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ABSTRACT 

Semi-analytical and numerical methods are used to investigate thermal and 

chemical transport processes in geologic media. The work is divided into two 

parts: (1) development of semi-analytical models for the analysis of uncoupled 

isothermal and nonisothermal fluid flow in naturally fractured media, and (2) 

development of a high resolution numerical code to address coupled nonisother- 

mal chemical transport in geologic media. 

A semi-analytical model is developed for well test data analysis in naturally 

fractured reservoirs. A simple approximate analytical solution for pressure build- 

up and drawdown tests is developed. Methods based on the approximate solution 

are developed for the evaluation of important reservoir properties. Type curves 

for nonisothermal fluid flow in naturally fractured media are developed to design 

injection systems for maximum energy in hydrothermal systems. 

An accurate finite difference method for the solution of a convection-diffusion 

type equation is developed. The method consists of a novel combination of an 

explicit second-order Godunov method and the operator splitting technique. The 

accuracy of the numerical method is investigated. The results shows that, in con- 



trast to conventional finite difference methods, the present method can 

significantly reduce numerical diffusion errors and grid orientation effects. In par- 

ticular, the method guarantees no spurious oscillations near fronts for high Peclet 

numbers. 

The method is incorporated in a two-dimensional code to investigate free 

convection in a porous slab and kinetic silica-water reactions in geothermal sys- 

tems. The effects of pressure- and temperature-dependent fluid properties on the 

details of convection solutions are addressed. The results show that the overall 

heat transfer behavior is not strongly aEected by relaxing the Boussinesq approxi- 

mation. However, the mass flux and temperature distributions are significantly 

dec ted  by the pressure- and temperature-dependent fluid properties. The results 

obtained from the simulation of silica-water reactions illustrate that the precipi- 

tation of silica plays a definite role in the reduction of permeability and flow rate. 

A multicomponent model considering the variations of pressure, temperature and 

silica concentration is developed to interpret the evolution of geothermal systems 

during exploitation. This model can provide information on the interaction 

between the hot reservoir and adjacent cold aquifers, which is impossible by con- 

ventional methods. 

P. A. Witherspoon 

Thesis Committee Chairman 
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CHAPTER 1 

INTRODUCTION 

The role of nonisothermal chemical transport in geologic media has received 

considerable attention in recent years, because of its importance in such problems 

as exploitation of hydrothermal resources, underground storage of nuclear waste 

materials, and enhanced oil recovery processes. To obtain an integrated analysis 

of the transport processes in geologic media, an appropriate physical and 

mathematical model of the system is indiipensable. However, most transport 

models have been founded on the assumption of a homogeneous, isotropic porous 

medium. In geologic media, high perme and secondary porosity may occur 

fractured and jointed formations, and this makes the analysis of 

transport processes much too complicated for conventional homogeneous forma- 
+ 

to the complex mica1 transport is often 

Heat and chemical species car- ith hydrological, and 

ried b flowing fluids can alter the flow field significantly. The fluid properties 

atly on temperature, and chemical reactions causing precipitation or 

edium properties 

eability. These coup1 processes gene Ily exhibit non-linear behavior; 

thus numerical methods become the only viable means to address these problems. 

However, there are some problems that must be addressed when a numerical code 

is developed. These include the development of an accurate method to control 

numerical diffusion errors and the computational efficiency of the method. 



. - t  
=, t 
I, 

The control of numerical diffusion errors is one of the major challenges in 

numerical modeling of transport processes dominated by convection forces. The 

substantial amounts of numerical diffusion errors inherent in conventional finite 

difference methods may cause incorrect computational results. For example, 

numerical diffusion errors can result in erroneous predictions of breakthrough 

times in tracer tests or enhanced oil recovery processes and, more seriously, cause 

the physics of the processes to be lost. To avoid numerical instabilities, any expli- 

cit numerical method must satisfy stability conditions. This is to say that no 

more than one pore volume of material can be put through a computational grid 

in one time step, which can result in enormous computations to simulate prob- 

lems for long time periods. Where there are no time step restrictions, implicit 

methods allow one to take large size time steps in numerical simulations. How- 

ever, a large size time step will introduce artificial diffusion from the temporal 

truncation errors, and produce an inaccuracy in numerical computations. Also, 

implicit methods for solving a set of nonlinear equations require one to solve a 

large system of algebraic equations simultaneously, which can lead to matrices 

that are too large to be inverted quickly even for the super computer. It is known 

that in using conventional explicit and/or implicit finite difference methods, it is 

very difficult to avoid numerical diffusion errors unless a very fine grid is used. 

This means these methods become difficult to model chemical transport in large 

scale geologic systems, if highly resolved solutions are required. Therefore, one 

objective of this work was to develop a cost-effective numerical method to handle 

these problems. 

t 
1 
t 
t 
L 
e 
t 



3 

i resent study is divided into two parts. The first part deals with the 

semi-analytical methods used to analyze uncoupled isothermal and nonisothermal 

fluid flow in naturally fractured reservoirs. A naturally fractured reservoir model 

& - -  
I 

e i *  
i .  

L is presented that considers transient inter-porosity flow for a cubic-shaped rock 

I 

bid 
i matrix, as proposed by Barenblatt et al. (1960) and Warren and Root (1963). 

They employed a quasi-steady assumption for inter-porosity flow rather than a 

1 transient assumption. Other investigators (Kazemi, 1969; Boulton and Streltsova, 

1977; Streltsova, 1982; Serra et al. 1982; Javandel and Witherspoon, 1983) pro- * 
I 

b! 
posed layered models to consider transient inter-porosity flow in naturally frac- 

tured reservoirs. Since the surface interaction area for a given volume is different 

for the present model and the layered model, the intensity of inter-porosity flow 

of the two models should be different. In contrast to the layered model, inter- 

1 
i 

k 

L 
t porosity flow between the rock matrix and fractures should be handled as a 

three-dimensional problem and involves more m matical complexities. How- 

ever, it is shown that a simple one-dimensional approximate model, developed 
L 

from the method of “multiple interaction continua” (MINC) (Pruess and 
.. 

Narasimhan, 1982), can t for transient inter-porosity i; 

u 
flow. 

Based on the present model, a semi-analytical method for the analysis of 

well test data from naturally fractured reservoirs is developed. The method con- 

re storage and skin effe drawdown and build- 

era1 different boundary co s. The boundary conditions 

include the cases of constant rate production in infinite and finite systems as well 

as a system with a constant pressure outer boundary. Solutions for the pressures 

I ’  
&d 

i !  
&J 
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in the fractures and rock matrix can be obtained using the Laplace transforma- 

tion technique. Because the solutions in the Laplace domain are too complicated 

to be inverted into real space by analytical means, a numerical method is 

employed. However, a simple approximate solution in real space for the analysis 

of the transient pressure behavior without wellbore storage and skin effects in an 

infinite system is developed. Ershaghi and M a k i  (1985) applied this approximate 

solution and developed a technique to generalize the so-called “half slope” 

observed in the transition period of the pressure drawdown test. Methods, based 

on the approximate solution, analyzing the important reservoir properties such as 

storativity, transm’kibility, inter-porosity flow factor, and ratio of storativity are 

developed. The results show that the inter-porosity flow factor and storativity 

ratio calculated from the present model are much smaller than those obtained by 

the original Warren and Root model (1963). A quantitative analysis of the effects 

of wellbore storage and skin on the transient pressure behavior shows a large 

discrepancy between the present model and the Mavor and Cinco-Ley model 

I 

(1979). This is because the Mavor and Cinco-Ley model (1979) considered a 

quasi-steady assumption for the interaction between the rock matrix and frac- 

tures. 

Because nonisothermal fluid flow in naturally fractured media is a topic of 

t 
i 

interest in the geothermal field, various theoretical studies based on the layered 

models (Lauwerier, 1955; Bodvarsson, 1969; Bodvarsson and Tsang, 1982) have 

been done. These studies showed that injection of water into geothermal reser- 

voirs during exploitation can greatly enhance the energy recovery from the f 
L 

resource. Injection will help maintain reservoir pressure and provide water that 
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~ will extract residual heat contained in the reservoir rocks. However, experience 

gained through commercial scale reinjection has shown that the injection opera- 

tion must be carefully designed. Horne (1081)~eports declines in enthalpy of pro- 

duced fluids at several Japanese fields due to injection. This interference is attri- 

buted to rapid flow of the injected “cold” water through fractures, as evidenced 

by high tracer velocities. This indicates that fundamental studies of cold water 

movement in fractured geothermal reservoirs are needed, before confidence in the 

- 

design of commercial reinjection operations can be established. A semi-analytical 

model for the analysis of injection flow rates and the injection locations in natur- 

ally fractured reservoirs is developed. The purpose of this work is to design 

injection systems to obtain maximum energy recovery from geothermal reservoirs. 

The second part of this  investigation is to study the coupled nonisothermal 

chemical transport processes in geologic media by numerical methods. As the 

basic equation describing the processes is a convection-diffusion type equation, 

conventional finite difference methods may not be suited for solving this type of 

equation; they will either introduce substantial amounts of numerical diffusion 
.. 

errors or give spurious oscillations near fronts when convection force is dominant. 

To overcome these difficulties, a new method is developed. The method consists 

of a novel combination of an explicit second-order Godunov method (Van Leer, 

1977; Colella, 1984) and the operator splitting technique (Strang, 1968). By 

means of operator splitting, the convection-diffusion equation can be split into 

two parts and solved in two steps. The first part, solved by a second-order 

odunov method, is a pure hyperbolic equation, which only considers the convec- 

tion equation. The second part, solved by the conventional central difference 

I 
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method, is a parabolic type equation, which omits the convection term from the 

convection-diffusion equations. The results show that with this new approach, the 
I 

numerical diffusion errors and grid orientation effects can be significantly reduced. 

In particular, the method guarantees no oscillations near fronts for high Peclet 

numbers. 

The method has been incorporated in a two-dimensional code to investigate 

free convection in a porous slab and to simulate kinetic reactions of-silica-water 

in geothermal systems. The natural convection problem in a porous slab sub- 

jected to horizontal temperature differences has long been of some interest to 

hydrologists and heat transfer engineers, and it has posed many difficult and fun- 

damental questions. These include theoretical investigations of overall heat 

transfer rate from one hot vertical wall to the other vertical cold wall, and mass 

flux and temperature distributions in the &stem. The effects of pressure- and 

temperature-dependent fluid properties on the the convection solutions, which 

have not been considered by previous workers, are also investigated in the 

present study. Numerical predictions of the overall heat transfer rate, mass flux 

and temperature distributions are obtained for Rayleigh numbers of 35, 50, 100, 

and 200, respectively. The results show that the overall heat transfer behavior in 

the medium is not strongly affected by relaxing the Boussinesq approximation, 

but the mass flux and temperature distributions are significantly affected by the 

pressure- and temperature-dependent fluid properties. 

In order to investigate the effects of silica precipitation on transient fluid 

flow behavior, the kinetics of silica-water reactions, as proposed by Rimstidt and 
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Barnes (1980), are incorporated in the code. The results obtained from the simu- 

lation of silica-water reactions illustrate that the precipitation of silica plays a 
. i  

definite role in the reduction of permeability and flow rate. Furthermore, to 

address the performance of geothermal reservoirs during production, a multi- 

component model including pressure, temperature, and silica concent ration is 

employed. This model has been applied to the Ellidaar geothermal field in Ice- 

land to obtain good estimates of reservoir volume, permeability and porosity. The 

model also gives information on the interaction between the active hot reservoir 

and adjacent cold aquifers, which is not possible with conventional methods. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1. Fluid Flow in Geologic Media 

The main driving force in transport processes in geologic media is fluid flow. 

A review of this process is necessary in order to understand the complexities of 

the development of a physical model for transport processes in such media. At 

the microscopic level, fluid flow through a void space in such media is governed 

by the same fundamental laws for the conservation of mass, and momentum that 

are derived from continuous mechanics. The complex geometric configurations 

and boundary conditions in geologic media make it very difficult to investigate 

fluid flow at the microscopk level. Therefore, the basic law usually employed in 

describing the macroscopic behavior of fluid flow in geologic media is Darcy’s law, 

which was developed from experimental investigations of the overall behavior of 

flow in porous media. This law defines permeability as an intrinsic material p r e  

perty that describes the ability of a given medium to transmit fluids. 

2.1.1. Fluid Flow in a Single Fracture 

Because the topology of fractured media is different from that of porous 

media, Darcy’s law may not be adequate for describing the fluid motion in such 

media. For a single fracture separated by two smooth, parallel surfaces, the 

macroscopic flow rate in the fracture is governed by the cubic law. The law is 

derived from the solution of the Navier-Stokes equation for steady laminar flow 

of incompressible Newtonian fluids through two parallel plates (Lomize, 1951; 

Snow, 1965; Romm, 1966; Schlichting, 1968; Iwai, 1976) given by 
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q - C, bsVP - (2.1) 

where q is volumetric flow rate, b is the apert of the plates and P is pressure. 

C, in Eq. 2.1 is dependent on the system geometries and fluid properties. For rec- 

I tangular and radial coordinate systems, 0, is expressed as 

and 

i 

bd 

L 

where is the system width, L is the system length, re is the system external 

radius, r; is the system internal radius, pJ is fluid density, p is fluid viscosity, and 

ravitational acceleration. The cubic law has been extensively applied to 

fluid flow in a single fracture of natural rocks (Louis, 1969; Sharp, 1970; Iwai, 

1976). 
I$ 
F i  
b 

i '  
Id 
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Since rough surfaces of a natural rock fracture may have some degree of con- 

tact under stressed conditions, the resulting tortuous flow path could affect the 

cubic law. To study this problem, Witherspoon et  81. (1980) experimentally 

investigated flow test in three different rock types (Iwai, 1976), and found that 

the cubic law seems to be-valid whether-the fractures are open or closed. How- 

ever, the constant C, in Eq. 2.1 must be divided by a factor J to take into 

account roughness effects. Raven and Gale (1985) investigated fluid flow 

hl 
1 

behavior in natural rocks by subjecting different ,sized sample to various normal t '  
b 

i '  stresses. They indicated that fracture flow rate is decreased with increasing sam- 

ple size and with each additional loading cycle. The deviation of the relation 
t 
1 

I 1  
hd 

1 .  
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between fracture flow rate and fracture deformation from behavior predicted by a 

parallel plate model is increased with sample size and number of loading cycles. 

To confirm their experimental results, they suggested that further work on meas- 

urement of fracture roughness with load-deformation and stress-permeability 

tests on different sample sizes is required. More recently, Pyrak et  al. (1985) 

developed a new experimental technique to investigate fluid flow behavior in 

natural rock fractures under stressed conditions. The preliminary results showed 

that this new technique enables one to determine the flow paths and contact area 

between the fracture surfaces under various effective stresses. 

Tsang and Witherspoon (1981) developed a theoretical model to address the 

effects of normal stress on fluid flow in a single fracture with rough surfaces. To 

analyze the macroscopic flow behavior in a single fractilre with rough surfaces, 

they developed a modified cubic law, in which the averaged apertures along the 

longitudinal and transverse directions to the macroscopic flow were used. The 

averaged apertures were obtained from stress-displacement measurements of 

intact rock and fractured rock; the fluid flow was then calculated from the 

modified cubic law. The validity of this theoretical model was verified with Iwai’s 

experimental work (1976), and they found that the predicted flow rates from the 

model agree well with the experimental results. Later, Tsang and Witherspoon 

(1983) computed the normal stress-displacement and stress-fluid flow for a single 

fracture with known roughness profiles using a theoretical model (Tsang and 

Witherspoon, 1981). They found qualitative correlations between the roughness 

I 

profile and normal stress-displacement and stress-fluid flow. 
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2.1.2. Fluid .Flow in Fracture Networks 

For fluid flow through fractured formations, two approaches are usually 

employed; that is, the discrete and continuous approaches. The discrete 

approach considers that the fractured formations consist of the distributed frac- 

L :  
t, 

tures with finite apertures, and each fracture can transmit fluids only when it 

intersects other conducting fractures. The continuous approach assumes that the 

distributed fractures are of infinite extent so that no fracture dead ends exist, and 

c 
b 

the global fluid flow in the system behaves as that in an equivalent porous 

medium. Based on the intrinsic permeability tensor of a single infinite fracture 

with arbitrary orientation and aperture for a given coordinate system, Snow 

11' 

I, (1969) developed a mathematical model to compute the intrinsic permeability 

tensor of a rock mass contributed by a fracture network. 

Some investigators (Parsons, 1966; CtLldwell, 1971, 1972) used the discrete 

approach to study fluid flow in fracture networks by means of electric analog 

models which are based on the analogy between Ohm's law and the cubic law. By 

comparing the measured electrical potential distributions with theoretical soh- 

tions for different values of permeability tensor, the overall permeability of the 

system may be obtained. To address whether a fracture network can be 

represented by an equivalent porous medium, Long et al. (1882) and Long (1983) 

developed a metho 

L 
L 
u 

1 
i 
L 

I' 

random fracture distributions, 

iscrete approach in such a system. The effects of frac- 

n, and sample sizes were con- 

sidered in their studies. These investigators showed that permeability ellipses cal- L 
L 
c 
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culated from a simulated flow test in fracture networks may not exist, and this 

implies that a fracture network may not be represented by an equivalent porous 

medium. Their results also showed that a fracture network will behave more like 

a porous medium when the system has a high fracture density with rather uni- 

form fracture apertures and nonuniform fracture orientations. Later, Long and 

Witherspoon (1985) further considered the effect’s of the degree of interconnection 

between fractures on the global permeability of a fracture network. They found 

that fracture networks with longer but less dense fractures behave more like 

porous media than do networks with shorter but more dense fractures. Because 

the main emphasis of these investigators is to determine the role of fractures in 

fluid flow behavior in geologic media, they assume the rock matrix to be 

impermeable; no interaction between the rock matrix and fractures is considered. 

However, the fraction of the total volume occupied by fractures (fracture poros- 

ity) is very small, and can not provide 

seems necessary to assess the potential 

fractured reservoirs to account for the 

interaction with the fractures. Another 

fluid flow in fractured formations in 

reviewed in the next section. 

substantial amounts‘ of fluids. Thus, it 

of prolific hydrothermal and petroleum 

storativity of the rock matrix and its 

approach commonly 

the hydrology and 

used to investigate 

petroleum field is 

2,1,3, FIuid Flow in Double Porosity Media 

Using an alternative continuous approach, Barenblatt et al. (1960) and War- 

ren and Root (1963) proposed the so-called “double porosity” model, as shown in 

Figure 2-1. This model assumes that fractured reservoirs behave like two-porosity 
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Figure 2-1 Ideal; zed Model of Natural 1 y Fractured .Reservoirs. 
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media; one medium (the rock matrix), separated by three sets of orthogonal frac- 

tures, has a highstorage capacity and low permeability, and the other (the frac- 

tures) has a low storage capacity and high permeability. Therefore, a basic 

characteristic of “double porosity” reservoirs (naturally fractured reservoirs) is 

that the fractures provide the main conduits for fluid transport in the system, 

while the rock matrix provides gradual fluid drainage to the fractures. To inves- 

tigate fluid flow in “double porosity” reservoirs, the approach employed by 

Barenblatt et 81. (1960) and Warren and Root (1963) is to lump the fractures and 

the rock matrices into two different continua, and further assume a quasi-steady 

flow between the rock matrix and the fractures. 

Subsequent to the studies of Barenblatt et al. (1960) and Warren and Root 

(1963), various studies have been published on the applicability and extension of 

i d  

t 

their models. Odeh (1965) used a mode1 similar to that of Warren and Root 

(1963), and concluded that the pressure behavior in a naturally fractured reser- 

voir is identical to that of a homogeneous porous medium reservoir. However, in 

his study, Odeh (1965) only considered cases where the inter-porosity flow factor 

was relatively large ( >I@), in which case the differences in the transient pres- 

sure behavior are only apparent at very early times. Later, Mavor and Cinco-Ley 

(1979) extended the solution by Warren and Root (1963) to include the effects of 

wel!bore storage and skin. Chen and Jian (1980) developed analytical solutions 

for fluid flow in two-dimensional and radial flow systems with finite domains 

using the method of separation of variables. Bourdet and Gringarten (1980), and 

Gringarten (1982) introduced an alternative analysis of well test data from new 

type curves that included wellbore storage and skin effects. 

t 
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Many workers have developed models that do not require the approximation 

of quasi-steady fluid flow between the rock matrix and the fractures. However, 

due to the three-dimendonal nature of the model considered by Barenblatt et  al. 

(1960) and Warren and Root (1963), the treatment of transient inter-porosity 

flow is mathematically very difficult, and has been accomplished only by drastic 

simplification of matrix block geometry. Kazemi (1969), Boulton and Streltsova 

I, 
L: 

(1977), Deruyck (1982), Streltsova (1982) and Serra et  al. (1982), considered a 

slab model, whereas de Swan (l976), Najurieta (1980), and Cinco-Ley and Fer- 

nando Samaniego (1982), considered models based on spherically shaped matrix 

blocks. Javandel and Witherspoon (1983) developed an analytical solution for a 

partially penetrating well in a two-layer aquifer. At early times, their solution is 

single layer aquifer. At later times, the slope of a semi-log 

plot of drawdown versus time is only a function of the sum of the transmissivitiy 

of the two layers. Barker (1984) defined exact and approximate block-geometry 

functions to treat regular and irregular matrix geometries, respectively. The reg- 

' ular rock matrix geometries included an infinite slab, infinite cylinder, sphere, 

t 
L. 

L 

F '  rectangular parallel pi and infinite hollow cylinder. 
b! 

L 
slab model is applicable to layere servoirs as well as to reservoirs 

izontal fractures. However, in the slab model one- 

ation is only valid 

e. The pressure transient 

urally' fractured reservoirs may be 

strongly affected by the local heteroge roperties. In this circumstance, the 

naturally 'fractured model may not give satisfactory interpretations of the test 

ed. This appro L 

id 

i; 
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data (Benson and Lai, 1985; Karasaki et al. 1985); different models, which may 

consist of a naturally fractured and a conventional models, are necessary to take 

into account the effect of local heterogeneous properties. 2 

Pruess and Narasimhan (1982) have developed an extension of the double 

porosity method, referred to as “multiple interacting continua” (MINC) method, 

to model heat transfer in highly fractured porous media by the integral finite 

difference method (Edwards, 1972; Narasimhan and Witherspoon, 1976). The 

MINC approximation assumes that, due to high permeability and low storativity 

of the fractures, any changes of thermodynamic conditions in a fractured porous 

media will propagate rapidly in the fracture network, while migrating slowly in 

low permeability rock matrix. Therefore, the changes of thermodynamic condi- 

tions in the rock matrix blocks will depend primarily on the distance to the 

nearest fracture. In light of this and neglecting gravity effects, fluid and heat flow 

in the rock matrix blocks may be treated by a one-dimensional approximation. 

This concept is applicable to regular as well as irregular matrix blocks (Pruess 

and Karasaki, 1983). In numerical simulations, the MINC method partitions rock 

matrix blocks into sets of nested volume elements (Figure 2-2). Thus, the 

interactions between fractures and the rock matrix can be described by one- 

dimensional mass and energy conservation equations. However, the accuracy of 

this approximation should be tested and justified (Pruess et  al., 1982). The 

verification of the MINC approximation and the application of the concept of this 

approximation to isothermal or nonisothermal fluid flow in naturally fractured 

reservoirs are presented in Chapter 3. 
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L Figure 2-2 al Mesh to Model Transport Processes in a Frac- 

Medium Employed by the MINC Approximation. 
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2.2. Miscible Displacement 

The present study considers miscible displacement, since it is of more con- 

cern to hydrologists and petroleum engineers in extensive investigations of recov- 

erable energy from hydrothermal and petroleum reservoirs, and pollutant migra- 

tion in geologic formations. The phenomenon of miscible displacement can be 

illustrated by the simultaneous processes of molecular diffusion and dispersion. 

2.2.1. Miscible Displacement in a Capillary Tube 

At a microscopic level, dispersion in porous or fractured media results from 

the combined effects of molecular diffusion, distribution of pore velocity within 

single pores or fractures, and the variable velocities along the tortuous pathlines. 

Since the geometric structure of porous or fractured media is very complicated, a 

satisfactory simple model of the process as in such a system does not yet exist. 

Simplified models, however, may help one to better understand the mechanisms 

of the process. One of the simplest models for porous or fractured media is a sin- 

gle capillary tube. Taylor (1953) investigated the dispersion process under steady 

state laminar flow in a capillary tube and showed that for a sufficiently large time 

the process can be described by the Fickian convection-dispersion process. The 

dispersion coefficient in Taylor's theory is expressed as 

(2.4) 

where rr is radius of the capillary tube, and U' is the mean velocity of flow in the 

cross section of the tube. Later, Gill and Sankarasubramanian (1970, 1971) used 

the series expansion method to generalize Taylor's theory. They showed that the 



dispersion coefficient is not a constant, but a time dependent quantity leading 

asymptotically to Taylor’s dispersion theory. A more complicated dispersion pl.0- 

cess in a capillary tube ‘that included chemical reactions with catalytic walls was 

investigated by Dang (1983). He found that the length of the tube required for 

the dispersion model to be valid is increased when chemical reactions occur. 

2.2.2. Miscible Displacement in Geologic Media 

One method of analyzing the behavior of dispersion in porous media is to 

statistically model the random motion of marked fluid .particles. This allows one 

to obtain a macroscopic description of dispersion. Analyzing the average distance 

traveled by a tracer in porous media, Bear (1961) showed that the dispersion 

coefficient, Dij, is a second rank tensor and is linearly proportional to the com- 

ponents of the seepage velocity. Based on Bear’s results, Scheidegger (1961) 

demonstrated that the dispersi63 coefficient is expressed as 

where a;,-,,,. is the geometric tensor of porous media, om and vr are seepage veloci- 
b 

I 
I 

ed 

ties in the m and * directions, respectively, and b{ is the magnitude of absolute 

seepage velocity. For an isotropic porouS medium, all components of aijm,, are 

zero except for 

a1 

aijij - aijji - 1/2 ( a1 - at ) , i + j (2.6) 

! wh are verse dispersivity, respectively. When 

the velocity is coincident with one of the principal axes of the dispersion tensor, 
b 

L 0 
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Because dispers.m is such a complex phenomenon, uzpending on system pro- 

perties, flow field, initial and boundary conditions of the system, it is very 

difficult to evaluate. However, one may gain insight into the properties of disper- 

sivity in porous media through the analysis of Taylor’s theory. For example, con- 

sider a hypothetical porous medium tube made of continuous stratified layers so 

that the velocity distributions under steady state in the cross section of the tube 

are the same as those in the capillary tube. The overall behavior of the dispersion 

processes’in the hypothetical system should be identical to that observed in the 

. capillary tube. In one-dimension, comparing Eqs. 2.4 and 2.7, one can obtain 

longitudinal dispersivity given by 

From the results of Gill and Sankarasubramanian (1970, 1971) for the dispersion 

process in a capillary tube, one also expects that the dispersivity given by Eq. 2.8 

must be a time-dependent quantity asymptotically approaching the constant. 

Thm can also explain why the Fickian convection-dispersion processes is not valid 

for modeling miscible displacement in porous medium at early times, and why the 

dispersion coefficient is strongly dependent on the scale studied. 

Gelhar et  a]. (1979) studied solute transport in vertically discrete stratified 

porous media and showed that this type of heterogeneous permeability leads to 

the Fickian convection-dispersion process for a sufficiently large time. Later, 
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’ Gelhar and Axness (1983) developed a three-dimensional solute transport model 

b v  c 
in heterogeneous porous media. They found that the conventional Fickian 

i; -*: convection-dispersion* transport model is valid far a large field. Matheron and de 

1 
L 

Marsily (1980) countered that the Fickian convection-dispersion model may not 

be always valid for a stratified porous medium with flow parallel to the bedding. 

However, if a mean flow component is added perpendicular to the layers, the 

Eickian convection-dispersion processes will be valid for sufficiently large times. I i  
I To determine whether the behavior of solute transport in a fracture system 

can be represented by that in an equivalent porous medium (ie., the Fickian 
L 

1; convection-dispersion process is valid). More recently, Endo (1984) extended 

i i  Long’s discretized fracture model (1983) to address mechanical transport in frac- 
hi 

ture systems on a microscopic scale. He found that for some fracture systems, 

iti fluid flow can be predicted using equivalent porous media, but it may not be pos- 

sible to predict transport using equivalent porous media. At present, for a com- 

plicated system. involving transient flow field and reactive chemical species, no 

theoretical model of the global dispersion processes is available, and most numeri- 

u 
1, 

cal models (Rubin and James, 1973; Valocchi et al., 1981; Jennings et  al., 1982; 

Schulz and Reardon, 1983) assume that , the Fickian convection-dispersion 
L 
I ’  u processes is valid or consider only the convection process for multiple reactive 

solute transport. 

When applicable, the Fickian convection-dispersion processes for chemical 

transport in geologic media involves two steps. The first step in the modeling pr+ 

cedure is to simulate hydraulic head distributions. This usually needs consider- 

L 
L 
1 
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able adjustment of permeability distributions until the simulated head distribu- 

tions are quite similar to those observed in the field. The second step is to simu- 

late chemical concentration distributions using the simulated fluid flow distribu- 

tions and trial and error adjustments of the values of longitudinal and transverse 

dispersivities until the simulated chemical migration pattern is similar to that 

observed in the field. This approach, using a twedimensional computer code, has 

been employed to simulate chemical plume migrations in porous or fractured 

media by Robertson and Barraclough (1973), Pinder (1973), and Konikow and 

Bredeheoft (1974). Longitudinal and transverse dispersivities obtained from the 

above simulation studies are in the range of 10 to 100 m ,  which is as much as 

several orders of magnitude larger than dispersion coefficients measured in labora- 

tory tests (Fried, 1975; Anderson, 1979). 

2.3. Numerical Methods 

In a variety of reservoir engineering problems, such as nonisothermal reac- 

tive chemical transport, the inhomogeneity of reservoir properties and the non- 

linearity of the governing equations make these problems unsolvable by exact 

analytical techniques. Thus, numerical methods become the indispensable means 

to obtain solutions of these problems. For practical field applications, the tradi- 

tional convection-diffusion equations arising from the conservation laws are usu- 

ally dominated by the convection term, leading to solutions with steep fronts. 

The most common numerical methods for reservoir engineering problems are 

those based on difference operators. Computational experience has shown that the 

central difference method is well adapted to solving the problems with relatively 
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I smooth solutions. However, when the solution has very steep fronts due to strong 
& d v  

convection forces, higher-order or central difference met hods may suffer from 
~ L -  unphysical oscillations (Peaceman, 1977; Hald, 1984). Price et al. (1968) showed 

e 
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that when solving the convection-diffusion equation 

asi 4si . - + P c  --- 
at az az= 

1 with a central difference method, unphysical oscillations can be avoided by speci- 

fying the computational grid such that Pe Az 52.  Si is any dependent variable 

(concentration or temperature) and PC is the dimensionless Peclet number given 

by 

IW 
D m  

Pc - - (2.10) . 

L where 171 is the magnitude of absolute velocity, L is a sys 

diffusion constant. 

length, and ora is a 

In practice, the f the central difference method without numerical oscil- 
L 
L lation solutions results in too much comp 1 
ij Thus, the alternative usually employed is to use the first-order upwind difference - 
I method, introduces numerical di 

hat the physi be obscured. At Li 
ti racy of nume 

nt on whether 'the method used 

liminate the numerical diffusion 

1964; Redell and Sunada, 1970; 
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L errors, particle tracking methods ( 
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Bredehoeft and Pinder, - 1973; Ahlstrom et al., 1977) were extensively used to 

simulate solute transport in the petroleum and hydrology field. The basic idea 

behind these methods is to assign several particles representing the concentration 

on each computational grid and each particle moves with fluid velocity during 

each time increment. Thus, the new concentration on each grid point can be 

interpolated by the concentration of the particles, which move from the neighbor- 

ing grids. The main drawback of these methods is that the scheme is not well 

satisfied by the conservation of mass if the particles are not enough. Neuman 

(1981) proposed an adaptive Eulerian-Lagrangian scheme to avoid many particles 

required in numerical simulations. He tested various linear problems under a uni- 

1 

form flow field, and showed that the method is capable of handling the entire 

range of Peclet numbers. However, the applicability of this method to problems 

under a nonuniform flow field and with nonlinear interactions needs further 

investigation. 

Different approaches based on modified characteristic method eliminate 

numerical diffusion errors and reduce grid orientation effects in reservoir simula- 

tions as shown by Glimm et al. (1983), Ewing et al. (1983), and Jensen and Fin- 

layson (1983). Computational experience with these methods is limited to 

incompressible problems, and the algorithms arising in implementation are 

different from those of finite difference codes. Therefore, these techniques are 

beyond the scope of the present study. Another method to avoid numerical 

diffusion errors is the random choice method (Glimm’s method or sampling 

method). The method, based on Glimm’s constructive existence proof (1965), 

was developed by Chorin (1976, 1977) into a numerical method with the random 
I 
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number sequence to solve systems of nonlinear hyperbolic equations. Colella c -  ~ 

v 

(1982) improved the he van der Corput sequence to 

obtain more accurate solutions. This numerical method has been applied to 

petroleum reservoir simulations (Concus and Proskurowski, 1979; Anderson and 

Concus, 1980; Glimm et  al., 1981; Sethian et al. 1983; Li, 1983). Due to the 

inherent nature of the sampling sequence, the error introduced by this method is 

that of front position; the front location is off the exact location by one grid 

block or less. During this work, this method was tested with several convection 

problems and found that it indeed possesses some attractive features. The 

scheme is simple and accurate for nonreactive chemical transport under a uni- 

pling procedure usi b ”  T 

L 
u 

b 
IJ 

ii 
form flow field. However, the scheme leads to errors in the conservation of chemi- 

cal species when modeling reactive chemical transport under a nonuniform flow 

field. 

Id 

id 
To reduce numerical diffusion errors, Larson (1982) developed a variably 

timed flux updating method, which belongs to the class of flux-corrected tran- 

sport met (Boris and Book, 1973, 1976; Boris et al., 1975; Zalesak, 1979). 

Except for linear ears to introduce oscillations to 

the solution. Recently, an upwind-ty of explicit, second-order finite-difference 

flux limiters to avoid spurious oscillations of 

d for .systems of nonlinear 

namics (Van Leer, 1977; Roe, 1981; 

eby (1984) investigated these independently 

proposed second-order accurate schemes and showed how they relate to each 

blerns, Larson’s method 

u 

t 
1 

b 
other. .From several test cases, including linear advection problems and shock 1 
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tube problems, Sweby found that for linear problems, Roe’s limiter is most 

appropriate, followed by Van Leer’s, and Chakravarthy and Osher’s. For the non- 

linear problem (shock tube problem), Van Leer’s limiter can obtain a solution 

nearly as accurate as Roe’s, but less susceptible to numerical oscillations. Harten 

et  al. (1983) provided an extensive review of upwind differencing and Godunov 

type schemes for hyperbolic conservation laws. Colella et al. (1983) applied Van 

Leer’s scheme to solve the one-dimensional Buckley-Leverett equation, and 

showed that numerical diffusion errors can be significantly reduced by this 

numerical scheme. More recently, Colella (1984), Colella and Woodward (1984), 

and Colella (1985) substantially refined Van Leer’s scheme. These include compu- 

tational processes to extend one-dimensional problems to multidimensional prob- 

lems for systems of nonlinear hyperbolic equations without time splitting, and to 

improve the accuracy at discontinuities of the solution using a fourth-order accu- 

rate difference scheme. In two-dimensions, Van Leer’s fourth-order accurate 

scheme involves 7x7 block of grid points for the solution of each nodal point, 

resulting in complicated computational procedures. Thii scheme has not been 

considered in the present study. The refined version of Van Leer’s second-order 

accurate scheme (without time splitting) was successfully applied to problems of 

petroleum and hydrothermal reservoir simulations (Bell and Shubin, 1985; Lai et 

al., 1985) to reduce numerical diffusion errors and grid orientation effects. This 

numerical scheme is linked with the operator splitting technique for the numeri- 

cal model of nonisothermal chemical transport in geologic media presented in 

Chapter 4. 
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CHAPTER 3 

ANALYTICAL STUDIES OF TRANSPORT PROCESSES IN 
NATURALLY FRACTURED RESERVOIRS 

3.1. Introduction 

In order to develop a sound plan for the exploitation of a hydrothermal or 

petroleum resource, reliable information about in-situ conditions of the resource is 

required. Such information may be obtained from isothermal and nonisothermal 

well testing, and may be used to predict and' evaluate future production 

scenarios. A physical model of a geologic formation is usually represented by 

either a porous medium or fractured porous medium model, depending on which 

model can successfully interpret transport phenomena in the hydrological 

resource. 

In the last two decades considerable work has been devoted to the analysis 

of 'mthermal and nonisothermal fluid flow in naturally fractured reservoirs. The 

need for new methods of analysis arose because of the distinct differences in tran- 

sport phenomena observed between homogeneous porous reservoirs and fractured 

reservoirs. In this work, semi-analytical models for the analysis of the well test 

data and thermal propagation in naturally fractured reservoirs are developed. 

The models are based on the verification of the MINC approximation, which is 

presented in the following section. 

3.2. Verification o f t  

Modeling of inte d rock matrix in frac- 

tured porous media is difficult, especially for irregular rock matrix geometries. 

L 
i 

i 
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- Thus, to model transport processes in double-porosity media most workers have 

done more or less drastic simplification of rock matrix block geometries. With the 

MINC approximation, modeling of transport processes in double-porosity media 

does not require any simplification of block geometries. However, the inherent 

feature of one-dimensional inter-porosity flow between the rock matrix and frac- 

ture by the MINC approximation needs verifications. For example, in most types 

of matrix block geometry, the mass and heat flow are not perpendicular to the 

fracture surfaces, especially near fracture intersections (“corners”), and hence can 

not strictly be considered one-dimensional. To study this “corner” effect, some 

idealized geometrical configurations and simple boundary conditions are con- 

sidered, for which the exact solutions as well as solutions based on the MINC 

approximation are available in analytical and semi-analytical form. 

3.2.1. Fluid Flow in a Porous Cube 

The test case considered is for isothermal, slightly compressible fluid flow in 

a porous cube (or, equivalently, heat conduction in an impermeable cube). A con- 

stant pressure, P,, is maintained at the cube surfaces, and an initial pressure of . 
.. 

zero is assumed everywhere. With the MINC approximation, fluid flow in a cube 

can be approximated by a one-dimensional model, as shown in Figure 3-1. The 

basic model represents one-sixth of a cube, with the surface area for flow decreas- 

ing from D2 (D is the side length of the cube) at the edges of the cube to zero in 

the center. Thus, the total mass flow at the cube surfaces will be six times that 

given by the one-dimensional model. This one-dimensional approximation leads to 

a differential equation, whose form is identical to the heat conduction equation in 

t 
t 
I 
L 
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b Figure 3-1 One-Dimensional Approximation of Fluid Flow in Rock Matrix 
Block. 
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'L a system with spherical geometry. The dimensionless pressure and flow rate for 

this problem using the one-dimensional approximation is given by Carslaw and 

Jaeger (1959) 

/ 

and 

1 00 n '#kt 9 P  24 
exp{- de p(D /2)2 a =I 

(3.1) 

( 3 4  

where k is intrinsic permeability, # is porosity, c is total compressibility (ie., sum 

of the compressibility of fluid and rock). For this same problem, it can be solved 

exactly in three-dimension. The dimensionless transient pressure and flow rate is 

given by (Carslaw and Jaeger, 1959) 

and 

k $1 - -[(21-1)~ + (2m -1)' + (CLn -I)?} (21-1)ny (21-1)rz exp{ 
D D dP CD ' COS 

(3.3) 

(3.4) 

In the above equations, (z ,  r ,  2 )  coordinates are measured from the center of the 

cube, and parallel to the edges. The dimensionless pressures at a distance 

z = 0.30 for the MINC approximation and for the exact solution are plotted 

versus dimensionless time in Figure 3-2. The figure clearly indicates that in the 

L 
L 
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s 11' = = 0 )  the pressures using center of the plane z = 0 .30  (ie., for z' = - = 
D D 

the MINC approximation are somewhat higher than the exact pressures, but at 

corner of that plane (0' = y '  - 0.3) they are somewhat lower. The discrepan- 

cies are not large (about lCrlS%). What really matters, however, is not the 

detailed pressure distributions inside the cube, but the flow rate at the cube sur- 

faces, which can affect the global transport processes in fractures. Figure 3-3 

shows that the flow rate at the cube surfaces using the MINC approximation 

agrees well with the exact solution. 

3.2.2. Fluid Flow in a Rectangular Porous Slab 

To further test MINC approximation, a comparison was made for t w e  

dimensional rectangular matrix blocks with side lengths A and B .for different 

aspect ratios 8- A / B .  The same initial and boundary conditions are used as in 

case 1. With the MINC approximation, the basic model (Figure 3-4) of a rectan- 

gle will be solved. The governing equation describing the mass conservation in 

the domain of the basic model can be expressed as 

(3.5) 

where q is the volumetric flow rate, 6 is porosity, pI is fluid density, t is time, 

and A, is the cross section surface ares in the z direction expressed as 

A, - 4 2  + A  - B  (3-6) 

k aP 
Ir a z  

Substituting Eq. 3.6 and the Darcy's law ( q  = - --) into Eq. 3.5, the govern- 

ing equation describing slightly compressible fluid flow in the domain of the basic 

-- t 
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model can be expressed as L -  
e :  

The initial and boundary conditions are 

P (2  ,O) = 0 

Li 

L 

L 

(3.7) 

(3-9) 

(3.10) 

In terms of dimensionless parameters, the governing equation and the initial 

and boundary conditions can be written as 

b 

(3.11) 

where 

ir. 
L 

L 
I + 1/4(A - B )  

B rl- 

(3.15) 

(3.16) 
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(3.17) 

=- t In the Laplace domain, the solution of Eq. 3.7 subject to the given initial and 

boundary conditions is 
1 t 

c 
where p is the Laplace parameter. The dimensionless volumetric flow rate at the 1 
surf'ace of the rectangle can be obtained from Eq. 3.18 by evaluating the pressure 

gradient at the surface. The result is expressed as 

(3.19) 

where q D  is x. In this study, the solution for the dimensionless flow rate in 
k p b  

real space is obtained by numerical inversion of Eq. 3.19 (Stehfest, 1972). The 

exact solution for this two-dimensional problem is given by Carslaw and Jaeger 

(1959) 

(3.20) k $t (21 -I)* + (2m -1)2 1) 
exp{-Ft A2 B2 

and 
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(3.21) 

Figure 3-5 shows that the dimensionless volumetric flow rate across the surface of 

the rectangle obtained from the MINC approximation for different aspect ratios 

(8) compares well with the exact solution. The agreement becomes close when the 

aspect ratio is increased, because this will diminish the corner effects neglected by 

the MINC approximation. These test results indicate that the pressure (or tem- 

perature) distributions inside a rock matrix predicted by the MINC approxima- 

tion are not exact. However, this approximation can accurately represent frag- 

ment inter-porosity flow in fractured porous media. This provides a rationale for 

the method, based on this approximation, for the analysis of well test data and 

thermal propagation in naturally fractured reservoirs that will be presented in the 

following sections. 

3.3. Press'ure Transient Analysis of Naturally Fractured Reservoirs 

The original geometrical configurations (Figure 2-1) of a rock matrix, as pro- 

posed by Barenblatt et  al (1960) and Warren and Root (1963) for double porosity 

media, is used for the present study. Fully transient inter-porosity flow between 

the rock matrix and fractures is considered (Lai, et  al., 1983). In the following 

discussion, description of the mathematical model and ation of the solu;ion 

using a numerical model is presented. Typ 

constant rate production in infinite and finite systems as well as a system with a 

constant pressure outer boundary, The effects of wellbore storage and skin will be 

illustrated. Finally, application of the model will be demonstrated through 
' 
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k. analysis of field data. - 
3.3.1. Basic Model 

In formulating the governing equations for the pressures in the fractures and 
t -  
L rock matrices, the approach used by Warren and Root lumping the fractures and 

the rock matrices into two  different continua is used. Using this approach the 

governing equation for the pressure in the fractures can easily be derived, but the 

geometry of the rock matrix (cubic) causes some problems. For a rigorous treat- 

ment of the fluid flow in the rock matrix continuum, a three-dimensional 

representation is necessary. However, a one-dimensional representation of inter- 

porosity fluid flow from the rock matrix to the fracture has been justified in sec- 

tion 3.2, that is adequate for the present problem and gives almost identical 

results for the pressure transients at a well or in fractures to those obtained using 

a three-dimensional model for inter-porosity fluid flow. 

L d  

u 
L 
i 
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I 

L 
1 
L 3.3.2. Mathematical Model 

In addition to the approximation discussed above, the following assumptions 

are made: 
i 
c '  

13 

1 
id 

f '  2. The fluid flow from the system into the wellbore is radial and only the frac- 

tures feed the well. 

3 The initial pressure 

a constant Row rate 

Icj 

the wellbore is imposed. 
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4. The pressure in the fractures is assumed to be equal to the pressure in the 

rock matrix at the contact region (z = D/2). 

AH properties such as permeability, porosity, and compressibility, are con- 5. 

stants in each continuum. 

The fluid flow is-isothermal and single phase. The fluid is slightly compressi- 6. 

ble, with constant properties (viscosity and density). 

The governing equation describing fluid flow in the fracture system, derived 

from the conservation law of mass in the fracture (Appendix A), is given -by 

(3.22) 

where P2 is the pressure in the fracture, and PI is the pressure in the rock matrix. 

Other symbols are defined in the Notation. The governing equation for fluid flow 

in the rock matrix can be expressed as 

(3.23) 

The initial conditions are 

P d t  ,O) = Pl(r ,t ,O) = Pi (3.24) 

The boundary conditions at the well, controlled by the constant flow rate, g ,  

and the effects of wellbore storage, are given by 

(3.25) 

The effects of an infinitesimal skin region around the wellbore can be 

expressed as 



li 

t ;  The boundary conditions for the rock matrix are 

L 

4 1  

(3.26) 

(3.27) 

(3.28) 

Three different cases are considered for the outer boundary conditions: (a) 

the reservoir is infinite in the radial direction, (b) a finite reservoir with a no-flow 

boundary, and (c) a constant pressure boundary. 

t ’  b 

li Jnfinite Reservoir 

L 
Finite Reservoir 

li 

l i i  P$r , t )  = Pi 
r-rgo 

(3.29) 

. :, 
. >  

Constant Pressure - 

(3.30) 

(3.31) P& ,I )I?=,, - pi 

In terms of dimensionless parameters, the governing equations (Eqs. 3.22 to 

3.23), the initial conditions (Eq. 3.24), and the boundary conditions (Eqs. 3.25 to 

3.31), can be written as 

(3.32) . 
a 2 p D 2  1 a p D 2  - a p D I  apD 2 7 + -- - 3X-b,* = W- 

r D  a r D  ao a t D  
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(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

I c 
a L  f '  

=c 1 
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(3.47) 

t; (3.48) 

The mathematical model is fully defined through Eqs. 3.32 to 3.41. The 

simultaneous solution of the equations using the Laplace transformation is 1 

the flowing well a 

L Jnfinite Reservoir 

L .  
(3.50) 

(3.51) 

60k,rv2 where - defined by Warren and Root (1963) 
k i D z  

(3.52) i 
and p is the Laplace parameter. It should be pointed out that thii result without c; 
wellbore storage and skin effects is identical to de Swan’s result (1976), which was 

obtained by approximating the behavior of cubical matrix blocks with that of 

spheres, provided the diameter of the spheres is equal to the side length of the 

S ’  
L 

L 
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cubes. 
1 

Finite Reservoir 

where 

Colrstant-Pressure Outer Boundaw 

(3.55) 

(3.56) 

(3.57) 

Wellbore storage and skin effects are not considered in the case of a 

constant-pressure outer boundary. The complex nature of the solutions prohibits 

analytical inversion from the Laplace domain into real space. Therefore, a 

numerical inverter by Stehfest (1970) is employed to obtain the solution in real 

space. 

3.3.3. Aa ymp t o tic Solutions 

In the following discussion, the case of an infinite reservoir without wellbore 

storage and skin effects is considered, and the asymptotic solutions for the early 

t -  
L 
r 
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and late time behavior are developed (Appendix C). 

Earlv Time Behavior 

At early times the pressure response 

& - -  
I- e well is only governed by the 

characteristics of the fracture system 

(3.58) 

The period for which Eq. 3.58 holds depends on the hydraulic properties of 

the fractures and the rock matrix. If the fracture storativity (w) is large and 

inter-porosity flow factor (A) small, the early time behavior will last for a long 

time, and a semilog straight line can be observed. The flowing well pressure is 

given by 

L 

II 
I; 

Late Time Behavior 

(3.59) 
*t. 

At late time the flow between the rock matrix and the fractures becomes 

quasi-steady and the pressure response at the well is identical to that of a home 

geneous reservoir with a storativity (#e )r  + #*e2); thus one obtains 

1 
2 

PDf - - [In to + 0.80909 ] (3.60) c 
Comparison of Eqs. 3.59 and 3.60 shows that the early time and late time f ’  

semilog straight lines will be parallel and ofket by In w . &! 

behavior described here is identical to that obtained 

del (1963) and layered reservoirs 

(Streltsova, 1982; Serra et al., 1982). The present model and the earlier models 

r ’  
ki 

.g., the Warren and Root li 
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differ only in the transient pressure response at intermediate times, since the sur- 

face interaction area for a given fractured element is different for the present 

model and the layered model. 

3.3.4. Numerical Verification of the Present Model 

=* t 

simulator PT (Bodvarsson, 1982). Numerical analysis of pressure transients of 

wells completed in naturally fractured resemoirs were carried out using the multi- 

In order to verify the mathematical model and the accuracy of the numerical 

inverter, the independent numerical simulation studies are implemented using the 
I 

i 

b 
ple interacting continua (MINC) method (Pruess and Narasimhan, 1982). The 

comparison between the numerical results and the results predicted by the 

present semi-analytical model is shown in Figure 3-6. The excellent agreement. 

between the methods indicates that the semi-analytical model is appropriate for 

the analysis of well test data. 

3.3.5. Comparison Between Models for Naturally Fractured Reservoirs 

The main difference between the present model and that of Warren and 

Root (1963) is that the transient fluid flow between the rock matrix and the frac- 

t 

I 
f 

tures instead of the quasi-steady state fluid flow is employed in the present L 

1 
t 

model. Results from these models for several values of are shown in Figure 3-7. 

As mentioned earlier, the early and late time semilog straight lines are identical 

for both models. However, significant differences are evident in the transient 

region at intermediate times. In the present model, significant fluid flow from the L 
rock matrix to the fractures occurs much earlier than in the Warren and Root t 

1 

model (1963); consequently, the pressure deviates earlier from the first semilog b 

1 
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straight line. Also, the pressure transients in the intermediate time region lasf 

i- 

L 
I 
L 
L 
L 

considerably longer in the present model than is predicted by the Warren and 

Root model (1963). As will be shown later, the pressure transient data in the 

intermediate time region are essential for the determination of the reservoir 

parameters, since in most cases the early time data (first semilog slope) are 

marked by wellbore storage effects. 

Other models that consider transient fluid flow between the rock matrix and 

the fractures (Streltsova, 1982; Serra et al., 1982; de Swan, 1976; Najurieta; 1980) 

show similar in overall transient pressure behavior at the intermediate times. 

Therefore, depending on the geological conditions that prevail at a given site, the 

present model for naturally fractured reservoirs may be utilized or, in the case of 

layered reservoirs, models developed by Streltsova (1982) or Serra et al. (1982) 

are applicable. 

3.4. Pressure Transient Analysis with New Model 

The pressure transient behavior for naturally fractured reservoirs is analyzed 

ethodology for the analysis of well test based on the present model, and the 

data for different boundary conditions is presented. 

3.4.1. Well Test Data Analysis for Infinite Reservoirs 
ii 
c Type curves for pressure drawdown tests in naturally fractured reservoirs of 

ia 
! I  

infinite areal extent are shown in Figure 3-8 for three different values of X 

w ( W,W*,~P); these values cover the range of probable values 

for naturally fractured reservoirs. Not only x but I s 0  w determines the time of 

L pressure deviation. Figure 3-8 shows that w controls the shift of the early and late 

E 
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time semilog straight lines, whereas determines the time of pressure deviation 

from the first slope and the time of convergence to the late time curve. 

In order to develop methods for analysis of data from naturally fractured 

reservoirs, an approximate analytical solution is helpful. Applying the improved 

Schapery technique (1961) to Eq. 3.49 (without wellbore storage and skin effects), 

one obtains (Appendix D) 
I '  
Iri 
4 1  

hi 
Eq. 3.61 is valid for dimensionless times greater than t D  - 10, which covers 

times of most practical interest. For this time range Eq. 3.61 is generally accurate 

within 1%; the maximum deviatio m values calculated using the numerical 

inverter is 2%. At late times the equation is identical to the asymptotic solution. 

Recently, Ershaghi and Aflaki (1985) double differentiated this equation, and then 

located the inflection point in the transition period. From the slope of the 

L 
i 
d 1 '  

inflection point, they also developed a method to calculate the reservoir proper- 

ties of naturally fractured reservoirs including the inter-porosity flow factor, 

storativity ratio, and fracture permeability. Eq. 3.61 will be used as a basis in 

the following discussion. 

lj 

t 

id 

1 '  
b 

As mentioned earlier, the pressure response of naturally fractured is charac- 

terized by three segments, a semi1 traight line at early times, a transition 

period, and a late time semilog straight line. In many cases, regardless of 

wellbore storage effects, the initial straight line is not present. Only in cases 

1 

. ,  
I 

id 

c 
i i  

where (A) < 7 ~ 1 0 ~ '  can the first linear segment be observed. By correlation, the 
W 
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initial semilog straight line ends at a dimensionless time of 

(3.62) W2 

lox to - 

During the transition period the pressure changes are much less than at early 

and late times because of the large fluid flow from the rock matrix feeding the 

fractures. This period lasts for about 7 log cycles of dimensionless time. During 

the transition period two linear segments on the pressure-log time plot (Figure 3- 

8 )  may be identified. The first segment has a slope half that of the initial and 

ha1 slopes. This half-slope has also been identified by Streltsova (1982) and 

Serra et. al. (1982) for the case of stratified reservoirs. 

The half slope occurs around the dimensionless time, when the two last 

terms in Eq. 3.61 cancel each other, given by 

(3.63) 5w to - - 
c7X 

At that time the pressure declines can be expressed as 

1 3 
4 80 

Po, = - [hto - lnX(1+) - In- - 371 (3.64) 

The time period over which a half slope can be observed depends on w. For 

w;e=0.001, the half slope occurs for over a log cycle whereas for W=O.OI it  lasts only 

a half-log cycle. Where w is larger than 0.1, the half-slope segment can not be 

easily identified. The intersection between the initial semilog straight line and the 

half-slope straight line occurs at a dimensionless time of 

(3.6s) 
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Similarly, the intersection of the half-slope line with the final linear segment 

occurs at a dimensionless time of 

(3.66) 

At a slightly later time in the transition period, a brief linear segment with a 

slope two-thirds that of the final slope is apparent. Due to the complex nature of 

the analytical approximation (Eq. 3.61), it  is not possible to mathematically 

derive the exact time of deviation of this linear segment. It is also of questionable 

value because of its short duration. However, as is the case with the half-slope, 

the 2/3 slope increases in duration with decreasing value of W. 

The pressure transients converges on the final slope at a dimensionless time 

of 

(3.67) 3( 14). 
x - 

\ 

However, for accurate determination of the final slope, one should only consider 

data points at a dimensionless times exceeding 
0 

(3.68) 

procedures For Analvsis 

In the above analysis some insight into the pressure transients in naturally 

fractured reservoirs by using the approximate analytical solution (Eq. 3.61) is 

gained. However, rarely exhibit all of the theoretical characteris- 

tics displayed abo ked by wellbore storage 

effects and in somt cases the duration of the well test is too short for late time 
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behavior to  beobserved. Also, boundary effects may affect the well test data to 

the extent that the late time behavior predicted by the infinite reservoir model is 

never observed. The effects of wellbore storage and skin as well as the effects of 

different outer boundary conditions are discussed in a later section. Analysis pro- 

L 
cedures are given below for cases when the data are incomplete as well as for the 

case of a complete data set. 

Gomdete Data Set 

in this case the transm'tssivity k2A and total storativity (d1cl + d2e2) of the 

reservoir can be determined from the early time or late time slopes using the con- 

ventional methods. w can be determined from the pressure difference between the 

early and late time slopes using the equation 

w - exp(-2AP~ ) (3.69) 

Once w is determined, x can be calculated from any one Eqs. 3.63, 3.65 to 

3.67 by using the appropriate dimensionless time. The fracture storativity & e 2  

can be calculated from w and the total storativity, k 1 / D 2  can be evaluated from 

the definition of and the reservoir transmissivity k2h. Finally, if the permeabil- 

ity of the rock matrix k 1  is known, e.g., from core data, the fracture spacing D 

can be determined. 

Q 

Fatlv Time Data Missins 

L 
t 

t 
As mentioned earlier, the initial semilog straight line will not appear if (A) 

>lod. Also, wellbore storage effects will, in most other cases, mask the initial 

W 

E 

I 
slope as well as some of the data during the transition period. However, it is still . L ,  

cu 

L 
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possible to extract the reservoir parameters from the data. As before, one can 

determine k2h and ( # 1 ~ , + # 2 ~ 2 )  from the late time slope and intersects using the 

L 
* 

1- conventional methods, w and A can be determined by solving Eqs. 3.63 and 3.66 

E l  or E*. 3.66 and 3.67, simultaneously. The fracture storativity and (+ can be b; D 

I '  determined in the same way as before. 
Id 

Final Sloue Missins 

If the well test is*of short duration and A is small, the final slope may never 

be observed in the data. If the initial straight line is present, one can still deter- 

mine A, w, and all reservoir parameters. k2h and &e2 can be determined from the 

slope of the initial straight line, and w by solving Eqs 3.63 and 3.65 simultane- 

ously, and other reservoir meters as discussed above. However, if the initial 

slope is not observed, an not be determined. In this case the use of the 

pressure transient data to determine the k2h of .the reservoir by the conventional 

methods will result in estimates that are about twice the actual k2h of the reser- 

i 
L 

voir. 

Wellbore StoraEe and Skin Effects 

At early times during drawdown tests, most of the fluids are produced from 

the fluids contained in the wellbore. Thus, the surface flow rate greatly exceeds 

the sandface flow rate. Later on, steady state conditions develop in the wellbore 

so that the sandface flow rate equals that at  the surface. Obviously, during early 

times the pressure transients are only related to the volume of fluids stored in the 

L 

1 
wellbore, so that these data can not be used to determine any formation parame- 

ters. It is of interest to examine the duration of the wellbore storage effects 

t 
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depending on the value of the wellbore storage factor 0,. 

Figure 3-9 shows the effects of wellbore storage on the pressure transient 

data fo;x==icr0 and o=0.01. The figure shows that even for this small value of A, 

wellbore storage effects will mask the initial straight line completely. The higher 

the wellbore storage factor C,, the more the transition period data will be 

masked. However, in the case of this low value of X, the half slope can still be 

observed even though the wellbore storage factor CD is as large as CD = 10'. 

Consequently, the procedure of analysis discussed in the last section can be 

applied, and all reservoir parameters determined. 

It is obvious that the wellbore storage effects become more critical when the 

value of x is higher. In many cases wellbore storage effects will mask all of the 

data during the transition period so that only the final semilog straight line can 

be observed. In the overall integrated reservoir parameters k2h and + 4*c2). 

Through the analysis, it shows that and o can only be determined if the follow- 

ing constraint holds 

5w 
4c9A(60 + 3.5s) 

(3.70) 

The combined effects of wellbore storage and skin are shown in Figure 3-10 

for A = l P  and U-0.01. The skin factor S represents permeability reduction in the 

near-wellbore region as a result of formation damage (positive skin) or permeabil- 

ity enhancement due to the presence of natural or man-made (hydraulic) frac- 

tures. The figure shows that the characteristic unit slope due to wellbore storage 

at early times (Ramey, 1970), and a steady state'pressure drop associated with 
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positive skin. The wellbore storage factor cD can be determined from type 

curves such as the ones shown in Figure 3-10. The skin factor S is determined 

by conventional methods by assuming a value for the total storativity. 

Mavor and CinceLey (1979) extended the Warren and Root solution (963) 

to include the effects of wellbore storage and skin. Their results differ consider- 

ably from those presented here, mainly because of the quasi steady flow assump- 

tion employed by Mavor and Cinco-Ley (1979). For example, these authors 

develop criteria to determine at what values of wellbore storage factor the initial 

atmight line will appear. This study shows, however, that if the wellbore storage 

is present, the initial straight line will never appear for realistic values of and W. 

The reason for this discrepancy is the initid straight line lasts much longer in the 

Warren and Root model (1963) due to the assumption of quasi steady inter- 

porosity flow. 

3.4.2. Horner Pressure Build-Up Analysis for Infinite Reservoirs 

The analysis of pressure buildup tests is very similar to that of drawdown 

tests described earlier. Using rules of superposition, the dimensionless shut-in 

If. it is assumed that r,, is large enough that the pressure transients follow 

the final slope before shut-in, the build-up data will also exhibit a half slope at a 

dimensionless shut-in time given by Eq. 3.63. At that time the shut-in pressure is 

given by 
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(3.72) 3s 7 

5 
+ ln(t, + At ) D  + lnX(1-w) + ln(-)} 1 (r, + At)D 

4 (At )D 
PDs = -{In 

Assuming that ln(t, + At ) D  e ln(tp)D, Eq. 3.72 simplifies to 

The late time behavior of the build-up test is given by 

(3.73) 

(3.74) 

The dimensionless time for the intersection of the half slope straight line with the 

initial and final straight lines, respectively, are identical to those presented in 

Eqs. 3.65 and 3.66. 

3.4.3. Pressure Drawdown Behavior in Reservoirs with Closed or 

Constant Pressure Outer Boundary 

In this section the cases involved a closed reservoir and a reservoir with a 

constant pressure boundary are considered. The mathematical solutions for these 

cases are given in an earlier section. 

Figure 3-11 shows the pressure transient behavior in a closed reservoir 

(r,D=lW) for 1-le and various values of W. It shows also for comparison that 

the solutions for the same parameters based on the Warren and Root quasi 

steady flow model. In the case considered here, the no-flow outer boundary 

effects are felt before the rock matrix significantly contributes to the flow. Conse- 

quently, the boundary effects are felt a factor of (I/w) times earlier than they 

would be in the case of a homogeneous reservoir (-1). Thus, if the conventional 

methods for homogeneous reservoirs were used to analyze such data, the drainage 
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Figure 3-11 Comparison Between Warren and Root and the Present Solutions 
for a Closed Reservoir. 
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radius may be underestimated by orders of magnitude. In general, the boundary 

effects will be felt before significant fluid flow from the matrix occurs if (X/w*) < 

(d10rJ  ). 

It is of interest to compare the solutions by the present model and the War- 

ren and Root quasi steady type model. In the case of Warren and Root model, a 

Plateau can be observed in the pressure transients (Figure 3-11). The plateau 

appears only because of the quasi steady assumption. When transient fluid flow 

between the rock matrix and the fractures is considered, as in the present model, 

the pressure decline in the reservoir b more monotonic and a smooth transition 

to the final straight line is observed. As a result of the above discussions, methods 

that have been developed to determine the drainage radius of finite naturally 

fractured reservoirs using the Warren and Root model (1963) may also 

significantly underestimate the drainage radius. 

When the boundary effects are felt during the transition period similar 

results as discussed above can be observed, but the time shift wili be less. Obvi- 

ously, a pressure response identical to that of a homogeneous reservoir will result 

if boundary effects are felt during the final semilog straight line. This will be the 

case 

Figure 3-12 shows the effects of no-flow and constant pressure boundaries for 

e= rod and various values of w and reD. The figure shows there is a much shorter 

transient region for a constant pressure boundary than for a closed boundary. 

The boundary effect on the pressure behavior in the constant pressure boundary 

case is similar to that in the no-flow boundary case. 



Dimensionless time, f 

Figure 3-12 ElTects of Outer Boundary Conditions on Pressure Behavior. 
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3.4.4. Application of New Model to Field Data 

Bourdet and Gringarten (1980) presented the build-up data from a naturally 

fractured resenroir shown in Table 3-1. 

Table 3-1: Data for pressure build-up test. 

A = loof t, S = 1.2RB/STB, p = O.Sep,  

(die 1 + 4 2 ~ 2 )  = 1P psi", q = 45Wbbl / d a y ,  

r, - 0.3 f t , P(At - 0) = 3420.8psi, tr = 31Ars 

0.0216 

0.0480 

0.0833 

0.1660 

0.250 

0.333 

0.416 

0.500 

0.667 

0.833 

1 .o 

1.25 

1 .50 

1.75 

973.32 

438.50 

253.10 

127.51 

85.0 

64.64 

51.48 

43.00 

32.48 

26.21 

B.0 

17.8 

15.0 

13.0 

3607.6 

3867.6 

3970.9 

4067.9 

4093.9 

4108.0 

4117.0 

4127.2 

4138.5 

4147.5 

4154.8 

4162.7 

4170.6 

4176.8 

4.00 

4 .50 

5.00 

5.50 

6.00 

6.50 

7.00 

7.50 

8.00 

8.50 

9.00 

9.50 

10.00 

10.50 

6.25 

5.67 

5.20 

4.82 

4.50 

4.23 

4.00 

3.80 

3.63 

3.47 

3.33 

3.21 

3.10 

3.00 

421 1.3 

4216.9 

4220.8 

4225.9 

4228.7 

4232.1 

4233.8 

4237.8 

4239.5 

4242.3 

4245.1 

4246.8 

4248.5 

4250.7 



65 

2.00 11.5 

2.25 10.33 

2.50 9.40 

2.75 8.64 

3.0 8.0 

3.25 7.46 

3.50 7.00 

3.7s 6.60 

4182.5 

4187.6 

4192.6 

- 4196.6 

4199.9 

4202.8 

4205.6 

4208.4 

11.00 

11 .50 

12.00 

13.00 

14.00 

15.00 

16.00 

17.00 

2.91 

2.83 

2.75 

2.62 

2.50 

2.40 

2.31 . 

2.23 

4251.9 

4254.1 

4256.4 

4259.2 

4263.2 

4264.9 

4267.7 

4269.4 

Thii data is used to illustrate how the present model can be used to determine 

important reservoir parameters. The best match obtained between the observed 

d the calculated values using the present model is shown in Figure 3-13. 

An excellent match is obtained. The analysis proceeds as follows: Using the final 

slope of 141.8 psi/cycle the transmissivit of the reservoir can be calculated as 

3 3088md-,t 162.6X4500X1.2X0.5 162.6qgp t i h  = m 141.8 

For a reservoir thickness of 100 feet, the average reservoir permeability is 

kz - 30.88md. 

It is now to calculate W. As is evident from the data shown in Figure 3-13, 

wellbore stora effects masks the i tial fracture controlled straight line. One 

must therefore use the method y developed e ier to determine W. In the data 

shown in Figure 3-13 a half slope segment &an be observed at  Horner time about 
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= 35, or At = 0.617hr8, ( t ,  - 2lhrs ). ( 4  + A t )  
At 

The intersection of the half slope line with the final s ght line occurs at ( 

t, + A t )  / At = 9, or At - 2.625 hru . Dividing Eq. 3.63 by Eq. 3.65, one obtains 

(3.75) 

since (Ate )W / (At ,  )H - (4t )HF /(At )H , one can determine w = 0.078. After substi- 

tuting for X and w in Eqs. 3.46 and 3.47, Eq. 3.47 can be used to determine k1/D2 

Solving for kr/D2 yields k1/D2 - 1 . 0 3 ~ 1  

re are no core data available on the matrix permeability, 

kl. However, if one assumes a reasonable value for the matrix permeability, say, 

g D equals 10 feet. 

ne can now proceed to calcula ed on its definition 

60klr2 
X - - o=: 1.82X lo4 

k2D2 

b; can be calcula 

] + 3.23 - - 0.7 k 2  - log Plb - pw1 (At 4 
m (d1c 1 + 42C2)Pf" 

I S - 1.151 [ 

li 
j$ Eq. 3.49 can be 

analysis is based on f roximate soluti given by Eq. 3.61. 

9 X e= 2.63X1@, w = 0.085, 

li 
1: 

and S- 4.7, CD - 1200 and C, = 0.012 bbf  / p s i .  
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Bourdet and Gringarten (1980) analyzed the same data (Figure 3-13) using 

the Warren and Root model. They do not show the comparison between the cal- 

culated and observed pressures, but give values for x and w of 2x10~  and 0.25, 

+l 

. 

respectively. Using these parameters and the Warren and Root model, a large 

discrepancy between the calculated and observed data is found. A much more 

reasonable match is obtained using A - 3.5X1O4 and w - 0.25. This value of is 

more than an order of magnitude higher than the value obtained using the 

present model. The value of is also considerably greater than our value. 

3.6. Thermal Propagation in Naturally Fractured Reservoirs 

In the present study the problem of cold water injection into naturally frac- 

tured reservoirs is considered. The basic model used considers the geometric 

configurations, as proposed by Warren and Root (1963), but transient inter- 

porosity heat flow between rock matrix and fractures is employed. Similar work 

on non-isothermal flow in horizontal fractures have been investigated by 

Lauwerier (1955), Bodvarsson (1969), and Bodvarsson and Tsang (1982). The 

objective of the present work is to extend their work to include the effects of 

vertical fractures and to develop a methodology for the design of the injection 

schemes for naturally fractured reservoirs. 

3.5.1. Basic Model 

The model used in this study is shown in Figures 2-1 and 3-1. To simplify 

the problem of cold water injection into naturally fractured reservoirs, steady 

state fluid flow is assumed in the fractures, but transient conductive heat transfer 

between the impermeable rock matrix and the fractures is considered. Thus, the 
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cold w 11 flow from the injection well into the fracture network, and as it  

he well, it will gradually get heated up due to the heat ves a w a j f r o  

transfer from adjacent matrix blocks. 

The equation for conductive heat transfer between the rock matrix and the 

fractures is derived -based on the basic element shown in Figure 3-1. The basic 

element represents 1/6 of a single cubic rock matrix, Le. only one face of the cube 

is considered. In this approach it is assumed that the thermal gradients are much 

smaller within the fracture network.than in the rock matrix, since the thermal 

velocity in the fracture network is much larger than that in the rock matrix. 

Thus, if the temperature in the fractures bounding a rock matrix block is rather 

uniform, a one-di conduction heat transfer in the rock matrix block is a 

reasonable approxi 

athematical Model . .  

In addition to the approximation discussed above, the following assumptions 

are made: 

1. The reservoir is uniform in t 

boundaries, and without heat loss from the reservoir-to the boundaries. 

The mass flow rate is constant and radial, with the well located at r -0 .  

The initial temperature To is uniform throughout the system, but at time 

t >o, a constant temperature 

The temperature in the fracture is assumed to be equal to the temperature 

in the rock matrix at the contact region ( t  = D / 2 ) .  

kness, with impermeable lower and upper 

2. 

3. 

of injected water is maintained. 

4. 
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5. The system and fluid properties including permeability, porosity, compressi- 

bility, fluid density, fluid viscosity, effective thermal conductivity, and ther- 

mal capacities are assumed to  be constant. 

The governing equation describing energy transport in naturally fractured 

reservoirs can be derived from the conservation law of energy. The procedures are 

similar to those used in isothermal fluid flow in naturally fractured reservoirs. If 

one neglects the longitudinal conduction in the fractures, the fluid temperature in 

the fractures can be expressed as (Bodvarsson and Lai, 1982) 

where T 2  is the fluid temperature in the fractures, and T I  is the temperature in 

the rock matrix, and r (3bA /D) b the effective fracture aperture. The tempera- 

ture in the rock matrix is governed by the one-dimensional heat conduction equa- 

tion as Eq. 3.77, whose derivation is similar to that describing pressure transient 

behavior in the rock matrix of the naturally fractured systems. 

The initial nd boundary 

To 2 < o  
Td0,t 1 = { Ti t l O  

(3.77) 

(3.78) 

(3.79) 

(3.80) 

(3.81) 



L 71 

The dimensionless parameters TD , r, q, e, and 6 are defined as 

(3.82) 

L 

F '  
Li 

(3.83) 

(3.84) 

(3.85) 

(3.86) 

In dimensionless form the governing equations for the temperatures in the frac- 

s ( T 2 )  and the rock matrix ( T , )  are 

Fractures: 
ii 
b 
I; 
Id 

L 

L 
L 

(3.87) aTD2 aTD1 aTD2 --- lZ-L-1- 6- a€ all ar 

Rock Matrix: 

(3.88) BIT01 2 aTD1 aTD1 - + - - k - 1 -  - a b  rl all Br 

dary conditions are 

(3.89) 

(3.90) 

l ( & l # r )  TD2(f,r) (3.91) 

c R 
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To l(C,O,r) - 1 initc (3.92) 

The real parameters in Eqs 3.82-3.86 are defined in the Notation. 

The solutions to Eqs. 3.87 and 3.88 for the given initial and boundary condi- 

tions in the Laplace domain are given in Appendix E. In the Laplace domain the 

solutions for the fracture and the rock temperatures are 

(3.93) 

(3.94) 

where p is Laplace parameter. Because the form of Eqs. 3.93 and 3.94 is compli- 

cated, it is convenient for one to invert the solutions to real space by numerical 

methods. In this study Eqs. 3.93 and 3.94 are inverted using a numerical method 

developed by Stehfest (1970). 

3.6.3. Thermal Front Propagation 

It is of primary interest in this study to examine the rate with which the 

cold water front advances away from the injection well during injection. This 

information is useful in the design of the safe location and rates of injection wells 

in relation to the production wells. The cold water front is defined as the locus 

of points with temperature being the average of the initial temperature of the 

reservoir (To), and the temperature of the injected water Ti (TcF = 1/2[T, + Ti]). 

In Figure 3-14 the dimensionless radial distance e of the cold water front is plot- 

ted against dimensionless time r for various values of 8. The parameter 8 

represents the ratio of the energy content of the fracture to that of the rock. In 
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most cases realistic values of e range from 1o-d to lo*. The figure actually shows 

for a given value of e, the radial location of the cold water front in the fractures 

away from the injection well, at any given time. If one follows the advancement 

of the cold water front for one value of e, say e = lob, one can see three different 

rates of advancement. At early times when conduction heat transfer from the 

rock matrix is negligible, the front moves as t 2 / t  away from the injection well 

(Bodvarsson and Tsang, 1982). During this period the cold water front moves in 

the fractures only, in an analogous manner to a single radial system with insu- 

lated upper (caprock) and lower (bedrock) boundaries, and a thickness 

corresponding to the effective fracture aperture. Bodvarsson (1972) has derived as 

expression for the movement of cold water front in this case. At intermediate 

times, the slope in Figure 3-14 decreases by half, and consequently the advance- 

ment of the cold water front is proportional to r ' /~  (Bodvarsson and Tsang, 

1982). During this period the conductive heat transfer between the rock matrix 

and the fractures dominates, resulting in a much smaller movement of the cold 

water front away from the injection well. The large heat transfer area causes a 

very slow movement of the cold water front in the fractures, but rapid extraction 

of heat from the rock matrix. 

Finally, at very late times ( r  2 1.0) as shown in Figure 3-14, the cold water 

front again advances at a rate proportional to r2/t.  At this time quasi-steady 

state heat transfer between the rock matrix and the fractures has been reached, 

and consequently the cold water front will move as if only a porous medium was 

present (i.e. independent of the fracture nature of the reservoir). However, in con- 

trast to the early time behavior, the cold water front now moves at the same rate 

c 
' 

=e t 
L 
t 
b 

I, 

k 
L 
L 
t 
L 
I 
i- t 
t 
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in the fractures as in the rock matrix. 

In order to explain this more thoroughly Figures 3-15 and 3-16 were con- 

structed. Figure 3-15 s the time sequen f the dimensionless temperature 

m the injection wells in the fractures and the rock matrix for a 

given value of 8. The dimensionless temperature of TD - 1.0 represents the tem- 

perature of the injected water, whereas the dimensionless temperature TD - 0 .  

corresponds to the initial reservoir temperature. Temperatur6 profiles are given 

for the fractures (q - LO), the center of the cubes (9 - 0.0) and. two intermediate 

alues (9 - 0.4,0.7). The figures show that at early times ( r  - 0.1) there is a con- 

siderable difference between the temperature profiles in the fractures and rock 

matrix. At later times the curves start to converge, although the cold water front 

Is constantly moving away from the well. As shown on Figure 3-16, at a dimen- 

sionless time of r- 1.0 the temperature profiles are practically identical in the 

fractures and the rock matrix. Thii can be shown analytically by considering an 

asymptotic solution for the late time behavior of Eqs. 3.93-3.94 (Appendix E). 

, 

The reason for this phenomenon is that at early time the cold water shoots 

rapidly through the fractures, increasing the surface area for conductive heat 

transfer between the fractures and the rock matrix. The large surface area 

transfer from the rock matrix to  the fracture fluids, thus retard- 

ing the advancement of the cold water front along the fractures. This in turn, 

tends to equilibrate the temperatures in the fractures and the rock matrix so that 

eventually the temperature profiles away from the well are identical for the frac- 

tures and the rock matrix. 
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3.5.4. Design-of Injection Systems 

The most interesting aspect of the results obtained is that even for fractured 

reservoirs, uniform energy sweep will maximize the amount of recoverable energy 

from the resource. A necessary requirement for such conditions is that the injec- 

tion wells be appropriately located with respect to the production wells. Similar 

conclusions were obtained by Bodvarsson and Tsang (1982) for the case of hor- 

izontal fractures only; however in that case the criteha for proper siting of the 

injection wells are different from that proposed here for naturally fractured reser- 

voirs. 

For the design of an injection system for naturally fractured reservoirs 

mathematical expressions that can be used to  calculate the time and radial dis- 

tance from the injection wells where uniform sweet conditions prevail are quite 

useful. Figure 3-14 shows that uniform energy sweep condition will prevail when 

a 4  + 6 )  - r -  1.0 (3.95) 

In general 4 >> 4 so that Eq. 3-95 can be written in terms of real parameters as 

(3.96) 

(3.97) 

Inspection of Eqs. 3.96 and 3.97 shows that both the time and radial distance of 

the uniform energy sweep condition depend greatly on the fracture spacing D. 

However, both quantities are independent of the effective fracture aperture r. 
Fractures possessing small apertures will contain very small amounts of fluids, so 
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that even though fluid velocities are high very little energy is needed to increase 
- 

Fluid density, pf 1OOOkg /ms 

Fluid heat capacity, cI 

Thermal conductivity, KI 

Reservoir thickness, h 500m 

4zoOJ/kg ' C  

2.OJ/m -8 - ' C  

the temperature. 

A problem involv! as injection well in iL naturally fractured reservoir using 

meters shown in Table 3-2 is considered. If the average fracture spacing 

is not known the following expressions n be calculated. 

f = 2.6XD (mekn) (3.98) 

Thus, for aa average fracture spacing of 50 meters, uniform energy sweep condi- 

tion will prevail 130 m away from the well after 25 years of injection. 

Table 3-2: Parameters design of injection systems 

I I!jection rate, qn 20kg / u  

3.6. Conclusions 
e 
1 L The MINC approximation, which has been employed to model transport 

phenomena in doublkporosity media, has been verified. The results show that L 
this approximation can accurately represent transient inter-porosity flow in 
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fractured porous media, and provides the rationale for the development of models 

to analyze pressure transient behavior and thermal propagation in naturally frac- 

tured reservoirs. 

Semi-analytical models for the analysis of isothermal and nonisothermal fluid 

flow in fractured reservoirs have been developed. The models consider the origi- 

nal geometrical configurations proposed by Barenblatt et al. (1960) and Warren 

and Root (1963), as well as transient inter-porosity flow between rock matrix and 

fractures. For isothermal fluid flow in naturally fractured reservoirs, a simple 

approximate analytical solution for transient pressure behavior in an infinite 

reservoir without wellbore storage and skin effects has been developed. This 

approximate solution is useful for pressure analysis of intermediate and late 

times. It shows that the pressure transient data during the transition period for 

values of w smaller than 0.1 exhibit a half slope similar to that observed for the 

layered reservoir case. The half slope is followed by a brief segment with a slope 

of 2/3. All reservoir parameters can be determined if the half slope segment is 

observed, even if the early time straight line is not present. The appropriate pro- 

cedure for analysis is given. 

From the present study, it shows that in the case of a finite reservoir, the 

drainage radius may be significantly underestimated using a Warren and Root 

model (1963). The model presented here is similar to other transient models, e. 

g., layered reservoir models. Geologic information must be used to determine 

which model is appropriate. A field example of pressure build-up tests is given to 

illustrate the applicability of the present model to naturally fractured reservoirs. 
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This field example also demonstrates that inter-porosity flow factor A and stora- 

tivity w are significantly overestimated by the Warren and Root model. 

- 

For nonisothermkl fluid flow, proper lotattons and flow rates of injection 

wells in naturally fractured reservoirs have been determined by the model used to 

study the injection of cold water into hot resenroirs. Type curves have been 
I, 
t 
c! 

b 
developed to help in optimizing an injec 

recovery from the resource. 

operation for maximum energy 
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CHAPTER 4 

NUMERICAL MODEL FOR THERMAL AND 
CHEMICAL TRANSPORT 

4.1. Introduction 

The ability to predict thermal and chemical transport in geologic media is 

important in such diversified fields as hydrothermal resource development, 

enhanced oil recovery processes, and waste water purification. Also, in the face 

of the urgent need for underground disposal of nuclear wastes, the problem of 

nonisothermal chemical transport in geologic media has become the topic of much 

interest (Witherspoon et al. 1981). Because of the inhomogeneous nature of geo- 

logic formations and nonlinearity of the governing equations, numerical methods 

mis t  be employed to address these problems. 

1 To model thermal and chemical transport in geologic formations,' 

convection-diffusion type equations that arise from the conservation of energy 

and chemical species on a macroscopic scale are commonly used. For thii work, 

an accurate numerical method different from conventional finite difference 

methods for the computation of the solutions of convection-diffusion type equa- 

tions is developed. The method consists of a novel combination of a second-order 

Godunov scheme with the monotonized upwind/central differencing method (Van 

Leer, 1977; Colella, 1984), and the operator splitting technique (Strang, 1968). 

The accuracy of the present numerical method is investigated and a comprehen- 

sive comparison between the method and a conventional method for solving 

several benchmark problems is given so that one can easily assess the perfor- 
\ 
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mance of the present method. 

4.2. Numerical Simulator PTC 
- u -  

The two-dimensional numerical simulator PTC (Lai et ai., 1985) was 

developed to analyze coupled hydrological-thermal-chemical processes encoun- 

tered in geologic formations. PTC was developed from the code PT (Bodvarsson, 

1982), which is capable of modeling three-dimensional, coupled fluid and heat 

transport processes in fractured porous media. In the code PT, the noniterative 

Newton’s method with a’direct matrix solver was employed to solve sparse sys- 

tems of linearized equations. 

In addition to fluid and heat transport, the code PTC can simulate one- 

component chemical transport processes, including the effects of convection, 

dispersion, and kinetics of mineral-water reactions. To improve the accuracy of 

the code, a combination of a second-order Godunov method and the operator 

splitting technique is introduced to solve convection-diffusion type equations. A 

set of governing equations describing the transport processes, the numerical 

method, and a iterative solution procedure employed in the code are presented in 

the following sections. I- 

4.3. Mathematical Model 

In this section, the basic equations of single phase, thermal and 

transport in geologic space are derived from the conservation laws 

energy and chemical species. 

chemical 

of mass, 
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4.3.1. Conservation of Mass 

As shown in Figure 4-1, let R be a region in two or three-dimensional geolo- 

gic media that is saturated with a fluid. It is assumed that W is a fixed subregion 

of R. The rate of change of mass in W is expressed as 

where dV, is a volume element in a space, m ( W , t )  is the total mass in W ,  4 is 

porosity, pi is fluid density, q,,, is mass generation rate per unit volume, and t is 

time. The total mass flow rate across the surrounding boundary of W is the sur- 

face integral of mass flux (Figure 4 2 )  expressed as 

where z denotes the unit outward normal vector, SA is the surface area of the 

~. boundary, and T is Darcy's velocity given by 

where k is the intrinsic permeability of the medium, p and pl are fluid viscosity 

and density, respectively, P is the average pressure, and g is the gravitational 

acceleration. 

From the principle of conservation of mass, the rate of change of mass in W 

equals the rate at which mass across the boundary in the inward direction add 

the rate of mass generation. Thus, one obtains 
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X8L 851 1 11549 

Figure 4-1 Fluid Motion in a Porous Space R ( I V  is a Subregion of R ). 
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Figure 4-2 The Mass Flow Rate Across the Unit Surface Area. 
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By the divergence theorem, Eq. 4.4 is equivalent to 
ii 

- 

1 
i '  
t 

h; 

1 1  
I 

kj 

E, 
e '  
t 

This equation is the integral form of the continuity equation. 

4.3.2. Conservation of Energy 

The total energy of fluid-saturated geologic media assuming thermodynamic 

equilibrium between rock and fluid is expressed as 

-E - [ # P I  e l  + (1-d)prerIT (4.6) 

where C I  is specific heat of fluid, is specific heat of rock, pr is density of rock, 

and T is temperature. The rate of change of total energy in W is expressed as 

If total energy tlow rate across the boundary involves only convection and con- 

duction effects, i t  can be obtained from the surface integral of energy flux 

expressed as 

I z;d 'n" dsA ' + I zoa. 'z dsA (4.8) 
SA ' A  ' 

, the conductive heat flux 

(4.9) 
- 
Q c d  - -&vT 

where KI is the effective thermal conductivity of geologic media. The convection 

heat flux is expressed as 

(4.10) 
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Substituting Eqs. 4.9 and 4.10 into Eq. 4.8 and using the principle of conserva- 

tion of energy, one obtains 
(1) 

= ! v - K A v T  dV, - J v - p ,  El T dV, + $arn cf T, dV, 
W W W 

(4.11) 

where T, is the temperature of fluid sources. This equation is the integral form 

of the energy equation. 

4.3.3. Conservation of Chemical Species 

A material balance for solutes resulting in the chemical specA2s equation a 

similar way as energy equation is expressed as 

(4.12) 

where Dij is a dispersion tensor, 0, is the concentration of fluid sources. This 

equation is the integral form of chemical species equation. 

If the variables in the integrand of Eqs. 4.5, 4.11, and 4.12 are smooth 

enough, the differential form of the conservation laws of mass, energy and chemi- 

cal species can be directly obtained by removing the integral signs. Otherwise, 

the integral form will then be the one to use. With recognization of this fact, 

any physical quantities should be considered as the average values with respect to 

subregion W ,  if the differential form is to be used when geologic media are 

treated as a continuum. To give a complete description of thermal and chemical 

transport processes, changes in pressure and density affect temperature variations 
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and the principles of thermodynamics must also be considered. From thermo- 

dynamics, one obtains equations of state for water and rock. The properties of 

liquid water are calculated using polynomial functions of pressure and tempera- 

ture (Buscheck, 1980; Bodvarsson, 1982). The viscosity is assumed to be only 

temperature dependent, its dependence on pressure being neglected. The density 

is a function of pressure as well as temperature. The specific heats of water and 

rock, and the effective thermal conductivity of geologic media are assumed con- 

stant. By definition, the expansivities and compressibilities of water and rock can 

be expressed as 

(4.13) 

From the fluid density function, I and p can be evaluated. The rock compressibil- 

ity (e) and expansivity 0 are determined experimentally or estimated using 

empirical laws; It is assumed that the concentration of the chemical species is low 

enough so that it  does not'affect the fluid properties. 

4.4. Solution Procedures 

In this section, a numerical solution technique for solving the above conser- 

vation equations is presented. For hydrologists, the quantities of pressure, tem- 

perature and concentration are more important than the fluid and rock proper 

ties; thus they are regarded as primary dependent variables and the latter 8s 

secondary dependent variables in the mass, energy, and chemical equations for 

numerical calculations. Once the solutions of primary dependent variables are 
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obtained, the secondary variables can be updated using the equations of state. 

Combining Eqs. 4.5 and 4.13, one obtains Eq. 4.14 involving two primary depen- 

dent variables, pressure and temperature. 

(4.14) aP J{k+ ' ) h I  
W W 

(a + %PI + V'rPj } d K  IC JQm dV8 

,If Eq. 4.5 is multiplied by a factor of e, T and subtracted from Eq. 4.11, one 

obtains the following energy equation for the numerical formulation 

(4.15) 

Since e, and e, are assumed constant, Eq. 4.15 can be further simplified by 

linearizing porosity, 4, 

(4.16) 

where U T  - dpI  e, + (I - d)pr e, and Fr - Cp, e, 

Similarly, the equation for conservation of chemical species can be expressed as 

(4.17) 

where u, - dp, and - b p ,  
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1; 
As a first step, Eqs. 4.3 and 4.14 are combined to solve for the pressure field 

neglecting temperature effects (@ and 7 assumed equal zero ), resulting in a 

L- diffusion type equation. There is no difficulty to solve this equation by the impli- 

cit central finite difference method. The detailed procedure can be found in PT 

(Bodvarsson, 1982). After obtaining the pressure field, Darcy’s law, Eq. 4.4, can 

then be applied to obtain the velocity field, which is used to solve the energy and 

chemical species equations, Eqs. 4.16 and 4.17. The method used to solve Eqs. 

I !  
kd 

I 
4.16 and 4.17 consists of a combination of the explicit, monotonized 

upwind/central differencing and operator splitting. By means of operator spl i t  

ting, the first fractional step omits the diffusion and sources terms in Eqs. 4.16 

and 4.17. Thus, the following equations are solved 

i ’  

t; 

I 
(4.18) 

i, 
and 

(4.19) 

The method F e d  to solve Eqs. 4.18 and 4.19 .is the explicit, monotonized 

upwind/central differencing method, proposed by Van Leer (1977) and further 

developed for multidimensional, nonlinear hyperbolic systems by Colella (1984). A 

description of the method is given in the following section. The second fractional 

step considers the diffusion type equations that arise’when the convection term is 

neglected. This leads to the following two equations D 
b 

(4 20) L 



92 

and 

(4.21) 

Eqs. 4.20 and 4.21 are solved using the implicit central difference method. After 

pressure, temperature and concentration are obtained, the fluid and rock proper- 

ties are updated, and the procedure repeated until the solution has converged. 

The criterion set for convergence is . 
(4.22) 

where 

"max" denotes the maximum value over all grid blocks. 

4.5. Method For Controlling Numerical Diffusion Errors 

refers to P, T or 0 ;  rx is a specified residue constant; and the subscript 

And Grid Orientation Effects 

As the forms of Eqs. 4.18 and 4.19 are identical, it will be sufficient to 

describe the application of a second-order Godunov method with the explicit, 

monotonized upwind/central differencing to Eq. 4.18. The basic idea behind the 

method is to approximate the solution at the new time level, ta+ '  - t " + A t ,  by 

integrating the energy flux across the grid boundaries and considering the mixing 

effects due to compressible fluids (Eq. 4.23). In order to' obtain second-order 

accuracy in time, the primary variables at the grid boundaries are evaluated at 

the intermediate time level, t * + l f l =  r "  + 1/2At, for each time interval by tracing 

characteristics, and solving difference approximations to the characteristic equa- 

tions (Eq. 4.24). The second-order accuracy in space for the difference 

t 
= L  

?c 1 
I 
L 
t 
L 
t 
L 
t 
t 
1 
t 
k 
t 
t 

t 

i 

L 

i '  
b 
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approximations to the characteristic equations can be obtained by constructing a 
- 

piecewise, linear distributions of primary dependent variables at  each grid rather 

than a piecewise constant (first-order Godunov method). Furthermore, the linear 

distribution is obtained calculating the slope at each grid center by a suitable 

difference formula, which includes a "limiting" process to gudrantee solution pos- 

sessing monotonicity properties (Eq. 4.25). The detailed procedure is given as fol- 

6: 
1$ 

I: . 

h; 

bl 
I '  

lows: In two dimensions (Figure 43), Eq. 4.18 can be expressed in conservation 

form by finite difference method as 

b 

where the subscripts ( i , j ) ,  and (<*1/2,j) or ( i , j k l / z )  denote grid center and ghd 

boundaries, respectively; the superscripts n , n +i/2, and n +I, denote the time 
w 

level; and Ti%I)& represents the average temperature at time ta+1/2 - t a  + 1/2At 

in the computational grid boundary at z - (i+1/2)A2 and 8 - j a y .  With Frr >O 

at (i+1/2,i) ,  T,+t)L. can be expressed by a first-order Taylor series expansion as 
L '  

k 
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4, (-)i,j A' T represents the temperature gradient at the node ( i , j ) .  In A t  

order to obtain second-order accuracy in space, a central differencing formula is 

. However, to avoid numerical oscillations near fronts, the limiter As Ti,j 

is constrained by the monotonicity principle expressed as (van Leer, 1977) 

A* Ti,j =min{6z:j , 2 ]TS",l,j - Tcjl, 2 IT& - Tf"l,j[ ) 

T(j)(Tifj - r - l , j ) > O ;  

=o , othcrwisc. (4.35) 

I where 6Tifj is 1/2/Tc+1,j - qtl,jl for equally spaced grids. The central differencing 

formula for unequally spaced grids can be obtained in a similar way. Similarly, 

with ti;., >O at ( i ,  j + l / Z ) ,  T/'j+:(j2 can be defined as 

i 
I '  
Li 
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{(~s )i+l/zj(Til+l/zj - Tifj) - ( ~ a  ) i - ~ ~ j ( ~ 1 / ~ , j  - Tifj)) (4.26) 

where ArTilj is defined as in Eq. 4.24 but with the roles of i and j reversed. 

The primary function of the limiters As and AS Tilj is to track fronts and 

select the proper temperature gradients for the nodes at the fronts. The first- 

order differencing of Eq. 4.25 is employed at discontinuities in the solution, allow- 

ing a small amount of numerical dissipation to avoid oscillations. Thus, a sharp 

front will be smeared to some extent. Then the second-order differencing is 

employed in the smooth region of the front, as shown in Figure 4-4. By adjusting 

the limiters (Colella, 1985), one can obtain steeper gradients at fronts than those 

obtained using Eq. 4.25. However, such refined limiters require information from 

two more grid points, and this makes the computation more complicated, espe- 

cially for the treatment of boundary conditions. 

If As or A' q,j is equal to zero, this numerical scheme reduces to a first- 

order upwind differencing method. It should be noted that the third terms on the 

right hand side of Eqs. 4.24 and 4.26 must also be approximated using the first- 

order Godunov scheme (ie., the first-order upwind differencing scheme) (Colella, 

1984). The role of these terms is to take into account the effects of fluid flow in 

the direction tangential to the grid boundaries. 

.. 

. 
Because this numerical scheme is explicit, time steps must be controlled to  

IC I avoid numerical instabilities. The magnitude of chemical velocity, -, is always 
QC 
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larger than that of the thermal one, B, the chemical transport sets the cri- 
UT 

terion for the time step. Furthermore, the time step criterion must satisfy the 

Courant-Friedrichs-Lewy (CFL) condition 

(4.27) 

Once Eq. 4.23 has been solved, the solution, f, is used as the initial condi- 

tion in Eq. 4.25, which is then solved for the final temperature to complete a full 

step of operator splitting. Eq. 4.25 is solved using the implicit central differencing 

method in the following numerical form 

r 1 

(4.28) 

The above procedure is repeated for each time step. Eq. 4.28 is solved by a 

sparse matrix solver SPARSPAK (George et al., 1980), It should be noted that 

SPARSPAK provides a variety of options for solving sparse systems of linear 
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L .  

Id 

equations, however, there are only two options, ORDRA2 and ORDRB4, avail- 

- able for solving merss and energy equations simultaneously. By comparison of the 

L -  effrciency of SPARSPAK and that of the matrix solver MA28 (Duff, 1977), it was 

found that the memory storage required by SPARSPAK is about 1/3 less than 

MA28, but the computational speed is about 1/4 slower, if a 980x980 asymmetric 

sparse matrix resulting from PT’s formulation is solved. l i  
4.6. Validation of the Numerical Scheme 

The validity of this numerical scheme has been tested with various problems 

for which exact or approximate solutions (analytical or numerical) are available. 

The following four cases are considered to illustrate the accuracy of this numeri- 

cal method and some areas of application. 

4.6.1. One-Dimensional Convection-Diffusion Problem 

IJ 
L 

I; The test case considered is a one-dimensional, isothermal, chemical transport 

c, problem in a semi-infinite, isotropic porous medium. A constant concentration, 

Co, is maintained at the inlet (z-o), and an initial concentration of zero is 

assumed everywhere. The fluid velocity fluid properties, and the 

u tant. The analytical solu- 

d initial condi- r the given bo 

y Carslaw and Jaeger (1959) as 
t: 
I; 

a 
o + -  

zl 
1) (4.29) 

2 - -  - 
ot 

2 m  
+ exp(-)crje ( 04 

c 1  -=- 
co 2 

1 . In the numerical calculations, the computational domain is divided into 
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equal volume elements with a nodal point spacing of O.5m. To obtain accurate 

results, the CFL condition (Eq. 4.27) used in this test case was set at 0.5. Calcu- 

lations were made over a wide range of Peclet numbers, - to thoroughly test 

the performance of the numerical scheme. The results are shown in Figure 4 5 .  

- 

- 
4 4  

The comparison between the numerical and analytical solutions shows excellent 

agreement for Peclet numbers 0.1 and 1. This shows that the approximate solu- 

tion using the present numerical scheme converges toward the exact solution of 

the differential equation; the numerical scheme with the operator splitting p r e  

cedures is consistent. When the Peclet number is 10 or 100, the numerical 

diffusion errors are still small and there is no oscillation near the front. The 

numerical solution for a Peclet number of 00 is very close to that for a Peclet 

number of 100. 

It is of' interest to compare the results from the present numerical scheme 

with those of the conventional firstorder upwind scheme. Figure 4-6 compares 

the two schemes for Peclet numbers 10 and 100, and shows clearly that for these 

Peclet numbers the conventional firstorder upwind scheme can lead greater 

numerical diffusion errors than those produced by the present scheme. When the 

Peclet number is below 2, the conventional central differencing scheme can be 

employed to model the convection term with no oscillation, generating identica€ 

results to the present scheme. 
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4.6.2. Two-Dimensional Convection with Longitudinal and 

Transverse Dispersion 

I: For this case, wik consider a rectangular, homogeneous and isotropic porous 

medium with constant concentration, Co, maintained over a portion of the boun- 

dary (0 5 y a),  zero concentration maintained over rest of the boundary 
I 

L (6 c y  5 I ) ,  and uniform initial concentration of zero (Figure 4-7). The isothermal 

bl - -  
fluid velocity (z), longitudinal dispersion coefficient, Dl , and transverse dispersion 

coeficient, 4 ,  am assumed constant. Under these conditions, the chemieal tran- 

sport equation simplifies to 

d 

Id 

t i  
(4.30) 

When the input concentration is maintained at the boundary for a long 

enough time, the concentration distribution approaches a quasi-steady condition. 

L Harleman and Rumer (1963) obtained an approximate steady-state solution for 

I #  this problem by neglecting longitudinal dispersion. Their solution can be 

expressed as 

(4.31) 

le 
In this test case, the computational domain is divided into equal volume.ele- 

ments with a nodal point spacing of lm in both z and y directions. Comparison 

of the numerical results with the .approximate analytical solution is shown in Fig- 

ure 4-8. Good agreement is obtained except in the region near 3 SO. The 
L 
1 1  

G observed differences between analytical and numerical results are expected, ' 
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$0 
az = because the approximate analytical solution assumes - = 0. These differences 

are largest for the curves for y = 3.5 and 4.5m where the largest concentration 

a2c 
az 

gradients exists; hence, # 0. 

4.7. Grid Orientation Effects 

The numerical diicretization procedure used in a numerical simulation is 

said to exhibit a grid orientation effect if the numerical solution is sensitive to the 

spatial orientation of the grid. As described in 4.3, the governing equations used 

to describe transport processes in geologic media are transport-dominated 

convection-diffusion equations. It is well known that the central difference scheme 

for the convection term may cause convection instabilities if the solution is not 

smooth enough. A common approach to stablize the convection term is to use a 

first-order upwind difference scheme instead of the central difference scheme. The 

effects of a first-ordcr upwind difference scheme for the convection term on the 

solution are not only to produce numerical diffusion errors but also to exhibit the 

grid orientation problems. The emphasis in this section will be focused on the 

effect of a flow field oblique to the computational grid on the numerical solutions, 

since the grid orientation problem is mainly introduced by this effect. If a 

numerical scheme can adapt the computational grid along the streamlines during 

computational processes, the grid orientation problems can be eliminated com- 

pletely. However, fluid streamlines in the realistic processes can rapidly vary 

with time, and the adaptive grid technique is not easy to implement, especially 

for a complicated flow field. Therefore, numerical techniques with stationary grid' 

are usually employed. 
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From simple Taylor series truncation analysis, one can show that if the con- 

ventional central difference scheme is considered as a standard formula for the 

convection term, the five-point method (in twedimensions) with a firstorder 

upwind difference scheme will introduce numerical truncation errors (De Vahl 

. Davis and Mallinson, 1976). 

(4.32) 

where wz and W, are thermal and chemical velocities in the t and directions, 

respectively. Si represents the temperature or chemical concentration. The form 

of Eq. 4.32 is identical to diffusion equation. It produces a contribution to  the 

diffusion of heat or 'chemical concentration analogous to t physical diffusion of 

heat t the physical dispersion of chemical 

transport in an isotropic porous'media. The coordinate axes of the mesh coincide 

with the principal axes of diffusion and th 

rt in an anisotropic me 

rincipal coefficients are 

and 
(4.33) 

(4.34) 

For uniform mesh , one can express the numerical diffusion 

constant in tensor form as 

DB,,,, - 0.5 A (4.35) 

If the flow field is oblique to the computational grid, the value of numerical 

diffusion constant in the direction normal to the total velocity is given by (De 
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Vahl Davis and Mallinson, 1976) 

IVbz Ay sin20 
{4(Ay sins# + AZ c ~ % ) }  

Dasm (4.36) 

where 1V1 is the magnitude of total velocity, AZ and Ay are grid block sizes in 

the I and y directions, respectively, and e is the angle between the z-axis and 

the vector of total flow velocity V. 

For AZ - Ay = A, one can obtain 

(4.37) 

When the direction of the fluid velocity is diagonal to the grid (e- 4s0), 

&.,,, -0.3~A191, and the numerical diffusion reaches a maximum value. On the 

other hand, Os,, - 0, if the fluid velocity is parallel or perpendicular to  the com- 

putational grid. 

In petroleum engineering, Watts and Silliman (1980) used a physical disper- 

sion model to gain insight into the effects of numerical diffusion errors on the grid 

orientation problems. For an isotropic porous medium, a physical dispersion 

model can be expressed as 

For uniform grid block size and specific values of e, one can find a1 and at such 

that On,, =Dii (equate Eq. 4.35 to  Eq. 4.38), and the results are given 

I 6 = 0 , -  
2 ’  

- * a( = 0.5A, ut = 0, 
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lr 3% 
4 ' 4 '  

8 - - - * * ai - at 0.354A 

Eq. 4.37 also indicates that the thermal ical transport processes along the 

stream line will be impeded by the transverse numerical dispersion, if the compu- 

tational grid is not aligned with the streamline. 

The methods used to reduce the grid orientation effects encountered in 

modeling multiphase/multicompnent transport processes with high mobility 

ratios are very extensive. The strategy employed by most methods is to generate 

more now channels in the computational domain than those generated by the 

conventional method (fivepoint method) such that the accuracy of the calculated 

parabolic equation) is increased. For example, with a 

L .  brst-order upwind method ('Yanosik and 

S85) and the seven-point 

arson, 1983) were used to reduce the grid orientation 

IIJ 

h: 
method (Pruess and 

1 ;  u are not effects 

reduce numerical diffusion errors (front smearing), which are introduced by the 

in enhanced oil recovery processes. However, these methods able to 

first-order upwind method for ations. Because a mathematical 
i '  
let 

model of transport processes in underground formations becomes more compli- 

e numerical scheme, w accurately simulate real tran- 

sport processes 1 significance, should be able to avoid both 

numerical diffusion errors and grid orientation effects. 
i 

hubin (1985) hav a technique consisting of a 

second-order Godunov method and a nine-point sc e to study miscible dis- 

placement with high mobility ratio 41  in porous medium. Their results show 
ij 
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4 
: i ]  

that the numerical diffusion errors and grid orientation effects can be effectively 

reduced by thii numerical scheme. For most of transport processes encountered 

in hydrothermal reservoir simulations, the mobility ratio usually is very low. 

Thus, a second-order Godunov method ‘with the five-point scheme employed in 

this study may be sufficient to overcome those difficulties inherent in the numeri- 
L 
f ’  

cal simulations. To demonstrate the capability of the present numerical scheme, t 
the following problems, which are prone to numerical diffusion errors and grid 

orientation effects, are considered. 

4.7.1. Convection with Flow Field Oblique to Computational Grid 

To test the present numerical scheme used in this study, the most severe 

case of numerical diffusion is considered; a computations1 grid is aligned with 

streamlines at 45O. A benchmark probl , that has been extensively used in the 

literature to test alternative numerical methods, is employed. A schematic illus- 

tration of the problem is shown in Figure 4-9. The computational domain is a 

square with side length of lorn, which is divided into a 10x10 grid with equal 

spacing. A steady velocity field is first generated, and the chemical species equa- 

tion is solved without the diffusion and source terms. Two different constant con- 

centrations, one and zero, are imposed on the left and bottom boundaries, respec- 

tively. Since physical diffusion is not considered, a sharp discontinuity should 

exist along the diagonal line with a concentration of one everywhere above the 

line, zero everywhere below the line, and the concentration at the line assumed to 

be 0.5 by averaging the concentrations at the boundaries. However, the use of 

conventional numerical met hods will generate numerical diffusion errors, leading 

L 

L 
i 

I 
ii 

1 
L 
L 
L 
t: 
L 

t 
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. c  
to a smeared zone along the diagonal line. The extent of this smearing is a meas- 

ure of the numerical diffusion. The variation of concentration with y at 

z = 4.5m is presented in Figure 4-10. Due to the finite grid size, one can at best 

get a linear concentration profile (the solid line in Figure 4-10) defined by the fol- 

lowing three points: y = S S ~ ,  C - 0; y = 4.5m, C = 0.5; y - 5.5m , C - 1. Fig- 

ure 4-10 clearly shows that smearing due to the grid orientation effects extends 

over the entire computational domain for the conventional firstorder upwind 

scheme. The smearing extends over only two grid blocks, when the present 

scheme is employed. Since it possesses generally second-order accuracy in space, 

the numerical diffusion is greatly reduced. 

4.7.2. Chemical Transport Processes in Five-Spot Well Configurations 

To improve the recovery of hydrothermal and petroleum resources, the rein- 

jection of spent fluids as well as the injection of active chemical substances or 

steam are usually employed. The layout of the injection-production well 

configurations includes a five-spot or seven-spot pattern. In numerical simula- 

tions, the diicretized computational grid forming the flow channels that are 

parallel to  the line connecting the injection and production wells is called a paral- 

lel grid. Similarly, the discretized computational grid arranged in a way that the 

flow channels are diagonal to the line connecting the injection and production 

wells is called a diagonal grid. It is known that in reservoir simulations the 

1 numerical solutions for miscible displacement with high mobility ratios are 

strongly dependent on the choice of the grid discretization type, if the five-point 

method with first-order upwind scheme is used. By comparing the performance 

b 
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Figure 4-10 Comparison of Numerical Solutions and the Approximate Solu- 
tion for the Grid ,Orientation Problem. 
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between parallel and the diagonal grids, it was found that in general the parallel 

grid will predict earlier breakthrough of the injected fluid at the production wells 

while the diagonal grid will indicate greater sweep efficiency in the system. 

To verify the present numerical scheme, a problem of the injection- 

production in a five-spot pattern is considered. The reservoir is initially filled 

with fluids of concentration equal to unity, and the injected fluid of concentration 

zero. A basic symmetry region of the five-spot pattern is taken to be 400m x400m, 

in which 20x30 grid with uniform spacing is used. A discretized computational 

grid forming flow channels that are diagonal to the line connecting the injection 

and production wells is used; thus one can compare the computational results of 

breakthrough time and sweep efficiency, and assess the performance of the 

present numerical method. The computational results at 0.143, 0.428, and 0.713 

pore volume.of injected fluids obtained by the present scheme and first-order 

upwind difference scheme we shown in Figure 411. The figures on the left-hand 

side are obtained using the first-order upwind difference method, and those on the 

right-hand side are obtained using the second-order Godunov method. Since phy- 

sical dispersion is not considered in this case, a sharp chemical front should p m  

pagate along the streamlines. The reduced smearing of the front obtained from 

the present numerical scheme, compared with those obtained from the conven- 

tional method, is very pronounced. 

For comparison purposes, the same problem is solved by the computer code 

RESSQ (Javandel et al., 1984), which is available to study solute transport in 

homogeneous porous media under a steady state twedimensional flow field. The 
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code RESSQ is capable of tracing the concentration of a given solute based on 

the arrival of streamlines, and gives 'result without the errors of numerical 

diffusion. Therefore, the solution obtained by the code RESSQ can represent the 

exact solution of this problem. The exact chemical front at 0.713 pore volume of 

the injected fluids is given in Figure 412. A comparison of Figures 4-11 and 4-12 

A shows that both the sweep pattern and front locations using the present numeri- 

cal scheme are within an acceptable accuracy. When simulating the same prob- 

lem with a parallel grid, the .computational grid needs 1.4 times that used in the 

diagonal grid case, and it is beyond the storage capacity of the code. Thus, this 

case can not be demonstrated by the code. However, from the results obtained 

with the diagonai grid case, one can expect that using a parallel grid will also 

give accurate results. If a practical physical dispersivity of ai -1.Om and at +.lm 

is considered in this problem and solved by the present numerical method, it is 

shown in Figure 4-13 that, at 0.713 pore volume, the. breakthrough due to the 

additional dispersivity effects of the injected fluids at the production well can be 
- .  

observed. These results indicate that the accuracy of the present numerical 

scheme is sufficient to model the convection-diffusion processes without omitting 

any of the physics of the process. 

4.8. Conclusions 

A numehcal method for convection-diffusion type equations arising from the 

chemical and heat transport process in geologic media has been developed. The 

method consists of a second-order Godunov scheme, monotonized upwind/central 

differencing, and the operator splitting technique. This numerical method has 
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L; 
1 

been incorporated into a two-dimensional code that is capable of modeling ther- 

mal and chemical transport in geologic media. Various test cases have been stu- 

died to illustrate the accuracy of the numerical scheme, and the applicability of 

the code. In contrast to the conventional finite difference method, the present 

method greatly reduces numerical diffusion errors and gives no oscillations near 

fronts for high Peclet -numbers. In particular, the method significantly reduces 

grid orieptation effects. The results show that the present numerical method is 

potentially applicable for modeling convection-diffusion transport processes 

without dramatic loss of the physics of the processes, 

c' 
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CHAPTER 5 
L 

APPLICATIONS 

5.1. Introduction 

As fossil resources are gradually depleted, geothermal energy is being increa- 

ingly considered an important alternative energy source for electrical genera- 

tion or space heating. For any geothermal reservoir, assessment of the total 

recoverable energy prior to development’ and prediction of productivity of the 

field under exploitation are among the fundamental problems to be considered. In 

order to facilitate such assessments and predictions, an adequate mathematical 

model of a geothermal reservoir is needed. Complicated transport phenomena in 

geothermal reservoirs can be considered as coupled mass and heat transport 

processes only in a first approximation. Many geothermal fluids, particularly 

those from liquid-dominated reservoirs, may undergo severe disequilibrium due to 

temperature and/or pressure changes during the energy extraction processes. As 

the fluids regain equilibrium, dissolution or precipitation may occur, resulting in 

significant variations in reservoir properties. Thus, a more appropriate mat hemat 

ical model of a geothermal reservoir would include coupled mass, heat, and chem- 

ical transport processes. 

In thii chapter, the capability of the computer code PTC (Lai et al., 1985) is 

demonstrated by applying the code to the following fundamental and practical 

problems encountered in geothermal reservoirs: (1) natural convection in a porous 

slab subjected to horizontal kemperature differences, (2) coupling effects between 
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silica precipitation/dissolution and transient flow behavior in a single fracture, 

and (3) the multicomponent modeling of the Ellidaar geothermal field in Iceland. r 

k; 

6. 
i 

ii 

b 

I- Natural convection in porous media has been of some interest to both 

hydrologists and he transfer engineers, although for different reasons. The 

hydrologist is concerned with detailed information about fluid motion and tem- 

perature distributions in the system rather than the overall heat transfer 

behavior which is the con n of the heat transfer engineer. When calculating the 

rate of heat transfer, the Boussinesq and/or boundary layer approximations are 

usually employed by the heat transfer engineer to simplify the problem. However, 

these approximations may not be valid, if details of fluid motion and temperature 

distributions are needed. Studies of the effects of these simplified approximations 

on fluid motion, temperature distributions, and overall heat transfer behavior in a 

nvection problem in a porous slab subjected to horizontal temperature 

u 

ii 
t ;  differences are presented in section 5.2. 
hi 

Since silica is a common constituent in the earth’s crust, and is frequently 

found in geotherm form scaling or precipi- 

odels must consider reac- 

pointed out that local- 

ates upon cool 

tive silica transport. For example, Truesdell 
ei 

I; ized aquifer boiling c 

g eothermal field rature decline, and a consequent 

d so, separation of steam from the produced fluids 

can increase quartz sidual fluids. Under such cir- 

cumstances, quartz will precipitate after a concentration reaches a high degree of 

L i i  

L 
L 
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supersaturation, which results in reductions of the permeability and mass flow 

rate. Another example is silica scaling during reinjection operations. Reinjection 

is often employed to enhance the total energy from the system and to prevent 

chemical contamination of the environment by surface disposal. However, the 

spent brine is often cooled below the saturation temperature, causing silica depe  

sition in the surface pipelines, the disposal well or within the reservoir rock itself. 

If scaling occurs around the wellbore, permeabilities will be'reduced and the 

injectivity of the well will decrease. 

To investigate these adverse effects of silica reactions on geothermal systems, 

Keith et al. (1983) conducted an experiment involving nonisothermal flow of 

supersaturated silica fluid through Westerly and Barre granite. Their experimen- 

tal results confirm that silica precipitation is responsible for reductions in permea- 

bility, porosity and flow rate. Itoi et al. (1984) also performed an experimental 

study involving near-isothermal flow of geothermal fluid with supersaturated sil- 

ica through a porous medium column. Their experimental results show that the 

silica is deposited mainly in the region near the entry of the fluid in the column, 

h 
1. 
L 
i 

resulting in drastic permeability reduction. Lai et al. (1985) conducted numerical 

simulations of silica precipitation to study the effects of silica deposition on per- 

meability and flow rate variations in a single fracture system. They also applied 

a reactive silica transport model to the Ellidaar geothermal field in Iceland to 

evaluate properties of the reservoir and its connection with adjacent geologic for- 

mations. The results will be presented in sections 5.3 and 5.4. 
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6.2. Natural Convection in a Porous Slab 

IJ 

L 

i; 

I: 
I, 

In this section, twedimensional free convection in a porous slab is con- 

sidered. A schematic illustration of the problem is shown in Figure 5-1. The 

porous slab is bounded by adiabatic horizontal walls and isothermal vertical walls 

at different temperatures, TH and Tc ,  respectively. All boundaries are assumed 

impermeable to the fluids. The problem is to determine the flow and tempera- 

ture fields, and overall heat transfer behavior in the system at steady state. For 

natural convection problems, the exact governing equations are very difficult to 

solve by exact analytical means. Some approximations are needed, the simplest 

one is the Boussinesq approximation which assumes all fluid properties are con- 

stant, except that fluid density varies linearly with temperature in the buoyancy 

force term (Eqs. 5.3 and 5.5). Under this approximation, the governing equations 

for the problem can be simplified as - 

(5.2) 

(5.4) 
aT KA a2T #T a= + - -(-- + 7) '*at I ar p I  el a z 2  aY 

and 

P I  = Pre/ I 1 - B ( T  - T,l 1 1 (5.5) 

where T,, is the referenced temperature, and pnl is the fluid density 'at T,el . 
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It should be noted that the Boussinesq approximation is valid if the temperature 

difference AT = TH - Tc is sufficiently small; however, this is often violated in 

practice because the variation of fiuid viscosity with temperature is very rapid. 

* 

u:  
Gray and Giorgini (1976) developed a method allowing the specification of i 

r the conditions under which the Bowinesq approximation applies to a given 

Newtonian fiuid. To consider the effects of a temperature dependent viscosity on 
e 
I free convection in a porous slab, Weber (1975) used an averaged value of the 

viscosity for the hot and cold wall boundary layers, respectively. Blythe and 

Simpkins (1981) developed a method to take into account any variations of the 

viscosity with temperature, and the results are given for the case of a linear L 
viscosity-temperature relation since complicated viscosity-temperature relations 

make the computational rocedure complicated. The errors introduced by their 

method are those rrssociated with the choice of velocity profiles in the boundary 

L 
L 

layers. This same problem, including the effects of temperature and pressure on 

fluid properties (density, viscosity, expansivity, and compressibility) are investi- 

gated; that is, the full governing equations 3.10, 3.16, and 3.18 are solved without 

the Boussinesq and boundary layer approximations. 

With the Boussinesq approximation, numerical solutions for this type of 

problem have been obtained by Bankvall (1974), Burns et al. (1977), Hickox and 

Gartling - (1981), and Dawson and McTigue (1985). Bejan and Tien (1978) 

li 
L 

developed an analytical technique to obtain the approximate solutions. To verify 1, 
the numerical code, Hickox and Gartling compared their numerical results with . 

3 

b; those obtained by using the approximate analytical solutions. Both numerical and 
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t 

approximate ,analytical solutions agree well. All of these workers have shown 

that the solutions of thii problem depend on the aspect ratio and the Rayleigh 

number. 

i- Without the Boussinesq approximation, the solution will also depend on the Lr 

temperature range considered, and in some cases on pressure as well. The 

emphasis in the present study is to  further test the numerical code for this non- 

linear problem under a complicated flow field rather than to make an extensive 

investigation of heat transfer. Therefore, only a single value of the aspect ratio, 

H / L  - 0.3, and constant temperatures of 100 ' C  and 20 ' C  on the vertical walls 

are used. Thii aspect ratio was chosen to compare our results with those obtained 

by Hickox and Gartling (1981) and Dawson and McTigue (1985). The large tem- 

perature difference between the vertical walls allows one to test the effect of the 

Boussinesq.approximation on the heat transport process in t8e system. Values of 

the parameters used in thii problem are given in Table 5-1. 

h 
_-I 
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Table 3-1: Input parameters for natural convection problem L .  

L 
I 
1 

# 

L 
i t  
t 

Slab height: 

Slab length: 

3 m  

10 m 

I Effective thermal conductivity: 2 W/( m - 'K ) 
Porosity: . 0.1 

4184 J / (  kg' 'K ) 

loo0 J / (  kg* 'K ) 

Specific heat of water: 

Specific heat of rock: 

Rock expansivity: 0 'K" 

0 Po" 

The computational domain is divided into a 20x12 grid. In order to  obtain accu- 

rate results, a finer mesh is used near the vertical walls where temperature gra- 
id 

t i  
Q 

t 

1 
L 

L 
L I '  

dients are steep (Figure 5-2). Calculations have been made for a wide range of 

Rayleigh numbers, which are calculated using the fluid properties evaluated at 

the mean tempe ure (60 ' 0 )  and 1 atmosphere pressure from 

Different values of Rayleigh numbers are calculated by changing the permeability 

in Eq. 5.6; all or example, for a Rayleigb her parameters are unch 

number of 25, t ided (Batchelor, 1979), and 

then a permeability of 4.81Xl(r'2m2 is obtained. Figures 3-3a to 3-4d show the 

mass flux and the temperature distributions, respectively, for different Rayleigh 

numbers. The general pattern of circulation due to the buoyancy forces 

values of 8, pI , cI , and p are p 

i i  
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Figure 5-2 The Computational Mesh Used in the Natural Convection Prob- 
lem. 
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Figure 5-4a The Distribution of Isotherm Contours in the Porous Slab for 
Rayleigh Number of 25. 
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that develop is as expected, but it is interesting to observe the flow field as fluid f '  G =  

* properties change with temperature and pressure. Because the fluid viscosity is 

t :  about four times lower while the fluid thermal expansivity is three times higher 

near the hot wall than near the cold wall, the Raleigh number near the hot wall 

is about twelve times that near the cold wall. The combined effects of the fluid 

& viscosity and thermal expansivity can strongly enhance the buoyancy forces, and 

thus the mass flux near the hot wall. Figures 5-3a to 5-3d show that the mass 

flux is always the highest near the hot wall, lowest near the cold wall and has 
L 

intermediate values near the upper horizontal wall when the Rayleigh number is 
E '  

100 or less. However, the mass flux is the lowest near the lower horizontal wall 

' when the Rayleigh number is equal to 200. This result also indicates that the 
Ll 
i t  L 
6 '  
t 

* driving force of the convection cell is more dominated by the hot wall. Note also 

how the isotherms in Figures 5-4a to 5-4d are farther away from the hot wall 

than from the cold wall. These asymmetric distributions would not be predicted 

i: by methods that use the Boussinesq approximation. As the Rayleigh numbers 

increase, the asymmetry becomes even more pronounced. Thii implies that the 

effects of tempe d pressure dependent fluid properties on the transport 

process are significant, so that they must be considered in transport process with 

.. 

L 
I '  
t high Rayleigh numbers. 

& 
1 '  

fu 

To evaluate the rate of heat transfer, one must calculate the Nusselt 

where is the total heat flow rate per unit thickness of the slab. The Nusseit 

ii 
L: 
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~. 

numbers obtained from this study are very close to those obtained by Hickox and 

Gartling (1981) and Dawson and McTigue (1985), as shown in Table 5-2. 

Table 5-2: Nusselt number as a function of Rayleigh number 

for aspect ratio of 0.3 

Rayleigh Number 

25 50 100 200 

Hickox and Gartling (1981) 1.26 1.84 3.45 7.17 

Dawson and McTigue (1985) 1.27 1.87 3.46 6.64 

This work 1.28 1.85 3.29 6.43 

Source 

I 

For Rayleigh numbers below 50, the difference is less than 2%, which is expected 

because convection is not strong at low Rayleigh numbers. Consequently, for 

these cases the Nusselt number for the.overaI1 heat transfer behavior of the sys- 

tem is not strongly affected by the Boussinesq approximation. At higher Ray- 

leigh numbers, the difference between our results and those obtained by the ear- 

lier investigators is more pronounced; the largest difference is 11% for a Rayleigh 

number of 200. 

6.3. Reactive Silica Transport in a Single Fracture 

Current experience with geothermal injection indicates that silica scaling is a 

widespread concern. Since silica is slow to respond to physical or chemical varia- 

tions of geothermal fluids, the processes of its precipitation/dissolution rates are 

controlled by reaction rates so that they can only be understood in terms of a 



139 

kinetics model rather than an equilibrium one. 

5.3.1. Kinetic Model of Silica-Water Reactions 
- 

The kinetics of queirtz dissolution in water has long been investigated, and 

Robinson (1982) provides a survey of this subject. The experimental results have 

shown that in general the kinetic rate obeys the following relation 

A, 
M, where h is a kinetic rate constant, - is the ratio of quartz surface area to fluid 

mass, C8, is the equilibrium concentration of dissolved silica. Rimstidt and Barnes 

(1980) derived thii equation from absolute theory, however, Robinson (1982) 

pointed out that it is best to consider the rate law to be semi-empirical. To 

model the coupling effects between ation and transient flow 

imstidt and Barnes 

(1980) is employed in the simulator PTC. To calculate the silica-water reactions, 

kinetics of silica-water reactions proposed b 

one can evaluate k and 0 8 ,  from the data compiled by Rimstidt and Barnes 

(1980). Table 5-3 shows their results for the solubility of different silica phases as 

a function of temperature. 
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Table 5-3: The Equilibrium Constants for Silica-Water Reactions - t  

Si02(s ) + 2H20 ( I )  = H4Si04(aq  ) 

l o g K = a  + b T  + c / T  ( T  in OK) t! 
L 

a PI  b Silica Phase 1 
L 

1.881 -2.028X lo3 -1560.0 I Quartz 

I 
-0.032 0 I -988.2 I 

I J t -0.256 -793.6 rn 1 
L Amorphous Silica 

~~ 

0.338 -7.889Xle I -840.1 

Table 5-4 shows the best fits for the rate constants for silica-water reactions as a 

function of temperature that were obtained by Rimstidt and Barnes (1980). The 

rate constants for silica precipitation and dissolution are given by 

l o g k = u + b T + c / T  (5-9) 

I 

t 

f L 
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Table 5-4: The Rate Constants for Silica-Water Reactions 

Silica Phase 

All Silica Phases 

Quartz 

a -Cristobalite 

/3 -Cristobalite 

Amorphous Silica 

a .  b c Processes 

-0.707 0 - 2598 Precipitation 

1.174 -2.028 X lo3 -4158 Dissolution 

-0.739 0 -3586 Dissolution 

-0.963 0 - 3392 Dissolution 

-0.369 -7.89 X l0"L 3438 D'lssolution 
t 

For single fractures, the value of reaction parameters (Ar/Mr) can easily be 

ned from fracture geometry as 

(5.10) 
b 

-=- 

where b is the fractwe aperture and pf is fluid density. where b is the fractwe aperture and pf is fluid density. Id 

(5.10) 

L 
d !  

The permeability of a single fracture is assumed to be governed by the cubic 

law (Witherspoon et al., 1980). In numerical calculations, Eq.5.8 is treated as the 

source term, which is needed in the*second step of the splitting scheme. 

t Flow Behavior 
i s  

50 m long fracture wit n initial aper- 

ture of 10-4 m. Initially, the fracture contains 106) ' C  fluid, with an equilibrium 

concentration of 142 cal work, the computational domain is 

ii 

1 odal spacing of 0.5 m. 

ater supersaturated with 

522 ppm of a-cristobalite .is considered. The results of numerical calculations are 
h; 

L 
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t 
shown in Figures 5-5 through 5-7. Figure 5-5 shows that the concentration front 

I- 
* L  moves at a rate of approximately 0.3 m/day, with silica scaling occurring behind 

the front. The silica deposition causes reduction in the permeability, with the 

most severe reduction close to the inlet. We approximate the permeability 

changes from the aperture reduction and cubic law (Witherspoon et al., 1980). 

The rate of silica deposition increases with time because the surface area to fluid 

A,  
4 mass factor (-) increases as the aperture decreases. This causes rapid permea- 

bility reduction close the inlet at later times, and results in a small decrease in 

the concentration profile along the fracture. 

Figure 5-6 shows a similar case, but with twice the initial flow rate. As 

expected, the speed of the concentration front is approximately double that of 

the first case, resulting in a more rapid permeability decline close to the inlet. 

Figure 5-7 shows the flow rate decline for both cases. The mass flow rate at 

the entrance is represented by the dimensionless variable Q /Qi I where Qi is the 

initial mass flow rate at the entrance. Figure 5-7 shows that the higher the ini- 

tial flow rate at the inlet, the faster the dimensionless mass flow rate will decline 

because of greater silica precipitation. Qualitatively speaking, the effects of silica 

deposition on the transient flow behavior demonstrated by the numerical results 

are similar to those observed in the experimental study of Itoi et a1 (1984). 

In order to investigate the coupling between mass and heat flow and silica 

transport processes, we next consider a problem with non-isothermal effects. For 

this case, the fracture fluid initially contains 150 *C water with a silica concen- 

tration of 257 ppm (equilibrium value for a-cristobalite). Then 100 C water 
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supersaturated with silica (522 ppm) entels the fracture at the inlet. Two cases 

are considered: (i) no heat losses to surroundings, and (ii) conductive heat 

transfer from the rock matrix to the fracture. 

When heat transfer between the fracture fluids and the rock matrix is 

ignored, the results shown in Figure 5-8 are obtained. Dimensionless temperature 

is defined as (T-To) / (Tb -To), where T o  is the initial fracture temperature 

(150 'C) and Tb is the inlet fluid fluid temperature (100 'C). Figure 5-8 shows, 

as expected, that the velocities of thermal and chemical fronts are identical (frac- 

ture porosity equals unit). The figure shows that the silica concentration behind 

the front is considerably higher than the equilibrium concentration for 100 ' C 

water. This is because of the slow rate of reaction for silica-water at 100 C . 
Ahead of the thermal front, the silica concentration is in equilibrium with the 

150 ' C water, and this causes a minimum in the silica concentration close to the 

location of the thermal and chemical fronts. The permeability at various times is 

similar to that obtained in the isothermal case (Figure 5-5). 

When heat transfer between the fracture fluids and the surrounding rock 

matrix is considered, a different picture emerges, as shown in Figure 5-9. In this 

case the thermal front lags behind the chemical front, and because of the higher 

overall temperature, the silica deposition rate is much higher than in the previous 

case. This is reflected by the permeability profiles for the system at two different 

times. The plateau in the permeability profiles close to the inlet is due to the cou- 

pling between the temperature and the silica reaction rate. Although the deposi- 

tion rate reaches a maximum value at different times depending on the distance 



0 6 10 16 20 26 30 36 40 
k Distance X (m) 

XCG 861-17 

Figure 5-8 . Silica Concentrations Compared with Temperature and Pennea- 
bility Profiles along the Fracture without lleat Transfer from tlic 
Rock Matrix. 



1.0 

0.8 

0.6 
134 

I< 
lu' 

0.4 

0.2 

0 

Dimensionless concentration, 6 
Dimensionless temperature, T 
Dimensionless permeability, K 
o--o------.-o-o o ~ o o o ~ ~ ~ ~ - ~ o ~ ~ o  

Figure 5-0 

1 2 3 4 6 6 7 8 

Distance X (m) 
XCO 161-1B 

Silica Concentrations Compared with Temperature and I'erniea- 
bility Profiles along Fractures with Heat Transfer form Rock 
Matrix. 



149 il 
from the inlet, essentially the same cumulative amount of silica is deposited in 

the plateau region. Note that the silica concentration never gives below the t - .  
equilibrium value for 150 C . 

* < ,  

6.4. MultipleComponent Modeling of Geothermal Systems 

One of the most important uses of numerical simulators in geothermics is to 

assess the generating capacity of geothermal systems for power production or 

space heating. At present, the state of the art is to consider only the primary 

fluid component (water). If concentrations of dissolved solids or noncondensible 

gases are to be considered, one must modify the equation of state for the fluid 

.and correlate the variations of reservoir properties with chemical concentrations. 

A major problem in the assessment thermal reservoirs is the lack of unique 

solutions. It is believed that multi- ent modeling, i. , including a method 

of handling the chemical variations t are observed, can yield more satisfactory 

geothermd problems. 

section a simple model Ellidaar geothermal field in Iceland is 

described. The temperature and pressure behavior in the reservoir as well as silica 

transients are investigated. All the data used in the analysis are taken from 

reports by Vatnaskil (1982,1983). The conceptual model we use is shown in Fig- 

ure 5-10. The reservoir consists of 110 'C water with a silica concentration of 

about 150 ppm. During the 16-year exploitation of the field for space heating, 

considerable temperature decline has been observed and this has been associated 

with a drop in silica concentrations of silica in the produced fluids. One possible 

explanation of these transients is leakage of lower temperature, less concentrated 
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fluids from shallow aquifers. A conceptual model of the reservoir with a shallow 

aquifer is shown in Figure 5-10. As the temperature gradient in the caprock is 

conductive it appears i&ly that the recharge krom above is mainly through frac- t': 
tures. 

L i  In simulating the conceptual model shown in Figure 5-10, the very simple 

numerical grid is used as shown in Figure 5-11. It is a two layer radial grid with 

the whole well field lumped into a single element. Figure 5-12 shows the rate of 

fluid production for the period 1968-1981. Figures 5-13 to 5-15, show the way in 

which pressures, temperatures and silica concentrations, respectively, have 

declined with time. For simplicity, a constant flow rate of 3.5 x106rn3/year over 

the 16-year period is assumed, hat the seasonal and annual variations are not 

considered. Consequently, we not attempted to model the effects of the sea- 

sonal variations shown in.Figure 5-13. 

lba 

iid 

IJ 
In this study, the primary purpose is not to develop a predictive model for 

I I  u 
the Ellidaar geothermal field, but rather to demonstrate the methodology and 

usefulness of multi-component modeling. After a brief trial and error process, we 

obtained the results shown in Figures 5-13 to 5-15. All of the matches appear 

reasonable considering the simple model assumed. 

L 
L 

ti 

ain results of the history match are as follows. The match with the 

line data gives s of the permeabilities of the reservoir and the 

fractured caprock. It is fou match the temperature and the 

silica concentration decline (Figure 5-14), most of the fluid recharge to the reser- 

voir must come from the shallow aquifer above. The main reservoir is quite 

1 
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permeable, but the rocks surrounding the well field are much less permeable ( <5 I 
b'. 

4 

- I 

md). The fractures providing cold water recharge from above also seem to be 

I- quite permeable. The best match with the pressure decline gave a rather high 

total compressibility, 4X lO-'p~'~. This high compressibility supports the idea of 

a shallow unconfined aquifer hydrologically connected to the main reservoir. The 

match with the temperature decline gives an estimate of the reservoir volume 

that has undergone cooling due to cold water leakage from above. The average 

porosity of the reservoir is determined by the match with the silica decline (Fig- 

w e  515). The results indicate an average porosity of S%, which appears reason- 

able for the volcanic rocks present at Ellidaar. 

L 
I 
t 
L 
b, 
i' Although a very simple conceptual model is used in this study, the results 

omponent modeling can give additional infor- nevertheless illustrate that m 

la mation on reservoir properties and ch ristics. For example, this coupled 

method enables one to obtain a good estimate of reservoir volume 8s well as 

porosity, from which reserve estimates can be made. As the different processes are 
L 

coupled, it is expected that the history match will be more unique and come- L1 
quently, future predictions more rei'iable. 

6.5. Conclusions 
L 
1 The numerical code PTC has been applied to a problem of natural convec- 

tion in a porous slab in order to study the effects of the Boussinesq approxima- 1 
tion on the temperature and mass flux distributions, as well as overall heat 

transfer (Nusselt number). The results show that the Boussinesq approximation is 
L 
/ ,  

$i reasonable for predicting the overall heat transfer of the system. However, the 
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mass flux and temperature distributions in the system are significantly affected 

by the temperature or pressure dependent fluid properties. 

A model for simulating silica precipitation and dissolution has been * 

developed. The model has been used for theoretical studies of siIica deposition in 

single fractures. The results show that silica precipitation and the resulting per- 

meability reduction depend strongly on the coupling between the chemical and 

thermal processes. Various examples are given for different flow rate declines and 

thermal effects. 

A multi-component model has been applied to field data from the Ellidaar 

geothermal field in Iceland. A simple numerical grid is used for history matching 

with declines of pressure, temperature, and silica concentration over a 16-year 

period. The results illustrate that multi-component modeling can yield detailed 

information about reservoir properties and characteristics. 
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CHAPTER 8 

i 

I CONCLUSIONS AND RECOMMENDATIONS 
k;: 

8.1 Conclusions 

The main objective of the esent study is to develop ethodology to L 
investigate transport phenomena in geologic media. Because transport processes 

in fractured media are quite different from those in porous media, different 

mathematical models of transport processes in fractured media are considered. A 

basic study of uncoupled isothermal and nonisothermal fluid flow in fractured 

k 
i; 

media in this investigation employs the so-called “double porosity’’ media 

est data analysis in naturally frac- 

i veloped. This mode nto account transient inter-porosity 

ssure drawdown and build-up 

ndary conditions. An 

iJ t wellbore storage 

drawdown behavior 

pplicability of the 

L ‘  present model to natural1 ained from litera- 

results show that 

i-analytical model fo 

flow, wellbore storage, and skin e 

tests for infinite, finite, anrd outer constant pressu 
c 

b‘ 

i 

and skin effects has 

b 

t ’  1 

the inter-porosity flow factor and ratio of storativity obtained from the present 

model are much smalle ed by Barenblatt et al. 

rren and Root. 

For nonisothermal media, proper locations 

and flow rates for injection wells can be determined from a semi-analytical model 
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to avoid premature breakthrough of cold water in production wells. Type curves 

have been developed for optimizing an injection operation to maximize energy 

recovery from hydrothermal resources located in fractured media. 

Since coupled nonisothermal chemical transport processes in geologic media 

are difficult to solve by any exact analytical methods, a high resolution finite 

difference method has been developed for solving the convection-diffusion type 

equation arising from the conservation laws of energy and chemical species. The 

method consists of a second-order Godunov method and the operator splitting 

technique. By means of operator splitting, the convection-diffusion type equation 

can be split into two parts, which can be solved by different numerical methods 

suitable for each part. The first part, solved by a second-order Godunov method 

(explicit, monotonized upwind/central difference), is a hyperbolic type equation, 

which considers only the convection term. The second part, scFved by the conven- 

tional central finite difference method, is a parabolic type equation, resulting from 

omission of the convection term from the convection-diffusion type equation. 

With this solution technique, the results obtained from several benchmark prob- 

lems show that in contrast to conventional finite difference m?thods, the numeri- 

cal diffusion errors and grid orientation effects can be significantly reduced. In 

particular, the method guarantees oscillation-free results near fronts for high 

Peclet numbem. These are desirable features for any numerical methods to accu- 

rately simulate transport processes in geologic media. 

Furthermore, this new method has been incorporated into a two-dimensional 

code. To illustrate the applicability of the code, some fundamental and practical 



b .  problems, including a theoretical study of natural convection in a porous slab and 

modeling of kinetic silica-water reactions in geothermal systems have been inves- 

tigated. For natural convection in a porous slab subjected to horizontal tempera- 

ture differences, effects of pressure- and temperature-dependent fluid proper- 

ties on the details of the convection solutions have been studied. The results 

t the overall heat transfer behavior is not strongly affected by relaxing 

roximation. However, the mass flux and temperature distribu- 

are strongly affected by the non-Boussinesq effects. 

1'; 
hj 

L 

L 
L 

L 

L L 

To study the effects of silica-water reactions on transient fluid flow behavior, 

a model for simulating silica precipitation and dissolution has been developed. 

This model has been used to study the effect silica deposition on transient 

recipitation and 

oupled chemical 

sults show that silic 

and thermal processes. To analyze the performance of geothermal systems during 

t pressure, tem- 

be employed to obtain a better 

L 
u 
I .  

Id of reservoir behavior. 

Since the present numerical method is explicit when solving the convection 

h equation, the size of the time step taken during computational procedures must 

satisfy the Courant-Friedrichs-Lewy condition. It is known that the application of 

the explicit scheme to steady-state calculations results in rather long computing 
1 
t i  u times. Also, some problems in reservoir simulations require a very fine grid near 
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wells to obtain accurate solutions. Thus, the explicit scheme would restrict the 

size of time step severely, and may not be applicable. To retain the characteris- 

tic of highly resolved solutions by the explicit second-order Godunov scheme 

without the disadvantage of a slow convergence rate, an implicit scheme needs to 

be further developed to get rid of the CourantFriedrichs-Lewy condition. How- 

ever, the implicit, second-order, nonoscillatory Godunov scheme needs five-point 

information in each direction; thus, the construction of the Jacobian matrix is not 

trivial and the direct solution technique may not be applicable. Therefore, an 

effective iterative solution technique needs further investigation; most likely the 

alternate direction solution technique should be considered. 

One of various important topics of nonisothermal chemical transport 

processes is to study double and cross diffusive effects on the processes. These 

effects may be important in the safety assessments of underground disposal of 

nuclear waste, and in the analysis o f t h e  natural state geothermal systems. The 

double diffusive effects involves the density variations with temperature as well as 

chemical concentrations. The cross diffusive effect considers the coupled fluxes of 

two properties due to irreversible thermodynamic processes. Two well known 

cross-diffusive effects are the Soret effect and the Dufour effect. To investigate 

these problems, the equations of state for fluids and the code PTC must be 

' modified. 
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APPENDIX A: Derivation' of the Governing Equations for Fluid Flow in 

Nat urall y Fractured Media. 
L "  
G :  

In formulating the governing equations, the approach of Warren and Root is 

employed. The fractures are lumped into to one continuum medium and the rock 
I 1  

b= 

I matrix into another one. 
& 

In the radiaI flow system, one can define a control volume Vu as 
1 
k 

i i  

V, - n{(r + - r 2 } H W ? m d r H  

L The interface area A, between the rock matrix and the fractures in the control 

volume can be expressed as 
LS1 

vu 12nrdrH 
D A, - G D 2 ( ~ )  

A mass balance equation for the control volume in the fractures can now be 

written as I 

a a( v u  42P f 1 
lu 

' qrA -{qrA + z ( q r A ) d r }  + ( q s A , ) I - ~ / 2 =  at 

where A (2rrH) is the cross section area in the radial I direction, is fracture 

porosity, pI is fluid density, t is time, and qr and qz are the mass flux in the 

radial and t directions, respectively, give 

i 
lj 

iu 
ii 

i 

k 2  ap2 
Qr - T P f  

and t 
k1 ap1 

9 2  = - TPI at 
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where k l  and k 2  are fracture and rock matrix permeabilities, respectively, and p is 

fluid viscosity. Assume d2 to be constant so that the right hand side of Eq. A.3 

can be expressed as 

( A 4  
ap2 

vsPJ d(cJr + eJ )at 
where et and eJr are fluid and fracture compressibilities, respectively. 

Assuming k 2  to be constant and substituting Eqs. A.l, A.2, A.4, A.5 and A.6 into 

Eq. A.3, one obtains 

The governing equation describing the mass conservation in the rock matrix 

can be expressed as 

where 

(A.9) 2 A, - A, t 
ke is a constant, and 41 is rock matrix porosity. Similar considerations as the 

fractures yield 

where e l  = e, + e/ and e, is rock matrix compressibility. 

(A.10) 
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I ’  
L i -  

Eqs. A.7 and A.10 describe the pressure transient behavior in the fracture 

and the rock matrix, respectively. 

t ’  
Y 

c 
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- t  APPENDIX B: Simultaneous Solution for Pressures of the Fracture and Rock 

Matrix. 

Applying Laplace transformation to Eqs. 2.13 through 2.22 yields 

==O 

==O 
e 'rD 

The general solution to Eq. B.2, expressed in terms of modified Bessel func- 

tions, is 

where A and B are constants and.zl expressed as 

(B.10) 

L 

L 

I 
I 
! 
i 
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L -  (B.11) 

h.: After applying boundary conditions given by Eqs. B.5 and B.6 to Eq. B.2, the 

solution for the pressure in the rock matrix can be expressed as 

L 
(B.12) . .  

To solve the equation for the pressure in the fracture and at the wellbore, 

1 
I !  

e; 
Eq. B.11 can be used to yield . 

(B.13) 

1 
Eq. B.13 can be further simplified using the recursion formula of Bessel function 

I&l) given by 

Is& 1) = I-& 1) - $1/2(Zl) 1 (B.14) 

I+(t  1) and can be defined by hyperbolic functions as ii 

'c; 

t 
iji 

L all 

(B.15) 

and 

h / 2 ( Z l )  - inh(3: (B.16) 

Substituting Eqs. B.14 to B.16 into Eq. B.13, one obtains 

"" 11sd2 FD 2[Z l c o t h (  3: 1) - 11 (B.17) aFD 1 

11/2(3: 1) 
-b-, - 

Substituting Eq. B.17 into Eq. B.1 yields 
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(B.18) 

Let 

(B.19) x x 
5 5 

- -2 ICOth( 2 1 )  - - + W P  

The general solution to Eq. B.18 is 

After appling the boundary conditions given by Eq. B.7, the fracture pressure is 

expressed as 

FD2 m O ( G r D )  (B.21) 

Substituting Eq. B.21 into Eqs. B.3 and B.4, respectively, and equating the final 

results, one obtains 

Rearranging Eq. B.22, C is expressed as 

(B.22) 

(B.23) 

Substituting Eqs. B.22 and B.23 into Eq. B.4, one obtains the solution of FD, . 
Similar procedures can be used for the solution of a finite reservoir. 
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APPENDIX C: hymptoic Solution for Pressures of an Infinite Reservoir 

In the Laplace domain, the solution of the wellbore pressure for an infinite 

reservoir without wellbore storage and skin effects can be expressed 

+ wp = 3hzlcoth (zl) - 3h + wp and z1 = 3 L  1I8/2(Z 1) 

Il /2(Z 1) 
where z 2 =  

At small times (p -00, z1-0o, and coth (z1)-i), and thus z2 can be expressed . 

If the argument 2 is large, KO(.) and Kl(z) can be expressed 

Substituting Eqs. C.2 into Eq. C.1, one obtains 

The inversion of Eq. C.4 from the Laplace domain to real space yields 

(C.5) 

At large times (p -0, zl-0), I-1/2(~J and 11/2(r1) can be expressed by the 

asymptotic expansions as 

I-I/2(Zl) - -+-  24 + . . )  (C-6) 



Thus, one obtains 
- 

. + WP 
' 

-12f + w p  'P 

If the argument t is small, K&) cab be expressed as 
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Ko(t l )  - - 7 + In 2 - ~n & 

Similarly, K l ( t l )  cab be expressed as 

(C.10) 1 
21 

K1(+1) = - 

Substituting Eqs. C.9 and C.10 into C.l, one obtains the solution for the wellbore 

pressure in the Laplace domain given by 

The inversion of Eq. C.ll from the Laplace domain to real space yields 

(C.11) 

(C.12) 

L 
- e  

-- t 
t 

b 
L 
t 
1 
c 
t 
1. 
1 
t 
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1 

t 
b 

i 
i 

t 
L 

1 



L 
L -  
L :  

i .  
L 

l 

id 

L. 

183 

APPENDIX D: Approximate Solution for the Pressure of an Infinite Reservoir 

Without skin and wellbore storage effects, the pressure at the wellbore can 

be expressed as 

Approximate inversion of Eq. D.l is possible using the improved Schapery 

method. As a first step, one approximates 

Hence, 

If z2 is small, Eq. D.2 becomes 

PDf - KO(alF 1/.s0 (D-3) 

In general, for to 210 (z2  is still small), KO(+?) can be expressed as asymptotic 

expansion as 

K,,(r*) - - 7 + in 2 - In 6 

Within 2% accuracy in comparison to the results of the Laplace numerical inver- 

sion, PD, can be expressed as 

(D.4) 
1 x  x W PD, - - 7 + In 2 - - kr{--+scoth(ts) - - + -} 
2 5  5 C'tD 

where 
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5w The half slope can be observed around the dimensionless time, tD = -. In 
- c % 

this region Eq. D.4 can be further simplified to yield 

P D ,  - -{lntD 1 - lnX(1 - w)  - In- 3 - 37) 
4 80 

13 
- L  

t 

t 

I 
t 

t 
I '  L 
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In the dimensionless form the governing equations for the temperatures in . E  * E 

the fracture and rock are 

I: Fracture 

I, 

Rock 

G The initial and boundary conditions are 

(E-3) 

(E.4) 
ii 
lti 
u 

li 

L 
li 
c 

TD 1(&1,?) e: TD2(e?) 

T p  ,( €,0,2) - 1 k i t e  

. (E.5) 

(E4 u After applying Laplace 

may obtain, 

sformation to Eqs. E.l and E.2 with respect to r, one 

(E-7) 
a T D 2  a T D l  --- 12-k-1 B T D 2 p  arl 

- T D l P  ( E 4  @ T D ,  2 aFD1 - + -- 
a* rl all 

subject to the transforms of boundary conditions, Eqs EA, E.5 and E.6, 
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(E.11) 

The general solution to Eq. E.8, expressed in terms of the modified Bessel func- 

tions, is 

(E.12) 

where A and B are constants. Applying boundary conditions given by Eqs. E.10 

and E.l l ,  A and B can be determined. 

(E.13) ?c* 2 A-m 
B = O  

Substituting Eq. E.13 into Eq. E.12, one obtains the solution of the temperature 

in the rock. 

To solve the equation for the temperature in the fracture, one evaluates 

(E.14) 

(E.15) 

Substituting Eq. E.15 into Eq. E.7, one may obtain the general solution for the 

temperature in the fracture 

(E.16) 
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where A is a constant. Applying the boundary condition (Eq. E.9), one obtains 

1 A = -  
P 

Thus, the solution the temperature in the fracture can be expressed as 

(E.17) 

Asymptotic Solutions 

From the recursion formula of Bessel functions, I3/2(z ) can be expressed as 

Ia/dZ 1 - I-i/2(z 1 - ;Ii/1(z 1 (E.18) 1 

If the argument z is large, I-&) and I1h(z) can be expressed as 

At small times ( p - w e ) ,  one substitutes Eqs. E.18 and E.19 into Eq. E.17 and 

obtains the equation for the temperature in the fracture in the Laplace domain 

given by 

Eq. E.20 can be inverted to real space as 

where u is the unit step function. If the argument z is small, 

expressed as 

I-l& 1 - F( %Z 1 +  $+ G + .  . )  

(E.20) 

(E.21) 

can be 

(E.22) 



Similarly, I l p ( r )  can be ypressed as 

I 1 , 2 ( 2 ) = f i ( z  +g+.. t5 ) 
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L 

At large times (p-o), one substitutes Eqs. E.22 and E.23 into Eq. €3.17 and -5 II 
L obtains the equation for temperature in the fracture in the Laplace domain given 

I 
L 

(E.24) 1 
P To2 - -ucp{ - (4 + d)€P 1 

L 
i 

The inversion of Eq. E.24 from Laplace domain to real space yields 

T D 2 =  u { r - ( 4 + @ ) < }  (E-25) 

f 
& 
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