the physical struc­
ture design of TSAs by referring to the two dimen­
sional representation shown in Figure 1. There are
three main iuues: storage efficiency, efficient indexes,
and partitioning of the array.

The moat storage efficient physical structure that
can be expected is a structure that stores the surro­
gate values and the time values only once, rather than
with each data value, i.e. the surrogate and time val­
ues are "factored out•. Obviously, if we implement the
TSA as a two-dimensional array structure we achieve
this goal. This can work well for regular TSAs, but

, special methods are needed for storing sparse arrays
for irregular TSAs.

6

The second iuue is providing indexes for the surro­
gate and time domains. In the surrogate domain con­
ventional indexes can be used to locate the rows that
represent TSs. The physical order of the rows and the
beat index to use depend on the acceu patterns to the
TSA. We discuss the effects of access patterns below.
The index in the time domain can take advantage of
the fact that time points are ordered. Thus, in the
cue or regular TSAs, no explicit index needs to be
created since the column for a given time point can
be calculated using the start time and the time unit
ol the TSA. In the case of irregular TSAs, the array
may be compressed and an index to the compressed
time domain is needed. More details will be discussed

•

in the section on file structures below.
The third issue is the physical partitioning of the

TSA into blocks. We are primarily interested in stor­
age structures that opti.mUe acceu to secondary stor­
age, such as magnetic or optical disks. We believe
that even if large amounts of main memory exist on
a system, temporal data will be stored primarily on
secondary devices. One reason is clearly the large
amount of temporal data.. Another reason is that tem­
poral data. will tend to be accessed leu frequently as
it gets older, and would be delegated to secondary
storage.

The choice of physical partitioning depends on the
expected acceu patterns to the data.. For example, if
we expect that most accesses in the time domain are
for conaecutive time points, then we should try and
duster the consecutive values of the TSa into blocks
in order to minimise 1/0 to secondary storage for a
given query. In addition, the property that TSAa are
static or dynamic may effect the array partitioning. In
the cue of a static TSA, the distribution of the data
values is known, and the array partitioning can be
analysed and optimised ahead of time. In the case of
dynamic TSAs the partitioning has to adjust dynam­
ically to the arrival of new data. points. These iuues
are discussed in more detail in the file structures sec­
tion below. But first we discuss several assumptions
we make about access patterns.

5.2 Access patterns

The firlt a.uumption is that the "order of values in
TSa is important, and should be preserved in the phys­
ical structure. The reason is that operations in the
time domain are usually over periods of time, such as
asking for occurrences before or alter a. certain time or
within a. time range. Thus, one design consideration
is to mini.mUe the the number of pages (blocks) read
from secondary storage for range queries in the time
domain.

The 1econd a.uumption is that we wish to have ran­
dom acceu in the time domain. While in some ·a.~
plications one can envision acceuing entire TSs, we
believe that efficient access to parte of the sequences
is neceaaary. Thus, some indexing method on the time
domain is neceuary.

The third assumption is that there may be applica­
tions where ordering in the surrogate domain is desir­
able. For example, in the books database mentioned
above, we may wish to order the books by category
in order to facilitate more efficient access to groupe of
books according to their categories. Thus, we would
like to permit the apecification of partitioning in the
(ordered) surrogate domain as an option. We call this

7

option below the '\'surrogate partitioning" option.
The fovrtA assumption is that random access to sur­

rogates is neceuary. This implies that there must be
a. mapping (an index) from the list of surrogates to
the ordinal position of the rows of the TSA. An or­
dinary index can be used for this purpose, auch as
a B-tree or a hashing method. We will assume the
existence of such an index. In many cases, an index
for the surrogates already exists in order to support
the non-temporal part of the database. H the order of
the surrogates in the TSA is the same, then the same
index can be augmented for acceaaing the TSA.

The fiftA assumption is that a. secondary index over
the data. values is not needed in most applications.
Such an index can potentially be very expensive in
terms of storage, because the number of entries for
such an index is in the order of the number of data
values. In any case, such an index provides a marginal
beD.efit in aituatiolia where the typical access to the
data involves restrictions oD. the surrogate and time
domaina. We will auume that auch iD.dexea (if ab-
10lutely necessary) would use conventioD.al indexing
methods.

5.3 File structures

Physical organisation methods for temporal data
were recently discussed in the literature. In [Lum et
al 84] the a.uthora consider the support of temporal
data. iD. the context of the relational model. Their
methods consist of chained structures of values in the
time domain. These chained structures are similar in
concept to TSs. However, our approach difFers iD. that
we consider the support of the set of all TSs over all
the surrogates in order to achieve common storage effi­
ciency and common indexing structures. The concept
of •attribute versioning• mentioned in [Ahn 86] can
also be thought of as representing TSs. While cluster­
ing of attribute versions is proposed generically, there
is no discussion of how to store and access the clusters
jointly.

In the designs below, we distinguish between the
cases of regular and irregular TSAs. For each case
we discuu the effects TSAs being static or dynamic
and the effects of the •surrogate partitioning• · o~
tion. Because of space limitations the designs are only
sketched here. More deta.ils can be found in the full
venion of this paper iuued as report LBL-21143.

5.3.1 Regular TSAs

Regular TSAs can be simply represented as a. two
dimensional non-sparse array. All the surrogates have
regular TSs whoee time points coincide, and thus the

time points can be •factored out•. Furthermore, it
is not necessary to store the sequence of time points
or to build an index over them. As mentioned before,
given a time point, it's corresponding column position
can be calculated using the start time and time units
of the TSA.

a) The •tatlc cue

In order to preserve the temporal order, the array is
stored in a row-wise fashion, i.e. the TSa are concate­
nated in the order of the surrogates. The allocation to
pages (or blocks) of secondary storage ia straight for­
ward, in the order of the concatenated list. The access
to this structure ia achieved with array linearisation.
It requires a simple calculation that uses the ordinal
poaitiona of the row(a) and column(a) requested. (The.
array linearisation algorithm is well known, and will
not be diacuued further here.)

The e&"ect of the •aurrogate partitioning• option ill ·
that we now want to have cluatering of data values
in both the temporal and aurrogate dimenaiona. We
partition the array into cella of equal aile. As a prac­
tical matter the aile of the cella can be chosen to be
the aile of secondary storage pages. The dimensiona
of the cells are parameters that can be chosen by a
database administrator to fit the application. The or­
der of elements within a cell is row-wiae to preserve
the order of TSa. Thua, the elements of a cell can
r \so be accessed randomly uaing array linearisation.
In order to read a data value, two array linearilation
computations are needed: one to determine the ap­
propriate cell, and one to locate the position of the
. value in the cell.

This cell partitioning scheme still retains the fol­
lowing properties: the surrogate and time values are
•factored out•, the time points are not stored explic­
itly (they can be computed), random access in the
time dimension can be achieved without the overhead
of an index, and random access in the surrogate di­
mension can be achieved as long as the ordinal posi­
tion of the surrogate is known, usually available from
existing indexes. The dimenaiona of the cella are a
design choice that determines the effectiveness of ac­
cess in the time and surrogate domains. Note that
choosing a surrogate dimension of 1 is equivalent to
the initial design where the •surrogate partitioning•
option is not required.

b) The dyll&llllc ca~~e

The dynamic case can be handled as an extension to
the cell partitioning mentioned above. The surrogates
are assigned to cella, and the cella fill up as new values
arrive. Since the rate of arrivals is the same for all

8

surrogates, we only need to keep track of the active
cells currently being filled and treat the previous cells
as static.

The access in the time domain is also similar to the
static case. Given a surrogate and a time point, one
can calculate the cell number and the displacement
within the cell.

One difficulty associated with dynamic TSAs is that
the cella currently being filled have to be managed.
Suppose that there are m surrogates. The worst case
ia when each cell is assigned to a single surrogate, since
we need m cells to be •active• at the same time. If
we do not have a large enough buffer to hold the m
cella, we need to write the cells to secondary storage
in a piece-wise fashion.

5.3.2 Irregular TSAs

The aupport of irregular TSAI ill more complex.
Clearly, we could atore the (irregular) TSAa as aeries
of (time, value) pairs. However, the ability to •factor
out• time values that are shared across surrogates is
lost, as well as the simple indexing capability over
the time domain that exists in the regular case. In
the following design we take advantage of the static
nature of the TSs to achieve these goals.

a) The •tatlc cue

Consider, for example, the bookstore example men­
tioned before. Each TS will have points only for the
days that books were sold. Assume that each non­
existing point is represented as an explicit null value .

Obviously, this sparse array can be accessed in a
way similar to the regular case using array linearisa­
tion. The problem is how to get rid of the nulls while
preserving efficient access. Such a technique, called
•header compression•, was developed previously in
!Eggers & Shoshani 80J. It is essentially a run-length
compression method where counts of null and non­
null sequences are stored in a separate header. This
permits the elimination of all the nulls from the stored
data. The header can be organised as an index so that
it can be searched in logarithmic time. We can apply
this technique to the sparse array by concatenating
the rows, resulting in a long sequence of values, many
of them null. In order to find an element in the array
we first use the array linerisation computation and

· then the header to map into the non-null values.
Aa mentioned in section 3, the event type is a spe­

cial case of irregular TSs since it has only two val­
ues. Using the header compression method mentioned
above, it can be handled with a header only where the
header keeps track of sequences of O's and l's. There

•

is no compressed data values list, only the header.
Thus, it is worth treating the event type as a special
case as it greatly enhances storage utilisation.

The above method may not be very effective in
cases that the array has little overlap of the time
points across surrogates. In the worse case, if there
is no overlap at all, the number of points on the time
line is the same as the number of data values. Thus,
the storage requirements are equivalent to storing the
(time, value) pairs. However, we do not believe that
such applications are common.

Now, consider the effects of the •surrogate parti­
tioning• option. As in the static case we can partition
the array into cells. However, in this case the array
is sparse. This problem is precisely that of designing
a grid &le [Nievergelt et al 84J in a two dimensional
space. The selection of the partition lines (in both
the time and surrogate dimensions) is determined by
the grid &le method so u to minimise empty space in
cells. This method partitions the anay dynamically:
each time that a cell overflows a new partition line is
introduced. Experimental results in [Nievergelt et al
84J show that a storage utilisation of about 70% can
be expected on the average. However, since we are
dealing with the static ease, better methods could be
used that take advantage of pre-analysing the entire
data set. In a recent paper [Rotem &: Segev 85J which
deals with the static ease of grid &lea, the authors
have developed methods that achieve better storage
utilisation than the d~namic grid &le.

There are other cell partitioning methods that could
be used (e.g. Quad-trees). Experimentation would
determine the moat appropriate methods. Our main
point here is that cell partitioning methods seem to
be the most appropriate in this case, and that pre­
analysis for the static case should yield better parti­
tioning.

b) The dynamic case

As can be expected by now, this is the most complex
case as we need to deal with irregular TSs which grow
dynamically. In addition, different TSs have different
rates of growth that can change over time.

First, we consider the case where the •surrogate
partitioning• option is not required. In this case, cell
partitioning methods are not effective because we wish
to preserve the physical ordering of TSs, and these
methods partition the TSs into cells according to the
data distribution. Thus, we consider other alterna­
tives.

Suppose that pages (blocks) are assigned to each
surrogate. The pages &ll up at different rates and
therefore at different times. The effect is that each

9

surrogate has a string of pages associated with it,
where each page has a different start time and du­
ration. This information can be organised into an in­
dex where each surrogate has an ordered list of (page
number, start time) elements. Given a surrogate and
time (or range of time), such an index can be searched
for the page(s) holding the corresponding values. The
cost of such an index is obviously proportional to the
number of pages. If we assume that a typical page
holds 100-200 values, then the index size would be
about 1% of the array size.

There are two problems associated with this scheme.
One is indexing in the time domain over the pages
which have different start times and durations. The
second problem is that the pages of slow rate surro­
gates may remain mostly empty for a long time. This
wutes storage. ·

The problem of searching pages with different start
times and durations wu addressed recently in the
context of proxiniity search in space and searching
of time intervals [Hinrichs &: Nievergelt 83, Ruben­
stein 85J. We describe the solution in terms of our
context. The idea is to represent pages in a two di­
mensional space, whose coordinates are start time and
duration. Thus, each page is represented as a point in
this space. A search for all pages that contain a range
in the time domain translates into searching a region
in this two dimensional space. By organizing this two
dimensional space as a grid &le, one can efficiently &nd
all the pages that fall in that region. This technique
seems most appropriate for our indexing problem.

The solution to the problem of wasted storage is
not obvious. The intuitive solutions is to store several
slow rate surrogates on the same page. The higher the
rate of the surrogate, the fewer the number of surro­
gates that will be stored on the same page. However,
such a scheme introduces more complex indexes and
acceu methods. It requires further research.

Now, we consider the effects of the •surrogate par­
titioning• option. Obviously, the dynamic grid &le
method can be used here. However, this is an unusual
case of a grid &le where the boundary keeps growing
and new elements are only added at the end of the
time domain. We are not familiar with any work that
treats this case, and consider the performance of such
a method an open problem. However, we note that we
can cut off the grid &le at selected intervals (say, ev­
ery month in the bookstore example above) and treat
the arrays thus created as static. Each static array
created periodically can be organised as a static grid
&le using the methods mentioned above. This could
be an effective way of exploiting the linear insertion
property of TSs. As mentioned before, other cell par­
titioning methods could be considered. The study of

....

their relative perfonnance is open for further research.

6 Summary and Conclusions

In this paper we have described a framework for
the support of temporal data. It is based on the con­
cept of a time sequence, which represents sequences
of data values over time for a given surrogate. We
discussed properties of time sequences that allow the
treatment of different types of time sequences in a
uniform fashion. We described operations over time
sequences, and their power to manipulate temporal
data. Finally, we have analysed the design criteria
for the physical support of time sequences, and pre­
sented designs for physical data structures and acce88
methods for such sequences.

The main advantage of our approach is the ability
to operate on an array of time sequences with a single
operator. Also, viewing the data u time sequence ar­
rays suggests efficient physical structures for the sup­
port of temporal data.

Future work includes the development of detailed
syntax for operations on time sequences, and the eval­
uation of the physical designs with analytical methods
and real data.

'1 Acknowledgements

We gratefully acknowledge the many diacuuions
and support of our colleagues Frank Olken, Doron
Rotem, and Harry Wong. Arie Segev and the referees
also provided many useful comments.

References

[Ahn 86)
Ahn, I., Towarda an Implementation of Database
Management Systems with Temporal Support, Pro­
ceeding• of the International Conference on Data En­
gineering, 1986, pp. 374-381.

[Bolour et al 82)
Bolour, A., Anderson, T.L., Dekeyser, L.J., Wong,
H.K.T., The Role of Time in Infonnation ProceBBing:
A Survey, ACM-SIGMOD &cord, 12, 3, 1982, pp. 27-
50.

[Clifford k Tansel 85)
Clifford, J., Tansel, A., On an Algebra for Historical
Relational Databa.aea: Two Views, Proceeding• of the
ACM SIGMOD International Conference on Manage­
ment of Data, May 1985, pp. 247-265.

10

[Eggers & Shoshani 80)
Eggers, S. J., Shoshani, A. •Efficient Access of Com­
pressed Data,• Proceedings of the International Con­
ference on Very Large Databases, 6, 1980, pp. 205-
211.

[Hinrichs k Nievergelt 83)
Hinrichs, K., Nievergelt, J., The Grid File: a Data
Structure Designed to Support Proximity Queries
on Spatial Objects, Proceedings of the Worhhop on
Graph Theoretic Concept! in Computer Science, {0&­
nabruck, 1983).

[Lum et al 84]
Lum, V., Dadam, P., Erbe, R., Guenauer, J., Pistor,
P., Walch, G., Werner, H., Woodfill, J., Designing
Dbms Support for the Temporal Dimension, Proceed­
ing• of the ACM SIGMOD International Conference
on Management of Data, June 1984, pp. 115-130.

[Nievergelt et al 84)
Nievergelt J., Hinterberger H., Sevcik K.C., The Grid
File: An Adaptable, Symmetric Multikey File Struc­
ture, ACM Transactions on Database System• 9, 1,
March 1984, pp. 38-71.

[Rotem k Seg~v 85]
Rotem, D., Segev, A., Optimal and Heuristic Algo­
rithms for Multi-Dimensional Partitioning, Lawrence
Berkeley Laboratory report LBL-20676, December
1985.

[Rubenstein 85)
Rubenstein, B., Indexes for Time-Ordered Data, Uni­
versity of California Technical Report, Berkeley, 1985.

[Snodgrasa 84]
Snodgrass, R., The Temporal Query Language TQuel,
Proceeding& of the Tll.ird ACM SIGMOD Sympo1ium
o" Pri"ciplu of Databtue Sy.tem. (PODS), Water­
loo, Canada, April 1984, pp. 204-213.

[Snodgrasa k Ahn 85)
Snodgrasa, R., Ahn, I., A Taxonomy of Time in
Databases, Proceeding• of the ACM SIGMOD Inter­
national Conference on Management of Data, May
1985, pp. 236-246.

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

t ·- -~ .~

LAWRENCE BERKELEY LAB ORA TORY
TECHNICAL INFORMATION DEPARTMENT

UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

•/1, ;:-~

~ . ---

