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Transposition is the dominant operation for very large scientific and statisti
cal databases. This paper presents four efficient transposition algorithms for very 
large compressed scientific and statistical databases. These algorithms operate 
directly on compressed data without the need to first decompress them. They are 
applicable to databases that are compressed using the general (and popular) class 
of methods called run-length encoding scheme. The algorithms have different 
performance behavior as a function of the database parameters, main memory 
availability, and the transposition request itself. The algorithms are described 
and analyzed with respect to the I/0 and cpu cost. A decision procedure to 
select the most efficient algorithm, given a transposition request, is also given. 
The algorithms have been implemented and the analysis results experimentally 
validated. 
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1. Introduction 
We are interested in very large Scientific and Statistical Databases (SSDBs) 

([Shoshani82], [Shoshani, Olken & Wong84]). SSDBs are prevalent in scientific, 
socio-economic, and business applications. Examples of SSDBs are experiments 
and simulation for scientific applications, census, health, and environmental data 
for socio-economic applications, and inventory and transaction analysis for busi
ness applications. These databases typically contain large amount of data in 
summary form. The main characteristic of such databases is that they contain a 
combination of descriptive elements for each value of measured (counted, 
observed, or computed) data. 

As an example, consider the database in Figure 1 which contains summary 
data of a multi-factor parametric experiment of corrosion of materials under 
different conditions such as temperature, acidity, salinity, and duration. The first 
five attributes (material, temperature, acidity, salinity and time) represent 
parameter data, the last attribute (corrosion) represents the measured data. The 
attributes for the parameter data are often referred to as category attributes, 
since they contain category of the measured data. The attributes for the meas
ured data are referred to as summary attributes, since they contain data on which 
statistical summarization procedures are applied. 

Typical queries of a database such as Figure 1 involve the retrieval of sum
mary attribute values given some specific combination of the category values 
(What is the corrosion level for steel in temperature 1500, acidity level of 200, 
salinity level of 5, and time of 10 units?). To facilitate searching, the database is 
typically sorted by the category attributes in row-wise fashion (i.e., the values of 
the rightmost attribute vary the fastest). 

Two factors cause these SSDBs to be extremely large. First, they may con
tain hundreds of summary attributes. Secondly and more importantly, the cardi
nalities of the category attributes can themselves be quite large; and the number 
of tuples generated is the product of these cardinalities. For example, the mor
tality database from the National Institute of Health contains the cross product 
of four races, two sexes, 70 diseases, six age groups, and 3000 counties, amounting 
to over ten million tuples. 

2. Motivation 

The most common operations operating on summary databases (besides 
searching) are transposition and aggregation. The former requests an re-ordering 

. of the category attributes for the purpose of presentation and analysis. An exam
ple from the database in Figure 1 is to transpose the database so that now tem
perature and acidity are after material, salinity and time. Transposition opera
tions are also required to obtain the popular file structure called transposed file 
([Batory79]). Transposed files are the most efficient file structure for many SSDB 
applications. The motivation of transposed files is that the access to SSDBs is 
typically long sweep, i.e., a long sequence of individual records is fetched and a 
small number of attributes extracted. By storing the records as a collection of 
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contiguous attribute columns, i.e., all of the data for a field (attribute) is stored 
together, only those attribute columns which are needed for a query need be 
retrieved. We assume also, in this paper, that transposed files are used to store 
the data in the summary SSDBs. 

Aggregation operations are used to "collapse" away some category attributes 
to obtain a more concise database to facilitate more efficient analysis. An exam
ple of aggregation is a request such as "What is the total corrosion level of steel 
in temperature 1000, acidity 100, and salinity 1?" Since the dimension time is 
ignored in the request, the corrosion values is aggregated on the time dimension. 
The answer to the above request is obtained by summing the corrosion level 
values over all time values for each combination of the other category attributes. 

Efficient methods of performing transposition and aggregation are the keys 
to have an efficient SSDB system to support data analysis. Since most large sum
mary SSDBs are typically compressed, efficient transposition and aggregation 
methods directly over compressed data without first decompressing are impor
tant. 

Note that transposition and aggregation operations are closely related. An 
aggregation operation on attribute A can be realized by first transposing A from 
its original position to the right of the rightmost category attribute in the data
base, then the corresponding summary attribute values are aggregated (typically 
by simple arithmetic operations such as sum, weighted average, etc.). For exam-· 
ple, to collapse the temperature dimension from the database involves transpos
ing the attribute to the right of the time attribute, then the corrosion values are 
aggregated. In this paper, we describe several efficient techniques for performing 
transposition on compressed summary SSDBs. The results obtained can be 
extended to the aggregation operation mentioned above. 

In section 2, the related area is surveyed and in section 3, some background 
information about compression is given for the rest of the paper. In section 4, 
description and analysis of four transposition algorithms are given. In section 5, 
a decision procedure is developed that will select the most appropriate algorithm 
for a given transposition request. Section 6 describes our implementation effort 
and section 7 summarizes the paper and draws some conclusions. 

3. Related Work 

Almost all SSDB management systems (such as [Turner et al.79], [McCarthy 
et al.82], [SAS79]) perform transposition over compressed data by first 
decompressing the data, then transposing the full (typically very sparse) cross
product, and finally recompressing the database. For very large SSDBs, the user 
may have to wait days or even weeks for the operation to finish. What is needed 
is algorithms which manipulate compressed data directly. 

Several researchers ([Epstein79] and ~(lug82]) have tackled the problems of 
processing aggregates in the relational database context. The reported techniques 
are not applicable to summary SSDBs since no compression is assumed on the 
databases and the emphasis is on query optimization. 
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[Floyd72] gives a very interesting transposition algorithm for dense square 
matrices residing on disk. Given a matrix of size P by P, the algorithm uses 2 · 
buffers of size P each to transpose the columns of the matrix to rows. Since the 
matrix is not compressed, a mathematical formula is given to decide where each 
data item should be moved. The algorithm requires I/0 operations in the order 
of 0 (P log2P ). 

[Tsuda et al.83] extends Floyd's algorithm to handle rectangular matrices 
(still 2-dimensional). The method is to divide the matrix into a multiple of 
square matrices ( the last matrix may have to be padded with nulls to make it 
square) and Floyd's algorithm can be applied on each. The algorithms presented 
in this paper have the same order of I/0 performance as the algorithms presented 
in [Floyd72] and [Tsuda et al.83]. But our algorithms can work on compressed 
multi-dimensional databases. 

4. Compression of SSDBs 
In this section, the concepts and terms of the compression methods we use 

are introduced. They formulate the background for the algorithms in the next 
section. 

Summary SSDBs such as the one displayed in Figure 1 have a great deal of 
redundancy in the values of the category attributes. In many databases all possi
ble combinations of the category attributes (i.e., the full cross-product) exist. In 
such cases, each value of a category attribute repeats as many times as the pro
duct of the cardinalities of the remaining category attributes. 

A method which eliminates the need to store category attributes is used. 
This method stores the list of distinct category attribute values of each attribute 
once. Then, each category attribute can be used to form one dimension of a 
multi-dimensional matrix. For each combination of values from the category 
attributes, one can compute the appropriate position in the matrix. A well
known algorithm (called array linearization ) provides such a mapping. This 
method transforms a query on the category attributes into a computation of a 
logical position in a linearized matrix. Array linearization is reversible in the 
sense that given a position in the matrix, there is a unique combination of 
category attribute values identifying it (this process is called reverse array linear
ization). 

Summary attribute values can be quite sparse. As an example, refer to Fig
ure 1. Suppose that temperature does not have effect on certain type of material. 
then in the corrosion column there would be the same value in consecutive posi
tions for all the acidity, salinity, and time. Here a compression method called 
header compression ([Eggers & Shoshani80]) is used to remove the repeated 
values by a count and provide efficient access to the compressed data. This 
method makes use of a header which contains the counts of both compressed and 
uncompressed sequences in the data stream. The counts are organized in such a 
way as to permit a logarithmic search over them. A B-tree is built on top of the 
header to achieve a high radix for the logarithmic access. In addition to the 
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header file, the output of the compression method consists of a file of compressed 
data items, called physical file (the original file, which is not stored, is called logi
cal file ). Two mappings .are provided by the compression method, one is called 
forward mapping, which computes the location in the physical file given a posi
tion of the logical file. The other mapping (called backward mapping ) provides 
the physical to logical direction. These mappings can be performed in loga
rithmic time because of the existence of the header. For a more thorough discus
sion of the header compression method, refer to the original paper. 

To make the description of the algorithms more concrete, we assume that 
each summary attribute of the database has been compressed using the header. 
compression scheme. But an important note is that the algorithms are general in 
the sense that they can be applied to databases that are compressed using the 
general class of methods called run-length encoding scheme ([Aronson77]), where a 
repetition of data items is replaced by a count and a value of the data item. 
Header compression method is just a variation of the run-length encoding 
scheme. Also, we assume that the category attributes are compressed away by 
array linearization as mentioned before. 

5. Transposition Algorithms 

In this section the four transpositions algorithms will be described in detail. 
Below the main idea and the applicability of each algorithm will be briefly 
highlighted. The description sections below provide more details for each algo
rithm. 

The first algorithm is a "general" algorithm in the sense that it can be used 
in all situations. First, the physical database is read, and for each data item, a 
"tag" is computed and stored with the data. item on disk. A tag is the logical 
sequence number for the data item in the transposed space. The second step 
involves sorting the tag and data item pairs in ascending order of the tags. Mter 
the sorting is done, the tags associated with the data item are discarded. As the 
tags are stripped, the necessary headers for the data items are generated and 
these headers and the data items represent the result of the transposition. 

The second algorithm performs the operation in main memory in one pass. 
This is feasible in the event when the transposed subspace is small enough to fit 
into main memory. The main idea of the algorithm involves scanning the physi
cal database once, and employing the reverse array linearization to find the 
proper slot for each data item in the memory buffer. A compression algorithm 
will then run over the data in memory and the result is stored in compressed 
form on disk. 

For the case that the transposed subspace is too large to fit in main memory, 
a third algorithm can be used. The algorithm takes advantage of the situation 
when there are a small number of large fragments of transposed subspace that 
are already in the right position. The algorithm involves the merging of these 
fragments, and compressing of the result. This algorithm is used instead of the 
first algorithm if the number of fragments is small. A more quantitative 
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treatment is given in a later section. 

A fourth algorithm takes advantage of the situation when the cross-product 
of the cardinalities of the transposed attributes are relatively small and they are 
moved as a group. In this situation, N buffers are used to store the temporary 
result of transposition where N is equal to the product of cardinalities of the 
transposed attributes. This algorithm is slower but not as memory intensive as 
the second algorithm. But when applicable, it offers better performance than the 
first and third algorithms. 

The algorithms are listed in the appendix. For the rest of the paper, we will 
use the following symbold for the relevant compressed database parameters: 

N: size of compressed summary data file. 
M: number of category attributes. 
W: number of buffers. 
B: size of buffers and blocks. 

5.1. Algorithm GENERAL 

5.1.1. Description 

This algorithm assumes W buffers each with size B are available. Data from 
CSF are read into the buffers. For each data item in each buffer, the following is 
done: Backward mapping is performed to obtain the logical position in the origi
nal category attribute space; a reverse array linearization is computed to recover 
the values of the attributes; and finally a new logical number in the transposed 
space is computed usint;; the array linearization operation. This new logical 
number (called a "tag") is then stored with the data item in the buffer. An inter
nal sort is performed on each of these buffers with respect to the tags of the data 
items. The sorted data items in these buffers are next merge-sorted into a single 
run and written out to disk along with the tags. This process is repeated for the 
rest of the blocks in CSF. The runs of data items and their tags are next merged 
using, again, W buffers. A new header file is constructed for the transposed file 
in the final pass of the merge sequence. Also, the tags associated with the data 
items are discarded in this pass. The file produced containing just the (shuffled) 
data items is the new transposed CSF file. 

5.1.2. Analysis 

5.1.2.1. Block Accesses 

Algorithm GTRANSPO has two major parts as far as 1/0 activities are con
cerned. The first part is where all the compressed data is read and sorted by the 
new logical positions using W buffers. The result of this part is a set of sorted 
subruns. The second part of the algorithm merges these subruns and compresses 
them in the last pass of the merge using W buffers. The more precise 1/0 
behavior of this algorithm is summarized as follows. 

The reading of the original compressed file and writing out of the sorted 
sub runs require 2 r NIB l block accesses. The second part of the algorithm 
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requires the merging of the rN IB IWl subruns using W buffers. Hence there are 
logw r NIB l-1 passes over the data. Here a buffering scheme is used so that in the 
odd (even) pass, block reading is done from the first (last) block to the last (first) 
block. One block can be saved from reading and writing by keeping the first or 
last block in memory to be used by the subsequent pass. Therefore, there are 

2( rN 1Bl-1)X( flogwN IB l-1) 

blocks to read and write. 

Finally, the original header file has to be read to compute the logical number 
and new header file needs to be built, hence we have N 0 blocks to read and N,. 
blocks to write. Therefore, the number of block accesses is 

2( rlogwN /B ]x( [N /Bl-1)+1)+ f N, ~N. l 
5.1.2.2. CPU Cost 

In the first part of the algorithm, for each value in the summary data file, 
we need to perform one reverse array linearization and one array linearization. 
There are also rN IBl blocks, each with size B, to sort and rN IB IWl merges, 
each with W runs of size B, to merge. 

An array linearization operation requires 
2(M -1) 

multiplications and additions. 

An reverse array linearization operation requires 
2(M -1) 

divisions and subtractions. 

To sort a block with size B requires 
Blog2B 

comparisons. 

To merge W runs each with size B requires 
WBlog2W 

comparisons. 

The total number of cpu operations, therefore, for the first part (steps 3 to 17) is 

4N(M -1)+ rN IBlx rBlog2B l+ rN IB IWlx r WB log2 W l 
In the second part of the algorithm, we need to perform ~ogw N 1 B l-1 iterations 

where each iteration involves the merging of rN IB IW; l runs each with size 
Wi B. Thus, in the second part, 

( flog w NIB l-1) X r N I B I w 1 X r WB log2 w l 
comparisons are needed. 
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The total number of cpu operations of GTRANSPO is therefore, 

N X(4(M -1)+ rlog2N l)· 

5.2. Algorithm MTRANSPO 

5.2.1. Description 

This algorithm requires a buffer large enough to hold the subspace from R10 

to RM. The algorithm steps through the non-transposed portion of the database, 
i.e., the subspace from R 1 to R10_1• For each "point" in this fixed space, transposi-
tion is performed as follows. Data is read in one block at a time. Tags are com
puted as described before. Each data item is stored into the buffer using the 
corresponding tag as an index. When the subspace is exhausted, headers are gen
erated and stored and the buffer is written out. This represents the result of par
tial transposition under this fixed "point" of the non-transposed space. These 
partial results are accumulative in the sense that they can be concatenated to 
form the final transposition result without any more passes over them. The rea
son is that the non-transposed portion of the space is stepped through in the 
same order that the original data is stored, i.e., the rightmost index is varying the 
fastest. 

5.2.2. Analysis 

Algorithm MTRANSPO requires the reading of the original summary data 
and writing of the resulting transposed summary data file. Also, the reading of 
the original header file and writing of the new header file are needed. Hence, the 
total 1/0 cost is 

The cpu cost of MTRANSPO is for each value in the summary data file, the cost 
for performing an array linearization and a reverse array linearization. Hence, 
the number of cpu operations is simply 

5.3. Algorithm STRANSPO 

5.3.1. Description 

4N(M -1). 

This algorithm takes advantage of the situation where there are a small 
number of large fragments of transposed subspace that are already in the right 
position. As a result, no sorting is required on the fragments and the merging is 
needed on a smaller number of sorted runs. 

As an example, consider Figure 2, where two examples of transpositions are 
shown on a file with four category attributes (called A, B, C, D). The LP 
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columns represent the logical numbers of each row of the category attributes. 
The first example moves the attribute B from the second column to the right of 
D ((b) of Figure 2). Notice that the LP column of (b) contains 2 sorted runs (the 
cardinality of B) each with 6 (the product of the cardinalities of C and D) ele
ments in it. The second example exchanges columns B and D. Again, notice that 
the LP column of (c) of Figure 2 where there are 6 subruns (the product of cardi
nalities of A, C and D) each with 2 (the cardinality of D) elements. These 
phenomena are generalized into the lemmas below, and for space reason, the 
proofs are omitted. 

Lemma 1. 

If R1 · · · R;-1 R; R;+l · · · R; R;+l · · · RM-
RI · · · R;_1 R;+1 · · · R; R; Ri+l 

(The symbol "-" is read as "is to be transposed to") 
(1) The number of subruns = I R; I; 

RM, then 

(2) The length of each subrun = I R1l X I R;-1l X I R;+1l X··· X I RM 1· 
(3) The subscripts of the boundary of each subrun are 

r 1 • • • r;_111 · · · 1 

r 1 • • • r;_121 · · · 1 

where R; = { 1, ... , k;}, rm is in Rm for m=1 to i -1 • 
. . 

This lemma summarizes the patterns of transposition involving the move
ment of attributes to the right. It presents the expected number of subruns, the 
length of the each subrun and the boundary of each subrun in terms of a single 
attribute being transposed to the right. Generalization of this lemma involving 
the transposition of a subspace of attributes is straightforward. 

Lemma 2 below presents the pattern of transposition when two attributes 
are exchanged in their category attribute space. Again, the generalization of this 
lemma to more than one attribute is used in our implementation. 

Lemma 2. 
If R I Ri-1 R; Ri+l ... Ri-1 R; Ri+l ... RM -

R1 · · · R;-1 R; R;+l · · · R;-1 R; R;+l · · · RM, 
then 
(1) The number of subruns = I R 1 I X · · · X I R1_1 I; 
(2) The length of each subrun = I R; I X · · · X I RM I; 
(3) The subscripts of each subrun begins at 

r 1 • • • r1_11 · · · 1 

where, rm is in Rm for m=l to j-1. 
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The key step of the algorithm STRANSPO is to use these two lemmas to 
compute the number of subruns and the boundary of each subrun. After that, it 
is basically a merge sort algorithm for SNUM subruns using W buffers. The first 
pass over the database involves constructing the tags for each data item as 
before. The final pass of the algorithm discards the tags and header counts are 
generated similar to the first algorithm. 

5.3.2. Analysis 

5.3.2.1. Block Accesses 

The 1/0 performance of STRANSPO is based on the number of subruns 
(SNUM in the algorithm). Since there are SNUM subruns needed to be merged 
and there are W buffers, the number of passes required to go over the rN /Bl 
blocks of data is rlogw SNUM 1- This plus the reading and constructing of header 

files brings the total of blocks accesses to be: 

2( rlogwSNUM 1x( [N /Bl-1)+1)+ r N,~N. l 
Note the same buffering scheme mentioned in GTRANSPO is used to save 

one block of 1/0 per pass. 

5 .. 3.2.2. Cpu Cost 

The cpu performance of the algorithm is similar to GTRANSPO except that 
there is no need to sort the data in the buffers and instead of having fN /Bl runs 
to merge, we have SNUM runs. The tot~l number of cpu operations, therefore, is 
equal to: 

5.4. Algorithm LTRANSPO 

5.4.1. Description 

This algorithm requires memory space to hold N buffers where N is the size 
of the transposed subspace. Unlike the algorithm M, where space is required to 
hold the entire subspace from the leftmost transposed attribute (R10) to the right-
most attribute of the database (RM ), this algorithm requires buffer space for sub
space starting at R10 to Ri, the rightmost transposed attribute. Similar to the 
algorithm M, the non-transposed subspace is stepped through in the row-wise 
fashion. For each data item, the reverse array linearization operation is per
formed to identify the correct buffer to which the data item belongs. This algo
rithm also requires N temporary files to store the overflowed buffers. These N 
temporary files are merged and header file generated when the original data file is 
exhausted. 
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Two general cases of the algorithm are presented in the section below. 
These two cases are distinguished according to the transposition direction of the 
group of transposed attributes. The first and second cases represent respectively 
the left and right direction movement of a group of attributes. 

Assume the additional input parameter D, which represents the number of 
buffers needed in the algorithm. The value of D can be computed as below: 

D= I Ri I X ..... X I Ri+ll I or I Ri+lr+1 I X ..... X I Ri I· 

Algorithm L TRANSPO recognizes the following two situations. 

(l)R 1 • · • R,_1 R, · · · (Ri · · · Ri+ll) Ri+ll+l · · · RM -
R 1 • • • R1_1 (Ri · · · Ri+ll) R, · · · Ri_1 Ri+A:+1 RM; 

(2)R 1 · · · R,_1(R; · · · R;+Jt )Ri+lt+1 

R1 · · · R;-1 R,+,+1 

5.4.2. Analysis 

Rj Ri+1 ... RM-

Ri (Ri · · · Ri+ll) Ri+1 · · · RM; 

The number of 1/0 required is equal to 4 times the total number of blocks of 
the database. The reason is that the temporary files have to be read and con
catenated into a single file. Also, there may be up to kd more blocks to write to 
disk when the buffers are not full but the data stream is exhausted, where k is 
equal to product of the non-transposed space (i.e., from R 1 to R1_1). This plus the 
reading and constructing of the header file bring the total of 1/0 operations to 

4 [N /B]+ r N, ;N• ]+kd. 
The number of cpu operations required is just 

2N(M -1) 

since only N reverse array linearization operations are needed. 

6. Comparing the Basic Algorithms 

In this section a partial order among the four algorithms is constructed in 
terms of I/0 and cpu cost. In the following observations, the symbol ">>" is 
defined as a short hand notation for "is more expensive than". Also, the algo
rithms will be referred to by their first letter. 

6.1. Observations 
Observation 1. G >> M, S >> M, and G >> L . 

Justification. 
v 

(1) G >> M. 

The block access difference between G and M is 

11 



2(( fN IB1-1)X( flogwN IB l-1)). 

Since we are interested in very large databases, typically r NIB 1 > w' thus, 
IO(G) > IO(M). 

The cpu time difference is 

Nlog2N 

which is > 0. Hence cpu(G) > cpu(M). Therefore we have G >> M. 

(2) S >> M. 
IO(S)- IO(M) = 2( fN IB 1-1)(/ogwSNUM -1). 

Generally, SNUM >Wand fN IB1>1, thus IO(S) > IO(M). 

cpu(S)- cpu(M) = N(log2SNUM)>O. 

cpu(S) > cpu(M). Hence (2) is justified. 

(3) G >> L. 
IO(G)- IO(L)=2((logw fN IB1-2)( fN IB]-1)-(kd +2)). 

Since fN 1 B 1 is typically much larger than W ,k, and d, we have 

kd+2 
logw fN IB1> fN IBl-1 +2. 

Thus IO(G) > IO(L). 

cpu(G)- cpu(L) = N(2(M-1)+ flog2Nl>O. 

Hence we have (3). 

Observation 1 gives a partial order of preference in terms of performance. 
But the memory requirements of M and L should be important considerations. M 
requires memory space equal to the entire full subspace from the leftmost attri
bute to be transposed to the rightmost attribute of the database. L requires 
memory space to hold D buffers where D is equal to the size of the subspace 
bounded by the leftmost and rightmost attributes to be transposed. In very large 
databases, M or L may not be applicable for transposition requests which exceed 
the available memory in the user environment. In such cases, either G or S 
should be used. A decision procedure will be described to choose the best possi
ble algorithm for a given transposition request. 

Observation 2. 

( ) kd +2 
1 If logwSNUM > fN IBl-1 +2 then S >> L else L >> S. 

12 



'"' 

(2) If rN /Bl>SNUM then G >> S else S >> G. 

Justification. 

(1) We know that 

IO(S)- IO(L) = 2((/ogw SNUM -2)( rN / B l-1)-(kd +2)). 
and, 

cpu(S)- cpu(L) = N (2(M -1)+log2SNUM 

= 0 (Nlog2SNUM)>O. 

If the condition of (1) is true, then S >> L. Oth~rwise, IO(S) - IO(L) is 
-0 (Nlogw SNUM). Since the differences of I/0 and cpu times are the same order, 
the I/0 cost should be the more dominant consideration, hence L >> S in this 
case. 

(2) We also know that 

IO(G)- IO(S) = 2logw ~bti ( rN /Bl-1). 

and, 
N 

cpu( G)- cpu(S) = Nlog2 SNUM>O. 

If rN /Bl > SNUM, then G >> S. Otherwise, the savings of cpu time of S over 
G are not enough to offset the extra block accesses of S over G, hence we haveS 
>> G in this situation~ 

Intuitively, the performance of S depends very muchon the value of SNUM. 
As a rule of thumb, algorithm S is attractive if the value of SNUM is small. 
Since a small SNUM value will indicate long subruns, as a result, less passes will 
have to be done over the data. Observation 2 gives the formal criteria of choos
ing between S and G as well as between S and L. 

Observation 3 L >> M. 

Justification. 

IO(M)- IO(L) = -(2 rN /Bl+kd )<0. 

cpu(M)"- cpu(L) = 2N(M -1)>0. 

Similar to the justification of (2) of Observation 2, L << M overall. 
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6.2. A Select Procedure 

Below a decision procedure is given which is based on the three observations 
above to select the cheapest transposition algorithm. 

Algorithm DECIDE. 

IF available memory satisfies M THEN select M 
ELSE IF available memory satisfies L 

kd +" 
andlogwSNUM> fN/Bi-1+2 THEN selectL 

ELSE IF rN /Bl>SNUM THEN selectS 
ELSE select G. 

7. Implementation 

All four transposition algorithms have been implemented using C in a . 
V ~X/VMS environment. The Observations given above have all been experi
mentally validated. These algorithms and the above DECIDE program are now 
an integral part of our experimental SSDB management system MICSUM ([Wong 
& Li86]). 

8. Summary and Conclusion 

Transposition is the dominant operation in many SSDBs. In this paper, a 
collection of efficient transposition algorithms have been described and analyzed. 
These algorithms operate directly on compressed data without the need to first 
decompress them. The methods proposed are applicable to databases that are 
compressed using the general method of run-length encoding. A decision pro
cedure is also given to select the most efficient algorithm based on the transposi
tion request, available memory, as well as the database parameters. Formulas 
have been developed which identify the required memory space, the length of the 
subruns and the number of expected subruns. The algorithms have the same 
order of 1/0 performance as that of [Floyd72] and [Tsuda et al.83] where only 
dense 2-dimensional matrices are dealt with. The algorithms presented can 
operate on compressed multi-dimensional databases. Since aggregation opera
tions can be developed on top of transposition operations, the result of this paper 
can be applied directly to efficient aggregation algorithms on compressed data. 

In conclusion, direct manipulation over compressed data is an important 
concept where great efficiency can be achieved. Algorithm need to be developed 
and analyzed for operators on compressed data. Transposition is just one (and 
important) such operation in this direction. We are now researching on other 
operators such as searching, aggregation, and other higher level statistical opera
tors on compressed data. 
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Appendix 

Algorithms In this appendix, the algorithms are described in a pseudo- pro
gramming language. We will use the following notations for the relevant 
compressed database parameters: 

CSF: Compressed summary data file. 
SHF: Summary data header file. 
C[i]: Cardinality of the ;tiL category attribute, i=l toM. 
N: size of compressed summary data file. 
M: number of category attributes. 

The following parameters are assumed to be available for each transposition 
request: 

W: number of buffers. 
B: size of buffers and blocks. 
A[i]: Transposition assignment for category attribute i, i=l toM. 

E.g., A[5] = 3 implies that the st• category attribute is to be 
transposed to be the arcl category attribute. 

Also, routines that perform the backward mapping; from the compressed 
physical file to the logical file, array linearization, and reverse array linearization 
are referred to respectively BMAP, LIN, and REV _LIN. 
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(1) FOR i=1 TO M DO 
(2) NC[i] = C[A[i]] 
(3) FOR i=1 TO rN IB IWl DO 
(4) BEGIN 
(5) FOR j=1 TO W DO 
(6) BEGIN 
(7) read ((i-1)*W+j)th block of CSF into buffer[j]; 
(8) FOR each value v in buffer[j] DO 
(9) BEGIN 
(10) look up v's logical position using BMAP; 
(11) compute subscripts using REV _LIN 

and store to array z; 
(12) reassign z according to array A; 
(13) compute new logical position using z and NC; 

and store with v in buffer[j]; 
(14) END 
(15) sort buffer(j] in order of logical positions; 
(16) END 
(17) merge theW runs in buffer[1], ... ,buffer[W] into a single run; 

(if r NIB 1= w, calculate header counts and write to new header file.) 
(18) END 
(19) FOR i=1 TO flog,. NIB l-1 DO 

(20) merge the r NIB I wi l runs formed in step(17) or (20); . 

(if i= flog.N /B 1-l,compute headers and write to new header file.) 

Algorithm GTRANSPO 
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(1) 
(2) 
(4) 
(5) 

... (8) 
(9) 
(10 
(11 
(12 

(13) 
(14) 

(15) 
(16) 
(18) 

(19) 

Let 10 denote the index of the leftmost attribute to be transposed. 

FOR i=1 TO M DO 
NC(i]=C(A[i]]; 

FOR each r 11 • • • ,r1 0_1 in the cross product R" ... , R1 0
_1 in ascending order DO 

BEGIN 
IF bufferin is empty THEN read a block of CSF to bufferin; 
FOR each value v in bufferin DO 

BEGIN 
look up v's logical position using BMAP; 
compute the subscripts using REV _LIN 
and store to array z; 

reassign z according to array A; 
compute the new logical position p using LIN 

with z and NC as parameters; 
buffer(p ]=v; 

END 
write values in buffer to result file, and calculate the 

header counts and write to the new header file; 
END 

Algorithm MTRANSPO 
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(1) FOR i=1 TO M DO 
(2) NC[i]=C[A[i]]; 
(3) SNUM=number of subruns using Lemmas 1 and 2; 
(4) FOR i=1 TO rsNUM /Wl DO 
(5) BEGIN 
(6) FOR j=1 TO W DO 

compute the ((i -t)•w + i )11 subrun's boundary 
and compute the boundary's new logical position; 

(7) WHILE one of the ((i -1)•W +1)11 ,((i -1)•W +2)'"1 , 

... ,and ((i-1)•W+W)11 subsuns is not at end DO 
(8) BEGIN 
(9) IF buffer(j] is empty and ((i-t)•W+j)11 subrun 

is not at end (for j=1 toW) THEN 
(10) BEGIN 
(11) read a block of ((i-1)•W+i)1

• run to buffer[j]; 
(12) FOR each value v except boundary in buffer[j] DO 
(13) BEGIN 
(14) look up v's logical position using BMAP; 
(15) compute subscripts using REV _LIN 

and store to array z; 
(16) reassign z according to array A; 
(17) compute the new logical position using LINEAR 

and store with v in buffer[j]; 
(18) END 
(19) END 
(20) merge the W runs in the buffers into single run; 

(if rsNUM /Wl=l,compute headers and write to new header file.) 
(21) END 
(22) END 

(23) FOR i=l TO rlog. SNUM l-1 DO 

(24) merge the rsNUM fW; l runs formed in step(20) or (24); 

(if i= rlogUI SNUM 1-l,compute headers and write to new header file.) 

Algorithm STRANSPO 
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• 

(1) FOR each combination z 1 • • • z;_1 

in the cross product of R 1 • • • R;_1 increasingly DO 
(2) BEGIN 
(3) read one block of CSF into bufferin; 
(4) FOR each value v in bufferin DO 
(5) BEGIN 
(6) look up v's logical position using BMAP; 
(7) compute subscripts using REV _LIN 

and store to array z; 
(8) buffer(z; ,; .. ,z; +•l=v 

(or buffer(zi+H1 • • · z; ]=v); 
(9) IF this buffer is full THEN 

write to file TSF [z;, ... , z;+•l 
(or TSF [zi+Hh ... , z; ]); 

(10) END 
(11) FOR i=l TO D DO 
(12) IF buffer(i) is not empty THEN 

write to TSF[i]; 
(13) FOR. each z; · · · z;H (or z;H+1 • • • z;) increasingly DO 

read TSF[z;, ... , z;H] (or TSF[zi+Hll ... , z;l); 
write sequentially to result file; 
compute header counts and write to new header file; 

(14) END 

Algorithm L TRANSPO 
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