
l

LBL-21157
~-~

Lawrencte lBterrttell~y ILalbl!Olrrtat~([J)rry
UNIVERSITY OF CALIFORNIA RECEIVED

BERKEl ~V L.A~()PATORV

Computing Division
JUL 1 6 1986

LIBRA~Y ANO
DOCUMENTS SECTION

To be presented at the 12th International
Conference on Very Large Databases,
Kyoto, Japan, August 25-28, 1986

TRANSPOSITION ALGORITHMS O.N VERY
LARGE COMPRESSED DATABASES

H.K.T. Wong and J.Z. Li

June 1986

TWO-WEEK LOAN COPY

This is a Library Circulating Copy ::_;.

~--------- ~which,may be borrowed for two weeks.~: . ~-
. .. - . "';k1' . . ~ ~-;.·

,. . tr
~·. /~.~

.. f~.... ·~~Jt
--~ ... ~

Prepared for the U.S. Depar1ment of Energy under Contract DE-AC03-76SF00098

r
()(J
r
(

~-)
-(\ ()1

'_j y

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

'•

Transposition Algorithms on
Very Large Compressed Databases

Harry K.T. Wong and Jian Zhong Li

Computer Science Research Department
University of California

Lawrence Berkeley Laboratory
Berkeley, California 94720

June, 1986

LBL-21157

This research waa supported by the Applied Mathematics Sciences Research PrO
gram or the Office or Energy Research, U.S. Department of Energy under contract
DE-AC03-7 6SF00098.

'"

•

Transposition Algorithms on
Very Large Compressed Databases

Harry K.T. Wong and J. Z. Li*
Lawrence Berkeley Laboratory,

University of California
Berkeley, California

Abstract

LBL-21157

Transposition is the dominant operation for very large scientific and statisti
cal databases. This paper presents four efficient transposition algorithms for very
large compressed scientific and statistical databases. These algorithms operate
directly on compressed data without the need to first decompress them. They are
applicable to databases that are compressed using the general (and popular) class
of methods called run-length encoding scheme. The algorithms have different
performance behavior as a function of the database parameters, main memory
availability, and the transposition request itself. The algorithms are described
and analyzed with respect to the I/0 and cpu cost. A decision procedure to
select the most efficient algorithm, given a transposition request, is also given.
The algorithms have been implemented and the analysis results experimentally
validated.

Supported by the Office of Energy Research, U.S. DOE under Contract No.
DE-AC03-76SF00098.

* On leave from Dept. of Computer Science, Heilongjiang Univ., China.

1. Introduction
We are interested in very large Scientific and Statistical Databases (SSDBs)

([Shoshani82], [Shoshani, Olken & Wong84]). SSDBs are prevalent in scientific,
socio-economic, and business applications. Examples of SSDBs are experiments
and simulation for scientific applications, census, health, and environmental data
for socio-economic applications, and inventory and transaction analysis for busi
ness applications. These databases typically contain large amount of data in
summary form. The main characteristic of such databases is that they contain a
combination of descriptive elements for each value of measured (counted,
observed, or computed) data.

As an example, consider the database in Figure 1 which contains summary
data of a multi-factor parametric experiment of corrosion of materials under
different conditions such as temperature, acidity, salinity, and duration. The first
five attributes (material, temperature, acidity, salinity and time) represent
parameter data, the last attribute (corrosion) represents the measured data. The
attributes for the parameter data are often referred to as category attributes,
since they contain category of the measured data. The attributes for the meas
ured data are referred to as summary attributes, since they contain data on which
statistical summarization procedures are applied.

Typical queries of a database such as Figure 1 involve the retrieval of sum
mary attribute values given some specific combination of the category values
(What is the corrosion level for steel in temperature 1500, acidity level of 200,
salinity level of 5, and time of 10 units?). To facilitate searching, the database is
typically sorted by the category attributes in row-wise fashion (i.e., the values of
the rightmost attribute vary the fastest).

Two factors cause these SSDBs to be extremely large. First, they may con
tain hundreds of summary attributes. Secondly and more importantly, the cardi
nalities of the category attributes can themselves be quite large; and the number
of tuples generated is the product of these cardinalities. For example, the mor
tality database from the National Institute of Health contains the cross product
of four races, two sexes, 70 diseases, six age groups, and 3000 counties, amounting
to over ten million tuples.

2. Motivation

The most common operations operating on summary databases (besides
searching) are transposition and aggregation. The former requests an re-ordering

. of the category attributes for the purpose of presentation and analysis. An exam
ple from the database in Figure 1 is to transpose the database so that now tem
perature and acidity are after material, salinity and time. Transposition opera
tions are also required to obtain the popular file structure called transposed file
([Batory79]). Transposed files are the most efficient file structure for many SSDB
applications. The motivation of transposed files is that the access to SSDBs is
typically long sweep, i.e., a long sequence of individual records is fetched and a
small number of attributes extracted. By storing the records as a collection of

2

v

..

contiguous attribute columns, i.e., all of the data for a field (attribute) is stored
together, only those attribute columns which are needed for a query need be
retrieved. We assume also, in this paper, that transposed files are used to store
the data in the summary SSDBs.

Aggregation operations are used to "collapse" away some category attributes
to obtain a more concise database to facilitate more efficient analysis. An exam
ple of aggregation is a request such as "What is the total corrosion level of steel
in temperature 1000, acidity 100, and salinity 1?" Since the dimension time is
ignored in the request, the corrosion values is aggregated on the time dimension.
The answer to the above request is obtained by summing the corrosion level
values over all time values for each combination of the other category attributes.

Efficient methods of performing transposition and aggregation are the keys
to have an efficient SSDB system to support data analysis. Since most large sum
mary SSDBs are typically compressed, efficient transposition and aggregation
methods directly over compressed data without first decompressing are impor
tant.

Note that transposition and aggregation operations are closely related. An
aggregation operation on attribute A can be realized by first transposing A from
its original position to the right of the rightmost category attribute in the data
base, then the corresponding summary attribute values are aggregated (typically
by simple arithmetic operations such as sum, weighted average, etc.). For exam-·
ple, to collapse the temperature dimension from the database involves transpos
ing the attribute to the right of the time attribute, then the corrosion values are
aggregated. In this paper, we describe several efficient techniques for performing
transposition on compressed summary SSDBs. The results obtained can be
extended to the aggregation operation mentioned above.

In section 2, the related area is surveyed and in section 3, some background
information about compression is given for the rest of the paper. In section 4,
description and analysis of four transposition algorithms are given. In section 5,
a decision procedure is developed that will select the most appropriate algorithm
for a given transposition request. Section 6 describes our implementation effort
and section 7 summarizes the paper and draws some conclusions.

3. Related Work

Almost all SSDB management systems (such as [Turner et al.79], [McCarthy
et al.82], [SAS79]) perform transposition over compressed data by first
decompressing the data, then transposing the full (typically very sparse) cross
product, and finally recompressing the database. For very large SSDBs, the user
may have to wait days or even weeks for the operation to finish. What is needed
is algorithms which manipulate compressed data directly.

Several researchers ([Epstein79] and ~(lug82]) have tackled the problems of
processing aggregates in the relational database context. The reported techniques
are not applicable to summary SSDBs since no compression is assumed on the
databases and the emphasis is on query optimization.

3

[Floyd72] gives a very interesting transposition algorithm for dense square
matrices residing on disk. Given a matrix of size P by P, the algorithm uses 2 ·
buffers of size P each to transpose the columns of the matrix to rows. Since the
matrix is not compressed, a mathematical formula is given to decide where each
data item should be moved. The algorithm requires I/0 operations in the order
of 0 (P log2P).

[Tsuda et al.83] extends Floyd's algorithm to handle rectangular matrices
(still 2-dimensional). The method is to divide the matrix into a multiple of
square matrices (the last matrix may have to be padded with nulls to make it
square) and Floyd's algorithm can be applied on each. The algorithms presented
in this paper have the same order of I/0 performance as the algorithms presented
in [Floyd72] and [Tsuda et al.83]. But our algorithms can work on compressed
multi-dimensional databases.

4. Compression of SSDBs
In this section, the concepts and terms of the compression methods we use

are introduced. They formulate the background for the algorithms in the next
section.

Summary SSDBs such as the one displayed in Figure 1 have a great deal of
redundancy in the values of the category attributes. In many databases all possi
ble combinations of the category attributes (i.e., the full cross-product) exist. In
such cases, each value of a category attribute repeats as many times as the pro
duct of the cardinalities of the remaining category attributes.

A method which eliminates the need to store category attributes is used.
This method stores the list of distinct category attribute values of each attribute
once. Then, each category attribute can be used to form one dimension of a
multi-dimensional matrix. For each combination of values from the category
attributes, one can compute the appropriate position in the matrix. A well
known algorithm (called array linearization) provides such a mapping. This
method transforms a query on the category attributes into a computation of a
logical position in a linearized matrix. Array linearization is reversible in the
sense that given a position in the matrix, there is a unique combination of
category attribute values identifying it (this process is called reverse array linear
ization).

Summary attribute values can be quite sparse. As an example, refer to Fig
ure 1. Suppose that temperature does not have effect on certain type of material.
then in the corrosion column there would be the same value in consecutive posi
tions for all the acidity, salinity, and time. Here a compression method called
header compression ([Eggers & Shoshani80]) is used to remove the repeated
values by a count and provide efficient access to the compressed data. This
method makes use of a header which contains the counts of both compressed and
uncompressed sequences in the data stream. The counts are organized in such a
way as to permit a logarithmic search over them. A B-tree is built on top of the
header to achieve a high radix for the logarithmic access. In addition to the

4

..

header file, the output of the compression method consists of a file of compressed
data items, called physical file (the original file, which is not stored, is called logi
cal file). Two mappings .are provided by the compression method, one is called
forward mapping, which computes the location in the physical file given a posi
tion of the logical file. The other mapping (called backward mapping) provides
the physical to logical direction. These mappings can be performed in loga
rithmic time because of the existence of the header. For a more thorough discus
sion of the header compression method, refer to the original paper.

To make the description of the algorithms more concrete, we assume that
each summary attribute of the database has been compressed using the header.
compression scheme. But an important note is that the algorithms are general in
the sense that they can be applied to databases that are compressed using the
general class of methods called run-length encoding scheme ([Aronson77]), where a
repetition of data items is replaced by a count and a value of the data item.
Header compression method is just a variation of the run-length encoding
scheme. Also, we assume that the category attributes are compressed away by
array linearization as mentioned before.

5. Transposition Algorithms

In this section the four transpositions algorithms will be described in detail.
Below the main idea and the applicability of each algorithm will be briefly
highlighted. The description sections below provide more details for each algo
rithm.

The first algorithm is a "general" algorithm in the sense that it can be used
in all situations. First, the physical database is read, and for each data item, a
"tag" is computed and stored with the data. item on disk. A tag is the logical
sequence number for the data item in the transposed space. The second step
involves sorting the tag and data item pairs in ascending order of the tags. Mter
the sorting is done, the tags associated with the data item are discarded. As the
tags are stripped, the necessary headers for the data items are generated and
these headers and the data items represent the result of the transposition.

The second algorithm performs the operation in main memory in one pass.
This is feasible in the event when the transposed subspace is small enough to fit
into main memory. The main idea of the algorithm involves scanning the physi
cal database once, and employing the reverse array linearization to find the
proper slot for each data item in the memory buffer. A compression algorithm
will then run over the data in memory and the result is stored in compressed
form on disk.

For the case that the transposed subspace is too large to fit in main memory,
a third algorithm can be used. The algorithm takes advantage of the situation
when there are a small number of large fragments of transposed subspace that
are already in the right position. The algorithm involves the merging of these
fragments, and compressing of the result. This algorithm is used instead of the
first algorithm if the number of fragments is small. A more quantitative

5

treatment is given in a later section.

A fourth algorithm takes advantage of the situation when the cross-product
of the cardinalities of the transposed attributes are relatively small and they are
moved as a group. In this situation, N buffers are used to store the temporary
result of transposition where N is equal to the product of cardinalities of the
transposed attributes. This algorithm is slower but not as memory intensive as
the second algorithm. But when applicable, it offers better performance than the
first and third algorithms.

The algorithms are listed in the appendix. For the rest of the paper, we will
use the following symbold for the relevant compressed database parameters:

N: size of compressed summary data file.
M: number of category attributes.
W: number of buffers.
B: size of buffers and blocks.

5.1. Algorithm GENERAL

5.1.1. Description

This algorithm assumes W buffers each with size B are available. Data from
CSF are read into the buffers. For each data item in each buffer, the following is
done: Backward mapping is performed to obtain the logical position in the origi
nal category attribute space; a reverse array linearization is computed to recover
the values of the attributes; and finally a new logical number in the transposed
space is computed usint;; the array linearization operation. This new logical
number (called a "tag") is then stored with the data item in the buffer. An inter
nal sort is performed on each of these buffers with respect to the tags of the data
items. The sorted data items in these buffers are next merge-sorted into a single
run and written out to disk along with the tags. This process is repeated for the
rest of the blocks in CSF. The runs of data items and their tags are next merged
using, again, W buffers. A new header file is constructed for the transposed file
in the final pass of the merge sequence. Also, the tags associated with the data
items are discarded in this pass. The file produced containing just the (shuffled)
data items is the new transposed CSF file.

5.1.2. Analysis

5.1.2.1. Block Accesses

Algorithm GTRANSPO has two major parts as far as 1/0 activities are con
cerned. The first part is where all the compressed data is read and sorted by the
new logical positions using W buffers. The result of this part is a set of sorted
subruns. The second part of the algorithm merges these subruns and compresses
them in the last pass of the merge using W buffers. The more precise 1/0
behavior of this algorithm is summarized as follows.

The reading of the original compressed file and writing out of the sorted
sub runs require 2 r NIB l block accesses. The second part of the algorithm

6

•

requires the merging of the rN IB IWl subruns using W buffers. Hence there are
logw r NIB l-1 passes over the data. Here a buffering scheme is used so that in the
odd (even) pass, block reading is done from the first (last) block to the last (first)
block. One block can be saved from reading and writing by keeping the first or
last block in memory to be used by the subsequent pass. Therefore, there are

2(rN 1Bl-1)X(flogwN IB l-1)

blocks to read and write.

Finally, the original header file has to be read to compute the logical number
and new header file needs to be built, hence we have N 0 blocks to read and N,.
blocks to write. Therefore, the number of block accesses is

2(rlogwN /B]x([N /Bl-1)+1)+ f N, ~N. l
5.1.2.2. CPU Cost

In the first part of the algorithm, for each value in the summary data file,
we need to perform one reverse array linearization and one array linearization.
There are also rN IBl blocks, each with size B, to sort and rN IB IWl merges,
each with W runs of size B, to merge.

An array linearization operation requires
2(M -1)

multiplications and additions.

An reverse array linearization operation requires
2(M -1)

divisions and subtractions.

To sort a block with size B requires
Blog2B

comparisons.

To merge W runs each with size B requires
WBlog2W

comparisons.

The total number of cpu operations, therefore, for the first part (steps 3 to 17) is

4N(M -1)+ rN IBlx rBlog2B l+ rN IB IWlx r WB log2 W l
In the second part of the algorithm, we need to perform ~ogw N 1 B l-1 iterations

where each iteration involves the merging of rN IB IW; l runs each with size
Wi B. Thus, in the second part,

(flog w NIB l-1) X r N I B I w 1 X r WB log2 w l
comparisons are needed.

7

The total number of cpu operations of GTRANSPO is therefore,

N X(4(M -1)+ rlog2N l)·

5.2. Algorithm MTRANSPO

5.2.1. Description

This algorithm requires a buffer large enough to hold the subspace from R10

to RM. The algorithm steps through the non-transposed portion of the database,
i.e., the subspace from R 1 to R10_1• For each "point" in this fixed space, transposi-
tion is performed as follows. Data is read in one block at a time. Tags are com
puted as described before. Each data item is stored into the buffer using the
corresponding tag as an index. When the subspace is exhausted, headers are gen
erated and stored and the buffer is written out. This represents the result of par
tial transposition under this fixed "point" of the non-transposed space. These
partial results are accumulative in the sense that they can be concatenated to
form the final transposition result without any more passes over them. The rea
son is that the non-transposed portion of the space is stepped through in the
same order that the original data is stored, i.e., the rightmost index is varying the
fastest.

5.2.2. Analysis

Algorithm MTRANSPO requires the reading of the original summary data
and writing of the resulting transposed summary data file. Also, the reading of
the original header file and writing of the new header file are needed. Hence, the
total 1/0 cost is

The cpu cost of MTRANSPO is for each value in the summary data file, the cost
for performing an array linearization and a reverse array linearization. Hence,
the number of cpu operations is simply

5.3. Algorithm STRANSPO

5.3.1. Description

4N(M -1).

This algorithm takes advantage of the situation where there are a small
number of large fragments of transposed subspace that are already in the right
position. As a result, no sorting is required on the fragments and the merging is
needed on a smaller number of sorted runs.

As an example, consider Figure 2, where two examples of transpositions are
shown on a file with four category attributes (called A, B, C, D). The LP

8

:~

· ..

columns represent the logical numbers of each row of the category attributes.
The first example moves the attribute B from the second column to the right of
D ((b) of Figure 2). Notice that the LP column of (b) contains 2 sorted runs (the
cardinality of B) each with 6 (the product of the cardinalities of C and D) ele
ments in it. The second example exchanges columns B and D. Again, notice that
the LP column of (c) of Figure 2 where there are 6 subruns (the product of cardi
nalities of A, C and D) each with 2 (the cardinality of D) elements. These
phenomena are generalized into the lemmas below, and for space reason, the
proofs are omitted.

Lemma 1.

If R1 · · · R;-1 R; R;+l · · · R; R;+l · · · RM-
RI · · · R;_1 R;+1 · · · R; R; Ri+l

(The symbol "-" is read as "is to be transposed to")
(1) The number of subruns = I R; I;

RM, then

(2) The length of each subrun = I R1l X I R;-1l X I R;+1l X··· X I RM 1·
(3) The subscripts of the boundary of each subrun are

r 1 • • • r;_111 · · · 1

r 1 • • • r;_121 · · · 1

where R; = { 1, ... , k;}, rm is in Rm for m=1 to i -1 •
. .

This lemma summarizes the patterns of transposition involving the move
ment of attributes to the right. It presents the expected number of subruns, the
length of the each subrun and the boundary of each subrun in terms of a single
attribute being transposed to the right. Generalization of this lemma involving
the transposition of a subspace of attributes is straightforward.

Lemma 2 below presents the pattern of transposition when two attributes
are exchanged in their category attribute space. Again, the generalization of this
lemma to more than one attribute is used in our implementation.

Lemma 2.
If R I Ri-1 R; Ri+l ... Ri-1 R; Ri+l ... RM -

R1 · · · R;-1 R; R;+l · · · R;-1 R; R;+l · · · RM,
then
(1) The number of subruns = I R 1 I X · · · X I R1_1 I;
(2) The length of each subrun = I R; I X · · · X I RM I;
(3) The subscripts of each subrun begins at

r 1 • • • r1_11 · · · 1

where, rm is in Rm for m=l to j-1.

g

The key step of the algorithm STRANSPO is to use these two lemmas to
compute the number of subruns and the boundary of each subrun. After that, it
is basically a merge sort algorithm for SNUM subruns using W buffers. The first
pass over the database involves constructing the tags for each data item as
before. The final pass of the algorithm discards the tags and header counts are
generated similar to the first algorithm.

5.3.2. Analysis

5.3.2.1. Block Accesses

The 1/0 performance of STRANSPO is based on the number of subruns
(SNUM in the algorithm). Since there are SNUM subruns needed to be merged
and there are W buffers, the number of passes required to go over the rN /Bl
blocks of data is rlogw SNUM 1- This plus the reading and constructing of header

files brings the total of blocks accesses to be:

2(rlogwSNUM 1x([N /Bl-1)+1)+ r N,~N. l
Note the same buffering scheme mentioned in GTRANSPO is used to save

one block of 1/0 per pass.

5 .. 3.2.2. Cpu Cost

The cpu performance of the algorithm is similar to GTRANSPO except that
there is no need to sort the data in the buffers and instead of having fN /Bl runs
to merge, we have SNUM runs. The tot~l number of cpu operations, therefore, is
equal to:

5.4. Algorithm LTRANSPO

5.4.1. Description

This algorithm requires memory space to hold N buffers where N is the size
of the transposed subspace. Unlike the algorithm M, where space is required to
hold the entire subspace from the leftmost transposed attribute (R10) to the right-
most attribute of the database (RM), this algorithm requires buffer space for sub
space starting at R10 to Ri, the rightmost transposed attribute. Similar to the
algorithm M, the non-transposed subspace is stepped through in the row-wise
fashion. For each data item, the reverse array linearization operation is per
formed to identify the correct buffer to which the data item belongs. This algo
rithm also requires N temporary files to store the overflowed buffers. These N
temporary files are merged and header file generated when the original data file is
exhausted.

10

....

"

.•.

Two general cases of the algorithm are presented in the section below.
These two cases are distinguished according to the transposition direction of the
group of transposed attributes. The first and second cases represent respectively
the left and right direction movement of a group of attributes.

Assume the additional input parameter D, which represents the number of
buffers needed in the algorithm. The value of D can be computed as below:

D= I Ri I X X I Ri+ll I or I Ri+lr+1 I X X I Ri I·

Algorithm L TRANSPO recognizes the following two situations.

(l)R 1 • · • R,_1 R, · · · (Ri · · · Ri+ll) Ri+ll+l · · · RM -
R 1 • • • R1_1 (Ri · · · Ri+ll) R, · · · Ri_1 Ri+A:+1 RM;

(2)R 1 · · · R,_1(R; · · · R;+Jt)Ri+lt+1

R1 · · · R;-1 R,+,+1

5.4.2. Analysis

Rj Ri+1 ... RM-

Ri (Ri · · · Ri+ll) Ri+1 · · · RM;

The number of 1/0 required is equal to 4 times the total number of blocks of
the database. The reason is that the temporary files have to be read and con
catenated into a single file. Also, there may be up to kd more blocks to write to
disk when the buffers are not full but the data stream is exhausted, where k is
equal to product of the non-transposed space (i.e., from R 1 to R1_1). This plus the
reading and constructing of the header file bring the total of 1/0 operations to

4 [N /B]+ r N, ;N•]+kd.
The number of cpu operations required is just

2N(M -1)

since only N reverse array linearization operations are needed.

6. Comparing the Basic Algorithms

In this section a partial order among the four algorithms is constructed in
terms of I/0 and cpu cost. In the following observations, the symbol ">>" is
defined as a short hand notation for "is more expensive than". Also, the algo
rithms will be referred to by their first letter.

6.1. Observations
Observation 1. G >> M, S >> M, and G >> L .

Justification.
v

(1) G >> M.

The block access difference between G and M is

11

2((fN IB1-1)X(flogwN IB l-1)).

Since we are interested in very large databases, typically r NIB 1 > w' thus,
IO(G) > IO(M).

The cpu time difference is

Nlog2N

which is > 0. Hence cpu(G) > cpu(M). Therefore we have G >> M.

(2) S >> M.
IO(S)- IO(M) = 2(fN IB 1-1)(/ogwSNUM -1).

Generally, SNUM >Wand fN IB1>1, thus IO(S) > IO(M).

cpu(S)- cpu(M) = N(log2SNUM)>O.

cpu(S) > cpu(M). Hence (2) is justified.

(3) G >> L.
IO(G)- IO(L)=2((logw fN IB1-2)(fN IB]-1)-(kd +2)).

Since fN 1 B 1 is typically much larger than W ,k, and d, we have

kd+2
logw fN IB1> fN IBl-1 +2.

Thus IO(G) > IO(L).

cpu(G)- cpu(L) = N(2(M-1)+ flog2Nl>O.

Hence we have (3).

Observation 1 gives a partial order of preference in terms of performance.
But the memory requirements of M and L should be important considerations. M
requires memory space equal to the entire full subspace from the leftmost attri
bute to be transposed to the rightmost attribute of the database. L requires
memory space to hold D buffers where D is equal to the size of the subspace
bounded by the leftmost and rightmost attributes to be transposed. In very large
databases, M or L may not be applicable for transposition requests which exceed
the available memory in the user environment. In such cases, either G or S
should be used. A decision procedure will be described to choose the best possi
ble algorithm for a given transposition request.

Observation 2.

() kd +2
1 If logwSNUM > fN IBl-1 +2 then S >> L else L >> S.

12

'"'

(2) If rN /Bl>SNUM then G >> S else S >> G.

Justification.

(1) We know that

IO(S)- IO(L) = 2((/ogw SNUM -2)(rN / B l-1)-(kd +2)).
and,

cpu(S)- cpu(L) = N (2(M -1)+log2SNUM

= 0 (Nlog2SNUM)>O.

If the condition of (1) is true, then S >> L. Oth~rwise, IO(S) - IO(L) is
-0 (Nlogw SNUM). Since the differences of I/0 and cpu times are the same order,
the I/0 cost should be the more dominant consideration, hence L >> S in this
case.

(2) We also know that

IO(G)- IO(S) = 2logw ~bti (rN /Bl-1).

and,
N

cpu(G)- cpu(S) = Nlog2 SNUM>O.

If rN /Bl > SNUM, then G >> S. Otherwise, the savings of cpu time of S over
G are not enough to offset the extra block accesses of S over G, hence we haveS
>> G in this situation~

Intuitively, the performance of S depends very muchon the value of SNUM.
As a rule of thumb, algorithm S is attractive if the value of SNUM is small.
Since a small SNUM value will indicate long subruns, as a result, less passes will
have to be done over the data. Observation 2 gives the formal criteria of choos
ing between S and G as well as between S and L.

Observation 3 L >> M.

Justification.

IO(M)- IO(L) = -(2 rN /Bl+kd)<0.

cpu(M)"- cpu(L) = 2N(M -1)>0.

Similar to the justification of (2) of Observation 2, L << M overall.

13

6.2. A Select Procedure

Below a decision procedure is given which is based on the three observations
above to select the cheapest transposition algorithm.

Algorithm DECIDE.

IF available memory satisfies M THEN select M
ELSE IF available memory satisfies L

kd +"
andlogwSNUM> fN/Bi-1+2 THEN selectL

ELSE IF rN /Bl>SNUM THEN selectS
ELSE select G.

7. Implementation

All four transposition algorithms have been implemented using C in a .
V ~X/VMS environment. The Observations given above have all been experi
mentally validated. These algorithms and the above DECIDE program are now
an integral part of our experimental SSDB management system MICSUM ([Wong
& Li86]).

8. Summary and Conclusion

Transposition is the dominant operation in many SSDBs. In this paper, a
collection of efficient transposition algorithms have been described and analyzed.
These algorithms operate directly on compressed data without the need to first
decompress them. The methods proposed are applicable to databases that are
compressed using the general method of run-length encoding. A decision pro
cedure is also given to select the most efficient algorithm based on the transposi
tion request, available memory, as well as the database parameters. Formulas
have been developed which identify the required memory space, the length of the
subruns and the number of expected subruns. The algorithms have the same
order of 1/0 performance as that of [Floyd72] and [Tsuda et al.83] where only
dense 2-dimensional matrices are dealt with. The algorithms presented can
operate on compressed multi-dimensional databases. Since aggregation opera
tions can be developed on top of transposition operations, the result of this paper
can be applied directly to efficient aggregation algorithms on compressed data.

In conclusion, direct manipulation over compressed data is an important
concept where great efficiency can be achieved. Algorithm need to be developed
and analyzed for operators on compressed data. Transposition is just one (and
important) such operation in this direction. We are now researching on other
operators such as searching, aggregation, and other higher level statistical opera
tors on compressed data.

14

..

...

Acknowledgements

We would like to thank our colleagues Frank Olken and Doron Rotem for
their input to the problem and Arie Shoshani for his valuable comments to the
paper.

Appendix

Algorithms In this appendix, the algorithms are described in a pseudo- pro
gramming language. We will use the following notations for the relevant
compressed database parameters:

CSF: Compressed summary data file.
SHF: Summary data header file.
C[i]: Cardinality of the ;tiL category attribute, i=l toM.
N: size of compressed summary data file.
M: number of category attributes.

The following parameters are assumed to be available for each transposition
request:

W: number of buffers.
B: size of buffers and blocks.
A[i]: Transposition assignment for category attribute i, i=l toM.

E.g., A[5] = 3 implies that the st• category attribute is to be
transposed to be the arcl category attribute.

Also, routines that perform the backward mapping; from the compressed
physical file to the logical file, array linearization, and reverse array linearization
are referred to respectively BMAP, LIN, and REV _LIN.

15

..

(1) FOR i=1 TO M DO
(2) NC[i] = C[A[i]]
(3) FOR i=1 TO rN IB IWl DO
(4) BEGIN
(5) FOR j=1 TO W DO
(6) BEGIN
(7) read ((i-1)*W+j)th block of CSF into buffer[j];
(8) FOR each value v in buffer[j] DO
(9) BEGIN
(10) look up v's logical position using BMAP;
(11) compute subscripts using REV _LIN

and store to array z;
(12) reassign z according to array A;
(13) compute new logical position using z and NC;

and store with v in buffer[j];
(14) END
(15) sort buffer(j] in order of logical positions;
(16) END
(17) merge theW runs in buffer[1], ... ,buffer[W] into a single run;

(if r NIB 1= w, calculate header counts and write to new header file.)
(18) END
(19) FOR i=1 TO flog,. NIB l-1 DO

(20) merge the r NIB I wi l runs formed in step(17) or (20); .

(if i= flog.N /B 1-l,compute headers and write to new header file.)

Algorithm GTRANSPO

16

(1)
(2)
(4)
(5)

... (8)
(9)
(10
(11
(12

(13)
(14)

(15)
(16)
(18)

(19)

Let 10 denote the index of the leftmost attribute to be transposed.

FOR i=1 TO M DO
NC(i]=C(A[i]];

FOR each r 11 • • • ,r1 0_1 in the cross product R" ... , R1 0
_1 in ascending order DO

BEGIN
IF bufferin is empty THEN read a block of CSF to bufferin;
FOR each value v in bufferin DO

BEGIN
look up v's logical position using BMAP;
compute the subscripts using REV _LIN
and store to array z;

reassign z according to array A;
compute the new logical position p using LIN

with z and NC as parameters;
buffer(p]=v;

END
write values in buffer to result file, and calculate the

header counts and write to the new header file;
END

Algorithm MTRANSPO

17

(1) FOR i=1 TO M DO
(2) NC[i]=C[A[i]];
(3) SNUM=number of subruns using Lemmas 1 and 2;
(4) FOR i=1 TO rsNUM /Wl DO
(5) BEGIN
(6) FOR j=1 TO W DO

compute the ((i -t)•w + i)11 subrun's boundary
and compute the boundary's new logical position;

(7) WHILE one of the ((i -1)•W +1)11 ,((i -1)•W +2)'"1 ,

... ,and ((i-1)•W+W)11 subsuns is not at end DO
(8) BEGIN
(9) IF buffer(j] is empty and ((i-t)•W+j)11 subrun

is not at end (for j=1 toW) THEN
(10) BEGIN
(11) read a block of ((i-1)•W+i)1

• run to buffer[j];
(12) FOR each value v except boundary in buffer[j] DO
(13) BEGIN
(14) look up v's logical position using BMAP;
(15) compute subscripts using REV _LIN

and store to array z;
(16) reassign z according to array A;
(17) compute the new logical position using LINEAR

and store with v in buffer[j];
(18) END
(19) END
(20) merge the W runs in the buffers into single run;

(if rsNUM /Wl=l,compute headers and write to new header file.)
(21) END
(22) END

(23) FOR i=l TO rlog. SNUM l-1 DO

(24) merge the rsNUM fW; l runs formed in step(20) or (24);

(if i= rlogUI SNUM 1-l,compute headers and write to new header file.)

Algorithm STRANSPO

18

•

(1) FOR each combination z 1 • • • z;_1

in the cross product of R 1 • • • R;_1 increasingly DO
(2) BEGIN
(3) read one block of CSF into bufferin;
(4) FOR each value v in bufferin DO
(5) BEGIN
(6) look up v's logical position using BMAP;
(7) compute subscripts using REV _LIN

and store to array z;
(8) buffer(z; ,; .. ,z; +•l=v

(or buffer(zi+H1 • • · z;]=v);
(9) IF this buffer is full THEN

write to file TSF [z;, ... , z;+•l
(or TSF [zi+Hh ... , z;]);

(10) END
(11) FOR i=l TO D DO
(12) IF buffer(i) is not empty THEN

write to TSF[i];
(13) FOR. each z; · · · z;H (or z;H+1 • • • z;) increasingly DO

read TSF[z;, ... , z;H] (or TSF[zi+Hll ... , z;l);
write sequentially to result file;
compute header counts and write to new header file;

(14) END

Algorithm L TRANSPO

References

Shoshani, A., "Statistical Databases: Characteristics, Problems and Some Solu
tions", Proc. 1982 International Conference on Very Large Data
Bases, Mexico City, Mexico, Sept., 1982.

Shoshani, A., Olken, F., Wong, H.K.T., "Characteristics of Scientific Databases",
Proc. 1984 International Conference on Very Large Data Bases, Singa
pore, Sept., 1984.

Turner, M. J., Hammond, R., Cotton, F., "A DBMS for Large Statistical Data
bases", Proc. 1979 International Conference on Very Large Data
Bases, Rio de Janeiro, Brazil, Sept., 1979.

SAS Institute, Inc., SAS User's GUIDE, 1079 Edition, Raleigh NC.

McCarthy, J., Merrill, D.W., Marcus, A., Benson, W.H., Gey, F.C., Holmes, H.,

19

"SEEDIS: The Socio-Economic Environmental Demographic Informa
tion System", in A LBL Perspective on Statistical Databases LBL
Technical Report 153g3, Dec, 1gs2.

Eggers, S., Shoshani, A., "Efficient Access of Compressed Data", Proc. 1gso Inter
national Conference on Very Large Data Bases, Montreal, Canada,
Sept, 1gso.

Aronson, J., Data Compression - A Comparison of Methods, Institute for Com
puter Sciences and Technology, National Bureau of Standards, Wash
ington, D.C., 1g77, pp 3 -5.

Klug, A., "Access Paths in the Abe Statistical Query Facility", Proc. 1gs2 SIC
MOD Conference, Orlando, Florida.

Epstein, R., "Techniques for Processing Aggregates in Relational Database Sys
tems", Electronics Research Lab. UCB/ERL M7g/8, Univ. of Calif.,
Berkeley.

Klug, A., "Abe - A Query Language for Constructing Aggregates-By- Example",
Workshop on Statistical Database Management, Menlo Park, Calif.,
Dec. 1gs1.

Tsuda, T., Sato, T., "Transposition of Large Tabular Data Structures with Appli
cations to Physical Database Organization", Part I, Acta Informatica
1g, 13-33 (1g83), Part II, Acta Informatica, 1g, 167-182 (1g83).

Batory, D.S:, "On Searching Transposed Files", ACM TO DS 4, 531-544, 1g7g.

Floyd, R.W., "Permuting Information in Idealized Two-Level Storage", Complex
ity of Computer Computations R. Miller and J. Thatcher, editors, pp
105-1Qg, New York, Plenum Press 1g12.

Wong, H.K.T., Li, J. Z., "An Experimental SSDB system MICSUM", Working
document.

20

j,

..

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

·-6---- ~ ~

LAWRENCE BERKELEY LAB ORA TORY
TECHNICAL INFORMATION DEPARTMENT

UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

~- .. ~~

