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Abstract: 

We formulate a microcanonical simulation of the disassembly of a finite nuclear system into individually 
excitable and mutually interacting nuclear fragments. IDustrative results are presented. 

There is considerable interst in the disassembly of the hot nuclear matter produced in high-energy 
nuclear collisions. A particular stimulus has been the prospect of observing a nuclear liquid-gas phase 
transition. On rather general grounds, such a transition is expected to occur in nuclear matter at sub
saturation densities with temperatures of 10..20 MeV. However, virtually all previous discussions of this 
phenomenon have been based on thermodynamical considerations valid for infin~e, non-interacting sys
tems and the qualitative validity of the results has not been ascertained for the relatively small, finite, 
interacting systems of practical relevance. Nor is it clear how the occurrence of the phase transition 
will manifest itself in the asymptotically observed fragment distribution. 

To progress in these matters , we have formulated a microcanonical simulation of the disassem
bly process, including interfragment interactions. It is a natural refinement of the grand canonical 
model first presented in [1j and further developed in [2j and is also an exact version of the model 
developed in [3J for the generation of complete multifra.gment events in medium-energy collisions. In 
this contribution, we give in brief description of the key ingredients in the model and its numerical 
implementation. A more detailed presentation, and a discussion of calculated results is currrently be
ing prepared for publication [4j; that presentation also contains a discussion of the relationship of our 
work to those of Gross et ai. [5J and Bondorf et al. [6J which are also based on microscopical simulation. 

We consider a system of interacting nuclear fragments confined within some volume 0. A given 
state F of the system is specified by 

F: {NF;(A,.,r,.,p,.,e,.), n=1, ... ,NF} (1) 

Here NF is the number of fragments present, and A,.,r,.,p,.,e,. are their mass numbers, positions, 
momenta., and intrinsic excitation energies. The total number of nucleons present in F is 

(2) 

and we take the corresponding total energy to be 

N,. .., 1 
EF = I: [__!S_ - B,. + e,. + - I: v,.,.,] 

2mA,. 2 
n=l n';tn 

(3) 
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Here, the first term is the kinetic energy associated with translational motion, the inertial mass being 
taken as mAn, where m is the mass of the free nucleon. The binding energy of the ground state of 
fragment n may be taken as 

(4) 

where Zn ~ An/2. Furthermore, the intrinsic excitation is denoted by en. Finally, Vnn' is the inter
action energy between the fragments n and n'. This quantity generally includes both the electrostatic 
(Coulomb) and the nuclear (proximity) energies. A convenient form is 

2Z1Z2 ,., s12 
v12 = e -- + 411'1.n.b~(-) 

r12 b 
(5) 

where r 12 is the distance between the fragment centers and s12 = r 12 - C1 - C2 is the corresponding 
surface separation.[7J 

In the microcanonical simulation, we consider as equally probable all states F that are accessible to 
the system when due account is taken of conservation laws. In our present studies, we impose overall 
conservation of nucleon number and energy, but ignore other conservation laws, such as linear and 
angular momentum. The relaxation of these latter constraints are not expected to be of importa.ilce 
for our present purposes, but our calculational method can readily be modified to accomodate these 
features as well. 

II A is the total nucleon number of the system and E is its total energy, the associated microcanonical 
density of states is 

p(O, A, E) = I: o(AF- A) o(EF -E) (6) 
F 

where Pn is the intrinsic level density. The integrals over the NF fragment momenta can be carried out 
analytically a.nd the expression ·for p can be reduced to 

N I drn I p(O,A,E) =I: II[I: n den] w. 
N n=l A,. 

(7) 

Here the statistical weight of a particular configuration is given by 

(8) 

where K is the kinetic energy, 

(9) 

The above form of the density of states p is suitable for a Monte Carlo treatment, in which ex
pectation values of observables are calculated as averages over a statistically determined sample of 
configurations. To select this sample, we employ the Metropolis method, in which a sequence of con
figurations is generated by a markovian process in configuration space. To generate the next sample 
member of this sequence, a candidate configuration is first generated from the current one by one of 
several possible random "moves": change of position or excitation energy of a fragment, exchange of 

2 

,, 



\ 

\I • 

' 
System: 

10 
I 

pfpo = 0.5 bl 
I Ao = 40 I 

I~ I 
\ 

ell 8 ~ 
:E .. 
= 6 Q) 

e 
bO 
tiS 

~ 
4 

= tiS 
Q) 

~ 
.2 

5 10 15 20 25 

Temperature r (MeV) 

Figure 1: illustrative results in a schematic modeL 
This figure displays the mean fragment mass number A as a function of the temperature r in a microcanonical system 
containing a total of 40 nucleons. These nucleons may coalesce into composite fragments without any internal excitation, 
and the mean nucleon density is equal 0.08/fm8 , i.e. half the nuclear matter saturation value. The labeled curves 
correspond to the following five schematic scenarios: 
(a) The fragments are totally independent (and thus may overlap) and no Coulomb forces are acting (neither within nor 
between the fragments). 
(b) The fragments are still non-interacting, but the Coulomb energy is included in the fragment binding. 
(c) No Coulomb forces are acting at all, but hard-sphere potentials are imposed between the fragment pairs. 
(d) In addition to the hard-sphere potential, both intra- and inter-fragment Coulomb forces are included. 
(e) In addition to the hard-sphere potential, the intra-fragment Coulomb forces are included (i.e. ac > 0 in (4)), but the 
inter-fragment Coulomb forces are not. 

nucleons between two fragments, fusion of two fragments, or fission of a fragment. This candidate is 
accepted as the next configuration in the sequence if its weight, w', is greater then that of the current 
configuration,w. H w < w', the candidate is accepted with the probability w' /w, and otherwise the 
current configuration is used again. It is easy to show that, in the limit of long sequences, any configu
ration appears with the appropriate probability. However, since the candidate configuration is usually 
very similar to the current one, the sampling procedure diffuses rather slowly through configuration 
space and subsequent configurations are highly correlated. To obtain the required sample of sufficiently 
uncorrelated configurations, only a small fraction of the configurations in the sequence are employed 
(for example every fth member, with I to be determined empirically). 

In terms of the state density, the entropy of the system is S = ln p( 0, A, E). While we cannot 
calculate S by our method, we can find many other quantities of interest. In particular, the basic 
thermodynamic relation dE= rdS + p.dA--' PdO allows the inverse temperature f3 ~ 1/r, the chemical 
potential p., and the pressure P to be written as 

as 
13 = aE' 

as 
J1. = -r aA ' 

as 
P=ran (10) 

Each of these derivatives leads to the expectation value of some "observable" over the sample of con
figurations described above. For example, from (7-9), we find f3 = (( 3f - 1)/ K). 

The simplest non-trivial situation occurs when the fragments are assumed to be uncharged, non
interacting and cold. The character of the ensemble is then determined by the balance between the 
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fragment kinetic energies (which drive the system towards many, hence small, fragments) and the frag
ment surface energies (which drive the system towards large, and hence few, fragments). 

To illustrate the characteristic features of the multifragmentation process in this simplest situation, 
we consider the fragments distribution as a function of the imposed temperature, for a specified value 
of the nucleon density. The result is shown by curve a in the figure. As the temperature is decreased, 
the composition changes from many small fragments to a few large ones. If the Coulomb energy is 
included in the fragment binding energy, very little change occurs at higher temperature, while the 
mean fragment size drops somewhat at lower temperature, as shown by curve b; that is because the 
total binding is increased by partitioning a given amount of matter into small fragments. 

Several refinements of the above simplest scenario can be considered, The first one is to take ap
proximate account of the high nuclear incompressibility by imposing a high penalty for configurations 
with overlapping fragments, corresponding to considering the fragments to be hard spheres. The effect 
of this (excluded volume) refinement is shown by curve c. At the same temperature, the system prefers 
larger fragments. This is because the volume available to a fragment is effectively smaller (and in gen
eral the fragments grow larger when the system is compressed). 

Next we consider the effects of including the electrostatic energy. The Coulomb forces between the 
constituent nucleons have two effects: One is to reduce the binding energy of each individual fragment, 
and the other is to generate a repulsive force between fragment pairs. A consistent treatment must 
incorporate both of these effects. The result is given by curve d. As would be expected, only little 
change results, a.nd towards slightly smaller fragments. The effect of including only the self energy, 
but not the interaction, is shown by curve e. While no effect occurs at high temperature, where the 
multiplicity is high, there is an enhanced preference for higher multiplicity at the lower temperatures, 
as would be expected. 

The presented model establishes a well-founded formal basis for quantitative studies of a variety 
of aspects relating to the properties of hot and dilute nuclear matter. In particular, it is expected 
to be of value in ascertaining the quantitative applicability of thermodynamical methods and certain 
approximate microcanonical models (such as that of [3!). 

This work was supported by the National Science Foundation Grants PHY85-05682 and PHY82-
07732, and by the Director, Office of High Energy and Nuclear Physics of the Department of Energy 
under contract DE-AC03-76SF00098. 
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