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THEORY OF STRENGTHENING BY ORDERED PRECIPITATES 

J. Glazer and J.W. Morris, Jr. 

Center for Advanced Materials, 
Lawrence Berkeley Laboratory, and 

Department of Materials Science and Mineral Engineering, 
University of California, Berkeley 

A model for the critical resolved shear stress near 
peak strength of alloys hardened by ordered precipi
tates is developed. The moael is applied to the 
specific case of &' precipitates in binary aluminum
lithium alloys and found to be in good quantitative 
agreement with measured aging behavior. The effects 
of precipitate size, size distribution and shape on 
the critical resolved shear stress are explored via 
the model and predictions for more optimized micro
s true tures presented. 

INTRODUCTION 

Most precipitation-hardened aluminum alloys are used at peak strength or 
in the slightly overage·d condition. An understanding of the mechanistic 
sources of strength and yielding behavior is funda-mental to defining 
desirable microstructures and designing processing steps to achieve 
them. I.n this paper, a model that is useful in this context is deve
loped and some of its consequences explored. 

Many factors influence the yield strength of precipitation-hardened 
alloys. Figure 1 is a schematic plot of the variation in yield strength 
of a typical precipitation hardened alloy as it is aged (often at ele
vated temperatures) over a period of time. A rapid initial increase in 
strength is observed, followed by a more gradual decline. The shape of 
the aging curve, the value of the peak strength, and the early deforma
tion behavior are all known to vary with a wide variety of microstruc
tural features, including precipitates, dislocations and solute atoms, 
the grain size and texture, the presence of precipitate free zones, etc. 

Before the problem of understanding yielding behavior can be pro
perly posed, an operational definition of yield strength is. required. 
The yield stress is usually defined as the stress at which dislocations 
travel significant distances in the material, causing macroscopic defor
mation to take place. In a single crystal, the stress at which disloca-
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tions glide freely is termed the critical resolved shear stress, ~c· In 
a polycrystal, the yield stress ay is related to the critical resolved 
shear stress by the Taylor factor M (- 3), which accounts for the fact 
that not all grains have favorably oriented slip planes and that mate
rial continuity must be preserved. The yield strength is related to the 
grain size and texture of the material through the parameter M. If the 
value of M is known for a particular grain structure, then the yield 
strength is fully determined by the critical resolved shear stress of 
the single crystal. 

In single crystals, dislocation glide is restricted by obstacles in 
the material. Since the dislocation is both a crystallographic and an 
elastic defect, it interacts with and is impeded by any other crystallo
graphic or elastic defect. Thus, solute atoms, other dislocations, and 
incoherent and coherent precipitates all act as obstacles to dislocation 
glide. 

The purpose of this paper is to explain yielding behavior near peak 
strength in the context of a relatively simple model. The primary focus 
will be on the behavior of the critical resolved shear stress near peak 
strength in alloys hardened by coherent, ordered precipitates. Two 
important idealizations are implicit in this choice. First, studying 
the critical resolved shear stress rather than the yield strength itself 
is equivalent to neglecting the effects of grain size and texture. 
Second, narrowing the problem to the region near peak strength makes it 
reasonable to assume that relatively large precipitates provide most of 
the strength of the alloy. Hardening due to other obstacles and preci
pitate strengthening mechanisms that depend on a large surface-to-volume 
ratio may be neglected. 

A model for the critical resolved shear stress near peak strength 
for alloys hardened by ordered precipitates is developed in the next 
section. The remainder of the paper focusses on the implications of the 
model to yielding behavior, specifically, the superposition of strength
ening mechanisms, the effect of precipitate shape on strength, the shape 
of the aging curve, the prediction of yield strength data, the effect of 
the precipitate size distribution on strength. Finally, the model is 
used to predict yield strength data for binary aluminum-lithium alloys. 
Both the model and its consequences are discussed ·in greater detail in 
Glazer (1). 

THE MODEL 

An idealized single-crystal microstructure of a precipitation
hardened alloy is characterized in a mechanical sense by the forces 
associated with dislocation-precipitate interactions and in a geometric 
sense by the properties of the precipitates and their distribution, e.g. 
volume fraction, size, shape, size distribution, spacing, and distribu
tion of spacings. (These geometric parameters are not all independent.) 
It is easiest to formulate a model for strengthening by separating the 
mechanical and geometric aspects of the problem. Since the deformation 
mode is qualitatively influenced by the strength of the dislocation
precipitate interaction, it will be considered first. 
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Precipitates harden the material through their interaction with 
dislocations. To glide over long distances, a dislocation must bypass 
precipitates that intersect its glide plane. When the dislocation runs 
into an array of obstacles it bows out between them as shown in Figure 
2. If the applied shear stress resolved on the glide plane is great 
enough. then the dislocation loops or shears the obstacles. Athermal 
glide is assumed, since in precipitation-hardened alloys deformed at 
room temperature. the role of thermal activation is usually minimal. 

Detailed models of dislocation-precipitate interactions exist. The 
most common simplifying assumptions are that 

* isotropic elasticity applies, 

* the dislocation is a flexible extensible string of constant line 
tension T for a given mean square obstacle spacing ls• 

* the precipitates may be simulated by point obstacles whose 
strength in athermal glide is given by Fs• the peak in the force
distance curve for the actual dislocation-precipitate interaction (see 
Figure 3 for an example). 

When the dislocation bows out between precipitates under an applied~ 
stress. it exerts a force on each obstacle given by the component of the 
line tension in the direction of motion. The force from the dislocation 
Fd is related to the angle of bowout, and is given for the geometry of 
figure 2 by 

F d = 2Tc os ('lt/2) (1) 

The maximum force the dislocation can exert on the obstacle (ignoring 
the lowering effect of any dislocation self-interactions) occurs when 'lt 
= 0, or 

(2) 

In this configuration the two arms of the dislocation are antiparallel 
and annihilate. forming a loop around the precipitate and allowing the 
dislocation to move on. This phenomenon is referred to as Orowan loop
ing. 

If Fd exceeds Fs before looping occurs, the dislocation shears the 
precipitate. It should be clear from this discussion that for constant 
line tension T, the angle 'lt/2 (or cos 'lt/2) at which the precipitate is 
bypassed (either sheared or looped) defines its strength. It is conve
nient to describe the precipitate strength by the dimensionless variable 
13 given by 

f3 = F/2T = cos ('lr/2) (3) 

The g eo me t r y of the pro b 1 em i s 1 a r g e 1 y con t a in e d in s t at i s t i c a 1 
solutions to the model for the critical resolved shear stress for a 
random array of obstacles. A solution that has been used successfully 
in the past to model the critical resolved shear stress ((1). Glazer .et 
al (2), Melander (3), Melander and Persson (4, 5)) was proposed by 
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Hanson and Morris (6, 7). Its chief elements may be summarized as 
follows: 

• The configuration of the dislocation is described by a unique 
set of pinning points. The critical resolved shear stress of the array 
is reached when the dislocation bypasses the weakest point in the stron
gest configuration. 

• For a random array of identical obstacles the critical resolved 
shear stress is statistically determined. It is convenient to define a 
dimensionless critical resolved shear stress 

(4) 

where ls is the mean square obstac~e spacing and b is the Burgers' 
vector in the glide plane. The analytic solution for the critical 
resolved shear stress is then given by 

(5) 

• The critical resolved shear stress for a mixture of obstacle 
types is a quadratic sum 

(6) 

where xa is the fraction of obstacles of type a and 't'a is the critical 
resolved shear stress for an array containing obstacles of type a only. 

Quantifying this model requires an understanding of the sources of 
the shear strength of the precipitate, Fs. A number of interactions 
between the d'islocation and the precipitate have been proposed at one 
time or another (Ardell, (7)). These include chemical strengthening 
(caused by the additional interface created when the precipitate is 
sheared), modulus strengthening (caused by the difference in modulus 
between the precipitate and the matrix), stacking fault strengthening 
(caused by the difference in stacking fault energy between the precipi
tate and the matrix), order strengthening (caused by the antiphase 
boundary created by the passage of a dislocation through an ordered 
precipitate) and coherency strengthening (caused by the interaction of 
the elastic field of a dislocation and the misfit strain associated with 
a coherent precipitate). Only order and coherency strengthening are 
likely to be important for coherent, ordered precipitates of reasonable 
size. 

To simplify the discussion even further, we specialize to the case 
of order hardening. Spherical precipitates are assumed unless otherwise 
specified. In this case a number of additional assumptions about the 
manner in which the precipitates strengthen the material are valid: 

• The maximum effective radius of a precipitate is the minimum 
radius at which precipitates are looped rather than sheared. This size 
may be determined experimentally, and is termed the looping radius, 
rloop· 
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• Each precipitate may be reduced to a set of point obstacles 
whose strengths correspond to the effective radii of the precipitate in 
the glide planes that intersect it. 

• The strength of the precipitate is assumed to be a function of 
the effective radius of the precipitate only. 

• Because the precipitates are ordered. the dislocations that 
shear them are coupled by the antiphase boundary created by the first 
dislocation. In the L12 structure (e.g. &' in aluminum-lithium alloys 
or y' in nickel-based superalloys). order is restored by the second 
dislocation, so the dislocations travel in pairs as superdislocations. 
This coupling has the consequence that the critical resolved shear 
stress predicted by the model will be twice the applied stress at yiel
ding. 

IMPLICATIONS 

The model described in the previous section is relatively simple • 
. However. it leads to a number of useful qualitative predictions. This 
section will provide several examples that illustrate the utility of the 
model for order-hardened systems. For model systems for which its 
approximations are fairly good (e.g. binary aluminum-lithium alloys). 
these predictions can be made more quantitative. 

Superposition of precipitate strengthening mechanisms 

Figure 3 illustrates the manner in which various dislocation
precipitate interactions combine to determine the strength of the preci
pitate in athermal glide. The strength is determined only by the peak 
in the force-distance curve. If various interactions (for instance. 
coherency and order) are spatially displaced, then the total strength is 
not the sum of peaks of the individual interactions, but the maximum 
value of the total interaction force. As a result. increasing one 
source of strength, for instance the misfit. may or may not have a 
significant effect on the strength of the alloy. depending on what other 
strengthening mechanisms are operative. D 

Strength of plate-like precipitates 

Plate-like precipitates are usually observed when the misfit strain 
in the habit plane is relatively high. while spherical precipitates are 
generally observed when it is low. High-strength alloys are usually 
hardened by plate-like precipitates. The increase in strength is par
tially due to the high misfit strain and its localization at the perime
ter of the plate. but it can also be shown that increased strengthening 
should be observed on purely geometric grounds. 

Because the plate distributes the precipitated material more effi
ciently. a higher strength is predicted even if the misfit strain is 
ignored. Figure 4 shows a spherical precipitate and a plate-like (disc
shaped) precipitate of equal volume. Since strengthening in athermal 
glide is determined entirely by the maximum in the force-distance rela
tion for the precipitate-dislocation interaction, ·the plate strengthens 
much more efficiently. It provides both more obstacles, because it 
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intersects more glide planes, and stronger obstacles because the width 
of the plate face is larger than the diameter of the sphere of equiva
lent volume. The misfit strain around the plate could be included in 
the model by considering the effective size of the plate to be in
creased. 

Volume fraction effects 

The precipitate volume fraction f appears in the equation for the 
critical resolved shear stress through the mean square obstacle spacing 
ls. It can be show' easily that the critical resolved shear stress is 
proportional to f 1 2 • Consequently, any significant increase in the 
precipitate volume fraction during aging will be reflected in increased 
strength. 

The change in volume fraction during precipitate coarsening can be 
estimated on thermodynamic grounds. The impetus for the increase is the 
precipitate-matrix interface, whose energy alters the equilibrium be
tween the matrix and precipitate phases (Porter and Easterling (8)). 
The requirement of mechanical equilibrium. across the curved interface 
leads to a pressure difference 

(7) 

where Ys is the surface energy of. the interface. The pressure diffe
rence decreases the magnitude of the free energy change for the reaction 
by the amount 

(8) 

As the precipitate radius increases during coarsening, the free energy 
change due to the interface decreases in magnitude, resulting in further 
precipitation of the second phase and decreased solubility of the solute 
species. 

Although the increase in volume fraction during coarsening can be 
substantial, the effect is almost entirely confined to small precipi
tates. Consequently, it Ps of little importance near peak strength. 
Quantitative results for the binary aluminum-lithium system are discus
sed later. 

Aging curves 

The overall shape of the aging curve can be predicted by dimen
sional analysis of equations (4) and (5). Both hardening and softening 
are expected as a result of precipitate coarsening at constant volume 
fraction. In the underaged condition, the precipitates are sheared by 
the matrix. Since both Fs and ls are proportional to the maximum cross
section of the precipitate in theflide plane, the critical resolved 
shear stress is proportional to r 1 l , and strengthening is observed. In 
the averaged condition, the precipitates are looped by the dislocation. 
The force for looping Fd is roughly constant with precipitate size. 
Since 1$ is still proportional to the prec~pitate radius, the critical 
resolved shear stress is proportional to r , and the material softens 
rapidly with continued coarsening. If all the obstacles were the same 
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strength (highly unlikely in any real material), peak strength would 
occur when the precipitates reached the looping radius. 

Advantages of uniform precipitate size 

A~ mentioned previously, a precipitate can be represented as a 
series of mathematical obstacles whose strengths correlate to the effec
tive radii of the precipitate on the glide planes it intersects. Thus, 
a distribution of obstacles sizes can be generated for a given precipi
tate size distribution. The obstacle size distribution, together with 
the looping radius, can be used to calculate the critical resolved shear 
stress. 

The value of the critical resolved shear stress depends more 
strongly on precipitate radius after looping begins than before. Con
sequently, if a distribution of precipitate sizes exists, peak strength 
will occur almost immediately after the largest of the precipitates 
reaches the looping radius, not when the average sized precipitate 
reaches the looping radius. By contrast, the amount of strengthening 
provided by the precipitates is most closely related to the average 
precipitate radius. As a result, the maximum achievable strength in
creases as the precipitate size distribution narrows. As illustrated in 
figure 5, when the largest precipitates reach the looping radius, the 
average precipitate radius of a narrow distribution is greater than the 
average radius for a broad distribution. The strength of the narrow 
distribution is correspondingly higher. The magnitude of this effect 
for experimentally measured precipitate size distributions in binary 
aluminum-lithium alloys is estimated in (2). 

Prediction of experimental data for aluminum-lithium alloys 

The binary aluminum-lithium system is an excellent model system for 
the critical resolved shear stress solution proposed here for a number 
of reasons: 

• The strengthening precipitate Al 3Li. (o') is spherical, so an 
obstacle distribution is easily generated. Because of the intense 
industrial interest in this system, a great deal of experimental data 
exists, including aging curves for experimentally measured precipitate 
size distribution. 

• The precipitate-matrix surface energy is relatively low, so the 
assumption that coarsening occurs at constant volume fraction is good. 
The cumulative change in precipitate volume fraction during coarsening 
for o' precipitates in aluminum is shown in figure 6. Most of the 
increase occurs while the precipitates are less than 20b in diameter; 
the increase is negligible near peak strength() lOOb). (The matrix 
Burgers' vector is 0.29 nm). 

• The o' precipitate size distribution coarsens self-similarly at 
a constant rate, the Lifshitz-Slyozov-Wagner coarsening rate constant 
( Gu, e t a 1 ( 9)). 

• The m i s f i t s t r a in of the p r e c i p i t a t e i s ext r e me 1 y 1 ow , so the 
assumption that strengthening is dominated by order hardening is a good 
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one. 

• The &' has the L1 2 crystal structure, so dislocations, move in 
coupled pairs. The effect of the coupling is to halve the stress 
required for yielding. Screw dislocations have been observed to control 
yielding (Miura et al, (10)). 

• The looping radius has been measured by several investigators; a 
reasonable estimate for the looping radius is 30 nm for ls ... 1 J.lm (de 
Hosson et al (11), Sainfort and Guyot (12)). 

To make the calculations more accurate numerically, the model 
described in this paper was modified slightly (1,2). Dislocation self
interactions were included by setting the maximum value of ~ at 0.7 and 
making the line tension proportional to ln (ls). 

The results for.an Al-2.78Li-0.3Mn alloy aged at 200°C are shown in 
figure 7. The experimental data is taken from (9). Since the quenched 
alloy undoubtedly contains some atom clusters, the theoretical aging 
curve has been shifted-to slightly shorter aging times to obtain the 
best fit. To convert the theoretical values of the critical resolved 
shear stress to yield strength, a Taylor factor of 3 was assumed. The 
strength increment for both yield strength curves was taken as the 
strength above the lowest measured strength. The figure shows that the 
theoretical and experimental aging curves are in excellent agreement up 
to peak strength. The rapid fall of the theoretical curve below the 
experimental one after peak strength is not surprising, since the model 
does not accou1t for the uncoupling of superdislocations observed when 
Orowan looping becomes important (10, 12). The theoretical aging curve 
for a uniform distribution of precipitates at the same volume fraction 
is shown for comparison. 
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