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ABSTRACT
- Semi-analytical and numerical methods are used to investigate thermal and

chemical transport processes in geologic media. The work is divided into two

. _parts: (1) development of semi-analytical models for the analysis of uncoupled

_isothermal and nonisothermal fluid flow in naturally fractured media, and (2)

development of a high resolution numerical code to address coupled nonisother-

‘mal chemical transport in geologic media.

A semi-analytical model is developed for well test data analysis in naturally
fractured reservoirs. A simple approximate analytical solution for pressure build-
up and drawdown tests is developed. Methods based on the approximate solution
are developed for the evaluation of important reservoir properties. Type curves
for nonisothermal fluid flow in paturally fractured media are developed to design

injection systems for maximum energy in hydrothermal systems.

An accurate finite difference method for the solution of a convection-diffusion

type equation is developed. The method consists of a novel combination of an

explicit second-order Godunov method and the operator splitting technique. The

accuracy of the numerical method is investigated. The results shows that, in con-



‘trast to conventional finite difference methods, the present method can
signiﬁcantly reduce numerical diffusion errors and grid orientation effects. In par-
ticular, the method guarantees no spurious oscillations near fronts for high Peclet

numbers.

The method is incorpofatejd:rinr a two—_dimensiénal code to investigate free
convection in a porous slab and kinetic silica—wé,ter reactions in geothermal sys-
tems. The effects of presm"e- aﬁd temperature-depenfient fluid properties on the
details of convection solutions are addressed. The results show that the overall

heat transfer behavior is not strongly affected by relaxing the Boussinesq approxi-

- mation. However, the mass flux and temperature distributions are significantly

a.ﬁ'ectéd by the pressure- and temperature-dependent fluid properties. The results
obtained from the simulation of silica-water reactions illustrate that the precipi-
tation of silica plays a definite role in the reduction of permeability and flow rate.
/A multicomponent model considering the variations of pressure, temperature and
silica concentration is developed to interpret the evolution of geothérmal systems
during exploitation. This model can provide information on the interaction
between the hot reservoir and adjacent cold aquifers, which is impossible by con-

ventional methods.

P. A. Witherspoon -

Thesis Committee Chairman
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'CHAPTER 1

INTRODUCTION

The role of nonisothermal chemical transport in geologic media has received
considerahle attention in recent years, because of its importance in such problems
as explontatlon of hydrothermal resources, underground storage of nuclear waste

materials, and enhanced onl recovery processes. To obtam an mtegrated analysis

of the transport processes in geolognc medla, an approprxate physxcal and

mathematncal model of the system is mdxspensable However, most transport
models have been founded on the assumptlon of a homogeneous, 1sotrop1c porous

medmm. In geologlc medra, hlgh permeablllty and secondary porosnty may occur

in naturally fractured and Jomted formatlons, and thxs makes the analysis of

transport processes much too compllcated for conventlonal homogeneous forma-

g

tion models.

In addition to the complexity of geologic media, chemical transport is often

coupled with hydrological, and thermal processes. Heat and chemical species car-

__ried by the flowing fluids can alter the fiow field significantly. The fluid properties

depend greatly on temperature, and chemical reactions causing precipitation or
dissolution of minerals _ca'n change important medium properties such as porosity

and permeability. Theseb coupled processes generally exhibit non-linear behavior;

thus numerical;methods hecome the only viable means to.address these problems.

However, there are some problems that must be addressed when a numerical code
is developed. These include the development of an accurate method to control

numerical diffusion errors and the computational efﬁciency of the method.



The control of numerical diffusion errors is one of the major challenges in
numerical modeling of transport procésses dominated by convection forces. The
substantial amounts of numerical diffusion errors inherent in conventional finite
diﬁ'erencé methods may cause incérrecﬁ‘ computational results. For example,
numerical diffusion errors can result 'an ;erroheous px;edictions of breakthrough
times in tracer tests or enhanced oil recovery processes and, more seriously, cause
the physics of the processes to bre ldst. To avoid numerical inStabilities, any expli-
¢it numerical method must s;tisfy stabilitjr ‘con’ditions. This is to say that no
‘more than one pore volixme of ﬁ:aterial can be put through a compﬁtational grid
in oﬁe time step, which can result iﬁ enormous computations to siﬁmlate prob-
lems for\ long time periods. Where there are no tifne step resi;rictions, implicit
methods allow one to take 'large size time steps in numerical simulations. How-
ever, a large size time step will introduée artificial diﬂ'usionAfroﬁl the temporal
truncation errors, and produce an fnaccuracy in numerical combutations. Also,
implicit methods for solving a set of nonlinear equations require one to solve a
large system of algebraic equations simultaneously, which can lead to matrices
that are too large to be inverted quickly even for the super computer. It is known
that in using conventional explicit and/or implicit finite difference methods, it is
very difficult to avoid numerical diffusion errors unless a very fine grid is used.
This means these methods become difficult to model chemical transport in large
scale geologic systems, if highly resolved solutions are required. Therefore, one
objective of this work was to develop a cost-effective numerical method to handle

these problems.
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The vpresent study is divided into twobparts. The first part deals with the
seml-analytlcal methods used to analyze uncoupled isothermal and nonisothermal

ﬁund ﬂow in naturally fractured reservoirs. A naturally fractured reservoir model

is presented that con51ders transnent mter-porosxty flow for a cubxc-shaped rock

‘ matnx, as proposed by Barenblatt et al. (1960) and Warren and Root (1963).

They employed a quasx-steady assumptlon for 1nter-porosxty ﬂow rather than a

transient assumptlon Other 1nvest1gators (Kazemx, 1969 Boulton and Streltsova,
1977 Streltsova, 1982; Serra et al 1982 Javandel and W'ltherspoon, 1983) pro-

posed layered models to consxder transxent 1nter—por051ty flow in naturally frac-

" tured reservoirs. Since the surface lnteractlon area for a gwen volume is different
for the present model and the layered model, the intensity of inter—porosity flow
~ of the two models should be different. In contrast to the layered model, inter-

- porosity flow between the rock matrix and fractures should be handled as a

three-dimensional problem and involves more mathematical complexities. How-

ever, it is shown that a simple one-dimensional approxlmate model, developed

“from the method of “multxple 1nteractnon contmua (MINC) (Pruess and

Naraslmhan, 1982), can be used to accurately account for transnent 1nter-porosxty

flow.

Based on the present model a sexm-analytlcal method for the analysxs of

| well test data from naturally fractured reservoirs is developed The method con-

>51ders the wellbore storage and slun effects durmg pressure drawdown and build-

up tests for several dnfferent boundary condltxons. The boundary condntnons
include the cases of constant rate production in infinite and ﬁnitesystems as well

as a system with a constant pressure outer boundary. Solutions for the pressures



in the fractures and rock matrix can be obtained using the Laplace transforma-
tion technique. Because theselutions in the Laplace domain are too complicated
to be inverted into real space by analyt:cal means, a numencal method is
employed. However, a simple approximate solutxon in real space for the analysis
of the transient pressure behavior w1thout wellbore storage and skm eﬁ'ects in an
infinite system is developed Ershaghi and Aflaki (1985) applied this approximate
solutlon and developed a techmque to generahze the so-called “half slope”

observed in the transition period of the pressure drawdown test. Methods, based
on the approximate splutiqn, analyzing the ’importaﬁt reservoir prosenies such as
storativity, transmissibility, inter-porosity ﬁow.factor, and ratio of stofatifrity are
developed.The results show that the inter-porosity flow factor and storativity
fatio calculated from the present model are much smaller than those obtained by
the original Warren and Root model (1963). A quantitative analysis of the effects
of wellbore storage and skin on the transient pressure behavior shows a large
discrepancy between the present model and the Mavor and anco-Ley model
(1979). This is because the Mavor and Cinco-Ley model (1979) considered a
quasi-steady assumption for ;he interaction between the rock matrix and frac-

tures.

Because nonisothermal fluid flow in naturally fractured media is a topic of
interest in the geothermal field, various theoretical studies based on the layered
models (Lauwerier, 1955; Bodvarsson, 1969; Bodversson and Tsang, 1982) have
beeﬁ done. These studies showed that injection of water into geothermal reser-
voirs Vduring exploitation can greatly enhance the energy recovery from the

resource. Injection will help maintain reservoir pressure and provide water that
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. will extract residual heat contained in the reservoir rocks. However, experience

gained through commercial scale reinjection has shown that the injection opera-
tion'must be carefully designed. Horne (1981)-reports declines in enthalpy of pro-
. duced fluids at several Japanese fields due to injection. This interference is attri-
buted to rapid flow of the injected “cold” water through fractures, as evidenced
by high tracer velocities. This indicates that fundamental studies of cold water
movement in fractured geothermal reservoirs are needed, before confidence in the
design of commercial rei@jection operations can be established. A semi-analytical
model for the analysis of injection flow rates and ithe injection locations in natur-
ally fractured reservoirs is developed. The purpose of this work is to design

- injection systems to obtain maximum energy recovery from geothermal reservoirs.

The second part of this investigation is to study the coupled nonisothermal
chemical transport processes in geologic media by numerical methods. As the
- basic equation describing the processes is a convection-diffusion type equation,
conventional finite difference methods may not be suited for solving this type of
- equation; they will either«introduce substantial amounts of numerical diffusion
-errors or givé_spﬁrious oscillations near fronts when convection force is dominant.

" -~ To overcome: these idiﬂiculties, a new method is developed. The method consists
- of a novel combination of an explicit second-order-Godunov method (Van Leer,
1977; Colella, 1984) and the operator splitting technique (Strang, 1968). By
means of opérator splitting, the convection-diffusion equation :can be split into
~ two parts and solved .in two'steps.,_Thé first part, solved by a second-order
_Goduvnbv} miethod', is 2 pure hyperbolic equation, which only considers the convec-

tion equation. The second part, solved by the conventional central difference



method, is a parabolic type equation, which omits the convection term from the
convection-diffusion equations. The results show that with this new approach, the
numerical diffusion errors and grid orientation effects can be significantly reduced.
- In particular, the method guarantees no oscillations near fronts for high Peclet

numbers.

- The method has been incorporated in a two-dimensional code to investigate
free convection in 2 porous slab and to simulate kinetic reactions of ‘silica-water
ingeothenﬁal systems. The natural convection problem in a porous slab sub-
jected to horizontal temperature differences has long been of some interest to
hydrologists and heat transfer engineers, and it has posed many difficult and fun-
damental questions. These include theoretical investigations of overall heat
transfer rate from one hot vertical wall to the other vertical cold wall, and mass
flux and temperature distributions in the éystem. - The effects of pressure- and
temperature-dependent fluid properties on the the convection solutions, which
have not been considered by previous workers, are also investigated in the
present study. Numerical predictions of the overall heat transfer rate, mass flux
and temperature distributions are obtained for Rayleigh numbers of 25, 50, 100,
and 200, respectively. The results show that the pverall heat transfer behavior in
the medium is not strongly affected by relaxing the Boussinesq approximation,
but the mass flux and temperature distributions are significantly affected by the

pressure- and temperature-dependent fluid properties.

In order to investigate the effects of silica precipitation on transient fluid

flow behavior, the kinetics of silica-water reactions, as proposed by Rimstidt and
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Barnes (1980), are incorporated in the code. The results obtained from the simu-

" lation of silica-water reactions illustrate that the precipitation of silica plays a

definite role in the reduction of permeability and flow rate. Furthermore, to
address the performance of geothermal reservoirs during production, a multi-

component model including pressure, temperature, and silica concentration is

| emp’l‘oyred.r Thls ﬁlodéi has been applied to the Ellida:ar géothermal field in Ice-

land to obtain good estimates of reservoir volume, permeability and porosity. The

‘model also gives information on the interaction between the active hot reservoir

and adjacent cold aquifers, which is not possible with conventional methods.



CHAPTER 2

LITERATURE REVIEW

2.1. Fluid Fiow in Geologic Media

The majn driving force in transport processesrin geologic media is fluid flow.
A review of vthis process is necessa.t& in ordér to understand the complexities of
the development of a physical model fory transport processes in such media. At
the microscdpic level, fluid flow through a void space in such media is governed
by the samé fundamental laws for the conservation of mass, and momentum that
a\re» derived from continuous mec_hanics. The complex geometric configurations
and boundary conditions in geologic media ma.ice it very difficult to investigate
fluid flow at the microscopic level. Therefore, the basic law usually employed in
describing the macroscopic behavior of fluid flow in geologic media is Darcy’s law,
which was; developed from experimental investigations of the overall behavior of
flow in porous media. This law defines permeability as an intrinsic material pro-

perty that describes the ability of a given medium to transmit fluids.
2.1.1. Fluid Flow in a Single Fracture

Because the topology of fractured media is different from that of porous
media, Darcy’s law may not be adequate for describing the fluid motion in such
media. For a single fracture separated by two smooth, parallel surfaces, the
macroscopic flow rate in the fracture is governed by the cubic law. The law is
derived from the solution of the Navier-Stokes equation for steady laminar flow
of incoinpressible Newtonian fluids through two parallel plates (Lomize, 1951;

Snow, 1965; Romm, 1966; Schlichting, 1968; Iwai, 1976) given by
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¢ = C,bgP ” | (20)

~ where ¢ is volumetric:flow rate, 5 is the aperture of the plates and P is pressure.
¢, in Eq. 2.1 is' dependent on the system geéometries and fluid properties. For rec-

. tangular and radial coordinate systems, C, is expressed as

L C = - T 1z S (22)
and
2r P 9 |
C == | (2.3)
In(Te) 12#

where W is the system width, L is ‘ther systgm length, r, is the system external

- radius, »; is the system internal radius, p, is fluid density, x is fluid viscosity, and
g is V,gravitational, acceleration.. The cubic law has been extensively applied to
ﬁvuidv ﬂqw in a single fracture of natural rocks (Lquis, 1969; Sharp, 1970; Iwali,
1076).

Since rough surfaces of a natural rock fracture may have some degree of con-
tact under stressgd conditions, the resulting tortuous flow path could affect the
cubic law. To study-this problem, ‘Witherspoon et al. (1980) éxperimentally

- investigated flow test in three diﬂ'ereht‘rock,types (Iwai, 1976), and found that
- the cubic law seems to be f#alid— whethérf the fi'actures are open or closed. How-
 . ever, the constant C, in Eq. 2.1 must be divided by a factor s to take into
- account - roughness  effects. . Raven and Gé.le (1985) investigated fluid flow
‘~~behav,iorr.fin natural rocks by subjecting different -sized sample to various normal
stresses. They indicated that fracture flow rate is decreased with increésing sam-

ple size and with each additional loading cycle. The deviation of the relation
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bet\;veen fracture flow rate and fracture deformation from behavior predicted by a
parallel plate model is increased with sample size and number of loading cycles.
To confirm their experimental results, they suggested that further work on meas-
urement of fracture roughness with load-deformation and stress-permeability
tests on different sample sizes is required. More recently, Pyrak et al. (1985)
developed a new ex;;erimental techﬁique to investigate fluid flow behayior in
natural rock fractures under stressed conditions. The preliminary results showed
that this new technique enables one to determine the flow paths and contact area

between the fracture surfaces under various effective stresses.

Tsang and Witherspoon (1981) developed a theoretical model to address the
effects of normal stress on fluid flow in a single fracture with rough surfaces. To
analyze the macroscopic flow behavior in a single fracture with rough surfaces,
they developed a modified cuBic law, in which the averaged apertures along the
longitudinal and transverse directions to the macroscopic flow were used. The
averaged apertures were obtained from stress-displacement measurements of
intact rock and fractured rock; the fluid flow was then calculated from the
modified cubic law. The validity of this theoretical model was verified with Iwai’s
experimental work (1976), and they found that the predicted flow rates from the
model agree well with the experimental results. Later, Tsang and Witherspoon
(1983) computed the normal stress-displacement and stress-fluid flow for a single
fracture with known roughness profiles using a theoretical model (Tsang and
Witherspoon, 1981). They found qualitative correlations between the roughness

profile and normal stress-displacement and stress-fluid flow.
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2.1.2. Fluid ;Flow in Fractu_re Networks . ‘ -
For fluid flow through fractured formations, two approaches are usually‘
employed; that is, the discrete and cont;lﬁtious approaches. The discrete
.approach considers that the fractured formations consist of the distributed frac-
tures with finite apertures, and each fracture can transmit fluids only when it
igterrsec_ts‘otherf conducting fractures. The continuous approach assumes that the
- distributed fractures are of infinite extent so that no fracture dead ends exist, and
‘the global fluid flow in the system behaves as that in an equivalent porous
medium. ‘Based on the intrinsic permeability tensor of a single infinite fracture
.. with arbitrary orientation apd -aperture for a given coordinate system, Snow
- (1969) developed a mathematical model to compute the intrinsic permeability
tehsor of a rock m;ass ‘co,ntributéd_by,a‘fracture network. -
Some investigators (Parsons, 1966; Caldwell, 1971, 1972) used the discrete
. approach to study fluid flow in fracture networks by means of electric analog
~models which are based on the analogy between Ohm'’s law and the cubic law. By
: compgring the measured electrical potential distributions with theoretical solﬁ-
.+ tions for ;diﬂ'erent, values of permeability tensor, the overall peérmeability of the
system may be obtained. To address whether a fracture network can be
’répresented by an equivalent porous médium, Lsng et al. (1982) -and Long (1983)
developedv a methpd to generate random‘fracture }d‘isttributions, and used a
_ discrete _approagh @p sf,udy_filgw behavior in such a system. The effects of frac-
~ ture ;density,!;acl;,ure. aperture, fracturq.orientat.i'on, -andbsamvplel sizes were con-

sidered in their studies. These investigators showed that permeability ellipses cal-
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culated from a simulated flow test in fracture networks may not exist, and this
implies that a fracture network may not be represented by an equivalent porous
medium. Their results also showed that a fracture network will behave more like

a porous medium when the system has a high fracture density with rather uni-

form fracture apertures and nonuniform fracture orientations. Later, Long and |

Witherspoon (1985) further considered the effects of the degree of interconnection

between fractures on the global permeability of a fracture network. They found

that -fracture networks with longer but less dense fractures behave more like
porous media than do networks with shorter but more dense fractures. Because
the main emphasis of these investigators is to determine the role of fracturés in
- fluid flow behavior in geologic media, they assume the rock matrix to be

impermeable; no interaction between the rock matrix and fractures is considered.

However, the fraction of the total volume occupied by fractures (fracture poros-‘

ity) is very small, and can not provide substantial amounts of fluids. Thus, it
seems necessary to assess the potential of prolific hydrothermal and petroleum
fractured reservoirs to account for the storativity of the rock matrix and its
interaction with the fractures. Another approach commonly used to investigate
fluid flow in fractured formations in the hydrology and petroleum field is

reviewed in the next section.
' 2.1.3. Fluid Flow in Double Porosity Media
Using an alternative continuous approach, Barenblatt et al. (1960) and War-

ren and Root (1963) proposed the so-called “double porosity’ model, as shown in

‘Figure 2-1. This model assumes that fractured reservoirs behave like two-porosity
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media; one medium (the rock matrix), separated by three sets of orthogonal frac-
tures, has a high storage capacity and low permeability, and the other (the frac-
tures) has a low storage capacity and high permeability. Therefore, a basic
characteristic of ‘‘double porosity” reservoirs (naturally fractured reservoirs) is
that the fractures provide the main conduits for fluid transport in the system,
while the rock matrix provides gradual fluid drainage to the fractures. ’I“o inves-
tigate fluid flow in ‘“double porosity” reservoirs, the approach employed by
Barenblatt et al. (1960) and Warren Vaxrlrd Root (1963) is to lump the fractures and
the rock matrices into two different continua, and further assume a quasi-steady

flow between the rock matrix and the fractures.

Subsequent to the étudies of Barenblatt et al. (1960) aﬁd Warren and Root
(1963), varioﬁs studies have been published on the applicability and extension of
their models.’ Odeh (1965) used a _model sixﬁilar to that of Warren and Roof
(1963), a,nd concluded that the pressure behavior in & naturally fractured reser-
voir is identical to that of a homogeneous porous medium reservoir. However, in
his study, Odeh (1965) ohly considered cases where the iﬁter—porosity flow factor
was relatively large ( >10®), in which case the diﬁ‘erences in the transient pres-
sure behavior are only apparent at very early times. Later, Mavor and Cinco-Ley
(1979) extended the solution by Warren and Root (1963) to include the effects of
wellbore storage and skin. Chen and Jian (1980) developed analytical solutions
for fluid flow in two-dimensional and radial flow systems with finite domains
using the method of separation of variables. Bourdet and Gringarten (1980), and
Gringarten (1982) introduced an alternative analysis of weli test data from new

type curves that included wellbore storage and skin effects.
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Many workers have 'deveIOped models that do not require tﬁe approximation

~of qﬁé.éi-éteady fluid flow between the rock matrix and the fractures. However,

due to the three-dimensional nature of the model considered by Barenblatt et al.

| (1960) and Warren and Root (1963), the treatment of transient inter-porosity
‘flow is mathematically very difficult, and has been accomplished only by drastic
v‘simvplivﬁcavtion‘ of matrix block geometry. Kazemi (1969), Boulton and Streltsova
:"»(51977), Deruyck (;198‘2), Streltsova T(1982) and Serra et al. (1082), considered a

*slab model, whereas de Swan (1976), Najurieta (1980), and Cinco-Ley and Fer-

nando Samaniego (1982), considered ‘models based on spherically shaped matrix

blocks. Javandel and Witherspoon (1983)' developed an analytical solution for a

partially penetrating well in a two-layer aquifer. At early times, their solution is

~ identical to that of 2 single layer aquifer. At later times, the slope of a semi-log

‘ ‘piot of drawdown versus time is only a function of the sum of the transmissivitiy

of the two layers. Barker (1984) defined exact and approximate bloék—geometry

* functions to'treat regulé.r and irregular matrix geometries, respectively. The reg-

" ular rock matrix geometries included an infinite ‘slab, infinite cylinder, sphere,

rectangular parallel pipe, and infinite hollow cylinder.

The slab model is appl}icablve'kt:b layered reservoirs as well as to reservoirs

~ with predominantly horizontal fractures. However, in the slab model one-

/

" dimensional fluid flow in the layers is assumed. This approximation is only valid

if the ﬁérmeébility contrast between laj'érs is lﬁrge. The pressure transient

" behavior ‘observed in wells located in naturally’ fractured reservoirs may be

strongly a:ffected by the local heterogeheo'\‘xvs:prdpef'ties; In this circumstance, the

naturally‘fractured model may not give satisfactory interpretations of the test



16

data (Benson and Lai, 1985; Karasaki et al. 1985); different models, which may
consist of a naturally fractured and a conventional models, are necessary to take

into account the effect of local heterogeneous properties.

Pruess and Narasimhan (1982) have developed an extension of the double
porosity method, referred to as ‘“multiple inﬁeracting continua’ (MINC) method,
to model heat transfer in highly fracturedr porous media by the integral finite
difference method (Edwards, 1972; Narasimhan and VVithgrspoon, 1976). The
MINC approximation assumes that, due to high permeability and low storativity
of the fractures, any changes of thermodynamic conditions in a fractured porous
media will propagate rapidly in the fracture network, while migrating 'slowly in
low permeability rock matrix. Therefore, the changes of thermodynamic condi-
tions in the rock matrix blocks will depend primarily on the distance to the
nearest fracture. In light of this and neglecting gravity effects, fluid and heat flow
in the rock matrix blocks may be treated by a one-dimensional approximation.
This concept is applicable to regular as well as irregular matrix blocks (Pruess
and Karasaki, 1983). In numerical simulations, the MINC method partitions rock
matrix blocks into sets of nested volume elements (Figure 2-2). Thus, the
interactions between fractures and the rock matrix can be described by one-
dimensional mass and energy conservation equations. However, the accuracy of
this approximatibn should be tested and justified (Pruess et al., 1982). The
verification of the MINC approximation and the application of the concept of this
approximation to isothermal or nonisothermal fluid flow in naturally fractured

reservoirs are presented in Chapter 3.
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2.2. Miscible ”l_)isplacement

The present study considers miscible displacement, since it is of more con-
cern to hydrologists and petroleum engineers in extensive investigations of recov-
erable energy from hydrothermal and petroleum reservoirs, and pollutant migra-
tion in geoldgic formations. The phenomenon of miscible displacemqht can be

illustrated by the simultaneous processes of molecular diffusion and dispersion.
2.2.1. Miscible Displacement in a Capillary Tube

At a miéroscopic level, dispersion in boroué or fractured media results from
the combined effects of molecular diffusion, distribution of pore velocity within
single pores or fractures, and th;e variable velocities along the tortuous pathlines.
Since the geometric structure 6f porous or fractured media is very complicated, a
satisfactory simple model of the process as in such a system does not yet exist.
Simplified models, however, may help one ‘o better understand the mechanisms
of the process. One of the simplest models for porous or fractured media is a sin-
gle capillary tube. Taylor (1953) investigated fhe dispersion process under steady
state laminar flow in a capillary tube and showed that for a sufficiently large time
the process can be described by the Fickian convection-dispersion process. The

dispersion coefficient in Taylor's theory is expressed as

L £ z.iz
48D,

D[ =

where r, is radius of the capillary tube, and ¥ is the mean velocity of flow in the
cross section of the tube. Later, Gill and Sankarasubramanian (1970, 1971) used

the series expansion method to generalize Taylor’s theory. They showed that the

(2.4)

T e ™ g~

[ e



.

19

dispersion coefficient is not a constant, but a time dependent quantity leading

asymptotically to Taylor’s dispérsion’ theory. A more complicated dispersion pro-

cessin a capillary‘tuBe" ‘that included chemical reactions with catalytic walls was

investigated by Dang (1983). He found that the length of the tube required for

the dispersion model to be valid is increased when chemical reactions occur.

- .2.2.2. Miscible Displacement in Geologic Media

One method of analyzing the behavior of dispersion in porous media is to

statistically model the random motion of marked fluid particles. . This allows one

to obtain a2 macroscopic description of dispersion. Analyzing the average distance

traveled by a tracer in porous media, Bear (1961) showed that the dispersion

- coefficient, D;;, is a second rank tensor and is linearly proportional to the com-

ponents of the seepage velocity. Based on Bear’s results, Scheidegger (1961)

demonstrated that the dispersioa coefficient is expressed as

Um Uyg
D.';' = Qyime -I—v_':r | (2.5)

where a;;.. ‘is the geometric tensor of porous media, v."and v, are seepage veloci-

" “ties in the m and'n directions, respectively, and [ | is the magnitude of absolute

seepage velocity. For an isotropic porous medium, all components of a;jn, 2re

- zero except for -

Qi = aQp, Qijj = Qq

o =i =1/2(e~ar ), V¥ (2.6)

where o; and a, are longitudinal and transverse dispersivity, respectively. When

~ the Qeldcity is coincident with one of the principal axes of the dispersicn tensor,



one obtains

D =a Il D = o [l o (27)

Because dispersion is such a complex phenomenon, depending on system pro-
perties, flow field, initial and boundary conditions of the system, it is very
difficult to‘evaluate." However, one may gain insight into the properties of disper-
sivity in porous media through the analysis of Taylor’s theory. For example, con-
- sider a hypothetical porous medium tube made of continuous stratified layeré SO
that the velocity distributions under steady state in the cross section of the tuBe

are the same as those in the capillary tube. The overall behavior of the dispersion

- processes ‘in the hypothetical system should be identical to that observed in the

capillary tube. In one-dimension, comparing Eqs. 2.4 and 2.7, one can obtain

longitudinal dispersivity given by

"tz ‘Fl

Yoo (2.8)

a =

From the results of Gill and Sankarasubramanian (1970, 1971) for the dispersion
process in a capillary tube, one also expects that the dispersivity given by Eq. 2.8
must be a time-dependent quantity asymptotically approaching the constant.
This can also explain why the Fickian convection-dispersion processes is not valid
for modeling miscible displacement in porous medium at early times, and why the

dispersion coefficient is strongly dependent on the scale studied.

Gelhar et al. (1979) studied solute transport in vertically discrete stratified
porous media and showed that this type of heterogeneous permeability leads to

the Fickian convection-dispersion process for a sufficiently large time. Later,
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. Gelhar and Axness (1983) developed a three-dimensional solute transport model
in- ‘hetefogeneous porous media. They 'found‘that, the conventional Fickian
_convection-dispersion’ transport model is valid for a larée field. Matherbn and de
‘Marsily (1080) countered that the Fickian convection-dispersion model may not

- be always valid for a stratified porous medium with flow parallel to the bedding.

However, if a mean flow component is added perpendicular to the layers, the

Fickian convection-dispersion processes will be valid for sufficiently large times.

To determine whether the behavior of solute transpbrt in a fracture system
can be represented by that in an equivé.lent porous medium (ie., the Fickian
convection-dispersion process is valid). More recently, Endo (1984) extended
Long’s discretized fracture model (1983) to address mechanical transport in frac-
ture system-s on & microscopic scale. He found that for some fracture systems,
fluid flow can be predicted using equivalent porous media, but it 'ma.y not be pos-

sible to predict transport .using equivalent porous media. At present, for a com-

‘plicated system involving transient flow field and reactive chemical species, no
theoretical model of the global dispersion processes is available, and most numeri-
_cal models (Rubin and James, 1973; Vaiocchi et al., 1081; Jennings et al., 1982;

~ Schulz and Reardon, 1983) assume that the Fickian -convection-dispersion

processes is valid or consider only the convection process for multiple reactive

~solute transport. ...

- When applicable, the Fickian convection-dispersion processes for chemical

- transport in geologic media involves two steps. The first step in the modeling pro-

. cedure . is to simulate hydraulic head distributions: This usually needs consider-
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_able adjustment of permeability distributions until the simulated head distribu-
tions are quite similar to those observed in the field. The second step is to simu-
late chemical concentration distributions using the simulated fluid flow distribu-

- tions and trial and error adjustments of the values of longitudinal and transverse

dispersivities  until the simulated chemical migration pattern is similar to that

observed in the field. This approach, using a two-dimensional computer code, has
been employed to simulate chemical plume migrations in porous or fractured

,media by Robertsbn and Barraclough (1973), Pinder (1973), and Konikow and

Bredeheoft (1974). Longitudinal and transverse dispersivities obtained from the

above simulation studies aré in the range of 10 to 100 m, which is as much as

several orders of magnitude larger than dispersion coefficients measured in l_abora—

tory tests (Fried, 1975;.Anderson, 1979).

2.3. Numerical Methods

In a variety of reservoir engineering problems, such as nonisothermal reac-
tive chemical transport, the inhomogeneity of reservoir properties and the non-
linearity of thg. governing equations make these problems unsolvable by exact
analytical techniques. Thus, numerical methods become the indispensable means
to obtain solutions of these problems. For practical field applications, the tradi-
tional convection-diffusion equations arising from the conservation laws are usu-
ally dominated by the convection term, leading to solutions with steep fronts.
The most common numerical methods for reservoir engineering problems are
those based on difference operators. Computational experience has shown that the

- central difference method is well adapted to solving the problems with relatively

—-
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‘smooth solutions. Hotvet'er; When the sélutioli has very steep fronts ’due to strong
convectnon forces, hlgher-order or central dlﬁ‘erence methods may suffer from |
unphysncal oscnllatlons (Peaceman, 1977; Hald 1984) Price et al. (1968) showed‘
‘that when solvmg the convectnon-dnﬁ'usnon equatlon |

o5 o5 _ s

-aT + Pc -53_ ==7:———a22 . (2.9)

'thh a central dxﬁ'erence method unphysncal osenllatxons can be avoided by speci-
. fyxng the computatxonal gnd such that Pe Az <2. S; is any dependent varxable |
(cpncentratxon or temperature) and Pe is the dxmens:onless Peclet number given

» P¢.===IT‘-:-!E- 3 7 | (2.10)

where [Vl is the magni/tude of absolute velocity, L is ‘a sYst'efn'lexlgth, and D,, isa
diffusion constant.

Iﬂjpractigce, the useof the central diﬁerenee methbd 'Wlthdut nutnerical oscil-
latlon solutions results in too much computatlonal eﬁ'ort to be implemented.
| Thus, the altematxve usually employed is to use the ﬁrst-order upwxnd dxﬁerence
" method, whlch intx‘oduces numerical diﬂ'usion't'c avoid oscillations. Such numeri-
" cal diffusion may be so dominsnt that the physical diffusion will be obscured. At
“thils‘poi"nt,’ it is clearly 'updefétodd that the acl'ciilracjrf of numerical schemes for the
: cdhveetion-;diﬁus‘lop equatioﬂ is Strbnglj dependent on whether the method used
ean'_'acéiifitely trlticlel 'the_ convection te’rm.f' To elirrlinate t-hle. purrlérléal 'diﬁ'usion

errors, particle tracking methods (AG'arvdeﬁrret Val.;,'1964; Redell and Sunada, 1970;
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Bredehoeft and Pinder, 1973; Ahlstrom et al., 1977) were extex_lsively used to
~ simulate solute transport in the petroleum and hydrology field. The basic idea
behind these methods is to assign several particles representing the concentration
on each computational grid and each particle moves with fluid velocity during
each time increment. Thus, the new concentration on each grid point can be
interpolated by the concentration of the particles, which move from the neighbor-
ing grids. The main drawback of these methods is that the scheme is not well
satisfied by the conservation of méss if the particles are not enough. Neuman
- (1981) proposed an adaptive Eulerian-Lagrangian scheme to avoid many particlés
required in numerical simulations. He tested various linear problems under a uni-
form flow ﬁéld, and showed that the method is capable of handling the entire
range of Peclet numbers. However, the applicability of this method to problems
under a nonuniform flow field and with nonlinear interactions needs further

investigation.

Different approaches based on modified characteristic method eliminate
numerical diffusion errors and reduce grid orientation effects in reservoir simula-
tions as shown by Glimm et al. (1983), }E‘J;ving et al. (1983), and Jensen and Fin-
layson (1983). Computational experience with these methods is limited to
incompressible problems, and the algorithms arising in implementation are
different from those of finite difference codes. T’herefore, these techniques are
beyond the scope of the present study. Another method to avoid numerical
diffusion errors is the random choice method (Glimm's method or sampling

method). The method, based on Glimm’s constructive existence proof (1965),

was developed by Chorin (1976, 1977) into a numerical method with the random

2y
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number sequence to solve systems of nonlinear hyperbolic equations. Colella

' (1082) improved the Saihpling procedure using the van der Corput sequence to

obtain more accurate solutions. This numerical method has been applied to
petroleum ‘reservoir simulations (Concus and Proskurowski, 1979; Anderson and
Concus, 1980; Glimm et al., 1981; Sethian et al. 1983; Li, 1983). Due to the
inherent nature of the sampling sequence, the error introduced by this method is
that of front position; ‘the front location is off the exact location by one grid
block or less.' During this work, this method was tested with several convection
problems and found that it indeed possesses some attractive features. The

scheme is simple and accurate for nonreactive chemical transport under a uni-

" form flow field. However, the scheme leads to errors in the conservation of chemi-

“cal species when modeling reactive chemical transport under a nonuniform flow

feld.
To reduce numerical diffusion errors, Larson (1082) developed a variably

timed flux updating method, which beiongs to the class of flux-corrected tran-

sport methods (Boris and Book, 1973, 1976; "Bb‘ris et al., 1075; Zalesak, 1979).
‘Except for linear ;Srbbleins," Larson’s method appears to introduce oscillations to
" the solution. ‘Recently, an rupWivn&'-tije‘of explicit, second-order finite-difference

" scheme (Godunov type scheme) with flux limiters to avoid spurious oscillations of

the solutions around discontinuities was developed for '.s}'stem'é'of nonlinear

hyperbolic equations arising from gas dynamics (Van Leer, 1977; Roe, 1981;

Chakravarthy and Osher, '“1983)."‘ Sweby'(1984) investigated these independently

proposed second-order accurate schemes and showed how they relate to each

other. .From several test cases, including linear advection problems and shock
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tube problems, Sweby found that for linear problems, Roe’s limiter is most
appropriate, followed by Van Leer’s, and Chakravarthy and Osher’s. For the non-
linear problem (shock tube problem), Van Leer’s limiter can obtain a solution
nearly as accurate as Roe's, but less susceptible to numerical oscillations. Harten
- et al. (1983) provided an extensive review of ﬁpwind differencing and .Godunov
- type schemes for hyperbolic conservation laws. - Colella et al. (1983) applied Van
. Leer's scheme to solve the one-dimensional Buckley-Leverett equation, and
. showed that numerical diffusion errors can be. significantly reduced by this
numerical scheme. More recently, Colella (1984), Colella and Woodward (1984),
and Colella (1985) substantially refined Van Leer’s séﬁeme. These include compu-
- tational processes tobextend one-dimensional problems to multidimensional prob-
lems for systems of nonlinear hyperbolic equations without time splitting, and to
improve the accuracy at discontinuities of the solution using a fourth-order accu-
rate difference scheme. In two-dimensions,vVan Leer’s fourth-order accurate
scheme involves 7x7 block of grid points for the solution of each nodal point,
resulting in complicated computational procedures. This scheme has not been
considered in the present study. The refined version of Van Leer’s second-order
accurate scheme (without time splitting) was successfully applied to problems of
petroleum and hydrothermal reservoir simulations (Bell and Shubin, 1985; Lai et
~al., 1985) to reduce numerical diffusion errors and grid orientation effects. This
numerical scheme is linked with the operator ,splitting technique for the nﬁmeri-
cal model of nonisothermal chemical transport in geologic media presented in

Chapter 4.
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CHAPTER 3

" ANALYTICAL STUDIES OF TRANSPORT PROCESSES IN
NATURALLY FRACTURED RESERVOIRS

3.1. Introduction"

‘In order to develop a sound plan for the exploitation of a hydrothermal or
petroleum resource, reliable information about in-situ conditions of the resource is
required. Such information may be obtained from isothermal and nonisothermal
well testihg, and may be used to predict and evaluate future production
scenarios. A "phyéical*model ‘of a geologié formation is usually represented by
either a porous medium or fractured porous medium model, depending on which
" model can successfully interpret transport phenomena in the hydrological
resource. " |

In the last two decades considerable work has been dévoted to the analysis
- of isothermal vand nonisothermal fluid fiow in naturally fractured reservoirs. The
need for new methods of analysis arose because of the distinct differences ih tran-
sport phenomena observed between hombgeneous POrous reservoirs anci fractured
reSen‘foirs. In this work, semi-analytical models for the analysis of the well test
‘data ‘and thermal propagation in néturally’fractured reservoirs are develqped.
" The models are based on the verification of the MINC approximation, which is

“ presented in the following section.
* 3.2. Verification of the MINC Approximation
“ Modevli'ng' of 'ixit'e'r-porosi't'.y flow between fracture and rock matrix in frac-

" tured porous media is difficult, especially for irregular rock matrix geometries.
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Thus, to model transport processes in double-porosity media most workers have
done more or less drastic simplification of rock matrix block geometries. With the

MINC approximation, modeling of transport processes in double-porosity media

does not require any simplification of block geometries. However, the inherent

feature of one-dimensional inter-porosity flow between the rock matrix and frac-
ture by the MINC approximation needs verifications. For example, in most types
of matrix block geometry, the mass and heat flow are not perpendicular to the
fracture surfaces, especially near fracture intersections (*corners”), and hence can
not strictly be considered one-dimensional. To study this *“‘corner” effect, some
idealized geometrical configurations and simple boundary conditions are con-
sidered, for which the exact solutions as well as solutions based on the MINC

approximation are available in analytical and semi-analytical form.
3.2.1. Fluid Flow in a Porous Cube

The test case considered is for isothermal, slightly compressible fluid flow in
a porous cube (or, equivalently, heat conduction in an impermeable cube). A con-

stant pressure, P,, is maintained at the cube surfaces, and an initial pressure of

zero is assumed 'everywhere. With the MINC approximation, fiuid flow in a cube

can be approximated by a one-dimensional model, as shown in Figure 3-1. The
basic model represents one-sixth of a cube, with the surface area for flow decreas-
ing from D? (D is the side length of the cube) at the edges of the cube to zero in
the center. Thus, the total mass flow at the cube surfaces will be six times that
given by the Qne-dimensional model. This one-dimensional approximation leads to

a differential equation, whose form is identical to the heat conduction equation in

r— -
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a system with spherical geometry. The dimensionless pressure and flow rate for
this problem using the one-dimensional approximation is given by Carslaw and

Jaeger (1959)

% (_1)* . 2.2L :
Pp=t-=1-2 2‘( D* in 20T exp { - ;':“D;} (3.1)
and
n 22kt
=D M ) )

where & is intrinsic permeability, ¢ is porosity, ¢ is total compressibility (ie., sum
of the compressibility of fluid and rock). For this same problem, it can be solved
exactly in three-dimension. The dimensionless transient pressure and flow rate is

given by (Carslaw and Jaeger, 1959)

~ P 8 (-1f+m+s=3 (2] _1)xz
Po=gr=1-3E L X ariom @ b
os (2l—Dl)1ry cos (2l-Dl)1rz exp{ - : 't [(21—1)2 + (2m-1)? + (2n -1)7]}
(3.3)
and
—__gp _ 24X64 & S 1
PTIRD T T A B2 EEm )
~ kt
exp{-——4—[(2l —l)2+(2m -l)2+(2n -l)zlmp/—z)z} (3.4)

In the above equations, (z, y, z) coordinates are measured from the center of the
cube, and parallel to the edges. The dimensionless pressures at a distance
z = 0.3D for the MINC approximation and for the exact solution are plotted

versus dimensionless time in Figure 3-2. The figure clearly-indicates -that in the
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center of the plane z = 03D (je., for z' = %,.-_ y' = £ =0) the pressures using

¥
D
the MINC approximation are somewhat higher than the exact pressures, but at
corner of that plane (z' =y’ =0.3) they are somewhat lower. The discrepan-
cies are not large (about 10-15%). What really matters, however, is not the
detailed pressure distributions inside the cube, but the flow rate at the cube sur-
faces, which can affect the global transport processes in fractures. Figure 3-3

shows that the flow rate at the cube surfaces using the MINC approximation
agrees well with the exact solution. 7
t3.2.2. Fluid Flow m a Rectangular Porous Slab

To further test MINC approximation, a comparison was made for two-
dimensional rectangular matrix blocks with side lengths A and B for different
aspect ratios §= A /B. The same initial and boundary conditions are used as in
case 1. With the MINC approximation, the basic model (Figure 3-4) of a reétan-
gle will be solved. The governing equation describing the mass conservation in

the domain of the basic model can be expressed as

A, dz ép
q 0,y A, ‘{qplA: +38;(9PI A:)dz }=_(-Tl'l (3-5)

where ¢ is the volumetric flow rate, ¢ is porosity, p, is fluid density, ¢ is time,

and A, is the cross section surface area in the z direction expressed as

A, =4: +A-B ' (3.6)

Substituting Eq. 3.6 and the Darcy’s law (¢ = - -E%—}:) into Eq. 3.5, the govern-

ing equation describing slightly compressible fluid flow in the domain of the basic
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- model can be expressed as

PP L P _ gucop

+
2
oz z+%(A—B)az k ot

The initial and boundary conditions are

P (z,0) = 0

P (_g'lt)'_—Pb
aP
'3';':-0?=0

35

(3.7)

(3.8)

(3.9)

(3.10)

- In terms of dimensionless parameters, the governing equation and the initial

and b'oundaryv conditions can be written as

asz + 1 aPp 3Pp
- on* n On étp

PD ‘I=0

P =22 ) =1

éPp ,
P Y- ™ 7|’_%§= 9

where

P
szﬁ

— 1 +1/4A -B)
" B

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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kt ‘
C o neB? ' , 7 (3.17)

In the Laplace domain, the solution of Eq. 3.7 subject to the given initial and

boundary conditions is

=B\ 1vF n) + Ko(VF )l

K(Vris
P izt )Io(‘/_A+B)+Ko(\/—A+B)Ix(\/- =5

Pp = (3.18)

where p is the Laplace parameter. The dimensionless volumetric flow rate at the
surface of the rectangle can be obtained from Eq. 3.18 by evaluating the pressure

- gradient at the surface. The result is éxpressed as

AR AR - kv A v A 2R
(\/-A B)Io( A+B )I;(\/—A B)
(3.19)

['7)) ==2(—- + I)T-

where ¢p is -’:-'Pf‘—. In this study, the solution for the dimensionless flow rate in
A

real space is obtained by numerical inversion of Eq. 3.19 (Stehfest, 1972). The

exact solution for this two-dimensional problem is given by Carslaw and Jaeger

(1959)
R e
';:i'lL'l)z (2"‘ =il | (3.20)
and

£
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_64_ &4 1 B_ 1 _ kA (21 (2m-1)?
= lz-:mz-x{a (21-1) T (2m -1 Fexp{ 4’}“{ Al * B* )

(3.21)

Figure 3-5 shows that the dimensionless volumetric flow rate across the surface of

the rectangle obtained from the MINC approximation for different aspect ratios

~ (B) compares well with the exact solution. The agreement becomes close when the

aspect ratio is increased, because this will diminish the corner effects neglected by
the MINC approximation. These test results indicate that the pressure (or tem-

perature) distributions inside a rock matrix predicted by the MINC approxim'a-

- tion are mot exact. However, this approximation can accurately represent frag-
ment inter-porosity flow in fractured porous media. This provides a rationale for

the method, based on this approximation, for the analysis of well test data and

thermal propagation in naturally fractured reservoirs that will be presented in the

.folloWirxg sections.

- 8.3. Pre§§ure Transient Analysis of Na.furally Fractured Reservoirs

The original geometrical configurations (Figure 2-1) of a rock matrix, as pro-

. posed by Barenblatt et al (1960) and Warren and Root (1963) for double porosity

media, is used for the present study. Fully transient inter-pbrosity flow between

the rock matrix and fractures is considered (Lai, %e‘t al.; 1983). In the follov_&ing

b

discussion,,d’es'criptiqn of the mathematical model and verification of the solution

using a numerical model is presented. Type curves will be given for the cases of
constant rate production in infinite and finite systems as well as a system with a2
constant pressure outer boundary. The effects of wellbore storage and skin will be

illustrated. Finally, appliéation of the model will be demonstrated through
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analysis of field data.”

3.3.1. Basic Model

In form\iiﬁtiﬁg the govérning equ#tions for the pressures in the fractures and
rock matrices, the approach used by Warren and Root'luniping‘ the fractures and
the rock matrices into two different co'ntiﬁua is used. Using this approach the

governing equation for the pressure in the fractures can easily be derived, but the

- geometry of the rock matrix (cubic) causes some problems. For a rigorous treat-

ment of the fluid flow in the rock matrix continuum, a three-dimensional
representation is necessary. However, a one-dimensional representation of inter-

porosity fluid flow from the rock matrix to the fracture has been justified in sec-

* tion 3.2, that is adequate for the present problem and gives almost identical

results for the pressure transients at a well or in fractures to those obtained using

a three-dimensional model for inter-pordsity fluid flow.

, 3.3.2. Mathematical Model

In addition to the approximation discussed above, the following assumptions

are made:

1. The reservoir is uniform in thickness, with impermeable lower and upper

- boundaries. -

2. The fluid fiow from the‘system ,,inté the wellbore is radial and oqu the frac- “
~ tures feed the well.‘

3 Thé initial press;re P; ns uniform throﬁghéut the system, but at time ¢ > o,v

"2 constant flow rate ¢ at the wellbore is imposed.
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4. The pressure in the fractures is assumed to be equal to the pressure in the

rock matrix at the contact region (z = D/2);
5. All properties such as permeability, porosity, and compressibility, are con-
. stants in each continuum.
6. The fluid flow is-isothermal and single phase. The fluid is .slightly compressi-
ble, with constant properties (viscosity and density).
The governing equation describing fluid flow in. the fracture system, derived

from the conservation law of mass in the fracture (Appendix A), is given by

ang 18P3 Bk, laPll ‘¢2c2p8P2
37 T 7 ar E, D 9z P T TR, o

(3.22)

where P, is the pressure in the fracture, and P, is the pressure in the rock matrix.
Other symbols are defined in the Notation. The governing equation for fluid flow

in the rock matrix can be expressed as

&#P, 2 0P, ¢1¢,8 0P,
52 T3 9z © K, ot (3.23)
The initial conditions are
Pyfr,0) = Pr,z,0)=P; (3.24)

The boundary conditions at the well, controlled by the constant flow rate, ¢,

and the effects of wellbore storage, are given by

aP,, k, 9P, _
-C, —a‘— + 2rhr, 7‘—(?),-,' = ¢qB (3.25)

The effects of an infinitesimal skin region around the wellbore can be

expressed as

r— T "

"
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Py = [p,_ ;‘?sr,,f:T’],_,_, (3.26)

The boundary conditions for-the rock matrix are

Blrat)) im0 | (3.27)
Pl(r 14 Jt)L-D/2= P2(r ’t) . : (3‘28)

Three different cases are considered for the outer boundary conditions: (a)
" the reservoir is infinite in the radial direction, (b) 2 finite reservoir with a no-flow

boundary, and (c) a constant pressure boundary.

nfinite Res i

lim Pyfrt) =P (3.29)
Finite Reservoir
BPg(r . ) .
—-ar—l, -, =0 (3.30)
stant Pressure < .
Poe )hoar, =P (3.31)

In terms of dimensionless pafameters, the governing equations (Egs. 3.22 to
~ 3.23), the initial conditions (Eq '3.24), and the boundary co_nditioxis (Egs. 3.25 to

3.31), can be written as

#Poy 1 8Por 8P, 8Pp,

= 9
arp2 rp 9rp A on W=l v dtp (3.3-)
8Poy 2 8Ppi _ (1-w) 3Po,

T T on T (833)



Ppofrp 0) = Ppy(rp m,0) =0

Cp 6;;;, (aPDI )L -1=1

Pp, = [Poz"s'aaﬁillrp-x

aPDI("D r'lr‘D)L o™= 0

afp

Ppi(rp Myt ym1 = Ppolrp,tp)

lim Ppg(rp ,fp) =0
rp—o0

OPprp.tp) '

érp o= =0

PD2('D »tp )IrD-r.D =0
where

2wk oh
Pp = — "l.(P - P(r,t))
quB

kot
T ($rey + acdure?

i - 4k |1'.2
k2D2‘

(3.34)

" (3.35)

(3.36)

(3.37)

| (3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)
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e e —— 3‘47
(¢1€1 + ¢2¢7) : (347)

C.

Cn =
? v2"'(¢1¢.1 + ¢ac)hr?

(3.48)

The mathematical model is fully defined through Egs. 3.32 to 3.41. The
simultaneous solution of the 'Vequationsjr using the Laplace transformation is
derived in Appendix B. In the Laplace domain the solutions for the pressure in

the flowing well and the fracture are

Infinite Reservoir

s KdVza) + 5 VzK (V7)) (3.49)
T VK (VED) + Cop [Kolvzd) + S VaaKi(Vzal} '
F - ' o Ko(\/_ ™) (3.50)

? {\/‘:KI(\/‘) + Cpp [Ko(\/—) +5 \/‘K,(\/‘n}

 zg=3\z icoth(z,) - N +wp

= %—z coth(z,) - %— + Qp | | (3.51)

60k ‘f.

defined by Warren and Root (1963) -

=x'=\/“—;—”1’i=\/E‘l?‘)I . sy

and p is the Laplace parameter. It should be pointed out that this result without

wellbore storage and skin effects is identical to de Swan's result (1976), which was

. obtained by approximating the behavior of cubical matrix blocks with that of

-spheres, provided the diameter of.the spheres is eqﬁal to the side length 6f the
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cubes.

inite Reservoir

= {Io(\/z—z)Kx(\/_f.nHIx(\/—ren)Ko(\/z_e)}

b1 CoplY - S+/7eX]| - p VzoX :

_ 5 VE{IdvmK(VEarn) + Ii(VEaro Kol V73)} ' (3.53)
G’op’[Y 5VzaX| - p VzaX '

B {Io(\/;;)Kn(\/_'cD)"'Il(\/_'cD)Ko(\/z)} - (3.54)
bz = CopllY - S/zaX]| -9 Vz2X - :

where
X = LVEK (Vi) - I(VFareo YK (V73 (3.55)
Y = IV (/a0 ) + 1i(Farn KoV (3.56)

Coustant-Pressure Outer Boundary

p KO(\/-DIQ(\/:"GD ) KO(\/_"cb )IO(\/:_'J) (3 57)
= VEalldVzre )Kl(\/-"_z) + L(VzK o V/5aren ) '

Wellbore storage and skin effects are not considered in the case of a
constant-pressure outer boundary. The complex nature of the solutions prohibits
analytical inversion from the Laplace domain into real space. Therefore, a
numerical inverter by Stehfest (1970) is employed to obtain the solution in real

space.
3.3.3. Asymptotic Solutions

In the following discussion, the case of an infinite reservoir without wellbore

storage-and skin effects is-considered, and the asymptotic solutions-for the early

r_ﬂ,qp.‘
.

r—

T g
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‘and late time behavior are developed (Appendix C).

At early times the pressure response at the well is only governed by the

characteristics of the fracture system

. Pg,‘;%\/’_::“ o | (3.58)

The period for which Eq. 3.58 holds depends on the hydraulic properties of

- the fractures and the rock matrix. If the fracture storativity (w) is large and

inter-porosity flow factor (\) small, the early time behavior will last for a long

time, and a semilog straight .line can be observed. The flowing well pressure is

given by
Ppy = -;- (1n (-‘w"—) + 0.80909] (3.59)
Late Time Beha'vjor‘

At late time the flow between the rock matrix »and the fractures becomes
quasi-steady and the pressure response at the well is identical to that of 2 homo-

geneous reservoir with a storativity (¢c )r =(¢,¢, + ¢2¢3); thus one obtains

Py = .;T [lnty+080909) - (3.60)
Comparison of Egs. 3.59 and 3.60 shows that the early time and late time
semilog straight lines will be parallel and offset by In w.

The early and late time behavior described here is identical to that obtained

by earlier models, e.g., the Warren and Root model (1963) and layered reservoirs

.(Streltsova, 1982; Serra et al., 1982). The present model and the earlier models
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differ only in the transient pressure response at intermediate times, since the sur-

face interaction area for a given fractured element is different for the present

model and the layered model.
3.3.4. Numerical Verification of the Present Model

In order to verify the mathematical model and the accuracy of the numerical
inverter, the independent numerical simulation studies are impleménted using the
simulator PT (Bodvarsson, 1982). Numerical analysis of pressure transients of
wells completed in naturally fractured-reservoirs were carried out using the multi-
ple interacting continua (MINC) method (Pruess and Narasimhan, 1982). The

comparison between the numerical results and the results predicted by the

present semi-analytical model is shown in Figure 3-6. The excellent agreement .

between the methods indicates that the semi-analytical model is appropriate for

the analysis of well test data.
3.3.5. Comparison Between Models for Naturally Fractured Reservoirs

The main difference between the present model and that of Warren and
Root (1963) is that the transient fluid flow between the rock matrix and the frac-
tures instead of the quasi-steady state fluid flow is employed in the present
model. Results from these models for several values of A are shown invFigure 3-7.
As mentioned earlier, the early and late time sgmilog straight lines are idgntical
for both models. However, significant differences are evident in the transient
region at intermediate times. In the present model, significant fluid flow from the
rock matrix to the fractures occurs much earlier than in the Warren and Root

model (1963); consequently, the pressure deviates earlier from the first semilog
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straight line. Also, the pressure transients in the intermediate time region last
considerably longer in the present model than is predicted by the Warren and
Root model (1963). As will be shown later, the pressure transient data in the
intermediate time region are essential for the determination of the reservoir
parameters, since in mqst cases the early time data (first semilog slope) are

marked by wellbore storage effects.

“Other models that consider transient fluid flow between the rock matrix and
the fractures (Streltsova, 1082; Serra et al., 1082; de Swan, 1976; Najurieta; 1980)
show similar in overall transient pressure behavior at the intermediate times.

Therefore, depending on the geological conditions that prevail at a given site, the

- present model for naturally fractured reservoirs may be utilized or, in the case of

~ layered reservoirs, models developed by St;eftsova (1982) or Serra et al. (1982)

are applicable. -
3.4. Pressure Transient Analysis with VNewiModel

The pressure transient behavior for naturally fractured reservoirs is analyzed

based on the present model, and the ‘met‘:hodology for the analysis of well test

 data for different boundary conditions is présented.

3.4.1. Well Test Data Analysis for Infinite Reservoirs _‘ .

Type curves for pressure drawdown tests in naturally fractured reservoirs of

" infinite areal extent are shown in Figure 3-8 for three different values of

(10%,10%,10°) and w ( 16,102,10°); these values cover the range of probable values
for naturally fractured reservoirs. Not only A but also w determines the time of

pressure deviation. Figure 3-8 shows that w controls the shift of the early and late
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time semilog straight lines, whereas A\ determines the time of pressure deviation

from the first slope and the time of convergence to the late time curve.

In order to develop methods for analysis of data from naturally fractured

_ reservoirs, an approximate analytical solution\'is helpful. Applying the improved

~Schapery technique (1961) to Eq. 3.49 (without wellbore storage and skin effects),

one obtains (Appendix D)

Py = ;-'q+1n2-%1n

AM0) o M)y A, _w ) (3
5 eNp 5

eNtp eTtp

Eq. 3.61 is valid for dimensionless times greater than ¢, = 10, which covers

times pf most practical interest. For this time range Eq. 3.61 is generally accurate

within 1%; the maximum deviation from values calculated using the numerical

inverter is 2%. At late times the equation is identical to the asymptotic solution.

" Recently, Ershaghi and Aflaki (1985) double differentiated this equation, and then

located the inflection point in the transition period. From the slope of the
inflection point, they also developed a method to calculate the reservoir proper-

ties of naturally fractured reservoirs including the inter-porosity flow factor,

storativity ratio, and fracture permeability. Eq. 3.61 will be used as a basis in

- ~the following discussion. -

As mentioned earlier, the pressure response of naturally fractured is charac-

" terized by three segments, a semilog straight line at early times, a transition

period, and a late time”s‘ém»ilog straight line. In many cases, regardless of

wellbore storage effects, the initial straight line is not present. Oniy in cases

where (-3-) < 7x107 can the first linear segment be observed. By correlation, the



initial semilog straight line ends at a dimensionless time of

2 y
b= o (362)

During the transition period the pressure changes are much less than at early -

and late times because of the large fluid flow from the rock matrix feeding the
fractures. This period lasts for about 7 log cycles éf | dime;isionless time. During
_ the transition period two linear segments on the presSure—log time plot (Figure 3-
8) may be identified. The first segment has a slope half that of ghe-initial and
final slopes. This half-slope has also been identified by Streltsova (1982) and

‘Serra et. al. (1982) for the case of stratified reservoirs.

The half slope occurs around the dimensionless time, when the two last

terms in Eq. 3.61 cancel each other, given by

ty = 22 (3.63)

PN

At that time the pressure declines can be expressed as
1 . 3
PDI == I [lntp - ln)‘(l-w) - ln-éa - 3'1] (3.64)

The time period over which a half slope can be observed depends on w. For
w=0.001, the half slope_ occurs for over a log cycle whereas for w=0.01 it lasts only
a half-log cy;:le. Whére w is larger than 0.1, the haif-slope segment can not be
w _easily identified. Th‘e'interrsection Between the initial semilog straight line and the

half-slope straight line occurs at a dimensionless time of

5.2

e N(1—w) (3.65)

(to)iw =

-\

L8]
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Similarly, the intersection of the half-slope line with the final linear segment

occurs at a dimensionless time of |

(to)pw = ﬁ%ﬁ? -  (3.66)

At a slightly later time in the transition period, a brief linear segment with a

| slope two-thirds that of the final slope is apparent. Due to the complex nature of

the analytical approximation (Eq. 3.61), it is not possible to mathematically
derive the exact time of deviation of this linear segment. It is also of questionable
value because of xts short duratlon However, as is the case with the half-slope,

the 2/3 slope increases in duratlon with decreasmg value of w.

The pressure transients converges on the final slope at a dimensionless time

of

= 1;” - (3.67)

~

‘HOWever, for acchrate determination of the final slope, one should only consider

data points at a dimensionless times exceeding '
¢ '

E[ocedgres For Analysis
In the above analysis some insight into t_hepressure transients in naturally

fractured reservoirs by usmg the approxnmate analytxcal solutxon (Eq. 3.61) is

gamed However, well test data rarely exhxblt all of the theoretncal charactens-

ties displayed above. In most eases ‘early data are masked by Wellbore storage

effects and in some cases the duration of the well test is too short for late time
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behavior to be:observed. Also, boundary effects may affect the well test data to
the extent that the late time behavi_or predicted by the infinite reservoir model is
never observed. The eﬁ'ects of wgllbore storage and skin as well as the effects of
~ different outer boundary conditions are discussed in a later section. Analysis pro-
cedures are given bélow for cases when the data are incomplete as well as for the

case of a complete data set.

om lete | ata Set

in this case the transmissivity kah and total storativity (¢,c, + ¢;¢5) of the |

reservoir can be determmed from the early tlme or Iate tnme slopes using the con-
ventional methods w can be determined from the pressure dxﬁ’erence between the

| early and late time slopes using the equation
w = exp(-2APp) (3.69)

Once w is determined, A can be calculated from any one Egs. 3.63, 3.65 to
3.67 by using the appropriate dimensionless time. The fracture storativity e,
can be calculated from w and the total storativity, k,/D? can be' evaluated from
the definition of A\ and the reservoir transmissivity k.t . Finally, if the permeabil-
ity of the rock matrix &, is known, e.g., from core data, the fracture spacing D

can be determined.
arly Time Data Missin
As mentioned earlier, the initial semilog straight line will not appear if (%)

>10%, Also, wellbore storage effects will, in most other cases, mask the initial-

slope as well as some of the data during the transition period. However, it is still

f T rr™

r—
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possible to extract the reservoir parameters from the data. As before, one can
determine kb and (¢,¢,+¢5¢5) from the late time slope and intersects using the

conventional methods.:w and X can be determinéd by solving Egs. 3.63 and 3.66

or Egs. 3.66 and 3.67, simultaneously. The fracture storativity and (%',.,-) can be

| determined in the same way as before.

Eina | Slope Misvsing

If the well test is of ‘short: duratipn and X is small, the final slope may never
be observed in the data. If the initial straight line is present, one can still deter-
mnne \, w, and all reservoir parameters k,h and ¢2c, can be determined from the

slope of the initial stralght lme, x and w by solvmg Egs 3.63 and 3.65 simultane-

ously, and other reservoir parameters as dlscussed above However, if the initial

slope is not observed, X and w can not be determnned. In this case the use of the
i:ressure transient data to determine the kqk of the reservoir by the conventional
methods will result in estimates that are about twice the actual k,4 of the reser-

voir.

Wellbore Storage and Skin Effects
. At early times during drawdown tests, most of the fluids are produced from

the fluids contained in the wellbore. Thus, the surface flow rate greatly exceeds

- the sandface flow rate. Later on, steady state conditions develop in the wellbore

so that the sandface flow rate equals that at the surface. Obviously, during early

times the pressure transients are only related to the volume of fluids stored in the

~wellbore, so that these data can not be used to determine any formation parame-

ters. It is of interest to examine the duration of the wellbore storage effects
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depending on the value of the wellbore storage factor Cp .

Figure 3-9V shows the effects of wellbore storage on the pressure transient
data for A=10"° and w=001. The figure shows that even for this small value of LY
wellbore storage effects will masl; Vthe initia! straight line completely. The higher
the wellbore storage factor Cp, the more the transition period data will be
masked. However, in the case of this low value of x; the half slope can still be
. observed even though the wellbore storage fac;,or Cp is as large as Cp = 10%
Consequently, the procedure of analjsis discussed in the last section can be
appli'ed,'é.nd all reservoir pafameters determined.

It is obviéus that the wellborerstorage effects Bécome more critical ﬁhen the
| \falue of x is higher. In many cases wellboré storage effects will mask all of the
data during the transition period so that only the final semilog straight line can
be obsetf.ved. In the overall integrated reservoir parameters kz;h and (4c; + ¢zc).
Through the analysis, it shows that A and w can only be détermined if the follow-

ing constraint holds

5w
Cp <
D = "4e"\(60 + 3.55)

(3.70)

The combined effects of wellbore storage and skin are shown in Figure 3-10
for A=10" and w=0.01. The skin factor S represents peimeability ‘réduction in the
“near-wellbore region as a result-of formation damage (positive skin) or permeabil-
ity enhancement due to the presence of natural or man-made (hydraulic) frac-
tures. The figure shows that the characteristic unit slope due to wellbore storége

at early times (Ramey, 1970), and a steady state pressure drop associated with
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positive skin. The wellbore storage factor Cp, can be determined from type
curves such as the ones shown in Figure 3-10. The skin factor S is determined

by conventional methods by assuming a value for the total storativity.

Mavor and Cinco-Ley (1979) extended the Warren and Root solution (963)
to include the effects of wellbore storage and skin. Their results differ consider-
ably from those presented here, mainly because of the quasi steady flow assump-
tion employed by Mavor and - Cinco-Ley '(1979). For example, these authors
develop crilj.gria to determine at what values of wellbore storage factor the initial
straight line will appear. This study shows, however, that if the wellbore storaﬁe
is present, the initial straight line will never appear for realistic values of A and w.
The reason for thiS discrepancy is the initial straight line lasts much longer in the
Warren anc.l Root model (1963) due to the assumption of quasi steady inter-

porosity flow.
3.4.2. Horner Pressure Build-Up Analysis for Infinite Reservoirs
The analysis of pressure buildup tests is very similar to that of drawdown

tests described earlier. Using rules of superposition, the dimensionless shut-in

pressure, Pps, is given by
Pps = Pp; ((t, + At)p] - Pp, [(8¢)p] - (8.7

If it is assumed that ¢, is larger enough that the pressure transients follow
the final slope before shut-in, the build-up data will also exhibit 2 half slope at a
dimensionless shut-in time given by Eq. 3.63. At that time the shut-in pressure is

given by

—

—

r- -

T

£ r

-

..._,..w,.,



- Dimensioniess wellbore pressure, Py,

Figure 3-10

Dimensionfess time, 1p

‘Effects of Wellbore ‘S.torage and Skin on Pressure

Behavior.

e s e - e h S e | SE—
W e e e e e .
i 3
$+20 3
$+0
1 1
w08 10° 10

== XBL 833-8667 --

Drawdown

6s



60
_ 1 (tr + At)p 3e?
Pps = -Z-{ln—-(AT- + 1!1(‘, + At)p + In\(1-w) + ln(-—s-)} (3.72)
Assuming that In(t, + At)p = In(¢t, )p, Eq. 3.72 simplifies to
1 &, + At) ‘ 3¢
Pps = T{m(’(_m)’;—g- + ln(¢, o + ln.k(l—w) + ln(—;—)} (3.73)
" The late time behavior of the build-up test is given by
Pps = %m[(_t'.LA_'l’.’.] ‘ (3.74)

- (at)p
The dimensionless time for the int?rsection of the half slope straight line with the
initial and final straight lines, respectively, are identical to those presented in
Egs. 3.65 and 3.66.

3.4.3. Pressure Drawdown Behavior in Reservoirs with Closed or

Constant Pressure Outer Boundary

In this section the cases involved a closed reservoir and a reservoir with a
constant pressure boundary are considered. The mathematical solutions for these

cases are given in an earlier section.

Figure 3-11 shows the pressure transient behavior in a closed reservoir
(rep =100) for A=10" and various values of w. It shows also for comparison that
the solutions for the same parameters based on the Warren and Root quasi
steady ﬂéw model. In the case considered here, the no-flow outer boundary
effects are felt before the rock matrix significantly contributes to the flow. Consp-

quently, the boundary effects are felt a factor of (1/w) times earlier than they

would be in the case of a homogeneous reservoir (w=1). Thus, if the conventional -

methods for homogeneous reservoirs were used to analyze such data, the drainage

'
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radius may be underestimated by orders of magnitude. In géneral, the boundary
effects will be felt before significant fluid flow from the matrix occurs if (\/u?) <
(x/107.3).

It is of interest to compare the solutions by the present model and the War-
ren and Root quasi steady type model. In the case of Warren and Root model, 2
Plateau can be observed in the pressure transients (Figure 3-11). The plate;m
appears only because of the quasi steady assumption. When transient fluid flow
between the rock matrix an& the fractures is consideréd, as in the present model,
the pressure decline in the reservoir is more monotonic and a smooth transition
to the final straight line is observed. As a result of the above discussions, methods
that have '.been developed to determine the drainage radius of finite naturally
fractured reservoirs using the Warren and Root model (1963) may also

- significantly underestimate the drainage radius.

When the boundary effects are felt during the transition period similar
results as discussed above can be observed, but the time shift will be less. Obvi-
ously, a pressure response identical to that of a2 homogeneous reservoir will result
if boundary effects are felt during the final semilog straight line. This will be the

case if A > 1/11r3.

Figure 3-12 shows the effects of no-flow and constant pressure boundaries for
A =10 and various values of w and r,p. The figure shows there is 2 fnuch shorter
transient fegion for a constant pressure boundary than for a closed boundary.
iThe boundary effect on the pressure behavior in the constant pre'ssui;e boundary

case is similar to that in the no-flow boundary case.

4

“

"

|

— r— r—

[



J!.'

¢

=)

ol 9

¢ 8

pun

w7

et

Q 6

e |
| § S

4

v 3

Q o .

s 2 --—--Constant pressure boundary
@ ——=Closed boundary B
c ! | dary

o — Infinite reservoir

E o | 1 S R | |

O 00 o0 102 10 10* 100 108 10

Dimensionless time, tp
XBL-827-7216

Figur‘é 3-12  Effects of Outer Boundary Conditions on Pressure Behavior.

o
w




64

3.4.4. Application of New Model to Field Data

Bourdet and Gringarten (1980) presented the build-up data from a naturally

fractured reservoir shown in Table 3-1.

Table 3-1: Data for pressure build-up test.

h =100ft, B =12RB/STB, pu=05¢cp,
(d161 + bocg) = 107 pai™!, ¢ = 450064 /day,
re =03ft, P(At =0)=3420.8psi, ¢, = 2lhrs

At(hra) '.(t, + At /At) Pys (psi) At(hrs) | (t, + At/Ae) Py; (psi)

o
rm

fF T oo e

" At

0.0216 973.32 3607.6 4.00 6.25 4211.3
0.0480 438.50 3867.6 4.50 5.67 4216.9
0.0833 253.10 3970.9 5.00 5.20 4220.8
0.1660 127.51 4067.9 5.50 4.82 4225.9
0.250 85.0 4093.9 6.00 4.50 4228.7
0.333 64.64 4108.0 6.50 4.23 4232.1
0.416 51.48 4117.0 7.00 4.00 4233.8
0.500 43.00 4127.2 7.50 3.80 4237.8
0.667 32.48 4138.5 8.00 3.63 4239.5
0.833 26.21 4147.5 8.50 347 4242.3
1.0 22.0 4154.8 9.00 3.33 4245.1
1.25 17.8 4162.7 9.50 3.21 4246.8
1.50 15.0 4170.6 10.00 3.10 4248.5
175 | 13.0 4176.8 10.50 3.00 4250.7

r‘n

g
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At(hre) (¢, + At /At) Py (pss) A At-(hra) (t,A + At /At) Py (pei)

2.00 11.5 4182.5 11.00 2.91 4251.9
2.25 1033 41876 1150 2.83 4254.1
2.50 940 4192.6 12.00 2.75 4256.4
275 864 - 4196.6 13.00 2.62 4250.2
3.0 8.0- 41909 14.00 2.50 4263.2
3.25 7.46 4202.8 1500 240 = 4264.9
3.50 700 4205.6 1600 231 . 4267.7
375 660 4208.4 17.00 " | 2.23 4269.4

This data is used to illustrate how the present model can be used to determine

important reservoir parameters. iThe best match obtained between the observed

‘data and the calculated values using'“the present.'model is shown in Figure 3-13.

An excellent match is obtained. The analysis proceeds as follows: Using the final

- slope of 141.8 psi/cycle the transmissirvitj}*iof the reservoir can be calculated as

kgh -

162.6¢5 4 _ 162.6X4500X1.2X0.5
——

141.8 . = 3088md -/t

For a reservoir thickness of 100 feet, the average reservoir permeability is

k, = 30.88md .

It is now to calculate w. As is evxdent from the data shown in Flgure 3-13,
wellbore storage eﬂ'ects masks the mmal fracture ‘controlled straight lme One
must therefore use the methodology developed earher to determxne w. In the data

shown in Figure 3-13 a half slope segment ¢an be observed at Horner time about
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(4 +At)

v as, or At = 0.617hrs, (: = mlm)

The intersection of the half slope line wikth the’ final straight line oceurs at (

t, + At) [ At =9, or At = 2.625 hrs . Dividing Eq. 3.63 by Eq. 3.65, one obtains

(Bto)ar 1 ~ L
(Atp ) 3“(1 w) 3o

(3.75)

since (Atp ),,,- /(Atp ),, ==(At),,,- /(At),,, one can determxne w= 0078 After substi-

tutmg for A and w in Egs. 3.46 and 3.47,;Eq. 3.47 can be used to determine &,/D?

1.691X10°%k (At )yr
u(¢c)r D?

Solving for k,/D? yields k,/D? = 1.03x10md /[ t°.

Unfortuna’tely,’ there’ ‘a.re‘ no eqre d;;t_a dvaiiable on the meﬁriﬁ permeability,
k. waever; :if o;ea'ssumes’ a 'feas‘odable velue for the matrix permeability, say,
By = o.oo.lmd',vt'heh averege fracture spdeiné D eddals .101 feet.‘ |
One can now px;eceed to eeleul)ate‘i)‘» based on its deﬁeitiqﬁ

xg_fo_k.ﬁ
k

; -8
i~ = 182X10

The skidfﬁctor‘s caﬁ Be caleuleted ffom |

Pu, - P.[ (A‘ =0) kg

— —log — ] +323=-07
. m : (bre1 + docJur? ] '

5 = 1.151

The above analysxs is based on the approxxmate solutlon ngen by Eq 3.61.

'However, 1f a more accurate analysns is needed Eq 3.40 can be employed The

match shown in Flgure 313 was obtamed usmg Eq 3.49 x =2 63x10’° w = 0.085,

" and S= -07, Cp = 1200 and C, = 0.012 bbl /psi.
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Bourdet and Gringarten (1980) analyzed the same data (Figurer 3-13) using

the Warren ar;d Root model. Tﬁej do ﬁot show the comparison between the cal-
culéted’ and Bbsewed pressures, but give vélues for A and c.:»kof 2x10°° and 0.25,
respectively. Using these parameters and the Warren and Root model, a large
discrepancy between the calculated and observed data is found. A much more
reasonable match is obtained using A = 3.5%10° and w = 0.25. This value of ) is
‘more than an order of magnitude higher than the value obté.ined using the

- present model. The value of A is also considerably greater than our value.
3.5. Thermal Propagation in N#turally Fractured Reservoirs

In the present study the problem of cold water injection into naturally frac-
tured reservoirs is considered. The basic model used considers the geometric
conﬁgur_ations, as proposed by 7Warrevn and Root (1963), but transient inter-
porosity heat flow between rock matrix and fractures is employed. Similar work
on non-isothermal flow in horizontal fractures vhave been investigated by
Lauwerier (1955), Bodvarsson (1969), and Bodvarsson and Tsang (1982). The
objective of the present work is to extend their work to include the effects of
vertical fractures and to develop a methodology for the design of the injection

schemes for naturally fractured reservoirs.
3.5.1. Basic Model

The model used in this study is shown in Figures 2-1 and 3-1. To simplify
the problem of cold water injection into naturally fractured reservoirs, steady
state fluid fiow is assumed in the fractures, but transient conductive heat transfer

between the impermeable rock matrix and the fractures is considered. Thus, the
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cold water wxll flow from the anectlon well into the fracture network and as it

moves away from the Well, it wxll gradually get heated up due to the heat

H

transfer from adjacent matnx blocks

The equation for conductive heat transfer between the rock matrix and the

' fractures is derived based on the basxc element shown in anure 3-1. The basic

element represents 1 / 6 of a smgle cublc roclc matnx, i.e. only one face of the cube
is consndered In this approach it is assumed that the thermal gradxents are much

smaller within the fracture network than in the roclc matrxx, since the thermal

: velocity in the fracture rnetv:vork is much larger than that in the rock matrix.

' Thus, lf the temperature in the fractures boundmg a rock matrlx block is rather

umform, a one-dlmensxonal conductxon heat transfer in the rock matrxx block is a

-

3.5.2. ,Mathen}atical Model
In addition to the approximation discussed above, the following assumptions

are made:

1. The reservoir is uniform in thickness, with impermeable lower and upper

boundaries, and without heat loss from' the reservoir-to the boundaries.

2. The mass flow rate is constant and radial, with the well located at r = 0.

3. The initial temperature T, is uniform throughout the system, but at time

t >0, a constant temperature T; of lnjected water is maintained.

4. The temperature in the fracture is assumed to be equal to the temperature

in the rock matrix at the contact region (z = D /2).
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5. The system and fiuid propertxes 1ncludmg permeablllty, porosxty, compressn-
bnhty, ﬂmd densnty, fluid v1scosxty, effective thermal conductlvxty, and ther-

mal capacities are assumed to be constant.

The governing equation describing ene;'gy transport in naturally fractured
reservoirs can be dem’ed from the conservation law of energy The procedures are
similar to those used in 1sothermal fluid ﬂow in naturally fractured reservoirs. If
one neglects the longitudinal conduction in the fractures, the fluid temperature in

‘the fractures can be expressed as (Bodvarsson and Lai, 1982)

8T; 127rkK, 8T, A T,
901 ¢ 37~ s u-o/2=6’"‘5DP/ 31

== 27l’fb pl CI 31- (3 76)

where T, is the fluid temperature in the fractures, ahd T, 1s the temperature in
the rock matrix, and ¥ (3b4 /D) is the effective fracture aperture. The tempera-
ture in the rock matrix is governed by the one-dimensionel'heat conducﬁion equa-
tion as Eq. 3.77, whose derivation is similar t6 that describing pressure transient

behavior in the rock matrix of the naturally fractured systems.

82T| + 2 aTl _ Py Cy BT,

9:* 2z 8z K, ot (3.77)
The initial and boundary conditions can be expressed as
To(r,0) = Ty(r,z,0) =T, : (3.78)
To ¢ <0
T,(oe)_{ T ¢ >0 (3.79)
Tor,t) = T,(r,0,0¢) (3.80)
Ty(r 0t )smo =0 (3.81)
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“The dimensionless parameters Tp, 1, &, and ¢ are defined as

T -To

Tp =

mth;
ps ¢y gD?
,4}’, €y F
0 S  ew——— .-
peceh

71

(3.82)

(3.83)

(3.84)

(3.85)

(3.86)

In dimensionless form the governing equations for the temperatures in the frac-

tures (T,) and the rock matrix (T,) are

Fractures:
8Tps 9Tpy, 9Tp2
NFY: =12 an bt = 0—5=
Rock Matrix:
9Tp, + 2 8Tpy, _ 8Tp,
g -t q A YT er

 The initial and boundary conditions are

 Tp6m0) = Tod€0) =0
-Jor<o

’ Tpg(o,r);-.:{l r>0 )

TD 1(61,") = sz(f-'f)

(3.87)

(3.88)

(3.89)

(3.90)

(3.91)
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Tp1(£,0,7) = [ inite (3.92)
The real parameters in Eqs 3.82-3.86 are defined in the Notation.

The solutions to Egs. 3.87 and 3.88 for the given initial and boundary condi-
tions in the Laplace domain are given in Appendix E. In the Laplace domain the

'~ solutions for the fracture and the rock temperatures are

I3Vp )

1
ve= e {0 + 125 T rle) (3.93)
- Yo Ii{Vp n)
Y= e T V7 B

where p is Laplace parameter. Because the form of Egs. 3.93 and 3.94 is compli-
. cated, it is convenient for one to invert the solutions to real spacé by numerical
methods. In this study Egs. 3.93 and 3.94 are inverted using a numerical method

developed by Stehfest (1970).
3.5.3. Thermal Front Propagation

It is of primary interest in this study to examine the rate with which the
cold water front advances away from the injection well during injection. This
information isv useful in the design of the safe location and rates of injection wells
in relation to the production wells. The cold water front vis defined as the locus
of points with temperature being the average of the initial temperature of the
reservoir'(To), and the temperature of the injected water T; (T¢r = 1/2[T¢ + T;]).
In Figure 3-14 the dimensionless radial distance ¢ of the cold water front is plot-
ted against dimensionles§ fime r for various values of 4. The parameter ¢

represents the ratio of the energy content of the fracture to that of the rock. In
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Figure 3-14 Type Curves for Thermal Front Movement in Naturally Frac-
tured Reservoirs.
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most cases realistic values of ¢ range from 10 to 10, The figure actually shows
for a given value of 4, the radial location of the cold water front in the fractures
away from the injection well, at any given time. If one follows the advancement
of the cold water front for one value of 4, say ¢ = 105, one can see three different
rates of advancement. At early times when conduction heat transfer from the
rock matrix is negligible, the front moves as r?/t away from the injection well
V(Bodvarsson‘ and Tsang, 1982). During this period the cold wa.terr front moves in
the Iracmrt;.s only, in an analogous manner to a single radial system with insu-

lated uppeir (caprock) and lower (bedrock) boundaries, and a thickness
- corresponding to the effective fracture aperture. Bodvarsson (1972) has derived as
. rexpressi'on for the movement of cold water front in this case. At intermediate
times, ‘the slope in Figure 3-14 decreases by half, and consequently the advance-
- ment of the cold water front is proportional to r/t (Bodvarsson and Tsang,
1982). During this period the conduétive heat transfer between the rock matrix
and the fra.cturés dominates, resulting in a much smaller movement of the cold
water front away from the injection well. The large heat transfer area causes a
very slow movement of the cold water front in the fractures, but rapid extraction

of heat from the rock matrix.

Finally; at very late times (r > 1.0) as shown in Figure 3-14, the .cold water
front again advances at a rate proportional to r?/t. At this time quasi-steady
state heat transfer between the rock matrix and the fractures has been reached,
and consequently the cold water front will move as if only a porous medium was
present (i.e. independent of the fracture nature of the reservoir). However, in con-

trast to the early time behavior, the cold water front now moves at the same rate

T
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in the fractures as in the rock matrix.

In order to explain this more thoroughly Figures 3-15 and 3-16 were con-

structed. Figure 3-15 shows the time sequence of the dimensionless temperature

- profiles away from the mjectnon wells in the fractures and the rock matrix for a

given va.lue of 0. The dimensionless temperature of Tp = 1.0 represents the tem--

'perature of the injected water, whereas the dimensionless temperature Tp =0.

corresponds to the initial reservoir temperature. Temperature profiles are given

for the fractures (n = 1.0), the center of the cubes (n = 0.0) and two intermediate

¥

values (n = 04, b.?).,i‘he figures show that at early times (r=;‘0.1) there is a con-
' "siderable‘diﬂ'erence 'beh;veen‘the:temperatnre pfbﬁles in the fractures and rock
‘matrix. At latexé times the curves start to converge, although the cold water front
'jis constantly moving away from the well. As sheﬁn on Figure 3-16, at a dimen-
.sionless time of ra=10 the temperature ‘profiles are practlcally identical in the

, fractures and the rock matrxx ‘This can be shown analytlcally by considering an

asymptotnc solutxon for the late time behavnor of Egs. 3.93-3.94 (Appendix E).

" The reason for this phenomenon is that at early txme the cold water shoots

rapidly through the fractures, increasing the surface area for conductive heat
‘f.ransfer between the fractures and the rock matrix. The large surface area

-enhances energy transfer fré)m the rock matrix to the fracture ‘ﬁuids, thus retard-

ing the advancement of the cold water front along the fractures. This in turn,

tends to equilibrate the temperatures in the fractures and the rock matrix so that

eventually the temperature profiles away from the well are identical for the frac-

tures and the rock matrix.
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3.5.4. Designof Injection Systems
- The most interesting aspect of the results obtained is that even for fractured
resérvoirs, uniform energy sweep will maximize the amount of recoverable energy
from the resource. A necessary requirement for such conditions is that the injec-
tion wells be #ppropriately located with respect to the production wells. Similar
conclusions wefe obtained by Bodvarsson and Tsang ('1982) for the case of hor-
izontal fractures only; however in that case the criteria for proper siting of the
injection wells are different from that proposed here for naturally fractured reser-
voirs.
For ’the ‘design of an injection system for naturally fractured reservoirs
mathematical éxpressions that can be used to calculate the time and radial dis-
~ tance from the injection wells where uniform sweet conditions prevail are quite

useful. Figure 3-14 shows that uniform energy sweep condition will prevail when
f4+6)=r=10 (3.95)

In general 4 >> ¢ so that Eq. 3-95 can be written in terms of real parameters as

_(P1 e D%y
& =(Zxt) (3.96)
pr ¢, D?
=1k (3.97)

Inspection of Egs. 3.96 and 3.97 shows that both the time and radial distance of
the uniform energy sweep condition depend greatly on the fracture spacing D.
However, both quantities are independent of the effective fracture aperture 3.

Fractures possessing small apertures will contain very small amounts of fluids, so

r—
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" that _éveu though fluid velocities are high vefy little energy is needed to increase

" the temperature.

A problem involving as injection well in a naturally fractured reservoir using

the parameters shown in Table 3-2 is considered. If the average fracture spacing

is not known the following expressions can be calculated.

g=126xD (meters) (3.98)

o b =001XD?(years). - - (3.99)

" Thus, for an average fracture spacing of 50 meters, uniform energy sweep condi-

tion will prevail 130 m ‘away from the well after 25 years of iniection.

" Table 3-2: Parameters used for déSign of injection systems

‘|Injection rate, ¢, =~~~ 20kg/s
| Fluid density, o, ~ © ° 1000kg /m3
| Fluid heat capacity, ¢; - 42007 [kg - *C

‘| Thermal conductivity, K, 2.0/ /m-s-*C

Reservoir thickness, 4 500m
. |Rock density, p, = -+ 2700kg /m® |
Rock heat 'capacity,'e,: ' . 1000J /kg-°C

. -3.8. Conclusions

- ‘The MINCﬁ'iabproximation, which has been employed to model transport

- phenomena in double-porosity media, has been verified. The results show that

this approximation can accurately represent transient inter-porosity flow in
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fractured porous media, and provides the rationale for the development of models
to analyze pressure transient behavior and thermal propagation in naturally frac-

tured reservoirs.

Semi-analytical models for the analysis of isothermal and nonisothermal fluid
flow in fractured reservoirs have been developed. The models consider the origi-

nal geometrical configurations proposed by Barenblatt et al. (1960) and Warren

and Root (1963), as well as transient inter-porosity flow between rock matrix and

fractures. For isothermal fiuid flow in naturally fractured reservoirs, 2 simple
approximate analytical solution for transient pressure behavior in an infinite
reservoir without wellbore storage and skin effects has been developed. This
approximate solution is useful for pressure analysis of intermediate and late
times. It shows that the pressure transient data during the transition period for
values of w smaller than 0.1 exhibit a half slope similar to that observed for the
layered reservoir case. The half slope is followed by a brief segment with a slope
of 2/3. All reservoir parameters can be determined if the half slope segment is
observed, even if the early time straight line is not present. The appropriate pro-

cedure for analysis is given.

From the present study, it shows that in the case of a finite reservoir, the
drainage radius may be significantly underestimated using a Warren and Root
model (1963). The model presented here is similar to other transient models, e.
g, layered reservoir models. Geologic information must be used to determine
which model is appropriate. A field example of pressure build-up tests is given to

illustrate the applicability of the present model to naturally fractured reservoirs.
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This field example also demonstrates that inter-porosity flow factor A and stora-

tivity w are significantly overestimated by the Warren and Root model.

For nonisothermal fluid flow, proper lotations and flow rates of injection
wells in naturally fractured reservoirs have been determined by the model used to
study the iﬁjéction of col&.‘wif.ér‘ into hét reseﬁoirs. Type 6;1wes have been
developed to help in optirﬁizing an 'i:njectivbn operation‘ for maximuni energy

recovery from the resource.



CHAPTER 4

NUMERICAL MODEL FOR THERMAL AND
CHEMICAL TRANSPORT

4.1. Inltroduction

| The ability to predict thermal Va.nd éﬁemical transport in geologic media is
importa;at in {such diversified fields as hydrotherma_l resource development,
‘enhanced oil recovery processes, and waste water purification. Also, in the face
of the urgent need for underground disposal of nucl’ear wastes, the problem éf
nonisothermal chemical transporf. in geologic media has become the topic of much
interest (Witherspoon et al. 1981). Because of the inhomogeneous nature of geo-
" logic formations and nonlinearity of the governing equationé, numerical methods

must be employed to address these problems.

To model thermal and chemical transport in geologic formations, "

convection-diffusion type equations that arise from the conservation of energy
and chemical species on a macroscopic scale are commonly used. For this work,
an accurate numerical method different from conventional finite difference
methods for the computation of the solutions of convection~diﬁ'usion type equa-
tions is developed. The method consists of a novel combination of a second-order
Godunov scheme with the monotonized upwind/central differencing method (Van
Leer, 1977; Colella, 1984), and the operator splitting technique (Strang, 1968).
The accuracy of the present numerical method is investigated and a comprehen-
sive comparison between the method and a conventional method for solving

several benchmark problems is given so that one can easily assess the perfor-
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mance of the present method.

Th‘e tv}ddimensiénal numerical simﬁlétoﬁ PTC (Lai et al.,, 1085) was
developed to analyzé' <’):‘oupled‘ hydrblogiéal-thermal-chemical processes encoun-
tered in geologic formations. PTC was developed from the code PT (Bodvarsson,
1982), which is capabl}e of modeling three-dimeﬁéional, coupled fluid and heat
traﬂépdrt p'rdce'sses' in ffaétuied porous media. In the céde PT, the noniterative
Newton's method with ‘a’direct matrix solver was employed to solve s'pvé_rse sys-
tems of lihéax;izéd equations. |

In addition to fluid and ‘heat transpo'rt’, thev code PTC can si’mulate one-
component chemical transport processes, including the effects of convection,
dispersion, and» kinetics o_t" mineral—water ;eactions. ”T'o”improve the accuracy of
the code, a coxﬁbination of a secornkdk-ordelr éc)’dﬁnov. ;lzethod and the operator
splitting technique is introduced to sblve coﬁveétién;diﬁusion type equations. A
set of governing equations describing the transport processes, the numerical

method, and a iterative solution procedure employed in the code are presented in

- the following sections.

4.3. Mathematical Model

-~ - In this section, the basic equations of: single phase, thermal and chemical

transport in geologic space are derived from: the conservation laws of mass,

energy and chemical species. . -
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4.3.1. Conservation of Mass
As shown in Figure 4-1, let R be a region in two or three-dimensional geolo-
gic media that is saturated with a fluid. It is assumed that W is a fixed subregion

of R. The rate of change of mass in W is expressed as

f (¢P; )

m(W t) = [ ———dV, +fq,,, v, (4.1)
w

where dV, is a volume element in 2 space, m(W,t) is the total mass in W, ¢ is
porosity, p, is fluid density, ¢, is mass generation rate per unit volume, and ¢ is
time. The total mass flow rate across the surrounding boundary of W is the sur-

face integral of mass flux (Figure 4-2) expressed as

sf py TW dS, (4.2)
A

where # denotes the unit outward normal vector, S, is the surface area of the

. boundary, and ¥ is Darcy’s velocity given by
R -
T = -';(VP +pr19) (4.3)

where & is the intrinsic permeability of the medium, x and p, are fluid viscosity
and density, respectively, P is the average pressure, and ¢ is the gravitational
acceleration.

From the principle of conservation of mass, the rate of change of mass in W
equals the rate at which mass across the boundary in the inward direction add

the rate of mass generation. Thus, one obtains

w )
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Figure 4-1

Trajectory of
Darcy’s velocity

XBL 8511-11549

Fluid Motion in a Porous Space R (W is a Subregion of R).
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Figure 4-2 The Mass Flow Rate Across the Unit Surface Area.
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By the divergence theorem, Eq. 4.4 is equivalent to

, R
(220 4y, = a7 aV, 4 fom V. (4.5)
w , w . w ’

This equation is the integral form of the continuity equation.

"~ 4.3.2. Conservation of Energy

The total energy of fluid-saturated geologic media assuming thermodynamic

| ~ equilibrium between rock and fluid is expressed as

E =[¢p;¢; +(1-¢)p,c]T | (4.6)

where ¢, is specific heat of fluid, ¢, is specific heat of rock, p, is density of rock,

~and T is temperature. The rate of change of total energy in W is expressed as

SEW.0) = [Zlbo; ¢ +(1- ) c,IT @V, (4.7)
w . . .

If total enérgy flow rate across the boundary involves only convection and con-

duction effects, it can be obtained from the surface integral of energy flux

expressed as

T [Tt T dSy F [T T dSy (4.8)
Sy . Sy -

According to Fourier's law, the conductive heat flux is expressed as

 Qeont = ~Ky9T . o (4.9)

where K, ‘is the effective thermal conductivity of geologic media.  The convection

~ heat flux is expressed as

CTew=p T (410)
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Substituting Egs. 4.9 and 4.10 into Eq. 4.8 and using the principle of conserva-

tion of energy, one obtains

f-a%-[qﬁp, ¢; +(1-¢)p, e, ]T dV, =st.vT-i' s, —sfp, ve; T 7 dS, +£q,,l e, T, dV,
W A /)

=IV'K‘VT dv, "!V'PI Fc, T dV, + fq,,. € T, 4V,
w w w

(4.11)

where 7, is the temperature of fluid sources. This equation is the integral form

of the energy eqixation.
4.3.3. Conservation of Chemical Species

A material balance for solutes resulting in the chemical species equation in a

similar way as energy equation is expressed as

4 - .
f‘é-t(¢P! C)dV, = [vp; DijvC dV, - [p; 7C dV, + [qnC, dV, (4.12)
w w w w

where D;; is a dispersion tensor, C, is the concentration of fluid sources. This

equation is the integral form of chemical species equation.

If the variables in the integrand of Egs. 4.5, 4.11, and 4.12 are smooth
enough, the differential form of the conservation laws of mass, energy and chemi-
cal species can be directly obtained by removing the integral signs. Otherwise,
the integral form will then be the one to use. With recognization of this fact,
any physical quantities should be considered as the average values with respect to
subregion W, if the differential form is to be used when geologic media are
treated as a continuum. To give a complete description of thermal and ch?mical

transport processes, changes in pressure and density affect temperature variations

"
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and the principles of thermodynamics must also be considered. From thermo-

dynamics, one obtains equations of state for water and rock. The properties of

liquid water are calculated using polynoinial functions of pressure and tempera-
ture (Buschéck,_ 1980; Bo&vérsSdn, 1982). The viscosity is assumed to be only
temper‘a.turerdepgndent, its depenvdencevon pressure being neglected. The density
is a function of pr.es§u‘revk as well, as temperature. The specific heats of water and
rock, and the effective thermal conductivity of geologic media,are assumed con-
stant. By deﬁni‘tion, the éipaﬁsivitiés and éompréﬁsibiiitiés of water and rdck can

be expressed as

. . e=12¢
p; 0P poP'T
PR 7 T= _.1..3_¢;'| (4.13)
py OT $aT ' F , :

From the fluid density function, ¢ and g can be evaluated. The rock 'cormpressibil-

ity (e) and expansivity (7) are determined experimentally or estimated using

- empirical laws: It is assumed that the concentration of the chemical species is low

enough so that it does not affect the fluid properties.
4.4. Solution Procedures |

In this .sec;.'ion,n aAnum-erical solution ‘techvr;i‘qx‘u; ’fci)r éol#ihg f.he above conser-
vation equations is presented:.'l» For hydrologists,- the quantities of pressure, tem-

perature and concentration are more important than the fluid and rock proper-

* ties; thus they are regarded as "prim‘aryf de'pén'dent variables and the latter as

secondary dependent variables in the mass, energy, and chemical equations for

- numerical calculations. Once the solutions of primary dependent variables are
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obtained, the secondary variables can be updated using the equations of state.
Combining Egs. 4.5 and 4.13, one obtains Eq 4.14 involvihg two primary depen-

dent vaﬁables, pressure and temperature.
I{(9+ ¢)¢p; 5B+ 7)¢p; L vve }av, = fq.. v, (4.14)

If Eq. 4.5 is multiplied by a factor of ¢; T and subtracted from Eq. 4.11, one

obtains the following energy equation for the numerical formulation

e, T o(1 ~ o, e, |T - _ -
_[V{¢Pl (é' ) + [( 8)t ] }dV = fv K‘_ vT dV v!pl vey T-w% dSA
. . ;

+fc, Tgp v dV, +fq,,.c, (T, - T)dv,
W W
(4.15)

Since ¢, and ¢, are assumed constant, Eq. 4.15 can be further simplified by

linearizing porosity, ¢,

fd'r dV =fv K‘VT dV fs.r T® JSA
Sa

+ [TOTr + [anes (T, - T) 2V, (4.16)
w w

where or = ¢p; ¢ + (l - ¢)p, c, and Vr = vy, 7]

Similarly, the equation for conservation of chemical species can be expressed as

fa. v, -=fvp, D;;vC 4V, 5[7, C'w dS,
A .

+ ICVFe v, + I'Im(co - C) dv, (4.17)
w w . .

where o, = ¢p; and 7, =7y,

N
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As a first step, Eqgs. 4.3 and 4.14 are combined to solve for thé pressure field
neglecting temperature effects (8 gnd 5 assumgd equal zero ), resulting in a
diffusion type equation. There is no dfﬁiculty to solve this équatién bi the impli-
cit central finite difference method. The deta:led procedure can be found in PT
(Bodvarsson, 1982) After obtammg the pressure ﬁeld Darcys law, Eq 4.4, can
then be applled to obtam the veloclty ﬁeld whlch is used to solve the energy and
chemlcal specxes equatnons, Eqgs. 4.16 and 4.17. The method used to solve Eqgs.

416 and 4.17 consists of a combination of the explicit, monotonized

- upwind/central differencing and operator splitting. By means of operator split-

ting, the first fractional step omits the diffusion and sources terms in Egs. 4.16

and 4.17 . Thus, the folldwing equations are solved

[or2Lav, + [5G T7 S, - [ToTr &V, =0 o (418)

w " Sy i W .

and

fa‘ 2Cav, + ]u,o 7 dS,. [coT, &V, =0 (4.19)
w . , v

- The method used to solve Egs. 4.18 and 4.19.is the explicit, monotonized
: upwind/gentral diﬁ'erencing method, proposed by Van Leer (1977) and further
developed for multidimensional, nonlinear hyperbolic syStems by Colella (1984). A
description of the method is given in the following section. The second fractional
- step considers the diffusion type eqﬁatioﬁs that ﬁrise' when the convection term is

‘neglected. This leads to the following two equations

[or2LaV, = [GK\OT &V, + [oues (T, - TV, (4.20)
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and

{Vc, %"-dv, - {fV‘p! Di;vC V. + ,Lq.,.(C’. -c) v, (4.21)

. Egs. 4.20 and 4.21 are solved using the implicit central difference method. After

pressure, temperature and concentration are obtained, the fiuid and rock proper-
ties are updated, and the procedure repeated until the solution has converged.

The criterion set for convergence is

Qe Sty < TR (4.22)
Aad

where \ refers to P, T or C; 7, is a specified residue constant; and the subscript

“max” denotes the maximum value over all grid blocks.
4.5. Method For Controlling Numerical Diffusion Errors
And Grid Orientation Effects

As the forms of Eqgs. 4.18 and 4.19 are identical, it will be sufficient to
describe the application of a second-order Godunov method with the explicit,
monotonized upwind/central differencing to Eq. 4.18. The basic idea behind the
method is to approximate the solution at the new time level, ¢t**!' = ¢* +A¢, by
integrating the energy flux across the grid boundaries and considering the mixing
effects due to compressible fluids (Eq. 4.23). In order to obtain second-order
accuracy in time, the primary variables at the grid boundaries are evaluated at
the intermediate time level, ¢**/2 = ¢t* + 1/2A¢, for each time interval by tracing
characteristics, and solving difference approximations to the characteristic equa-

tions (Eq. 4.24). The second-order accuracy in space for the difference

r—

- T

[ —
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approxixxtatipns to the characteristic equations can be obtained by construct'tng a
piecewise, linear distributions of primary depexident variables at each grid rather
than a piecewise constant (first-order Godun6\.r ‘method). Furthermore, the linear
distribution is obtained calculating the slope at each grid center by a suitable
dtﬁerence formula, yvhieh includes a “limiting” process to gusarantee solution pos-
sessing monotonicity properties (Eq. 4.25). The detailed procedure is given as fol-
lows: In two dimensions (Figure 4-3), Eq. 4.18 can be expressed in conservation

form by finite difference method as
TaH'=T8; + m{(m T -(vr T* %) 1124

0 +l}£,2 i -l/ll2

1;: )l' +1/2,5 — (F.T: )|'~1/2.i‘]}

(ﬂrAy)' P {(-1' T /2). -2 =(vr, T* /) “/2

s+l ‘
.uﬁz '2*' T- - {72 (Fry Yi41/2 = (T it /2]} | (4.23)

where the subscripts (¢,5), and (¢ :;1/2,;) or (1 ,J £1/2) denote grid center and grid-
boundaries, respectlvely, the superscripts n, n+1/2, and n+l, denote the time.
| level and TALH% represents the average temperature at time ¢**+/2 = ¢ 4+ 1/2At

in the computational grid boundary at z = (i+1/2)Az and y = jAy. With 77, >0 '-

at (¢ +1/2,7), TA41}% can be expressed by a ﬁrst-order Taylor series expansion as

TG =T + A‘-ﬂk ,+ 2120

2 ot
= s, 4 Az T At vr, T) .07
Tis + "2 oz el 2(61-).-',- { o T T oz
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Fi_gure 4-3 The Symbols of Numerical Computations in Two Dimensions,
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(Vrs T) 3”1'; -
oy +T oy }"j

A‘”Ts ) 3T| At {3(71-, T) _ TaFTy }
Vg i

== k] — - s . e
Toi+ ( 8z "7 2or)i.; dy dy

%)

2 4" e Ay

T:: + (—“

{('ﬁ‘y Yoie1 e T a1pe - T) - (35, ).'.,'-x/g(ﬂ".:‘-!/é - T.".;')}

=TS8 -l-'..' Atvr, —A‘
T." + (2 20 Az)"’ ' g 2(0'3-Ay ).'.j

{(Vr. Yo sl Tgare = T3) = (Frg Yo gl Tiape - TR} (4.24)

In Eq. 4.24, (%).—,,- ‘represents the temperature gradient at the node (i,5). In

order to obtain second-order accuracy in space, a central differencing formula is
employed'. However, to avoid numerical oscillations near fronts, the limiter A* T; ;

is constrained by the monotonicity principle expressed as (Van Leer, 1977)

A*T; ;=min{sT3;, *2‘|T."5n.5 = T8 21T - TR 1)
Xagn (T - Th, ,) i (T - TRNTY - i) >0,
=0, otherwise. . .. . S o (4.25)

where §T%; is 1/2{T%,; - T, ;| for equally spaced grids. The central ‘diﬁ"erencing

_ formula for unequally spaced grids can be obtained in a similar way. Similarly,

with F}, >0 at (¢,5+1/2), T2 }{3, can be defined as
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8 +1/2 __ T8, l_ﬂ!’- YT, -A__
To.:-o-ﬁz—Ta.: +(2 2a'rAy)"’A Ti; 2or Az); ;
{(Frs Vowrai (Tyzi = T85) = (Ors Jicayas (Tia2s - 7}‘:,-)} (4.26)

where A’ T; ; is defined as in Eq. 4.24 buf with the roles of ¢ and j reversed.
The primary function of the limiters A* T;; and A’ T;; is to track fronts and
select the proper temperature gfadients fér thé nodes at the fronts. The first-
order differencing of Eq. 4.25 is employed at discontinuities in the solution, allow-
ing a small amount of numerical dissipation to avoid oscillations. Thus, a sharp
front will be smeared to some extent. Then the second-order differencing is
employed in the smooth region of the front, as shown in Figure 4-4. By adjusting
the limiters (Colella, 1985), one can obtain steeper gradiénts at fronts than those
obtained using Eq. 4.25. However, such x.'eﬁned limiters require information from
two more grid points, and this makes the computation more complicated, espe-

cially for the treatment of boundary conditions.

If A*T;; or A’ T;; is equal to zero, this numerical scheme reduces to a first-
order upwind differencing method. It should be noted that the third terms on the
right hand side of Eqs. 4.24 and 4.26 must also be approximated using the first-
order Godunov scheme (ie., the first-order upwind differencing scheme) (Colella,
1984). The role of these terms is to take into account the effects of fluid flow in

the direction tangential to the grid boundaries.

Because this numerical scheme is explicit, time steps must be controlled to

avoid numerical instabilities. The magnitude of chemical velocity, -IZLI, is always

l-m---- 1

F 1
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Figure 4-4 Solutions at the Front Where First-Order or Second-Order
Diflerencing (the Limiter A® T; ;) is Used.
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larger than that of the thermal one, gr—l-, so the chemical transport sets the cri-
_ T

terion for the time step. Furthermore, the time step criterion must satisfy the

Courant-Friedrichs-Lewy (CFL) condition

P At 7, At

max( c.Az ' o, Ay

)<1 ' - (4.27)

Once Eq. 4.23 has been solved, the solution, 7, is used as the initial condi-
tion in Eq. 4.25, which is then solved for the final temperature to complete a full
step of operator splitting. Eq. 4.25 is solved using the implicit central differencing

method in the following numerical form

T":sz" 4 At {2(K )_|+/| . [ T..-f} - Tl..;?l ](A ) L.
TN T g Az Ayt UTTMIVR (A )y + (B2) Vg

g - Te
+ 2(Ka )& |3z )-‘.:'"‘*' (A";o'-n.i (Ay )i.;

1 T'-f ll - Tl"::ﬂ ]
+ 2(K, )i it - Aaz); ;
(Ka)iin L (Ay )i ja + (B )i; (82):.;

s+l

0".)*"" = T"""H m .+ s+l

(4.28)
The above procedure is repeated for each time step. Eq. 4.28 is solved by a

sparse matrix solver SPARSPAK (George et al., 1980). It should be noted that

SPARSPAK provides a variety of options for solving sparse systems of linear

'

€«
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 equations, however, there are only two options, ORDRA2 and ORDRB4, avail-
: able for solving mass and energy equations simultaneously. By comparison of the
| 4eﬁiciency of SPARSPAK and that of the matrix solver MA28 (Duff, 1977), it was
found that the memory storage required by SPARSPAK is about 1/3 less than
MA28kk, but the computational speed ’is aﬁoﬁt 1/4 slower, if a ‘980x980 asymmetric '
sparsc maﬁrix resulting fn""omvPT’s foxfxﬁulation is solved.
4.8. Validation of t_hc Numericai Scheme |

The validity of this numerical scheme has been tested with various problems
for which exact or approximate solutions (analytical or numerical) are available.
The following four cases are considered to illusi;rate the accuracy of this numeri-

- cal method and some areas of application.
4.6.1. One-Dimensional Convection-Diffusion Problem

. The‘ test case considered is a one-dimensional, isothermal, chemical transport
~ problem in a semi-infinite, isotropic porous medium. A constant concentration,
Cq, is maintained at the inlet (z=0), and an initial concentration of zero is
- assumed everywhere. The fluid velocity (z),b rock and fluid pfopertiec, and the

longntudma] dxspersmn coeﬁ'lclent D, , are assumed constant The analytlcal solu-
,: tion to Eq 4. 22 thhout the source term for the given boundary and xnmal condi-

tlons is gnven by Ca.rslaw and Jaeger (1959) as ('

(7 n

z——

‘{ef ¢ (G7pa) + lggrlert o \,D—)} (4.29)

In the numerical calculations, the computational domain is divided into



100

equal volume elements with a nodal point spacing of 0.5m. To obtain accurate
results, the CFL condition (Eq. 4.27) used in this test case was set at 0.5. Calcu-

vAzr

lations were made over a wide range of Peclet numbers, %D
i

to thoroughly test

the performance.of the numerical écheme.' vThe results are showlrvn in Figure 4-5.
The comparison between the numérica.l and analytical solutions shows excellent
agreement for Peclet numbers 0.1 and 1 This shows that the #pproximaie solu-
tion using the present numerical scheme converges toward the exact solution of
the differential equation; the numerical scheme with the operator splitting pro-
cedures is consistent. When the Peclet number is 10 or 1'00,7 the numerical
diffusion errors are still small and there is no oscillation near the front. The
numerical solution for a Peclet number of « is very close to that for a Peclet

number of 100.

It is of interest to compare the results from the present numerical scheme
with those of the conventional first-order upwind scheme. Figure 4-6 compares

the two schemes for Peclet numbers 10 and 100, and shows clearly that for these

Peclet numbers the conventional first-order upwind scheme can lead to greater

numerical diffusion errors than those produced by the present scheme. When the
Peclet number is below 2, the conventional central differencing scheme can be
employed to model the convection term with no oscillation, generating identical

results to the present scheme.
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4.6.2. Two-Dimensional Convection with Longitudinal and
Transverse Dispersion

For this case, wé consider a rectangular, homogeneous and isotropic porous
medium with constant concentration, C,, maintained over a portion of the boun-
dary (0 Sy<h ), zero concentration maintained over rest of the boundary

(8 <y <1), and uniform initial concentration of zero (Figure 4-7). The isothermal
fluid velocity (-Z:), longitudinal dispersion coefficient, D;, and transverse dispersion
coefficient, D,, are assumed constant. Under these conditions, the chemical tran-
sport equation simplifies to

- 8C o #Cc v
B D‘azz*D‘a T g

ac
AL | (4.30)

When the input concentration is maintained at the boundary for a long

~ enough tlme, the concentratlon dlstnbutlon approaches a quasx-steady condition.

Harleman and Rumer (1963) obtaxned an approximate steady-state solution for

this problem by neglectmg longitudinal dispersion. Their solution can be

‘ expressed as

©_1

- y-b
Co 2

hirw wry

) | ‘ (4.31).

In this test case, the corhpiitatibnal domein' is divided into equal volume.ele-
ments thh a noda.l point spacing of lm in- both z and y dlrectlons Compa.nson
of the numerncal results wnth the approxnmate analytlcal solution is shown in Fig-
ure 4-8 Good agreement is obtained except in the regxon near z = 0. The

observed differences between analytlcal and numencal results are expected
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because the approximate analytical solution assumes %z% = 0. These differences
. ) z

are largest for the curves for y = 3.5 and 4.5m where the largest concentration

- . 03 820
gradients exists; hence, e ¥ 0.

4.7. Grid Orientation Effects

‘The numerical discretization procedure used in 2 numerical simulation is
saidv‘to exhibit a grid orientation effect if the numerical solution is sensitive to the
spatial orientation of the grid5 As described in 43, the governing 'equé.tiops uséd
to deseribe transport processes in geologic media are transport-dominated
convection-diffusion equations. It is well knoﬁn that the central diﬁ'erepce scheme
for the \'convéction term may cause convection instabilities if the solution is not
smoo;:h enough. A common approach to stablize the convection term is to use 2
first-order upWind difference scheme instead of the central difference scheme. The
effects of a first-order upwind difference scheme for the convection term on the
solution are not only to produce numerical diffusion errors but also to exhibit the

grid orientation problems. The emphasis in this section will be focused on the

effect of a flow field oblique to the computational grid on the numerical solutions,

since the grid orientation problem is mainly introduced by this effect. If a
numerical scheme can adapt the computational grid along the streamlines during
computational processes, the grid orientation problems can be eliminated com-
pletely. However, fluid streamlines in the realistic processes can rapidly vary

with time, and the adaptive grid technique is not easy to implement, especially

- for a complicated flow field. Therefore, numerical techniques with stationary grid'_

are usually employed.

tm—m
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From simple Taylor series truncation a'nalysisv, one can show that if the con-

. ventional central difference scheme is considered as a standard formula for the

convection term, the five-point method (in two-dimensions) with a first-order

upwmd difference scheme will introduce numerical truncation errors (De Vahl

‘Davis and Mzallinson, 197'6‘)'.

bolaz &5 Inlay 2%

2 912 2 gy (4.32)

Eerr

. where v, and v, are thermal and chemical velocities in the z and y directions,

respectively. S; represents the temperature or chemical concentration. The form

of Eq.'4.3‘2 is identical to diffusion equation. It produces a contribution to the

diffusion of heat or chemical concentration analbgous to the physical diffusion of

heat trans;)ort' in an énisotropic media;. or the physicai dispersion of chemical

transport in an isotropic porous'media. The coordinate axes of the mesh coincide

~with the principal axes of diffusion and the principal coefficients are

D, = 0.5|v,|’Az" | (4.33)
and i S

D, =oslp,lay o (4.34)

- For ilniform mesh size Az = Ay = A, one can express the numerical diffusion

constant in tensor form as

- Dpgm =054 [l‘:;l ':'] RN TI. . (4.35)

If the flow field is oblique to the computational grid, the value of numerical

diffusion constant in the direction normal to the total velocity is given by (De
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Vahl Davis and Mallinson, 1976)

D : [V|Az Ay sin26
fasm

= {4(Ay sin%8 + Az cos®0)) (4.36)

where |V] is the magnitude of total velocity, Az and Ay are grid block sizes in
the z and y directions, respectively, and ¢ is the anglg between the z-axis and
the vector of total flow velocity V.

For Az = Ay = A, one can obtain

__AlVkin2d
4(sin® + cos®d)

D"M - =

(4.37)

- When the direction of i:he | fluid velocity is diagonal to the gridr (6 = 45°),
D,.. = 0.354A|V|, a.nd the numerical diffusion reaches a maximum value. On the
other hand, D,.. =0, if the ﬂui;i velocity is parallel or ‘perpendicular to the com-
putatiopal grid.

In petroleum engineering, Watts and Silliman (1980) used a physical disper-
sion model to gain insight into the effects of numerical diffusion errors on the grid
orientation problems. For an isotropic porous medium, a physical dispersion

model can be expressed as

‘D.',- = Q. 'Vl (4.38)

cos’d  cosf sinf _ sin®f ~~cosf siné
cosf sind  sin?f + o V] —cosf sinf  cos?f

For uniform grid block size and specific values of 4, one can find «; and o, such

that D,,. =D;; (equate Eq. 4.35 to Eq. 4.38), and the results are given

6=0% --.a =054,a =0,

NI

-

A
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f = %,3’41, v ay = ap & 0.354A

‘AEq. 4.37 also indicates that the thermal or chemical transport processes along the

stream line will be impeded by the transverse numerical dispersion, if the compu-

tational grid is not eligned with the streamline.

The methods used to reduce the grid orientation effects encountered in
modeling multiphase/multicomponent transport processes with high mobility
ratios are .very extensive. The strategy employed by most methods is to generate
more flow channels in the _comp_utetional domain than those generated by the
conventional method (ﬁvespoiht method) such that the accuracy of the calculated
ﬂovr ﬁeld (controlled }by the pareholic equation) is increased. For example, with a

ﬁrst-order upwmd dlﬁerence scheme, the mne-pomt method (Yanosik and

- McCracken, 1978 Coats and Modme, 1983 Potempa, 1985) and the seven—pomt

ethod (Pruess and Bodvarsson, 1983) were used to reduce the grnd orientation
eﬂects in enhanced 011 recovery processes However, these methods are not able to
reduce numerlcal dlﬁ'uswn errors (front smearmg), which are introduced by the

ﬁrst-order upwmd method for hyperbohc equatlons Because a mathematical

model of tra.nsport processes m underground forma.t:ons becomes more compli-
cated an approprxate numencal scheme, whlch can a.ccurately sxmulate real tran-
sport processes w:thout losmg physxcal sxgmﬁcance, should be able to avond both

numencal diffusion errors and grxd orlentatlon effects.

Recently, Bell end: Shubin (1985) have employed a technique consisting of 2

~second-order Godunov method and 2 nine-point scheme to study miscible dis-

placement with high mobility ratio 41 in porous medium. Their results show
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that the numerical diffusion errors and grid orientation effects can be effectively
reduced by this numeriéal scheme. For most of trans;;ort processes encountered
in hydrothermal reservoir ‘sinihlétionS, the mobility ratio usually is very low.
“Thus, a second-order Godunov method with the five-point sch’exﬁe employed in
this study may be sufficient to overcome those difficulties :inherent in the numeri-
' '."cal simulations. To demonstrate the ‘éapa.bility of the present numerical scheme,
~ the following problems, which are prone to numerical diffusion errors and grid
orientation effects, are considered.
4.7.1. Convection with Flow Field Oblique to Computational Grid
To tesf. the pl"es'ent- numerical scheme used in this study;t;.he most severe
) case of numerical diffusion is consia;;-ed; a computatiohgl gri’d is aligned with
streamlines at 45°. A benchmﬁrk prbblem, that has been extexvxsive-ly uséd in the
litérature to test alternative lmbi'li:ﬁerica;l;ﬁeihods,’ is :emﬁloyed. A séhematic illus-
tr;tion of the problem is siibwn iﬁ Fi‘gure' 4-9. The computational domain is a
square with side length of 10m, which is divided into a 10xi0 grid with equal
spacing. A steady velocity field ris first generatéd, and the chemical species equa-
tion is solved without the diffusion and source terms. Two different constant con-
centrations, one and zero, are imposed on the left and bbottom béuhdaries, respec-
tively. Since physical diffusion is not considered, a sh;rp discbntinuity should
‘exist along the diagonal line with a concentration 6f one,evérywhere above the
line, zero everywhere beloﬁ the line, and the concentration at the liné aSsumed to
be 0.5 by averaging the concentrations at the boundaries. Howevér, the use of

conventional numerical methods will generate numerical diffusion errors, leading

3
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to a smeared zone along the diagonal line. The extent of this smearing is 2 meas-
ure of the numerical diffusion. The variation .of concentration with y at
z = 4.5m is presented in Figure 4-10. Due to the finite grid size, one can at best
get a linear concentration profile (the solid line in Figure 4-10) defined by the fol-
ilowing three points: y =35m, C =0; y =4.5m, C =0.5; y =5.5m, C = 1. Fig-
. ure 4-10 clearly shows i.h_af smearing due to the grid orientation effects extends
over the éntire computational domain for the conventional ﬁrét-order upwind
scheme. The smearing extends over oh'ly two grid blocks, when :the present
scheme is employed. Since it possesses »genera!ly ;eg:ond-order accuracy in space,

the numerical diffusion is greatly reduced.
4.7.2. Chemical Transport Processes in Five-Spot Well Configurations

To improve the recovery of hydrothermal and petroleum resources, the rein-
jection of spent fluids as well as the injection of active chemical substances or
steam are usually employed. The layout of the injection-production well
‘configurations includes a five-spot or seven-spot pattern. In numerical simula-
tions, the di_scretizéd computational grid forming the flow channels t’hat are
parallel to the line connecting the injection and production wells is called a paral-
’lel grid. Similarly, the discretized computational grid arranged in a way that the
flow channels are diagonal to the line connecting the injection .and production
wells is called a diagonal grid. It is known that in_ reservoir simulations the
numerical solutions for miscible displacement with high mobility ratios are
strongly dependent on the choice of the grid discretization type, if the five-point

method with first-order upwind scheme is used. By comparing the performance
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between parallel and the diagonal grids, it was found that in general the parallel
grid will predict earlier breakthrough of the injected fluid at the production wells

while the diagonal gﬁd will indicate greater sweep efficiency in the system.

To verify the present numerical scheme, a problem of the injection-
pfpduction in a five-spot Apattern is considered. The reservoir is initially filled
ivith fluids of concentration equal to unity, and the'inj.ected fluid of concentr?.tion
zero. A basic symmetry region of the ﬁve-spot pattern is taken to be 400m X400m ,
in which 20x20 gﬁd with uniform spacing is ugéd. A ciiscretized computational
' gﬁd forming flow channels that are diagonal to the line connecting the Vinjec.tion
#nd production wells is used; thus one can compare the computational results of
breakthroﬁgh time and sweep efficiency, and assess the pedorﬁance of the
ﬁresent numerical method. The computational results at 0.143, 0.428, and 0.713
pore volume. of injected fluids obtained by the present scheme and first-order
| upwind difference scheme are shown in Figure 4—i1. The figures on the left-hand
side are obtained using the first-order upwind difference method, and those on the
right-hand side are obtained using the second-order Godunov method. Since phy-
sical dispersion is not considered in this ?ase, a sharp chemical front should pro-
pagate aléng the streamlines. The reduced smearing of the front obtained from
the present numerical sche’xﬁe, compai;e_(i with those obtained from the conven-

tional method, is very pronounced.

For comparison purposes, the same problem is solved by the computer code
RESSQ (Javandel et al., 1984), which is available to study solute transport in

homogeneous porous media under a steady state two-dimensional flow field. The

T e

" *
r_mﬂ

[ el

—_
i

T T

r



L]

r"Dista‘ncef (m)

Distance (m) |

Distance (m)

400

100 F

Figure 4-11

0L
0 100

400 % T LI
300 - 0 143 Pore ]
- Volumes Injected ]
200 p
. F )
100f :
0 & J,l\ i bdd li‘l P ;‘ A
0 100 20 90 40
Distance (m) ’
‘400.—11>u?v11'j‘|'j'j7'.'"‘
[~ : 9
300 P
3 ]
200 "\ P
S100F N\ ]
L. 0.428 Pore -
[ Volumes lmected ‘ ]
0 P OIS S B BN B I | JJJ FEN I T W 1
’ 0 . _100 200 | 300 400
' Distance (m)

[l § e e

L 0713 Pore
[ Volumes Injected -

llJllJIlleiJl

Distance (m) =

100

- 200 300 ‘400' ’

§ .

400
300

200

100

115

T 7 T rrl{yrrrrJrvv?

3 <
o -
4 -
g 0143 Pore .
[ Volumes Injected ]
- o
- -

[N S0 TS N AN B A SN T T T B O J:

0 100 200 300 400

Distance (m)

LR l «F '1 ¥ l LR AR ] T
s 0428 Pore ;
- Volumes Injected - ]
3 -
- y
= e
o -4
b= e
- -
- -4
v; S SET TN T S AN U SN T BN TN WA B N W T N 1 1_-

0 100 200 300 400

:300-

200

LA ERAR BB ! i BRI BRI J

5 3
- -
N 0713 Pore b
[ . Volumes Injected ]
-114111{1111.11!4,1‘

0
"0 100 200 300 400

Distance (m)

Distance (m)
) XBL B858-10715

Comparison Between Numerical Solutions for Chemical Tran-

sport in Injection-Production Wells with a Five-Spot Pattern.



116

code RESSQ is capable of tracing the concentration of a given solute based on
the arrival of streamlines, and - gives . resulf, ‘without the errors of numerical
diffusion. Therefore, the solution obtained by t;he _code RESSQ can represent the
exact solution of this proBlem. The exact chemical front at 0.713 pore volume of
the injected fiuids is given in Figure 4-12. A comparisbn of Figures 4-11 and 4-12
* shows that both the sweep pattern and front locations using the preSent numeri-
cal sgheme are within an acceptar.b»lg accuracy. When si’mulating. the same prob-
lem with a parallel grid, the _comﬁutational grid 'needﬁ 1.4 times that used in the
- diagonal grid case, and it is 'Beyond the storage capacity of the code. Thus, this
case can not be demonstraﬁed by the cbde.{ However, froni .the results obtained
with the diagonal'gﬁd casé, one caﬁ expect that. using a parallel érid will also
give aécurate results. If a practical physical dispérsiirity of a,==1.0ﬁ and a; =0.1m
is conéidered in this problem and solved by the present numerical method, it is
sl;oWn in Figure 4-13 thé.t, at 0.713 pore folume, the Breakthrough due t;) the
additional dispersivity effects of the injected fluids at the production well can be
observed. These results indicate that the accuracy of the present numerical
scheme is sufficient to model the convectioﬁ;diﬁ'usion processes witﬁout omitting

any of the physics of the process.
4i.8. Conclusions

A numerical ﬁ:ethod for coméction-diﬁ‘usiontjpe equations arising from the
chemical and heat transﬁort process in geologic media has been developed. The

method consists of a second-order Godunov scheme, monotonized upwind/central

differencing, and the operatqf splitting technique. This numerical method has
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been incorporated into a two-dimensional code that is capable of modeling ther-
mal and chemical transport in geologic media. Various test cases have been stu-

died to illustrate the accuracy of the numerical scheme, and the applicability of

" the code. In contrast to the conventional finite difference method, the present

method greatly reduces numerical diffusion errors and gives no oscillations near

. fronts for high Peclet -numbers. - In particular, the method significantly reduces

grid orientation effects. The results show that the present numerical method is

- potentially applicable for modeling convection-diffusion transport processes

- without dramatic loss of the physics of the processes.



CHAPTER §

~ APPLICATIONS

5.1. Introduction

As fossil resources-are gradually depleted, geothermal energy is being increa-
. ingly considered as an important alternative energy source for electrical genera-

‘tion or space heating. For any geothermal reservoir, assessment of the total

recoverable energy prior to development and prediction of productivity of the -

field under exploitation are among the fundamental problems to be considered. In
order to facilitate such assessments and predictions, an adequate mathematical
model of a geothermal reservoir is needed. Complicated transport phenomena in
geothermal reservoirs can be considered as coupled mass and heat transport
processes only in a first approximation. Many gveothermal fluids, particularly
those from liquid-dominated reservoirs, may undergo severe disequilibrium due to
temperature and/or pressure changes during the energy extraction processes. As
the fluids regain equilibrium, dissolution or precipitation may occur, resﬁlting in
significant variations in reservoir properties. Thus, 2 more appropriate mathemat-
ical model of a geothermal reservoir would include coupled mass, heat, and chem-

ical transport processes,

In this chapter, the capability of the computer code PTC (Lai et al.,, 1985) is. .

demonstrated by applying the code to the following fundamental and practical

problems encountered in geothermal reservoirs: (1) natural convection in a porous

slab subjected to horizontal temperature differences, (2) coupling effects between.’

'
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silica precipitation/dissolution and transient flow behavior in a single fracture,

" and (3) the multicomponent modeling of the Ellidaar geothermal field in Iceland.

Natural convection in porous media has been of some interest to both
hf/drolbgists and heat: transfer engineers, although for different reasons. The
}hy‘drologi'st is concerned with '_detailed infofhié,tioh about fluid motion(and tem-
| perature distributions in the systém rather than the overall heat transfer
’behavior which lS :tAhe concern of the heat transfer éﬁginéer. When calculating the
rate of heat transfer, the Boussinesq and/of bouhdary layer approximations are
usually employed by the'heat transfer engineer to simplify the problem. However,
these approximations may not be valid, if details of fluid motion and temperature
distributions are needed. Studies of the effects of these simpliﬁed'apprbximations
on ﬁuid motion, temperature distributions,' and overall héat transfer behavior in a
" natural convection problem in a porous slab subjected‘ to horizontal temperature
differences are presented in section 5.2.

Since silica is a common ¢onstitu'ent in the earth’s ci'uét, aﬁd 'is frequently
" found in géothermalvbri’nes at concentrations 'suﬁiéieﬁt to form scé.ling or precipi-
 tates upon coolix‘irg',kmany h}dmthermal éXpléitétidn models must consider reac-
tive'silicva:tr.aﬁs:po;rt; For eicami;le, Truesdell et al, :V(A1984) pointed out that local-
ized aquiferA boiling causes quartz préci'pitétién near wells at the éérro'Prieto
a geothei‘inél field, Méiico; Boiling’ causes a témbératute &éclihe, -and a coﬁsequent '
., ’decrea'se in du’iarti ’Soldbi]‘it&.‘ Also, Séparation of steam from the produced fiuids
~ can increﬁse Qhﬁrtz ‘cbricehtfatibn' in the residual Hﬁids. 'Uhder such cif-

cumstances, quartz will precipitate after a concentration reaches a high degree of
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supersaturation, which results in reductions of the permeability and mass flow
rate. Another examp'le is silica scaling during reinjection operations. Reinjection
_is often employed to enhance the total energy from the system an& to prevent
chemical contamination of the environment by sﬁ:facg disposal. However, the
_spent brine is often cooled below the saturation temperature, causing silica depo-
_sition in the surface pipelines, the disposal well or within the reservoir rock itself.
If scaling occurs around the wellbore, permeabilitieé will be reduced and the

injectivity of the well will decrease.

To infestigate these adverse effects of silica reactions on geothermal systems,
~ Keith et al. ‘(1983)‘ conducted an experiment involving nonisothermal flow of
_supersaturated silica fluid through Westerly and Barre granite. Their experimen-
tal results confirm that silica precipitation is responsible for reductions in permea-
bility, porosity and flow rate. Itoi et al. (1984) also performed an experimental
study involving near-isothermal flow of geothermal fluid with sdpersa.turated sil-
ica through a porous medium column. Their experimental results show that the
silica is deposited mainly in the region near the entry of the fluid in the column,
resulting in drastic permeability reduction. Lai et al. (1955) conducted numerical

simulations of silica precipitation to study the effects of silica deposition on per-

. meability and flow rate variations in a single fracture system. They also applied"

‘a reactive silica transport model to the Ellidaar geothermal field in Iceland to
evaluate properties of the reservoir and its connection with adjacent geologic for-

mations. The results will be presented in sections 5.3 and 5.4.

o

r™ e



123

5.2. Natural Convection in a Porous Slab

In this section, two-dimensional free convection in a porous slab is con-
sidered. A schematic~'-illus£fation of the problem is shown in Figure 5-1. The
porous slab is bounded by adiab~atic horizontal walls and isothermal vertical walls
at different temperatures, T,, and vTrc,rrespectively. All boundaries are assumed
impermeable to ﬁhe fluids. The problem is to deterrﬁiné the flow and tempera-
ture fields, andv overall heat transfer behavior in the system al:, steady state. For
natural convection problems, the exact governing equations are very difficult to
solve by exact "analytical means. Some approximations are needed, the simplest
one is the Bousﬁinesq approximation which assumes all fluid -properties are con-

stant, except that fluid density varies linearly with temperature in the buoyancy

- force term (Egs. 5.3 and 5.5). Under this approximation, the governing equations

for the problem éan be simplified as -

dv, dv, Lo ‘
rraul vak o (5.1)
k 6P ‘
Y =~ -‘-‘-E (5.2)
k 0P - ‘
U == ;-(-b-y- + o g) _ (5.3)
o . oT _ Ki 8T . &T A |
Uy 'a";' + v,a—y = Py ¢ L\ az° + ayz) (5.4)
and

Py =Pnj[l’ﬂ(T’Tnl)] (5'5)

where T,, is the referenced temperature, and p,., is the fluid density at T, .
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| Figure 5-1 The Rectangular Porous Slab Considered for the Natural Convec-
tion Problem.
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It should be noted that the Boussinesq approximation is valid if the temperature

difference AT =Ty - T¢ is sufficiently small; however, this is often violated in

practice because the variation of fluid viscosit§ with temperature is very rapid.

. Gray and Giorgini (1976) developed a method allowing the specification of
the conditions under which the Boussinesq approximation applies to a given
Newtonian fluid. To consider the effects of a temperature dependent viscosity on

free convection in a porous slab, Weber (1875) used an averaged value of the

- viscosity for the hot and cold wall boundary layers, respectively. Blythe and
‘Simpkins (1981) developed a method to take into account any variations of the
- viscosity with temperature, and the results are given for the case of a linear

“viscosity-temperature relation since complicated viscosity-temperature relations

make the computational procedure complicated. The efror_s introduced by their

' method are those associated with the choice of velocity profiles in the boundary

layers. This same problem, including the effects of temperature and pressure on
ﬁuid properties (density, viscosity, expansivity, and compressibility) are investi-
gated; that is, the full governing equations 3.10, 3.16, and 3.18 are solved without
the Boussinesq and boundary ‘laj'er approximations.

With the Boussinesq approximation, numerical solutions for this type of

problem have been obtained by Bankvall (1974), Burns et al. (1977), Hickox and

Gartling (1981), and Dawson and McTigue (1985). Bejan and Tien (1978)

- developed an analytical technique to obtain the approximate solutions. To verify

the numerical cod'e, Hickox and Gartling éompared their numerical results with

those obtained by using the approximate analytical solutions. Both numerical and
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approximate .analytical solutions agree well. All of these workers have shown
that the solutions of this problem depend on the aspect ratio and the Rayleigh

number.

Without the Boussinesq appréximation, the solution will also depend on the
temperature range considered, ﬁnd 'in some cases on pressure as well. The
emphasis in the present study is to further test the numerical code for this non-
linear problem under a complicated flow field rather than to make an extensive
investigatioﬁ of heat transfer. Therefore, only a single value of the aspect ratio,
H/L =03, and constant. temperatures of 100 °‘C and 20°C on the vertical walls
are used. This aspect ratio was chosen to compare our results with those obtained
by Hickox and Gartling (1981) and Dawson and McTigue (1985). The lafge tem-
perature difference between the vertical walls allows one to test the effect of the
Boussinesq approximation on the heat 'transport process in the sys:tem. Values of

the parameters used in this problem are given in Table 5-1.
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Table 5-1: Input parameters for natural convection problem

Slab height: 3m
Slab length: 10m

Effective thermal conductivity: 2 w/(m- ‘K )

Porosity: - . 0.1

Specific heat ‘of water: 4184 J (kg °K )
Specific heaﬁ of rock: . 1000 7 /( kg: °K | )
Rock expansivity: -0 K™ |
Rock compx;‘ielssibility: ; O Pa a

The computational domain is divided mto a'20x12‘ gkritzi. In order to obtain accu-
rate results, a finer mesh is used near the‘ fertical walls thre temperature gra-
dients are stéep (FigureA 5-2). Calculations have been'madé for a wide range of
Rayleigh numbefé, which are calcul?tedj using the fluid pmperties evaluated at

the mean temperature (60 °Cc) and 1 atmosphere pressure from

Re = (""ﬂ”’) '”*(Tu-rc) o . (5.6)

Different values of Rayleigh numbers aré c;alCulated by qhanéing the permeability
in Eq. 5.6; all bﬁher ‘parameters- are ’un‘ch#ﬁ’ged.’ For exaﬁlple, fqr a Rayleigh
number of 25, the values of B, Pr s c} , and 4 are provided (Batchelor, 1979), and
then # permeability of 4.81X10?m? is 'obtéined. Figurés 5-3a to 5-4d show the
mas's. flux and the temperature distributions, respectively, for different Rayleigh

numbers. The general pattern of circulation due to the buoyancy forces
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Figure 5-2 The Computational Mesh Used in the Natural Convection Prob-
lem. ' . '
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that develop is as expected, but it is interesting to observe the flow field as fluid
propertigs change with temperature and pressure. Because the fluid viscosity is
about four times lower while the fluid thermal expansivity is three times higher
near the hot wall than near the cold wall, the Raleigh nuinber néar the hot wall
is about twelve times that near the cold wall. The combined effects of the fiuid
viscosity and thermal expansivity can strongly enhance the buoyancy forces, and
thus the mass flux near the hot wall.. Figures 5-3a to 5-3d show that the mass
flux is alvivays the highest neartfthe hot wall, lowest near the cgld wall and has
intermediate \(alﬁes near f}le upper horizpntﬂ wall yvheﬁ the Rayleigh number is
100 or less. I;i;)wever, t;he‘lmass ﬁux 1s thé lowest near the lower horizontal wall
" when the Rayleigh nﬁn,i,ber, is equal to 200. This result also indicates that the
driving force of the convection cell is more dominated by the hot wall. Note also
‘l;gow th.e\ iso‘thermskin Figt\xre55-4a;o 5-4d bare farther away from .the, hot wall
itlvlan vfrom the cold wall. 'I“hes e asymmetric distributions would not be predicted
Bylvmethods that use the‘Boussineéq/apprqximaytionv. As the Rayleigh numbers
iﬁcfease, the asymvmetry’ Becpmes even more pronounced. This implies t.hat the
| eﬁ'eétsof te.r.nperatm"efagd vpressureA dgyéndent ﬂuid _p;operties on the transport
| process ax('e signiﬁcé.nt, SO thaﬁ they must be cons;xdex;ed in transport process with
high Rayleigh numbers.
To evaluate the‘ fg;te ‘oiv' h;a.t transfer, one mﬁst calculate ’t'he Nusselt
nuiﬁbérs"givéxi }byr R |

@Al

Ny = —m
K\H(Ty - T¢)

(5.7)

‘where Qs is the total heat flow rate per unit thickness of the slab. The Nusselt
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numbers obtained from this study are very close to those obtained by Hickox and

- Gartling (1981) and Dawson and McTigue (1985), as shown in Table 5-2.

Table 5-2: Nusselt number as a function of Rayleigh number

for aspect ratio of 0.3

Rayleigh Number
Source

25 | 50 | 100 | 200

Hickox and Gartling (1981) 126 | 1.84 | 3.45 | 7.17
| Dawson and McTigue (1985) | 1.27 1.87 | 3.46 | 6.64

This work 128 | 1.85 | 320 | 6.43

~ For Rayleigh numbers below 50, the difference is léss than 2%, which is expected
" because convection‘is not strong at low Rayleigh numbers. Consequently, for
these cases the Nusselt number for thé.overall heat tran;fer behavior of the s:}s-
tem is not strongly affected by the Boussinesq approxi’mation. At higher Ray-
leigh numbers, the difference between our results and those obtained by the ear-
lier investigators is more pronounced; the largest difference is 119 for a Rayleigh

number of 200.
~ 5.3. Reactive Silica Transport in a Single Fracture

Current experience with geothermal injection indicates that silica scaling is a
widespread concern. Since silica is slow to respond to physical or chemical varia-
tions of geothermal fluids, the processes of its precipitation/dissolution rates are

controlled by reaction rates so that they can only be understood in terms of a
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kinetics model rather than an equilibrium one.
§.3.1. Kinetic Model of Silica-Water Reactions
The kinetics of quartz dissolution in water has long been investigated, and

Robinson (1982) provides a survey of this subject. The experimental results have

shown that in general the kinetic rate obeys the following relation

. . A' . .
E =30 -0) | (5.8)

* 3 : - . ’ ‘ A' ° 1 . V ’ .
where ¢ is a kinetic rate constant, iu s the ratio of quartz surface area to fluid

mass, C’,, “ls the equilibrium concentration of dissolved snhca Rimstidt and Barnes
(1980) derwed this equatlon from absolute theory, however, ‘Robinson (1982)

pointed out that it is best to consider the rate law to be seml-empmcal To

'model the couplxng effects between sxlxca precnpltatlon and transient flow

behavxor, the kmetlcs of sxlxca-water reactlons proposed by Rxmstxdt and Barnes
(1980) is employed in the sxmulator PTC. To calculate the sxlxca-water reactions,
one can evaluate k and C,, from the data éompiled by Rimstidt and Barnes
(1980). Table 5-3 shows their results for the solubility of different silica phases as

a function of temperature.



Table 6-3: The Equilibrium C_bnstants for Silica-Water Reactions

Si0 (s ) + 2H,0 (1) = H Si0 (aq)

logK =a +bT +¢/T (T in °K)

Silica Phase

b

a [
Quartz ~1.881 -2.02810° | -1560.0.
a -Cristobglite -0.032 0 | -088.2
p -Cristobalite -0.256 0 -793.6
Amorphous Silica 0.338 —7.889x10“‘ -84o;i |

Table 5-4 shows the best fits for the rate constants for silica-water reactions as a

function of temperature that were obtained by Rimstidt and Barnes (1980). The

" rate constants for silica precipitation and dissolution are given by

logk =a¢ + T +¢/T
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Table 5-4 'Thyeu Rate Coustauts“for Silica~Water Reactions
: Silica Phase - | ‘@ - b .} e - Processes
All Silica Phases | -0.707 -0 - 2508 Precipitation
| Quartz 1 1174 | -2.028%10°® | -4158 | Dissolution
a -Cristobalite -0.739 ‘0 | -3586 | Dissolution
p -Cristobalite | -0.963 0 | -3392 | Dissolution
| Amorphous Silica - | -0.369 | . -7.890%10% | 3438 | Dissolution

For single fractures, the value of reaction parameters (4,/M,) can easily be

. obtained from fracture geometry as

,Ar : 2 .
M,. bp,

(5.10)

‘where b is the fractue aperture and p 7 is fluid density.

"The permeability of a single fracture is assumed to be governed by the cubic
law'(“’itherspoon et al., 1080). Inm numerical calculations, Eq.5.8 is treated as the

source term, which'is needed in the second step of the splitting scheme.

5.3.2. Eﬂ'ects of Silica DepOSition on Transient Flow Beha.vior |

The problem consxdered is that of a 50 m long fracture wnth an untxal aper-

s

ture of 10"‘ m. Imtlally, the fracture contains 100 ° C fluid, thh an equlhbnum

5 concentratlon of 142 ppm. In the numerxcal work the computatxonal domann is

" dmded lnto constant volume gnd blocks, with a nodal spacmg of 0. 5 m.

The 1sothermal problem of the mjection of 100° C water supersaturated with

522 ppm of a-cnstobahte is consndered The results of numencal calculatxons are
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shown in Figures 5-5 through 5-7. Figu.re 5-5 shows that the concentration front
moves at a rateiof ap;;roximately 0.3 ﬁ/day, With silic# scaling occurring behind
~ the front. The silica deposition éauées reduction in the permeability, with the
most severe reduction close to the inlet. We approximate the permeability
"'@:hanges from the aperture reduction and cubic law (Wit.herspoon et al., 1980).

The rate of silica deposition increases with time because the surface area to fluid

A _ ,
~ mass factor (F') increases as the aperture decreases. This causes rapid permea-
r

bility reduction close the inlet at later times, and results in a small decrease in

the concentration profile along the fracture.

Figure 56 shows a similar case, but with twice the initial flow rate. As
expécted, the speed of the concentration front is approximately double that of

the first case, resulting in a more rapid permeability decline close to the inlet.

Figure 5-7 shows the flow rate decline for both cases. The mass flow rate at
the entrance is represented by the dimensionless variable Q /Q;, where Q; is the
initial mass flow rate at the entrance. Figure 5-7 shows that the higher the ini-
tial flow rate at the inlet, the faster the dimensionless mass fiow rate will decline
because of greater silica precipitation. Qualitatively speaking, the effects of silica
deposition on .the transient flow beha\;ior démonstrated by the numerical results

are similar to those observed in the experimental study of Itoi et al (1984).

In order to investigate the coupling between mass and heat flow and silica
ti'ansport processes, we next consider a problem with non-isothermal effects. For
this case, the fracture fluid initially contains 150 °C water with a silica concen-

tration of 257 ppm (equilibrium value for a-cristobalite). Then 100 *C water
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for the Low Pressure Drop Case.
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supersaturated with silica (522 ppm) enters the fracture at the inlet. Two cases
are considered: (i) no heat losses to surroundings, 2nd (i) conductive heat

transfer from the rock matrix to the fracture.

When heat transfer between thek fracture fluids and the rock matrix is
m ignored, thé' results shown in Figure 5-8 are obtained. Dimensionless temperature
is defined as (T -T,)/(Ty -T,), where T, is the initial fracture temperature
(150 °C) and T} is the inlet fluid fluid temperature (100 °C ). Figure 5-8 éhows,
as expected, that the velocities of thermal and chemical fronts are identicai (frac-
ture porosity equals unit). The figure shows that the siliéa concentration behind
the front is considerably higher than the equilibrium concentration for 100 °C
water. This is bécause of the slow rate of reaction for silica-water at 100 °C.
Ahead qf the thermal front, the silica concentration is in equilibrium with the
150 °C water, and this causes a minimum in the silica concentration close to the
lécation of the thermal and chemical fronts. The permeability at various times is

similar to that obtained in the isothermal case (Figure 5-5).

When heat transfer between the fracture fluids and the surrounding rock
matrix is considered, a different picture emerges, as shown in Figure 5-9. In this
case the thermal front lags behind the chemical front, and because of the higher
overall temperature, the silica deposition rate is much higher than in the previous
case. This is reflected by the permeability profiles for the system at two different
times. The plateau in the permeability profiles close to the inlét is due to the cou-
pling between the temperature and the silica reaction rate. Although the deposi-

tion rate reaches 2 maximum value at different times depending on the distance
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from the inlet, essentially the same cumulative amount of silica is deposited in

the plateau region. Note that the silica concentration never gives below the

equilibrium value for 150 °C.
5.4. Multiple-Component Modeling of Geothermal Systems

One of the most important uses of numerical simulators in geothermics is to
assess the generating capacity of geothermal systems for power production or
space heatmg At present the state of the art is to consider only the primary
fluid component (water). If concentrations of dxssolved solids or noncondensrble
gases are to be considered, one must modify the equation of state for the fluid
and correlate the variations of reservoir properties with chemical concentrations
A major problem in the assessment of geothermal reservoirs is the lack of unique
solutxons It is believed that multl-component modelmg, i.e., mcludmg a method
of handling the chemical variations that are observed, ’ean yield more satisfactory
solutions tojgeothermal problems. :

In this‘ section a simple model of the El]jdaar geotherrosl field in Iceland is -
described.' The tempergtore and pressore behavior in the resen}oir as well as silica
transients -are investigated. All the data used in the analysis e,re taken from
reports by Vatnaskil (1982,1983). The conceptual model we ‘use is shown in Fig-
ure 5-10. The reservoir consists of 110 ‘C" water with a silica concentration of
about.150 ppm. During the 16-year exploitation of the field for space heating,
’considerable temperature decline has been observed and this has been associated
with a drop in silica concentrations of silica in the produced fluids. One possible

explanation of these transients is leskage of lower temperature, less concentrated
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Figure 5-10 A Simplified Conceptual Model of the Ellidaar Geothermal Field,
~ Iceland.
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fluids from shallow aquifers. A conceptual model of the reservoir with a shallow
aquifer is shown in Figure 5-10. As the temperature gradient in the caprock is

conductive it appears lxkély that the rechargé from above is mainly through frac-

~ tures.

In simulating the conceptual model shown in Figure 5-10, the very simple
numerical grid is used as shown in Figure 5-11. It is a two layer radial grid with

the whole well field lumped into a single element. Figure 5-12 shows the rate of

fluid production for the period 1968-1981. Figures 5-13 to 5-15, show the way in

which pressures, temperatures and silica éoncentrations, respectively, have
declined with time. For simplicity, a conétant flow rate of 3.5 X10%m 3/year over
the 16-yéar period is assumed, éo that the seasonal and annual variations are not
considgre_d. Consequently, we _lja.ve npﬁ attenipted to model the effects of the sea-
sonal variations shown inzFigure 5-13.

In this study, the primaryg purpose is not to develop a predictive model for
the E]lidaar geothermal field, but rather to demonstrate the me;hodology and
usefulﬁeéé of multi-component xéuodelifxg. After a brief trial and error process, we
obtained»”the results shown in Figures;&l?v tps 5-15.. All of the matches appear
reasonable considering the simp!e_ mo,cﬂl’e.l assuvme'd.

The main results of ﬁhe history match are as follows. The match with the
pressure aecliné data gives jrestimb,té‘s;,of the pe;ﬁleabilities of the reservoir and the
fractured caprock. It is fouh‘dg "thﬁt iinrérdér to match the temperature and the
silica concentration degline (Figure 5-14),: most of the fluid recharge bto the reser-

voir must come from the shallow aquifer above. The main reservoir is quite
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'Figure 5-11 The Computational Mesh Used in the Modeling of the Ellidaar
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Comparison Between Calculated and Observed Pressure Decline

at the Ellidaar Geothermal Field in Iceland.

Figure 5-13
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permeable, l';ﬁt f.heéroélfs sﬁnouﬁdiﬁg fhe well field arér ‘much less permeable ( <5
md). The fractur;sr providing colkd water reélylai'ge ffom above also seem to be
quite permeaﬁle. ' Thé best mé.tch with »the w’;j:»‘rVessure’ decline gave a4 rather high
total comﬁressibilfty, 4X107pa-1. This high compressibility supports the idea of
" a shallow unconfined aquifer hy&rologically connected to the main réservoif. The
match with the temperature decline gives an estimate of the reservoir volume
" that has Undefgoﬁe coo’lingv due to cold water leakage from above. The average
porosity of the reservoir is determined by the match with thé silica decline (Fig-

“ure 5-15). The results indicate an average pbrosity of 5%, which appears reason-

" able for the volcanic rocks present at Ellidaar.

Mthouéh a very simple _cbnceptual model is used in this study, the results

nevertheless illustrate that ‘multi-component modeliné can give addi‘t'io'nal infor-
mation on reservoir pﬁip’erties ind chai-acteristics; For example, this coﬁpled
ﬁxethod énables one to obtain a good estimate of reservoir volume as well as
porosity, from whjch reserve estimates can be made. As the different processes are
coupled, it is expected tha;‘. the history match will be more unique and conse-

quently, future predictions more reliable.
, 55 Conclusions

- The numerical code PTC has been applied to a problem of natural convec-
tion in a porous slab in order to study the effects of the Boussinesq approxima-
tion on the temperature vand mass flux distributions, as well as overall heat
transfer (NuSselt number). The results show that the Boussinesq approximation is

reasonable for predicting the overall heat transfer of the system. However, the
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mass flux and temperature distributions in the system are significantly affected

by the temperéture or pressure dependent fluid properties.

- A model for simulating silica precipitation and dissolution has been
developed. The model has been used for theoretical studies of silica deposition in
single fractures. The reSults show that silica precipitation and the resulting per-
meability reduction depend strongly on the coupling between the chemical and
thermal processes. Various examples are given for different flow rate declines and

t_hermal effects.

A multi-component model has been applied to field data from the Ellidaar
geothermal field in Iceland. _A simple numerical grid is used for history matching
with declines of pressure, temperature, a;nd silica concentration over a 16-year
7 perriod.. The results illustrate that multi-coraponent modeling can yield detailed

information about reservoir properties and characteristics.
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CHAPTER 6
' CONCLUSIONS AND RECOMMENDATIONS |

6.1 Conclusions

The main objective of the present study is to develop a methodology to
mvestxgate transport phenomena in geologxc medla Because transport processes

in fractured medla are qulte dlﬂ'erent from those in porous medla, dlﬁ'erent

“mathematlcal models of transport processes in fractured medla are considered. A

basnc study of uncoupled isothermal and nomsothermal ﬂund flow in fractured

‘ medxa in thxs mvestlgatlon employs the so-called “double porosity”’ medla

approach A semx-analytlcal model for well test data analysxs in naturally frac-

tured medxa is developed Thxs model takes into account transxent inter-porosity

ﬂow, wellbore storage, and skm eﬂects durmg pressure drawdown and bunld-up

tests for 1nﬁmte, ﬁmte, and outer constant pressure boundary conditions. A.n

approxnmate analytlcal solutlon of an lnﬁmte reservoir wnthout wellbore storage

and skln eﬂ'ects has been developed for the transnent pressure drawdown behavmr

observed at the productlon wells. In order to 1llustrate the apphcabllxty of the

present model to naturally fractured reservoxrs, ﬁeld data obtanned from litera-

ture is used to lnterpret the lmportant reservoir propertles The results show that
the mter-porosxty ﬁow factor and ratlo of storatmty obtalned from the present

model are much smaller than those of the model proposed by Barenblatt et al.

and Warren and Root.

For nomsothermal ﬂuld ﬁow in naturally fractured medna, proper. locations

and ﬁow rates for injection wells can be determined from a semx-analytlcal model
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to avoid premature breakthrough of cold water in production wells. Type curves
have been developed for optimizing an injection operation to maximize energy

recovery from hydrothermal resources located in fractured media.

Since coupled' nonisothermal chemical transport processes in geologic media
are difficult to solve by any exact analytical methods, a high resolution finite
difference method has been developed for Solving the convection-diffusion type
equatioﬁ arising from the conservafion laws of enefgy and chemical species. The
methéd consists of a second-order Godﬁnov method and the operator sﬁlitting
ﬁéchnique.' | By means of operator splitting, the convectibn-diﬁ'usidn type equation
can be split inﬁo two parts, which can be solved by different numerical pethods
Vsu;lt;é,b'l'é for each part. The first part, sdlved by a second-order Godunov method
(explicit, monotonized uj:vﬁnd/central difference), is a hyperbolic type equation,
which considers ohly the convection term. The second part, sc!'ved by the conven-
tional central finite difference method, is # parabolic type equation, resulting from
omission of the éonvection term from the convection-diffusion type equation.
With this solution technique, the results obtained from several benchmark prob-
lems show that in contrast to conventional finite difference methods, the numeri-
cal diffusion errors and grid orientation effects can be significantly reduced. In
pé.rticular, the method guarantees oscillation-free results near ffonts for high
Peclet numbers. These are desirable features for any numerical meiﬁods to accu-

rately simulate transport processes in geologic media.

Furthermore, this new method has been incorporated into a two-dimensional

code. To illustrate the applicability of the code, some fundamental and practical

[ Y o T

r

F—



“ S—

€ .

161

problems, 1ncludmg a theoretncal study of natural convectlon ina porous slab and

modehng of kmetlc snhca—water reactxons ln geothermal systems have been inves-

tlgated For natural convectlon in a porous slab subjected to horlzontal tempera-

_ ture dlfferences, the effects ol' pressure- and temperature-dependent fluid proper-

ties on the details of the convectnon solutnons have been studled The results

show that the overall heat transfer behawor is not strongly affected by relaxing

’the Boussxnesq approxxmatxon However, the mass flux and temperature distribu-

txons in the system are strongly aﬁ'ected by the non-Boussmesq effects.

To study the effects of sillca-water reactions on transient fluid flow behavior,
a model for sxmulatmg sxhca preclpltatlon and dlssolutlon has been developed

ThlS model has been used to study the eﬁ'ects of silica deposxtlon on transient

” flow behav:or in a snngle fracture The results }show that sxllca precnpltatnon and
*»resultmg‘permeablhty reductlon are strongly dependent on the coupled chemlcal
and thermal processes To analyze the performance of geothermal systems during
the productlon, a multl-component modehng 1nclud1ng transxent pressure, tem-
rperature and snlxca concentratlon hlstory can be employed to obtam a better

v understandmg of reservoxr behavxor.

. 6.2,:,Rec‘ommenldations o

Since the present numerical method is explicit when solviné the convection
equation, the size of the time step taken during computational procedures must
satisfy the Courant-Friedrichs-Lewy condition. It is known that the application of
the explicit scheme to steady-state calculations results in rather long computing

times. Also, some problems in reservoir simulations require a very fine grid near
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wells to obtain accurate solutions. Thus, the explicit scheme would restrict the
éize of time st;:p s'eve’rely, and may not be applicable. To fef.ain tﬁe characteris-
tic of highly resélved ‘solutions by ther explicit secdn'd-brderr Godunov scheme
withou£ the dis‘ad}vantage of a slo§v convergence rate, aﬁ‘implicit sciienié needs to
bé further developed to get rid of thévCourant-Friedri’chs-Lewyr éohdition. How-
evef, the impiicit, secohd-order',rrnonoscikl'latory Godunov scheme needs five-point
| information in each direétion; thﬁs, the conéfruction of the Jacobian matrix is not
trivial and the diret.;t soluﬁion techhiqﬁe may» nof. bé applicable. Therefore, an
effective iterative solutior}l‘ technrique’ néeds fﬁrthér investigation; most‘ likely the
| alterrié.té directibn's‘olutidn'tééhnique should be considered; |

One of | various important Vtopics of honisotﬂérinal ghemical transport
processes is to study double aﬁd cross diffusive effects on the VproAces-ses. These
effects may be important in the 7safet.y assessme’n.t.s of underground disposal of
nuclear waste, and in the analfsis of the naturﬂ state geothermal systems. The
double ’diﬁ'usive effects involves the density variations with temperature as well as
chemical concentrations. The cross diffusive effect considers the coupled fluxes of
two properties due to irreversible thermodynamic proceéses. Two well known
cross-diffusive eﬂeéts a.x"e the Soret effect and the Dufour effect. To investigate
these - problems, the equations of state for fluids and the code PTC must be

modified.
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APPENDD( A:" Derivation’ of the Governing Equations for Fluid Flow in
o " Naturally Fractured Media. |

In formulating the governing equations, the approach of Warren and Root is

employed. The fractures are lumped into to one continuum medium and the rock

matrix into another one.
In the radial fiow system, one can define a control volume V, as
Vo =n{(r +dr ) - r?}H=~2xrdrH ‘ (A.1)

The interface area A, between the rock matrix and the fractures in the control

volume can be expressed as

V .l . L
A, = 6D¥() = 12Eird (A2)

_ A mass balance equation for the control volume in the fractures can now be

written as

C0A =04 + 2l AN + (A emp = DL (A3)

where A (27xrH) is the cross section area in the radial direction, ¢; is fracture
porosity, p, is fluid density, ¢ is time, and ¢, and ¢, are the mass flux in the
radial and : directions, respectively, given by

k; 8P,

-,‘and

= -hr 5 o (A.4)
k oP
= - —ll’/ — - (AS)

g ez .
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where k, and &, are fracture and rock matrix permeabi[ities, respectively, and g is
fluid viscosity. Assume ¢, to be constant so that the right hand side of Eq. A.3

can be expressed as

& Vadory) aP, oP
—-Ft—l— Ve{ps 2670 —— 3t + py $2¢y 6‘2}
oP : o ,
= Vop; doese +¢7) atz - (A.G)

where ¢; and ¢,, are fluid and fracture compressibilities, respectively.

~ Assuming &, to be constant and suBstituting Egs. A.1, A.2, A4, A5 and A.6 into

Eq. A.3, one obtains

82P2 1 an Skl 1 aP“ ¢2c2p8P2
-+ - bepp=——
or r Or kg D oz kg at

(A7)

where ce= ¢y, + ¢4 .

The governing equation describing the mass conservation in the rock matrix

- can be expressed as

a(A: dz ¢1PI )

A - {0 A+ So(e4,)dr) = = (A.8)
where
A, =k 22 (A.9)

k., is'a constant, and ¢, is rock matrix porosity. Similar considerations as the

fractures yield

32P1+3_8P1=¢1¢1ﬂapx
8z z 0z k, at

(A.10)

where ¢, = ¢, + ¢, and ¢, is rock matrix compressibility.
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Egs. A7 and A._lO describe the pressure transient behavior in the fracture

‘and the rock matrix, respectively.
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APPENDIX B: Simultaneous Sblution for Pressures of the Fracture and Rock

Matrix.

Applying Laplace transformation to Egs. 2.13 through 2.22 yields

8Pps 1 8Ppy -8Pp,,
arg + rp Orp -3 an "

8*Pp, +2 8Pp,
on’ n 9y Y

-— 8?02 1

CppPp; - ?’;—lrp -=
- dp,

Pp; = [Ppg~ S'aﬁzil'v -1

8Pp,(rp ) beo

an =0

Pp(rp Mlmt = Ppy(rp)

lim Fpg(fp) =0
'D-’Q

8Pp4frp)

afD I'D =T =0

FD2('D )Irc -y T 0

-1 ~wpPpy =10

- (l:w)Pﬁpl =0

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

The general solution to Eq. B.2, expressed in terms of modified Bessel func-

tions, is

Ppy = Tn"l/z(-"x'l) + %Kn/z(z 1)

where A and B are constants and.z, expressed as

(B.10)
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(B.li)

After applying boundary conditions given by Egqs. B.5 and B.6 to Eq. B.2, the

- solution for the pressure in the rock matrix can be expressed as

B = Ppalpolzn)
o Vol y2z1)

(B.12)

To solve the equation for the pressure in the fracture and at the wellbore,

Eq. B.11 can be used to yield

3PD: ooy Ppaz Isp(z))
=TT 12 1)

I3p(z,) given by

- Iyjpefzy) = Iypfzy) - ':fo/z(zl)

o I;,,g(z ) and I ‘/2(2;1), can be defined by hyﬁérbélié functions as

-,/,(z 1) = 4 —;—l'cosix(z 1)
and

I 1/:(-; 1) = ;;x-smh(z )
Substituting E.qs.. B.14‘.to B16 into Eq. B.i3, one obtains

aPDnL xb Poztafs/z(fx)

Todey)  ~ foalzicoth(z) -]

Substituting Eq. B.17 into Eq. B.1 yields

(B.13)

.. Eq. B.13 can be further simplified using the recursion formula of Bessel function

(B.14)

(B.15)

(B.16)

(B.17)



180

_8Pp, 1 8Ppy - N =
: 37 + o 9 [3Xz coth(z 1-) -3\ +wp|Ppe=0 (B.18)
Let
Lo 3?::1!3/2(2,) ‘
2 Iyyo{z,)
= 3X\z,coth(z,) - 33:”+' wp
= %zlcoth(z ) - %— + wp ; (B.19)
The general solution to Eq. B.18 is
Ppg = CKo(\/z3rp) + DI(\/z3rp) | (B.20)

- After appling the boundary conditions given by Eq. B.7, the fracture pressure is

expressed as

Ppy = CK(\/z2rp) (B.21)

Substituting Eq. B.21 into Eqs. B.3 and B.4, respectively, and equating the final

results, one obtains
CKdVTD) + SC VR (V) = (- CVRK(Va) - (B.22)

Rearranging Eq. B.22, C is expressed as

c=21

1
P Tkt G Kedea T SRR - (B.23)

Substituting Eqs. B.22 and B.23 into Eq. B.4, one obtains the solution of Pp, .

Similar procedures can be used for the solution of a finite reservoir.

T oo rre e

T [ ia— ro

« -
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APPENDIX C: Asymptoic Solution for Pressures of an Infinite Reservoir

In the Laplace dorhain, the solution of the wellbore pressure for an infinite

reservoir without wellbore storage and skin effects can be expressed

KoVz3)

p (VEaK i(Vz2)} e

FDI =FD?’=

3z [y - - |
where z, = —-l-i/l(-i + wp =3\zcoth (z,) -3\ +wp and z, = \/]T;;‘F_ﬁf

Iyp5(2,y)

At small times (p —co, z,-+c0, and coth (z,)—1), and thus z, can be expressed

£, =3\z; -3\ +wp = 3':\/IEXI— N+ wp =wp (C.2)

If the argument z is large, Ko(z) and K ;(z ): can be expressed

Kdz) = Ks) = y [ e~ (c3)

‘Su‘bstituting' Eqs C.2 and C.3 intékE“q. Cl, one obtainsy

Py =Py = ;.7“‘7 (C.4)

The inversion of Eq. C.4 from the Laplace domain to real space yields

Py ==y [ (C5)

At large times (p—0, z,—0), I_;5(z,) and I,.(z,) can be expressed by the

asymptotic expansions as

I (z)== _(l+”_z,’+_z,‘+ ) (CS)
-1/3%1 nz, -2 24 e : *
= — + ——z‘3‘+ C.7

11/2(31) — (z, 8 - ) ) ( . )



Thus, one obtains

3i21I3/2(21)
Ty = ———eee - WP
? . 11/2(’-‘1) .
s 5 3
- Z E 3 z
‘ 3 \/ nz (z1+ 2 + 24 Bt —6_)
= - + wp

/—z
Tz, ! ‘

=Xéf +wp =p

If the argument z is small, Ko(z) cab be expressed as
Kyz))=-9+In2-In 7,

Similarly, K,(z,) cab be expressed as

1
Kx(31)=;l-
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(C.8)

(C.9)

(C.10)

Substituting Egs. C.9 and C.10 into C.1, one obtains the solution for the wellbore

pressure in the Laplace domain given by

~4+Iln2-lnvp
4

FDI = ﬁpz =

The inversion of Eq. C.11 from the Laplace domain to real space yields

PDI = Ppq =-;—{ln tp + 0.80909}

(C.11)

(C.12)

T

T € r—

| S Al

r.._.
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APPENDIX D: Apprdximate Solution for the Préssure of an Infinite Reservoir

\Nithout skin and wellbore storage effects, the pressure at the wellbore can

be expressed as .

Koz,
? \/5;[{1(\/2_2) (D.l)

Ppy =

Approximate inversion of Eq. D.1 is possible using the improved Schapery

method. As a first step, one approximates

Poy ~ [pPor ll, =1/,

Hence,
Ko(y/z3)
Por ~ K0 =% (D2)
If z, is small, Eq. D.2 becomes
Pp; ~ KolVz3), o, Jen (D.3)

In general, for tp >10 (z, is still small), Ko(z;) can be expressed as asymptotic
expansion as
K°(22)=-"]+ln 2-In /7,

Within 2% accur#cy in comparison to the results of the Laplace numerical inver-

sion, Pp, can be expressed as

1 X A w ‘
Ppl =-4+In2- ? ln{—5-2300th(33) - ? + W} (D.4)
where
T3 = 15!1 - U!

e \ip



The half slope can be observed around the dimensionless time, ¢, =

thris,r'egion Eq. D.4 can be further simplified to yield

Pp = %{lntp —laM1 - &) - ln% - 37}
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3¢ In
L |

(D.5)

g — g— gr—
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APPENDIX E: The Solution of Temperatures for the Fracture and Rock

In the dimensionless form the governing equations for the temperatures in

the fracture and rock are

- Rock

Fracture
 OTos | 8Tpy, _ 8T
- 8€ -12 a" =] = 9 af (E.l.)
FTp, 20Ty, _ 8Tp
oF ' mon o (£:2)
The initial and boundary conditions are
Tpi(6.0) = Too£0) =0 - (E3)
| 0r<oO
_Tln(oﬂ’)_”I= {1 r>0 A . , (E4)
Toy(61,7) = Too{&7) o  (E5)
- T y(€,0,1) = finite , (E.6)

After applying Laplace transformation to Eqgs. E.1 and E.2 with respect to r, one

may obtain,

)"87),, aTp, . ~ '

BTy 28Toy =
pe +-;; n = D.IP . (E‘S)

subject to the transforms of boundary édnditions;' Eqs E4, E.5 and E.6,
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Tpal0) = % ) (E.9)
Toal&) = Tp,(£.0), - (E.10)
Tp 1L,-o = fim'tc. (E.ll)

The general solution to Eq. E.8, expressed in terms of the modified Bessel func-

tions, is

= A ., B ’ |
- N v E.12
Tpy Tq‘x/z( P )+ TﬂKx/z( ? ") ( )
where A and B are constants. Applying boundary conditions given by Egs. E.10

and E.11, A and B can be determined.

A = m (E.13) .

Substituting Eq. E.13 into Eq. E.12, one obtains the solution of the temperature

in the rock.

= Tool 1y2AVe §)

Tor= V) | (E.14)

To solve the equation for the temperature in the fracture, one evaluates

aTp,, - Tpave Lydve )
o ™! Lip(Ve )

(E.15)

Substituting Eq. E.15 into Eq. E.7, one m‘a'y obtain the general solution for the

temperature in the fracture

sz"= Aexp{-[6p + 12\/}1—;—3/:(2\7‘/5—)]15} | (E.16)

- -

T — o o

e - - e

P

-
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where A is a constant. Applying the boundary condition (Eq. E.9), one obtains

A=2L1
)

Thus, the solution for the temperature in the fracture can be expressed as

1 v
Tpg == ;-exp{ - [0p + 12\/9_-1—172—(71;-7]5} . (E.17)

Asymptotic Solutions

From the recursion formula of Bessel functiéns, I3p(z) can be expressed as
Iyslz) = Lylz) - 2Tyl (E.18)

If the argument =z is large, I_,/{(z) and I,4(z) can be expressed as

Lipe) = Iipe) = —imer (E19)

At small times (p —cc), one substitutes Egs. E.18 and E.19 into Eq. E.17 and
obtains the equation for the temperature in the fracture in the Laplace domain

given by
Ty = —;-exp{ -6gp} (E.20)
Eq. E.20 can be inverted to real space as

Tp: = U{f—- 06} (E-21)

where U is the unit step function. If the argument z is small, I_,/(z) can be

expressed as

22 z4 .
I-,/g(z)== ;(1+?+-2T+..) » (E.22)
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Similarly, 1,,(z) can be e7xpressed as

11/3(3)=’/;z—(3+%3+..) ' (E.23)

At large times (p—0), one substitutes Eqs‘f E.22 and E.23 into Eq. E.17 and

obtains the equation for temperature in the fracture in the Laplace domain gi'ven

by
Tpe= %exp{ -(4+0)¢p) (E.24)
The inversion of Eq. E.24 from Laplace domain to real space yields

Tpa=U {r=(4+6)¢} (E.25)

T T

r—
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