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RMR STUDIES OF SELECTIVE POPULATION INVERSION AND SPIN CLUSTERING

Jean Baum

Abstract

This work describes the development and application of selective

excitation techniques in Nuclear Magnetic Resonance. Composite pulses

and multiple-quantum methods are used to accomplish various goals,

such as broadband and narrowband excitation in liquids, and collective

. excitation of groups of spins in solids. These methods are applied to

a variety of problems, including non-invasive spatial localization,

spin cluster size characterization in disordered solids and solid

state NMR imaging.

A class of continuously phase modulated radiation pulses that

result in coherent population inversion on resonance as well as over a

large range of transition frequencies and radiation field strengths

are presented. The inversion behavior is explained by treating the

pUlses as highly efficient adiabatic sweeps. A method is presented

for generating a sequence of phase-shifted radiofrequency pUlses,

generally called composite pulses, from the continuously modulated
,

pUlse. Simulations of the inversion performance, and experimental

results, are given.

MUltiple-quantum NMR is used to understand aspects of nuclear

spin dynamics in solids and to develop new techniques for studying

spin clustering and materials c~aracterization. The progressive

appearance of mUltiple-quantum transitions with increasing excitation

time is shown to depend on the formation of multiple-spin correla-

tions. Therefore, a time-resolved multiple-quantum experiment,. whose
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statistics are very sensitive to inter-atomic distances, is employed

to determine the spatial distribution of atoms in materials lacking

long range order. Experiments are performed by studying the time

dependence of the mUltiple-quantum coherences, and results are

presented on the hydrogen distribution in model systems of selectively

deuterated organic solids. In addition, the technique is used to

study the nature and extent of hydrogen clustering in hydrogenated

amorphous silicon.

Both composite pulses and multiple-Quantum methods are applied to

spatial localization and solid state NMR imaging. A spatially selec

tive composite pulse sequence is designed and used to excite chemi

cally shifted NMR signals from localized regions in space, in a non

invasive manner. Finally, the properties of multiple-Quantum cohere

nce are used to improve, by an order of magnitude, the spatial resolu

tion possible in solid state imaging experiments. Both approaches are

illustrated experimentally on phantom samples.
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I. BACKGROUND

A. Introduction

In NMR, sophisticated radio-frequency pulse sequences are often

designed to excite a desired response from the nuclear spin system.

In this dissertation, two general categories of excitation are addre

ssed. The first is the tailored excitation of nuclear spins over dif

ferent radio-frequency field strengths and transition frequencies.

The second is the collective excitation of groups of spins, in a

solid, via multiple-quantum NMR. Theoretical approaches to these

problems, and the development and application of new techniques are

the subject of this work. Applications include spin cluster size

characterization in materials lacking long~range order, solid state

NMR imaging, and the non-invasive excitation of NMR signals from a lo

calized region of a sample.

A general analytical procedure for deriving continuously phase

modulated pulses that result in coherent population inversion on re

sonance as well as over a large range of transition frequencies or

radio-frequency field strengths is presented in Chapter II. The in

version behavior is explained by treating the pulse as an efficient

adiabatic sweep. A method for generating a sequence of phase-shifted

radiofrequency (rf) pulses, generally called a composite pulse, from

the continuously modulated pulse is given.

The general principles of mUltiple-quantum NMR, including the

time-reversal excitation needed in solids, are described in Chapter
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III. Experimental considerations for the mUltiple-quantum experiments

used in Chapter IV are presented.

A time-resolved mUltiple-quantum NMR experiment is presented in

Chapter IV. It is used to investigate multiple-quantum dynamics in

solid-state NMR and to characterize the hydrogen distribution in

materials lacking.long-range order. By studying the time-development

of the mUltiple-quantum spectral intensities, the nature and extent of

clustering can be ascertained in disordered solids. Many model com

pounds containing a range of hydrogen distributions - isolated

clusters, concentrations of clusters, uniform distributions - are in

vestigated experimentally. In addition, the technique is used to

study the hydrogen distribution in hydrogenated amorphous silicon.

Spatial l~calization and solid-state NMR imaging are discussed in

Chapter V. Composite pulses, narrowband in space and broadband in

frequency are found through a computer search, and used experimentally

with a surface coil to selectively excite a localized region of a

phantom sample. Multiple-quantum NMR is used to overcome some of the

problems associated with solid-state NMR imaging. By relying on the

property that an n-quantum coherence feels an effective gradient which

is n times its actual strength, imaging in solids is possible with

rather small magnetic gradients. The technique is illustrated experi

mentally on a phantom sample.

In the rest of this chapter the spin Hamiltonian and the descrip

tion of the spin system in terms of the density operator are intro

duced. Different basis sets used for the formalism of broadband ex

citation and multiple-quantum NMR are presented. Average Hamiltonian
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theory is very briefly described.

B. Nuclear Spin Hamiltonians

1. Zeeman Interaction

The Zeeman Hamiltonian, which describes the interaction of the

nuclear dipole moment with the static external field, is introduced.

Generally, the overall spin Hamiltonian

is a sum of internal and external couplings. The external Hamiltonian

includes all interactions of the spins with the magnetic field, either

static or oscillating. The internal Hamiltonian includes all interac-

tions of spins with their local environment; for example, dipolar,

chemical shift and indirect scalar interactions. 1- 4

The energy of interaction of a nuclear magnetic dipole moment H

with a magnetic field ~o is

E ~ -11' B
~ -0

(1.2)

The magnetic moment is proportional to the nuclear spin angular mo-

mentum vector I. Thus when the field ~o is along the z direction, the

Zeeman Hamiltonian becomes
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H = -_~. B .. -YI B
-0 z 0

.. -w I
o z

where Y is the gyromagnetic ratio and Wo is expressed in angular fre

quency units of rad/sec. The eigenstates of H are the set {1m>}

defined as

Izlm> mlm>

where m" -I, -I+1, ••• , I-1, I.

(1 .4)

A nucleus of spin I has (2I + 1) eigenstates labelled by m, the

eigenvalue of I z • For N interacting nuclei, the number of eigenstates

becomes (2I + 1)N and the eigenoperator I z '

N
r

i ..1
I zi,

( 1 .6)

now yields the total Zeeman quantum number,

(1. 7)
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the sum of the individual spin Zeeman quantum numbers. These eigens-

tates will be labelled {IMi >, IMj > ••• }, and can be composed of linear

combinations of products of single spin states Imi >, Im j >. The i th

state is denoted by IzIMi > = MiIMi>.

2. Radiofrequency Interaction

The radio-frequency field is applied perpendicular to the static

field and results in the Hamiltonian

-w1(t)2cos[wt + ~(t)] Ix ( 1 .8)

where w1(t) is the amplitude of the field, w the frequency and ~(t)

the phase.

3. Rotating Frame Transformation

The interaction of the nuclei with the large static field can be

removed by a transformation to a new frame of reference rotating at ·or

near the Larmor frequency; this interaction representation is called

the rotating frame. 5,6 Under the unitary transformation

T
-iwI t

e z ( 1 .9)

the laboratory frame Hamiltonian HL becomes

H • i dT T-1 + TH T- 1
R dt L (1.10)
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in the rotating frame. Hence, when an oscillating rf field is applied

to the system to produce a laboratory frame Hamiltonian

HL = -w I + 2w1(t) I (cos(wt + ~(t») + Hi t '
. 0 z x n (1.11)

the rotating frame Hamiltonian becomes, after the transformation of

Equation (1.10)

~w1 + w1(t) (I cos~(t) + I sin~(t» + H~Ot) ,(1.12)z x y ln

where ~w • w -wo is the resonance offset and Hi~~ is the part of Hint

that commutes with 1z • A ~~cture of the rotating frame is shown in

Figure (1.1). The resonance offset term lies along the z-axis and

pulses are applied in the x,y plane with an amplitude w1' The phase,

~(t), of a pulse is defined relative to the x-axis. According to this

secular approximation, I z and Hint share a common set of eigenstates 7

(1.13)

(1.14)

From now on the subscripts will be dropped, and all interactions will

be assumed in the rotating frame unless otherwise stated.
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z

Ja:---------1t-----.y

XBl 859-11359

Figure 1.1. The Rotating Frame.

The time dependence of the radio-frequency Hamiltonian is removed in

the rotating frame. The resonance offset, 6w • wQ - w, is the dif

ference between the Larmor frequency and the rf carrier frequency and

appears along the z-direction. The pulse amplitude and phase are

denoted by w1 and "respectively. The phase of the pulse gives the

direction of the radiation in the x-y plane.
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4. Chemical Shift Hamiltonian

Each nucleus feels a magnetic field from the electrons surround-

ing it. In high field, the secular part of the chemical shift

Hamiltonian is

H =cs (1.15)

where the sum is over individual nuclei. The chemical shift and re-

sonance offset terms are both linearly dependent on the z component of

the angular momentum operator and will, for convenience be combined

into one term, the resonance offset Hamiltonian,

(1.16)

5. Dipolar Hamiltonian

The direct interaction between two magnetic dipoles in high field

is described by the secular part of the homonuclear dipole-dipole

interaction

Hzz (1.17)

Where~ij is the vector connecting spin i to spin j. The dipolar cou

pling constant is



1:
i<j

2(3cos 6ij - 1) (1.18)

9

where 6 is the angle between the internuclear vector rij and the

laboratory z ~ axis. The sum 1s over all pairwise interactions. The

dipolar interaction, which involves products of angular momentum oper-

ators, is a bilinear interaction.

C. Density Operator

The spins are described by a wavefunction

I~(t». 1: ci(t)IMi >
i

(1.19)

which is expanded in a complete orthonormal basis set {IMi >} with

complex coefficients

( 1 .20)

The phase factor ai is arbitrary and thus the spin system cannot

usually be described directly by a single state. 8,9 The density oper-

ator is particularly convenient for systems that are described as

mixed states; and is defined as
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(1.21)

where Pk represents the probability of describing the spin system by

I~k(t». In general, the diagonal elements of the density matrix

representation, ICi (t) 12 , are associated with the populations, while

the off diagonal elements yield statistical averages of the cross

coefficients Cn(t)C;(t) and Cm(t)C~(t).

When off-diagonal elements are nonzero, a coherent superposition

of states has been established. For example, for isolated spins -1/2,

phase coherence between the 1+1/2> and I -1/2> states will have

occurred. For N coupled spins it is possible to excite multiple-

quantum coherences between IMi > and IM j >, where 6M, the difference in

Zeeman quantum number, now assumes any integer value up to N; i.e.

6M = M - M = ni j
where n = 0,±1, •.• , ±N ( 1 .22)

An important point to note is that only single-quantum coherence, 6M

±1, can ever be detected directly, as an oscillating time-dependent

voltage, by an NMR receiver coil.

1. Equilibrium Density Operator

At equilibrium, the density matrix is diagonal, with the relative

populations given by the Boltzmann factors. This arises from
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where HL is the laboratory frame Hamiltonian. The Zeeman term is the

largest term in the Hamiltonian and kBT » Wo in the high temperature

approximation. Therefore Peq can be approximated by

1 Wo
Peq = -Z(1 + ---k I)

BT z
(1.24)

where Z, the partition function, is a normalization constant. The

unit operator commutes with all other operators, therefore Equation

(1.24) reduces further to

(1 .25)

The constant multiplying I z is usually omitted. At equilibrium, the

off diagonal elements,

• ( 1 .26)

are zero owing to the random phase approximation; i.e. no phase

coherence exists between IMi > and IMj>~

2. Evolution of the Density Operator

The Liouville-von Neumann Equation



dp(t)
dt i [p(t), H(t)], ( 1 .27)

12

determines the time development of the density operator. 9

The formal solution to this differential equation is

p(t) .. U(t) p(O) U(t)-1, • ( 1 .28)

When H(t) is time-dependent, the expression for the propagator is

U(t) • T eXP(-iJ:H(t')dt.) (1.29)

where T is the Dyson time ordering operato~.10 If we assume that the

time-dependent Hamiltonian is piecewise-constant, i.e. if the

Hamiltonian is equal to H1, H2, H3, ••. , Hn for successive times t 1,

t 2 , t 3, ••• , tn' then the propagator can be written as

When H is time-independent, the propagator reduces to

U(t) .. e- iHt

and the density operator becomes

( 1 .30)

(1.31)



p( t) exp(-iHt) p(O) exp(iHt) (1.32)

13

Once the density operator has been calculat~d, the expectation value

of an operator is

A(t) = Tr (p(t)A) •

3. Expansion of the Density Operator in Different Basis Sets

The most general form of the density operator is given by the

expansion

p(t) • L b(t) Bss
(1 .34)

where the operators Bs form a complete orthogonal basis set. 11

a. Pauli Spin Matrices

For oN noninteracting spins-1/2, which behave as an isolated spin-

1/2 or two-level system, the density operator can always be expressed

as a linear combination of {1, Ix' Iy ' I z} plus normalization con

stants: 12, 13

p(t) • b (t)I + b (t)I + b (t)I + b1
z z x x y y

( 1 .35)

The coefficients of p(t) form a three dimensional vector equivalent to

the magnetization vector
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Tr (Ix P(t ) ) bx(t)
-

<M > =x
-

<M > Tr (IyP( t» b (t) ( 1 .36)y y

The density operator in this case is

-+ -+
pet) = M(t)- I (1.37)

-where M is the unit magnetization vector. In Chapter II, the effect

of a pulse sequence on an isolated spin is described by the trajectory

-of the magnetization vector M(t) on a unit sphere.

b. Outer Product Eigenbasis

Many basis sets can be used. For the mUltiple-quantum discussion

of Chapters III and IV, two specific choices, the outer product and

single-spin product bases are particularly convenient. The first is

the orthonormal outer product eigenbasis formed by the components

{IMi><Mj Il. Most expressions will be of the form

( 1 .38)

Nonvanishing off-diagonal elements indicate a coherent superposition

between states IM i > and IMj >; the order of the coherence is n = Mi -
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Mj . When n is greater than one, a mUltiple quantum coherence has been

rstablished. Because the observable operator is proportional to

the NMR signal

(1 .39)

can only be obtained from single quantum coherences. Therefore,

multiple quantum coherences must be detected indirectly in a two-dim-

ensional experiment.

c. Single Spin Product Operators

The 22N orthogonal single-spin product operators

B • 2(q-1 )
s

N
IT
k

(1 .40)

completely describe a system of N coupled sPins-1/2. 14 In the above

expression k is the index of the 'nucleus; v = x, y, or z; q is the

total number of single spin' operators in the product; and ask = 1 for

q nuclei and ask = 0 for the N-q remaining nuclei~ The mUltiple

quantum order, n, can be read easily by adding the orders of in-

dividual raising and lowering operators. For example, there may be

single-quantum/single-spin terms such as I Xi or I yi ; zero

quantum/single-spin terms such as I zi ; "combination" single-
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quantum/three-spin terms may look like 1+1 1+2 1_3 ; and, finally, the

two N-quantum, N-spin terms are 1+1 1+2 1+3 ••• I+N and

1_1 1_2 ••• I_N•

D•. Pulse Sequences

If all internal interactions can be neglected for the duration of

the pulse, i.e. if Hrf » Hint' then the Hamiltonian of the spin

system during the pulse is merely H : w1I~, assuming the pulse is

applied on resonance, ~w • O. This situation is referred to as the 0-

pulse limit and is usually a good approximation in liquids. If the

length of each pulse is t and the flip angle defined as w?t = 0, then

the propagator for a pulse,

(1.41)

is a rotation operator in the operator space spanned by {1, Ix' Iy '

Izl. After a pulse applied in the x-direction, the spin system is

described by the density operator

-i61p(t) • e x I z

(1 .42)

This is shown in Figure (1.2) •. Pulse sequences in NMR can take on
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Figure 1.2. The equilibrium density operator, proportional to I z ' is

represented by a vector pointing along z. Here a puise, with

amplitude w1 is applied along the x-direction of the rotating frame

for a time ~, causing the vector to rotate by an angle w1~ about the

x-axis •.
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many different forms: for instance, pulses can be followed by delays

during which internal interactions are allowed to act on the density

operator; pulses can be followed directly by other pUlses. Many

possibilities exist.

In Chapter II, the form of the radiofrequency pUlse itself is

changed and is continuously phase modulated in time. The continuously

modulated radio-frequency (rf) can be divided into numerous piecewise-

constant rf pulses, resulting in sequences of contiguous pulses with

different phases. These are denoted by. (ai)~l' (a2)~2' ••• , (an)~n

where ai represents the flip angle and ~i the phase of the i th pulse.

The propagator for the piecewise-constant rf Hamiltonian follows dire-

ctly from Equation (1.30). These different pUlse sequences are

applied to noninteracting spin 1/2 particles and their effects can be

visualized by following the trajectory of the magnetization on the

unit sphere.

In Chapters III and IV, pulse sequences consisting of pulses

followed by delays are applied to solids. Again, the Hamiltonian can

be considered piecewise-constant but the calculation of the evolution

of the density operator can be enormously complicated for these

coupled spin systems. Now, contrary to the case for isolated par-

ticles, the evolution does not take place in a space spanned by {1,

Ix' Iy , I z}, but ra~her is described in the basis sets of Equations

(1.38) and (1.40). Instead, average Hamiltonian theory4,.15 can be

used to calculate an effective time-independent Hamilton~an, Heff ,

which acts for the duration of the pulse sequence and brings about the

same change as the piecewise-constant Hamiltonian.
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E. Average Hamiltonian Theory

The overall propagator in average Hamiltonian theory can be

descri bed by·

(1.43)

provided that the radio-frequency interaction is cyclic over the cycle

time t c • By applying the Magnus Expansion,16 the propagator takes the

form

where

( 1 .44)

-(0)·H ( 1 .45)

and

- (1)
H

-i
= 2t

c
( 1. 46)

(1.47)
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Here a transformation Urf(t) has been defined from the rotating frame

to an interaction representation usually called the toggling frame.

Provided that Hefftc « 1, then higher order terms'become neligible.

H(o) is called the average Hamiltonian and H(i) is the i th order

All odd orders H-(1), H-(3)correction term to the average Hamiltonian.

etc •• can be made to vanish when the sequence is symmetrized, i.e.

when

H(t) iict - 1:) • ( 1 .48)

In order to design a pulse sequence, it is convenient to consider

the succession of orientations of the angular momentum operator I z in

the toggling frame I z '

(1. 49)

For instance, a 90y pulse which transforms I z(t 1) = I z to I z (t 2) = 

Ix can be denoted by the shorthand notation (ZX).17,18 In the 0 pulse,
limit, this transition is instantaneous whereas when finite pulse

widths are considered, I z varies continuously between t 1 and t 2.. In

solids, where the internal interactions may be comparable to Hrf , it

is important to consider the effects of the former during the pulse

and work with finite pulse widths.
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II. BROADBAND AND ADIABATIC INVERSION OF A TWO LEVEL SYSTEM

BY PHASE HODULATED PULSES

A. Introduction

,. Background

The implementation of population inversion between energy states

is an important requirement of many techniques in nuclear magnetic re

sonance (NMR) and coherent optical spectroscopy, including relaxation

time' measurements, spin or photon echoes 2,3 and spin decouPling. 4

The simplest way to coherently invert populations is with a single ~

pulse, i.e. a pulse of radiation such that the product of amplitude in

angUlar frequency units and the time in,seconds equals~. For good

population inversion to be achieved, the difference between the radia

tion frequency and the resonant frequency of the transition for which

populations are inverted must be much smaller than the radiation

amplitude. In other words, the inversion bandwidth of a single ~

pulse is quite limited. Often it is the case experimentally that the

bandwidth of resonant frequencies is comparable to or greater than the

available radiation amplitude. In NMR, the bandwidth may result from

static magnetic field gradients, chemical shifts or spin couplings.

In coherent optics, this may be due to inhomogeneous broadening from

crystal strains or Doppler shifts.

An established technique in NMR for inverting spin populations

over a large bandwidth is Adiabatic Rapid passage5, in which the fre

quency of applied radio frequency (rf) radiation is swept through the

..
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resonances at a constant rate that is small compared to the rf

amplitude but large compared to the inverse of the relaxation times.

Adiabatic sweeps have been employed in coherent optics as wel1 6- 11 •

An alternative approach to broadband inversion in NMR was proposed

some time ago by Levitt and Freeman12 • They suggested using a

sequence of phase-shifted pulses, collectively called a composite ~

pulse, to produce inversion over a broad bandwidth. Composite pUlses

have led to a wide range of applications. Several approaches to their

design in NMR 4,12-27 and coherent OPtics28- 29 have been described.

The original work was based on computer simulations of spin

trajectories and geometrical intuition13 • This was followed by a more

formal analysis in terms of rotation operators. 14- 16 More recent

developments include an approach based on coherent averaging

theory17,18 and the introduction of iterative methods for generating

composite ~ pulses. 4,19-22 -The coherent averaging theory approach and

another based on a fictitious spin-1/2 formalism have led to composite

pulses for coupled spin systems. 23- 25

This paper introduces an approach to broadband population inver

sion that bridges between adiabatic sweeps and composite ~ pUlses. 26

This work -- which was subsequently appreciated by Silver, Joseph, and

Hoult 27 -- was orginally motivated by the self-induced transparency

effect30 o~served in coherent optical spectroscopy. The phenomenon of

self-induced transparency, first discovered an~ studied by McCall and

Hahn, occurs when a radiation pulse with an area of 2~ and amplitude

modulated according to a hyperbolic secant function brings a two-level

absorbing system from its ground state back to its ground state re-
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gardless of its resonance frequency. In that sense, a hyperbolic

secant pulse is a perfectly broadband 2~ pulse. Allen and Eberly have

proposed a similar class of pulses for population inversion, but with

both phase and amplitude modulation31 • If w1(t) is the amplitude and

~(t) is the phase of the radiation, the pulse of Allen and Eberly may

'be written:

(2.1)

(2.2)

where t extends from -~ to +~. Y is a parameter that determines the

depth of the modulation, with no phase modulation when Y equals ~/2

and increasing phase modulation as Y approaches zero. This pulse

inverts populations in a two-level system regardless of the values of

Y and w?, provided that the radiation frequency exactly equals the re-

sonance frequency, i.e. "on resonance". Allen and Eberly point out

that the pulse resembles an adiabatic sweep for small values of Y, due

to the equivalence of phase modulation and frequency modulation.

Thus, it may be anticipated that a pulse with phase modulation similar

to that of Equation (2.2) will have broadband inversion properties.

The performance of a class of phase modulated pulses related to

Equations (2.1) and (2.2) is investigated in detail below. Com-

parlsons with adiabatic sweeps are made.

The relation to a composite ~ pUlse arises from considering a com-
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posite ~ pulse as a single phase-modulated pulse, with a piecewise

constant phase function. A composite ~ pUlse may then be regarded as

an approximation of a continously phase-modulated pUlse. One way to

generate composite. ~ pulses would be by approximating the continously

varying phase function of a pulse similar to that of Equations (2.1)

and (2.2) by a piecewise-constant function. Procedures for generating

composite ~ pulses from continuously phase modulated pulses are

developed below.

2. Organization

In Section II, a class of phase-modulated, constant-amplitude

pulses are derived from consideration of the magnetization trajectory.

Simulations of population inversion performance are given. A general

transformation from a pulse with a modulated phase and a constant

amplitude to a pulse with both phase and amplitude modulation is

introduced, in order to demonstrate the relationship between our

pulses and those of Allen and Eberly.

Section III treats phase-modulated pulses as aaiabatic frequency

sweeps. Criteria for adiabatic inversion are discussed. They lead to

the concept of the efficiency of an adiabatic sweep and to the deriva

tion of a new class of phase-modulated pulses based on efficiency con

siderations. A comparison of the inversion performance of linear

sweeps, pulses derived in Section II, and pulses derived from con

siderations of efficiency is made.

The treatment of adiabaticity in Section III suggests that the

phase modulated pulses of Section II may invert spin populations over
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large ranges of rf amplitude as well as large ranges of resonant fre-

quencies. The inversion performance as a function of the rf amplitude

is treated in Section IV. Section V describes a method for deriving

discrete composite pulse sequences from continously phase-modulated

pulses. Experimental results are presented.

B. Derivation of Phase Modulated Pulses for Population Inversion

1. Frames of Reference

We begin with a description of two frames of reference, shown in

Figure (2.1), that are of importance in the remainder of the paper.

The first of these is the usual rotating frame. 32 If an isolated spin

or two level system with resonance frequency Wo is irradiated with an

rf pulse with any general amplitude and phase modulation, its motion

in the usual rotating frame is determined by the Ham.iltonian HPM

(where PM refers to Phase Modulation):

HPM
a ~wI - w1(t)[I COS$(t) - I sin$(t)] (2.3)z x y

w,(t) and $(t) are the pulse amplitude and phase; ~w is the

difference between Wo and the rf carrier frequency w, i.e. the

resonance offset. HPM is derived from the laboratory frame

Hamiltonian by the transformation TPM :

PMT • exp(-iwI t)z (2.4)
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A. PM Frame
z

..-..::~----+----y

)(

B. FM Frame
z

r-----+---y

)(

Figure 2.1. a). Phase Modulated (PM) frame. b). Frequency modu-

lated (FM) frame. The resonance offset, Aw • wO-w, is the difference

between the Larmor frequency and the rf carrier frequency. The pulse

amplitude and phase are denoted by w1(t) and ~(t), respectively. In

the PM frame which is the equivalent of the usual rotating frame used

in NMR, the phase of the pulse which varies with time, gives the dire

ction of the radiation in the xy plane. In the FM frame, the direc

tion of the radiation in the xy plane is fixed, and the time deriv

ative of the phase function, ~(t), appears along the z direction as an

additional resonance offset. The two frames are related by a rotation"

about the z axis by ~(t).
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In this reference frame, which we call the PM frame, the rf frequency

appears constant and the phase, i.e. the direction in the xy plane,

varies. This is seen in Figure (2.1a).

An alternate rotating frame transformation that is useful in

dealing with continuously modulated pulses is accomplished by the

unitary operator TFM (where FM refers to Frequency Modulation):

TFM
a exp[-i(wt + ~(t))I ]z

In the FM frame, the Hamiltonian is:

(2.6)

and the time derivative of the phase function appears as an additional

resonance offset with the xy plane component constant in direction, as

shown in Figure (2.1b). That a phase-modulated pulse ·can be viewed in

either the PM or FM frames is a statement of the equivalence of phase

and frequency modulation. Of course, due to the design of a typical

pulsed NMR spectrometer with its constant frequency reference, spin

evolution is normally observed in the PM frame. For our purposes, the

FM frame serves as a useful tool for deriying modulated pUlses.

2. Derivation of Phase Modulation from Magnetization

Trajectories
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An isolated spin can be described in the FM frame by a density

operator pet) of the following form:

pet) = ~(t)·! (2.7)

where ~(t) is a three-vector proportional to the magnetization and I

is a three-vector whose components are the angular momentum

operators 33 • With Equation (2.6), ~(t) satisfies the Bloch equations

without relaxation:

dM

dt (2.8)

If the initial condition for M is known and if ~(t) and w,(t) are

given, then Equation (2.8) determines the evolution in time of M. For

arbitrary ~(t) and w,(t), Equation (2.8) can be solved by numerical

methods for ordinary differential equations. Alternatively, $(t) and

w,(t) may be approximated by piecewise-constant functions possibly by

dividing time into small intervals over which $(t) and w,(t) are

assigned their respective values at the midpoint of each interval.

For each interval with constant $(t), the evolution of M is simple. M

precesses around the effective field vector with x component -w, and

z component ($ + 6w) at an angular rate equal to (w~ + ($ + 6w)2)'/2.

The length of ~ is conserved. If M is assumed to have unit length, ~

follows a trajectory on a unit sphere. A trajectory of ~ from +z to 

z corresponds to the inversion of spin state populations.
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An important question which now arises is the following: given a

trajectory for M(t), how can we determine the ~(t) and oo1(t) which

will yield that trajectory? We begin our consideration of this

question with a class of trajectories that is of particular importance

in the rest of the paper, namely those that follow a great circle from

+z to -z in the FM frame, as depicted in Figure (2.2a). The appendix

presents a formalism for treating other trajectories. A great circle

trajectory is of the form:

~(t) = (cosY COSE, sinY COSE, -sinE) (2.9)

where Y is a constant azimuthal angle and E is a polar angle. E is a

function of t that is to be determined. Since the trajectory depends

on the resonance offset, we specify that 600 = 0, i.e. that Equation

(2.9) should hold on resonance. In addition, we initially search for

a pUlse with a constant amplitude equal to oo~. The general case of

amplitude modulation is treated later. Equations (2.8) and (2.9) lead

to:

(ecosYsinE, -esinYslnE, -ecosE)

..

o 0= (-~ sinYcosE, -oo,sinE + ~ cOSYCOSE, -oo,SlnYcOsE)

whi ch impl i es :

(2.'0)
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e: = (W~SinY)t

.1=.0 (0)
~ w1 cosY tan w1sinYt

33

(2.11)

(2.12)

°2w1sinY
< t < 'll'

Equation (2.12) dictates a class of phase-modulated pulses that invert

spin populations exactly on resonance, since it is derived from the

inverting trajectory in Equation (2.9). With Y = 'll'/2, the phase is

constant, the PM and FM frames coincide, and a standard 'll' pUlse is

recovered. ~(t) is confined to a plane perpendicular to the plane of

the effective field. As Y approaches zero, the phase modulation

deepens, the pulse length increases, and the plane of the

magnetization trajectory approaches coincidence with the plane of the

effective field, suggesting adiabatic behavior. Equation (2.11)

indicates that ~(t) moves with a constant angular velocity along the

trajectory of Equation (2.9) regardless of the value of Y, provided

that w1 is constant.

The derivation of the phase modulation has been carried out in

the FM frame. Since the PM and FM frames are related by a rotation

about z by ~(tj, the trajectory in the PM frame does not follow a

great circle but is still an inverting trajectory. This is shown in

Figure (2.2b). To obtain ~(t), we integrate Equation (2.12):
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$(t) = -cotY In[cos(OO~SinYt)J,

where:

-o~'Il';;..,...- < t<
200

1
sinY o

200
1
sinY

~(t) and $(t) are plot~ed in Figure (2.3). A pulse specified by

Equations (2.12) and (2.13) will be referred to as a Modulated

Inversion Pulse (MIP). The magnetization trajectory in the PM frame

(Figure 2.2b) is:

M~M = cos[Y+$(t)JcoS«W~SinY)t)

M~M sin[Y+$(t)Jcos«oo~ sinY)t)

3. Inversion Performance Off Resonance

(2.14)

Although the MIP is derived so as to invert spin populations on

resonance, the appearance of adiabatic behavior suggests that spin

populations may be inverted over large ranges of resonance offsets as

Y approaches zero. Figure (2.4) shows simulations of the inversion

performance of· the MIP as a function of the resonance offset for
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MODULATED INVERSION PULSE

10

5
0-

3......---.~
0

5

a. Frequency Modulation

.(t)/w~. cosY tan (sinY w~t)

y. y.
0.2 0.1

b. Phase Modulation

9'(t) • -cotY In [cos (sinY wY t)]
20 : :

y. y.
0.2 0.1

15

---~

Figure 2.3. Continously frequency (a) and phase (b) modulated inver

sion pulse (HIP) plotted versus w~ for values of Y • 0.2 and Y • 0.1.

The pulse amplitude is constant and the phase modulation increases as

Y decreases. Also, as Y .0, the overall pulse length i~creases (2w?t

• w/sinY). The HIP is an exact analytical solution to the problem of

population inversion on resonance (6w • 0) for all values of Y.
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-1.0

fP(t) = - cot Y In [cos (sin Y w~t)]

I.O~~:--===::::--====~=---~--=f

c
o.-
f/)...
CIJ 0>c

o 1.0 2.0 3.0

XBl 855-2601

Figure 2.4. Simulations of spin inversion from the MIP as a function

of the relative resonance offset for various values of Y. Inversion

is defined as the negative of the final z compon~nt of the spin

angular momentum; initially the spin system has a z component of +1.

For all values of Y, the inversion is always perfect on resonance.

For Y • ~/2, i.e. no phase modulation, the MIP is equivalent to a

standard ~ pulse, which can be used here as a reference. As Y + 0,

i.e. increasing phase modulation, good inversion is accomplished over

an increasingly large range of frequencies.
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•
The extent of inversion is defined to be the
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negative of the final z component of M. Apparently, the range of

offsets for which the inversion is nearly complete can be made as

large as desired by taking Y to be sufficiently small.

4. Transformation to Amplitude-Modulated Pulses

Equation (2.'3) is derived above with the assumption of a

constant pulse amplitude. Although there is at most one rf phase

function that yields a given magnetization trajectory on resonance

with a given constant rf amplitude, there may be an infinite variety

of combinations of phase and amplitude functions, if amplitude

modulation is allowed. Here we present a method for converting a

phase-modulated, constant-amplitude pulse to a pulse with both phase

and amplitude modulation that produces the same trajectory on

resonance.

The essential idea becomes apparent from considering a single

o
pu~se with a constant phase ~O' a constant amplitude w" and a length

t. The effect of such a pulse when 6w = 0 is to produce a rotation of

~ by an angle w~t about an axis in the xy plane at an angle ~O to the

x axis. Since it is only the area of the pulse that matters, however,

the net effect is unaltered if the pulse amplitude is changed,

provided that the pulse length is also changed so that the pUlse area

oremains equal to w,t. In general, a phase-modulated, constant-

amplitude pulse can be approximated to arbitrarily high accuracy by a

sequence of many constant-phase, constant-amplitude pulses. In order

.to transform the overall pulse to some desired amplitude modulation,
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it is then only necessary to increase or decrease the amplitudes of

the individual pulses and correspondingly decrease or increase their

lengths. The total pulse area must remain constant. Figure (2.5)

illustrates the procedure.

Mathematically, the amplitude transformation is a distortion of

time. In general, suppose a pair of functions w,(t) and ~(t) produce

a certain magnetization trajectory, with:

(2.'5)

If there is another amplitude function w,(t), also with area A, then

we implicitly define a time transformation t' = h(t) by the relation:

(2.'6) fat' ~JI w, (u)du = Jo -w(u)du

The phase function i(t) - ~(h(t», along with the amplitude function

w,(t), will produce the same magnetization trajectory.

Thus we have arrived at the most general procedure for finding

phase and amplitude combinations that produce a desired magnetization

trajectory. We first derive a unique constant-amplitude pUlse. Then

we may transform to any other amplitude function of the same area,

with the trajectory uniquely determining the pUlse area.

To derive the pulses of Allen and Eberly, we transform the pulses
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Figure 2.5. Schematic representation of the transformation from a

pulse with constant amplitude and phase modulation (a) to a pulse with

both amplitude and phase modulation (b). In (a) the total time inter

val is divided into subintervals of length t, represented by the

dashed lines, which are each assigned a constant phase and a flip

angle • w,t. The transformation from (a) to (b) is effected by choos

ing the desired overall amplitude modulation, and then changing the

lengths of the individual pulses while still maintaining that their

flip angle remain equal to w,t. The new phase modulation emerges from

the time transformation.
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of Equation (2.13) to the amplitude function of Equation (2.1). The

corresponding time transformation is:

h(t) = 1 -1 0o tan (sinh w
1
t)

w
1
SinY

(2.17)

While the pulses of Equations (2.1) and (2.2) and of Equation (2.12)

yield the same on-resonance trajectory, the utility of the pUlses lies

in their ability to invert spins off resonance. The significant,

dimensionless quantity that characterizes off-resonance behavior is

the ratio 6w/w1' In simulations, we find that the constant amplitude

pulses of Equation (2.13) give inversion over a larger range of

resonance offsets than the amplitude-modulated pulses of Equations

(2.1) and (2.2). An explanation for this is that 6W/w1 is always at

its minimum for the constant amplitude pulses.

C. Population Inversion by Adiabatic Sweeps

We saw in Section B that modulated pUlses invert spins perfectly

on resonance and also over a large range of frequencies as Y + o.

Because the on-resonance magnetization trajectories are suggestive of

adiabaticity, we now treat the above pulse in the framework of

adiabatic sweeps and compare different adiabatic approaches.

1. Criteria for Adiabatic Inversion

The Hamiltonian of Equation (2.6) can be written:
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(2.18)

(2.19)

.
Spin populations may be inverted adiabatically if ~(t) and w1(t) are

such that the direction of ~eff(t) moves from -z to +z, or from +z to

-z, at a sufficiently slow angular rate. In that case, the

magnetization, or spin density operator, is said to follow the

effective field ~eff(t).

If ~eff(t) is written as:

~eff(t) • weff(t)(-cose, 0, sine) ,

-1e = tan [(6w + ~(t))/w1(t)] ,

(2.20)

(2.21 )

the two criteria for adiabatic inversion by a pulse between times -to

and to can be stated as fOllows: 6,7,26

1 •
d
dt

Criterion 1 states that the effective field must change direction
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slowly compared to the rate at which ~FM precesses. In order to

quantify criterion 1, we define the adiabaticity factor Q(t) according

to:

(2.22)

The larger the value of Q(t), the more adiabatic the frequency sweep.

In what follows, we consider only sweeps for which w1 is constant

and non-zero. Therefore, criterion 2 requires that the sweep begin

far below resonance and end far above resonance, such that 16w +

~(!to)1 » w1'

There are many possible forms for ~(t) that result in adiabatic

inversion~ We call a sweep efficient if it accomplishes population

inversion in a comparatively short time. Different forms of sweeps

may have different efficiencies for the following reason. Consider

criterion 1. Taking w1 to be constant, weff is smallest when 6 = 0

and ~(t) • -6w, i.e. when the sweep passes through resonance. It is

at this time that criterion is most restrictive so that Id6(t)/dtl

must be smallest. When the sweep is far from resonance, Id6(t)/dtl

may be larger while still satisfying criterion 1 since weff is larger.

If Id6(t)/dtl indeed becomes larger far from resonance, criterion 2

may be satisfied for comparatively small values of to'

In the remainder of this Section, three forms of sweeps are

examined in light of the above criteria for adiabaticity. The factors

that limit their inversion bandwidths are discussed, and their

efficiencies are contrasted.
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2. Linear Sweep

The simplest and most commonly used frequency sweep is a linear

sweep defined by:

~(t) = -kt, -to < t < to (2.23)

where k is the constant sweep rate. Since k is constant, criterion

is satisfied for all values of 6w once k is small enough so that

criterion 1 is satisfied at any particular value of 6w. For 6w = 0, a

linear sweep has:

Q(t) has its minimum at t = 0, where Q(O) = (w?)2/ k• Simulations show

that the maximum value of k for which populations are inverted

adiabatically with 6w = 0 is given approximately by kmax = 0.2(w?)2.

This limit is determined by simulating the effects of linear sweeps

with to taken to be very large.

For values of k less than or equal to kmax ' criterion 1 is

satisfied throughout the sweep. With k fixed, the choice of to

determines whether criterion 2 is satisfied.

Simulations of inversion as a function of 6w/w? for linear sweeps

with k = 0.2(w?)2 and various values of to are shown in Figure (2.6).

For the inversion to be essentially complete for 6w • 0, the minimum
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Figure 2.6. Simulations of inversion as a function of resonance

offset, resulting from the linear frequency sweep of Equation (2.23)

of the text with k/(w~)2 • 0.2. The linear sweep consists of a con

stant amplitude rf field whose frequency is changing at a constant

rate of k/(w~)2. The overall lengths of the sweeps are 2w~to • 15.82

(a) 31.46 (b) 62.86 (c) 200.0 (d). The minimum overall length re

quired to achieve adiabatic inversion on resonance is approximately

2w?to • 100. Once inversion is achieved on resonance, it is also

accomplished over a large range of resonant frequencies. The overall

lengths of 6 (a), (b) and (c) are equal to the overall lengths of the

sweeps used to simulate inversion performance from the MIP in Figure

(2.4) when Y • 0.20, 0.10, and 0.05 respectively.
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olength of the sweep must be given approximately by 2tO = 100w,.

Inversion is achieved over a large range of resonant frequencies

because criterion 2 is satisfied for a large range of resonant

frequencies once it is satisfied for ~w = O. ~n other words, ~(!tO)

is only a weak function of ~w when 1~(!to)1 = ~/2. However it is

still criterion 2 that ultimately limits the inversion bandwidth for

any given value of to'

3. Modulated Inversion Pulse

When treated as a frequency sweep, the MIP of Equation (2.'2) and

Figure (2.3a) satisfies criterion 2 for all values of Y and ~w. This

is because ~(t) becomes infinite at the beginning and end of the

pulse. Thus, it is criterion 1 that determines whether the MIP

functions as an adiqbatically inverting frequency sweep. Recall that

the MIP was derived in Section B in such a way that the inversion at

~w = 0 is complete regardless of Y. The adiabatic nature of the

inversion is therefore expressed not by the inversion at ~w = 0, but

rather by the appearance of a large inversion bandwidth as Y

decreases.

The adiabaticity factor for the MIP with ~w = 0 is given by:

o 3/2 2 °Q(t) • [, + (cosYtanw,SinYt)] l[cosYsinY(' + tan w,SinYt)]

(2.25)

Q(t) has its minimum at taO, where Q(O) • (cosYsiny)-1. Broadband

inversion occurs when Y is less than or about equal to 0.20, as was
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seen in Figure (2.4). When Y = 0.20, Q(O) = 5.1. This result is con-

sistent with the finding that a linear sweep effectively inverts

populations only when the sweep rate k is less than or about equal to

O.2(w~)2, making the adiabaticity factor for a linear sweep greater

than or equal to 5. Thus, the adiabaticity factor appears to be a

meaningful quantity for predicting the performance of a frequency

sweep. In addition, the agreement of the adiabaticity factors for the

MIP and the linear sweep supports the contention that the broadband

properties of the MIP are due to the adiabatic nature of the inver-

sion.

A comparison of Figures (2.4) and (2.6) reveals that nearly com-

plete inversion is achieved by the MIP in less time than by a linear

sweep. The sweeps in Figur~s (2.6a), (2.6b), and (2.6c) require the

same total time as the MIP in Figure (2.4) with Y = 0.20, Y = 0.10,

and Y = 0.05, respectively. The inversion results in Figure (2.4) are

generally superior, however. Thus, the MIP is a more efficient fre-
.

quency sweep. This is because the instantaneous sweep rate, i.e. ~ is

greater at the beginning and end of the sweep than at t = O.

The fact that the sweep rate is not constant makes criterion

the limiting factor on the inversion bandwidth for the MIP. At reso-

nant frequencies for which the sweep rate is rapid as the sweep passes
.

through resonance, defined by the condition ~(t)

not satisfied and populations are not inverted.

4. Constant Adiabacity Pulse

-~w, criterion 1 is

A third class of frequnecy sweeps may be derived by making the
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restriction that Q(t) be constant when 6w O.

Q(t) q (2.26)

Based on the above discussion, such a sweep with q = 5 is expected to

be particularly efficient for adiabatic inversion.

Equation (2.26) implies:

In addition, we have:

Equations (2.27) and (2.28) imply:

osine • w, t/q

Equations (2.29) and (2.30) lead to:

o 0
, -q/w,< t < q/w,

(2.28)

(2.29)

(2.30)
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Equation (2.31) defines the desired frequency sweep, which we refer to

as the constant adiabaticity pulse (CAP). Integration of Equation

(2.31) gives the equivalent phase modulation:

(2.32)

Note that ~(t) remains finite, although ~(t) becomes infinite at t

+ / 0-q w1·

Figure (2.7) is a comparison of the frequency and phase modula-

tions of the CAP, the MIP, and the linear sweep. The specific

parameters in Figure (2.7) are chosen so that the adiabaticity factor

at t • 0 is the same for the three sweeps. For a given minimum

adiabaticity factor the CAP requires the least total time of the three

sweeps.

The adiabaticity factors as functions of time for the CAP, the

MIP, and the linear sweep with Aw ~ 0 are shown in Figure (2.8). The

adiabaticity factor has its minimum value throughout the sweep for the

CAP. The adiabaticity factor for the MIP remains close to its minimum

value for a greater portion of the sweep than for a linear sweep.

The inversion performance as a function of Aw for the CAP with

various values of q is shown in Figure (2.9). The values of q are

chosen so that the overall lengths of the sweeps in Figure (2.9) are

the same as those in Figure (2.4). The bandwidth of the CAP is

limited by criterion 1. A comparison of Figures (2.4), (2.6), and

(2.9) reveals that the MIP exhibits the best inversion performance for

equal sweep lengths.
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Figure 2.7. Comparison of 3 adiabatic frequency (a) and phase (b)

modulated pulses: the constant adiabatic pulse (CAP), the HIP and the

linear sweep. The CAP, a constant amplitude pulse, was derived from

considerations of efficiency for adiabatic sweeps. In this figure,

the parameters were chosen such that the adiabaticity factor Q(t)

defined by Equation (2.22), be equal to 10.067 for all three pulses at

t • O. The larger the value of Q(t), the more adiabatic the sweep.
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Figure 2.8. Comparison of the adiabaticity factors Q(t) with ~w = 0

for the MIP, the linear sweep and the CAP. Q(t) is defined in the

text by Equations (2.25), (2.24), and (2.26) respectively. The

efficiency of the sweep is determined by the length of time Q(t)

remains close to its minimum; the linear sweep is the least efficient

sweep.
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Figure 2.9. Simulations of inversion as a function of 6w/w~ for the

CAP. The overall lengths of the sweeps were chosen such that they

correspond to the overall lengths of the sweeps of Figure (2.4) (q =
~/2sinY, the overall length is 2q). Simulations indicate that when

Q(O) > 5, the CAP, the HIP and the linear sweep exhibit adiabatic in

version over a large range of frequencies. A comparison of Figures

(2.4), (2.5(a)(b)(c» and (2.8) indicate that the HIP produces the

best adiabatic broadband inversion for equal sweep lengths and always

inverts on resonance spins.
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D. Inversion in an Inhomogeneous RF Field

Although the MIP was derived by -considering a particular class of

inverting trajectories for a spin on resonance, Sections Band C show

that the MIP may invert spin populations over large ranges of re-

sonance frequencies due to its adiabatic characteristics. Adiabatic

sweeps may invert populations over large ranges of rf amplitudes as

well as resonance frequencies. Therefore, in this section we inves-

tigate the inversion performance of the MIP as a function of w1.

Deviations of w1 from its nominal value of w~ arise experimentally

from rf inhomogeneity and from miscalibration of the rf field. In

coherent optics, it is the laser beam profile that is the analogous

source of 'amplitude inhomogeneity.

The inversion performance as a function of w1 may be anticipated

by referring to the criteria for adiabatic inversion discussed in

Section C. For the MIP, criterion 2 is automatically satisfied, since

~(t) becomes infinite at !to• Once criterion is satisfied for w1 =

w~, it is satisfied even more strongly for w1 > w~. Therefore, it 1s

expected that essentially complete inversion may be achieved over a

large range of w1 when the MIP becomes adiabatic, i.e. for Y < 0.20.

Figure 2.10 shows simulations of inversion as a function of w1

for the MIP with various values of Y. The above predictions are veri

fied. Figure (2.11) shows a simulated contour plot of inversion as a

function of w1 and ~w simultaneously for the MIP with Y = 0.10. A

large region of essentially complete inversion is apparent.
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Figure 2.10. Simulations of inversion as a function of w1/w? for the
HIP with values of Y as shown. When Y < 0.2 (Q(O) > 5), the inversion

becomes perfect over a very large range of w1.
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Figure 2.11. Simulated contour plot of population inversion as a fun

ction of 6wand w1 for the HIP with Y • 0.10. The HIP compensates

simultaneously for resonance offset and rf inhomogeneity effects.
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For comparison, Figure (2.12) shows the inversion performance of

a linear sweep as a function of w1. Much smaller bandwidths are

achieved with much longer sweeps. For a linear sweep, criterion 1 of

Section D is again satisfied for w1 > w? once it is satisfied for w1 =

w? However, criterion 2 is not automaticallY sattsfied. Rather,

e(tO) is a strong function of w1 when /e(tO) I ;; 1T/2, so that criterion

2 is not met at large w1.

E. Generation of Discrete Composite Pulses from Continuously Phase

Modulated Pulses

It is often difficult to implement the single continuously phase

modulated pUlse experimentally. Frequently it is more convenient to

use a sequence of phase shifted rf pulses forming a composite 1T pUlse.

This section describes the method by which we approximate the contin

ous pUlse by discrete pulse sequences that have both unrestricted

phases as well as rf phases which occur only as multiples of a speci

fied value.

1. General Method of Approximation Using Magnetization

Trajectories

The goal is to arrive at a discrete pulse sequence with inversion

properties that are very similar to those of the continuously phase

modulated pulse. In the computer simulations described above, the MIP

is approximated with a large number of pUlses, each with a small flip

angle, by extracting the individual pUlse phases and flip angles from
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Figure 2.12. Simulated inversion performance as a function of tLi 1lw?

for the linear sweep with k/(w?)2 • 0.2. The overall pulse lengths

are 2w~tO· 31.46 (a),. 62.86 (b), 100.0 (c), 200.0 (d). For longer

sweeps that shown in Figure (2.10), the inversion is worse.
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4l(t) in Equation ("2.13). This was done by dividing the total time

interval into subintervals and assigning a constant phase to each sub

interval as shown in Figure (2.13a). As the number of pUlses, or sub

intervals, increases and the flip angles become smaller, this is an

increasingly accurate approximation. However, if the number of pUlses'

is small, i.e. less than 100, this is a poor approximation, par

ticularly for small Y. The spin evolution brought about by the MIP

over a subinterval is not the same as that brought about by a con

stant-phase pulse with a phase equal to 4l(t) at the midpoint of that

subinterval. Errors in the magnetization trajectory accumulate from

one subinterval to the next, so that even on-resonance spins are no

longer inverted•. Clearly, a new approximation method is needed. Our

method is based on following the on-resonance magnetization trajectory

~PM(t) •

Figure (2.13b) is a schematic representation of the method used.

The first step is to approximate the trajectory of the magnetization

by choosing points in time along it. We then calculate the constant

phase pulses that give the evolution of. the magnetization from one

point to the next. The result is a sequence of radiofrequency pUlses

or a composite pulse whose magnetization trajectory and inverting

properties are very similar to those generated from the continuous

pUlse •.

2. Pulse Sequences with Unrestricted Phases

For a 2n-1 pulse sequence, we need to choose 2n + 1 points on the

trajectory ~(t). These points are denoted by ~O' ~1'···' ~n' ••~2n.
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Figure 2.13. a) Schematic diagram of a method for approximating the

MIP by a large number of constant phase pulses. The total length of

the pulse is divided into a large number of subintervals with lengths

inversely proportional to ~(t); this is indicated by the dotted

lines. The pulse flip angles are calculated from the subinterval

lengths and the constant amplitude. Based on ,(t), a constant phase

is assigned to each subinterval. If the number of pulses is small,

this is a poor approximation. b) Schematic representation of the

method used to approximate the continously modulated pulse (MIP) by a

discrete pulse sequence. The magnetization trajectory ~PM(t) of an

on-resonance spin sUbjected to the MIP is approximated by a discrete

number of points. The flip angle and constant phase that give the

evolution of the magnetization from one point to the next are calcu

lated. The result of this "connect the dots" technique is a composite

pulse whose inversion properties are similar to those of the contin

uous pulse.
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The individual flip angles and phases of the derived pUlse sequences

are denoted respectively by e1 , ••• ,e2n- 1 and ~1' ••• '~2n-1 where e =

w?t i and ti is the length of the i th rf pUlse. We set the first point

~O = +z and the last point ~2n = -z to ensure that on resonance spins

are always perfectly inverted by the discrete pulse sequence. Then in

order to follow the trajectory as closely as possible, as indicated in

Figure (2.13b), more points are selected in the regions where ~PM(t)

spirals more. A weighting function, ~(t), which is itself a function

of Y is used to generate a set of times (t 1 , ••• ,t 2n- 1) from which the

intermediate points ~i • ~PM(ti) can be calculated.

More specifically, the intermediate points are calculated as

follows. First, we choose a value t c < 0 which represents a cut-off

time for ~(t). The means py which t c is chosen is discussed below.

We evaluate ~(tc) and calculate a set of phases (~(t1), ••• ,~(tn»

satisfying

(2.33)

Using the set of times (t 1, ••• ,tn ) calculated from the set of phases

above, we find ~1 through ~n by evaluating ~i • ~PM(ti). The-remain

ing points are determined by the symmetry of ~PM(ti); ~2n-i is

related to Mi by reflection in the xy plane. Next, we calculate the

phases and flip angles of the 2n pulses that move on resonance spins

between successive points, i.e. that connect ~i with ~i+1. A sequence

of pulses with symmetric phases and flip angles emerges. The central

two pulses can be fused into one, since they have the same phase, so
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that an odd number of pulses results.

The "connect-the-dot" method described above ensures that on-re-

sonance spins are inverted. Moreover, the fact that the intermediate

~i are chosen according to constant increments in ~(t) ensures that

more points occur where ~(t) is larger, in other words where ~PM(t)

spirals most rapidly. Thus, we achieve a good approximation to the

trajectory generated from the MIP and it may be expected that the

broadband inversion properties of the MIP will be preserved.

In this method, there are only two parameters which must be com

puter optimized in order to get the best inversion performance over

resonance offset or rf inhomogeneity effects, for a specified number

of pUlses. These are Y and t c ' the cut-off time on ~(t). They are

optimized according to a best-average criterion. This means that we

cycle through different values of Y and t c within certain restric

tions, and find the values for which the average inversion, over a

specified bandwidth of offsets or rf values, is a maximum.

Figure (2.14) illustrates three composite pulse sequences that

are optimized for broadband inversion with respect to w1. Both sim

ulations and experiments are shown. Inversion results for a single ~

pUlse are plotted as a ~eference. The inversion performance improves

for a larger number of pulses.

3. Composite Pulses with Constant Phase Increments

For reasons of experimental convenience, it would be desirable to

derive sequences in which rf phases occur as mUltiples of a constant

phase. In looking at the form of the pulse sequences derived earlier,
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Figure 2.14. Simulations (solid lines) and 1H experimental measure

ments (dots) of population inversion as a function of w1/w~ for dis

crete pulse sequences derived from the HIP using the technique

described in Figure (2.13b). Results are shown for (a) single ~ pUlse

presented as a reference; (b) 3 pulse sequence (54)90{162.8)O{54)90;

(c) 31 pulse sequence {18.3)264{4.8)185{5.3)172{5.7)159{6.3)146

{6.9)132{7.6)119 {8.5)106{9.4)93{10.6)79{12.0)66{13.9)53

(16~4)40{20.2)26{27.3)13{127.0)o{27.3)13{20.2)26{16.4)40{13.9)53

{12.0)66{10.6)79{9.4)93{8.5)106{7.6)119{6.9)132{6.3)146{5.7)159{5.3)172

(4~8)185{18.3)264. The notation is (9), where 9 and, are the flip

angles and phases or individual pulses in degrees.
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we see that the phases ~2 to ~2o-1 of the 20-1 pUlse sequence occur in

constant increments but that ~1 and ~2o-1 are arbitrary and hold no

relationship to the other phases. Our goal in this section is to

devise a method whereby we are able to specify the value of the con-

stant phase increment, as well as make the first and last pulse have a

phase that is some multiple of that increment.

In our method, the values of the phases, ~2 to ~2o-2' of the

derived pulse sequence are determined solely from the constant phase

increment used on the weighting function ~(t). The phase of the i th

pulse is calculated from the (i-1)s~ and i th point on the trajectory

by

(2.34)

By substituting the values for Mx and My of Equation (2.14) into the

above equation and using the fact $(t i ) • (n-i)$O (Equation 2.33), we

find that

where C is constant. This indicates that the times corresponding to

constant phase increments in $(t) also correspond to points on ~(t)

that may be connected by pulses with constant phase increments.

Therefore we can specify '0 to be any constant phase we desire, and

for a 2n-1 pulse sequence all the calculated pUlses from the trajec-
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tory between 2 and 2n-2 will have phases that differ by a multiple of.

·To ensure that the first and last pUlse also have a phase that is

a multiple of ~O the following procedure is used. Rather that setting

~o and M2n at Zz as before, we now choose ~2n such that the pUlse con-

necting ~2n-1 to ~2n have a phase ~2n-1 = m~O where m is an integer.

In order to still invert on-resonance spins, we also stipulate that

~2n should remain as close to -z as possible. Therefore, to find the

best position for ~2n the flip angle of the last pUlse is optimized by

setting

-1
e2n- 1 • tan (2.36)

~O is found from ~2n by symmetry. As before, the composite pUlse is

found by calculating the phases and flip angles which connect all the

points ~i'

Note that contrary to before, we no longer optimize t c and

thereby ~O' but rather ~O is chosen and t c is found from ~(tc) • n~O'

The only parameter to be varied is Y and once again the best average

criterion is used to select the pulse sequence that inverts best over

the specified range of frequencies and rf amplitudes.

In Figure (2.15), we show computer simulations and experimental

data of inversion versus resonance offset for pulse sequences gener-

ated by the above method. As expected, when the pulse sequence

becomes longer, inversion is achieved over a large range of offsets.
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Figure 2.15. Simulations (solid lines) and 1H experimental measure

ments (dots) of population inversion as a function of ~w/w1 for dis

crete pUlse sequences derived from the HIP. Results are shown for (a)

single ~ pulse presented as a reference; (b) 7 pUlse sequence

(39.6)315(68.4)180(87.9)90(275.7)0(87.9)90(68.4)180(39.6)315; (c) 11

pulse sequence (30.2)270(28.7)180(34.9)135(43.8)90(58.9)45(225.4)0

(58.9)45(43.8)90(34.9)135(28.7)180(30.2)270; (d) 15 pUlse sequence

(21.5)0(19.4)270(23.0)225(27.5)180(33.6)135(42.5)90(57.5)45(222.8)0(57.

5)45(42.5)90(57.5)45(222.8)0(57.5)45(42.5)90(33.6)135(27.5)180(23.0)225
(19.4)270(21.5)0'
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The inversion bandwidths are comparable to those achieved by recently

developed iterative techniques 21 - 22 •

F. Experimental Methods

All of our experiments were performed on a small H20(t) sample

using a homebuilt spectrometer operating at a proton resonance fre

quency of 360 MHz described in reference 34. The pulse sequence used

in the experiments consists of a composite pulse followed by a delay 1

• 100ms, followed by a n/2 detection pulse. Large static field in

homogeneity causes transverse magnetiztion to dephase during 1. The

ensuing FlD is collected and Fourier transformed to give the final

spectra. The resulting peak height is used as a measure of inversion.

The peak height resulting from a single n/2 pulse alone is used as a

calibration. A correction is made for spin-lattice relaxation during

Experimental tests of composite pulses designed for broadband in

version with respect to w1 were performed on resonance. The rf

amplitude was varied with an attenuator following the transmitter.

The length of the detection pulse was adjusted to maintain a constant

flip angle. Rf amplitudes were calibrated as in reference 23. Phase

shifts were generated by a digitally controlled phase shifter capable

of 3600 /256 phase increments, with a 3~ sWitching time. The switch

ing time required that delays be inserted between individual pUlses.

These delays do not affect inversion performance on resonance,

although off resonance performance may degr'ade appreciably.
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Experimental tests of broadband inversion with respect to the re

sonance offset required rf phases in 450 increments. This was accom

plished by mixing the outputs of the two quadrature generation

circuits in the spectrometer. Each quadrature circuit produces phases

in 900 increments. A delay line was inserted between the two

circuits, producing a phase difference of 450 between them. A vector

voltmeter was used to determine the length of cable needed. The quad

rature circuits were driven by a variable IF, allowing the·resonance

offset to be adjusted. The detection pulse was generated indepen

dently with a 30 MHz fixed IF source and maintained on resonance. All

experiments were performed with w?/2n • 10kHz. A schematic drawing of

this setup can be found in reference 35.

G. Summary

We have described a general analytical procedure for deriving

continuously phase modulated pulses that result in coherent population

inversion on resonance. In the general case, both the phase and

amplitude of the inverting pUlse can be modulated continuously. Here,

however, we have focussed on a class of constant amplitude, phase

modulated pulses characterized by a single parameter Y, the depth of

modulation. For small values of Y, when the phase modulation is

deepened, the modulated inversion pulse (MIP) inverts spin populations

simultaneously over large ranges of resonance frequencies and rf

amplitudes.

We have proposed that the inversion behavior can be explained by
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treating the MIP as an efficient adiabatic sweep. To support this,

the simulated inversion performance of the MIP is compared to two

other adiabatic sweeps in light of two criteria for adiabatic inver-

sion. One sweep is the commonly cited linear frequency sweep and the

other is a constant adiabaticity pUlse derived directly from con-

siderations of efficiency for adiabatic inversion. Comparisons indi-

cate that the broadband properties of the MIP are in fact due to the

adiabatic nature of the pulse and that for equal sweep lengths the MIP

has superior inversion properties.

Having established the adiabatic properties of the MIP, we then

present a method for generating a sequence of phase shifted rf pUlses

from the continuously phase modulated pUlse. The composite pUlses are

calculated directly from the magnetization trajectory followed by on'

resonance spins subjected to the MIP. Selected points are chosen

along the inverting trajectory and the corresponding constant phase

pulses needed to connect these points are found. The broadband

properties of the MIP are retained by the discrete pulse sequences,

which can then be implemented on most modern NMR spectrometers. This

approach connects modulated transparency and inversion pUlses used in

optics with composite pulses of NMR.
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H. Appendix

In this appendix we treat the problem of finding rf pulses that

cause on-resonance magnetization to follow a given trajectory. The

trajectory in the FM frame is defined by a function ~(€), where M is

the unit magnetization vector in Equation (2.7). In the special case

of Equation (2.9), € was a polar angle. In general, € is simply a

variable that parametrizes the trajectory. Here we require that € lie

in a unit interval. We make the restrictions that ~(€) be continuous

and differentiable. These restrictions are consistent with the physi-

cal requirements that the trajectory be smooth and unbroken. A

piecewise-differentiable trajectory may be treated by considering each

piece separately.

With the rf amplitude constant and equal to w?, the task is now

to determine £(t) and ~(t). With the definition:

dM-
11 • -
s; d€

Equation (2.8) becomes:

leading to:

(2.37)

(2.38)
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(2.39)

E = - (2.40)

Equation (2.39) gives the phase modulation as a function of €.

Equation (2.40) gives t as a function of €:

t - -J: (2.41)

Inverting.Equation (2.41) gives € as a function of t, which completes

the derivation of the phase modulation.

The phase function obtained in this way produces the desired

otrajectory for 6w • 0 and w1(t) • w1. For non-zero values of 6w, the
.

same trajectory may be produced by subtracting the constant 6w from $

in Equation (2.39). Of course, this is equivalent to shifting the rf

carrier frequency. The phase function that corresponds to an

amplitude modulated pUlse can be derived according to the discussion

in Section II.D.

Finally, it should be realized that not all trajectories are

obtainable. In particular, there is no pUlse that produces the

desired trajectory if t is not a monotonic function of € in Equation

(2.41).
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III. MULTIPLE-QUAMTUM NMR IN SOLIDS: THEORY AND EXPERIMENTAL

CONSIDERATIONS

A. Introduction

Most applications of 1H multiple-quantum NMR spectroscopy have

necessarily been limited to small spin systems in isotropic or par

tially oriented phases, where the size of the system is clearly

defined by the nature and extent of the spin-spin couPling. 1,2,3 In

liquids, for example, only indirect scalar coupling remains after

anisotropic interactions have been averaged to zero by rapid isotropic

molecular motion. If instead, the molecules are dissolved· in a

nematic liquid crystal, translational freedom is retained but re

orientation via tumbling is restricted so that intramolecular dipolar

coupling becomes the principal interaction among the spins. In either

case the spin-spin interactions are short range, and the system

usually remains small enough to be characterized by a density operator

that can be constructed from a finite, manageable number of basis

operators. 4 In this regard, expansions based on fictitious spin-1/2,5

spherical tensor,6 and product 7 operators have proved quite useful for

describing many experiments involving multiple-quantum effects. Among

the numerous applications reported to date have been methods to sim

plify complicated single-quantum spectra,8 determine spin connectivity

and tOPology,9 obtain high-resolution spectra in inhomogeneous magnet

ic fields,10 and facilitate coherence transfer and indirect detection

in systems containing magnetically rare nuclei. 11 On the other hand,
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the extension of 1H multiple-quantum spectroscopy to strongly coupled

solids, where the coupling network includes all the spins in the

sample, has also been illustrated recently.12 This work has demonstr

ated that high order multiple-quantum coherences can be prepared-and

detected in solids, provided that time reversal excitation is used to

counter the effects of dipolar dephasing. 13

In this chapter, the basic principles of mUltiple-quantum NMR are

described in Section B, and the need for time-reversal excitation in

solids is motivated and explained in Section C. Time reversal excita

tion requires specialized pulse sequences: their design, using

average Hamiltonian theory, is presented in Section D. Experimental

considerations for the implementation of multiple-quantum NMR in

solids are given in Section E. These include the actual experimental

pulse sequence used in Chapter IV, the tune-up procedure, and the

spectrometer implementation.

B. Generalized Multiple Quantum NMR Experiment

The general form of a two-dimensional mUltiple quantum NMR exper

iment is shown in Figure (3.1).14,15 The pulse sequence is parti

tioned into four distinct periods each characterized by a time vari

able: preparation (t), evolution (t 1), mixing (t) and detection (t 2).

The multiple-quantum coherences are prepared during the preparation

period t, after which they evolve freely in the presence of local

dipolar fields for a time t 1• These unobservable mUltiple-quantum

coherences are converted to observable single quantum coherences dur-
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Preparation Evolution Mixing Detection

Prapagator: . J u I exp (-IH,t,) I V I exp (-i H2 t2)

Time variable: t' tl t" t2

XBL 853-10124

Figure 3.1. General form of the two-dimensional mUltiple-quantum

pulse sequence. Multiple-quantum coherences are created by the pre

paration period propagator, U(t), and respond to local fields during

the evolution period t 1• The mixing period propagator, V(t), trans

fers multiple-quantum coherence to single-quantum coherence for detec

tion during t 2•
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ing the mixing period t ' , after which either a single point or a full

free induction decay (FlO) is sampled during t 2• The entire experi

ment is repeated for different values of t 1 to map out the multiple

quantum interferogram. Complex Fourier transformation with respect to

t 1 results in a multiple quantum spectrum, an example of which is

shown in Figure (3.2). In the following sections, all four periods

will be examined in detail to clarify their functions.

For simplicity, a form of the multiple quantum experiment cons-

isting of only three pulses (Figure 3.3a) is considered first. The

internal Hamiltonian considered here is

where Hzz is the dipolar coupling term and Hz the chemical shift or

resonance offset term. The dipolar coupling is

23cos 8ij -1

2
(3.2)

for a homonuclear interaction.

1. Preparation Period

The pulse sequence during this period determines the form of the
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Figure 3.2. l H mUltiple-quantum spectrum of adamantane. In multiple

quantum NMR, coherences between states IMi > and IMj > are established

where the total Zeeman quantum number, 6M • Mi - Mj • n, is equal to

any integer value up to N, the number of spins in the system. In a

solid, individual transitions within each order can not be resolved,

resulting in broad lines. Very high mUltiple-quantum orders, n, can

be created by using time-reversal excitation.

<;
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Figure 3.]. Pulse sequences for multiple-quantum NMR: a) Basic three

pulse experiment suitable for systems where individual transitions can

be resolved; b), c) and d) Time-reversal sequences used for solids.

The prepara~ion and mixing periods are composed of 8 w/2 pUlses of

length t p with delays as indicated. This combination of pUlses and

delays creates a two-quantum average Hamiltonian, HD~O) • 1/3(Hyy 

Hxx ) under which coherences of even order can develop. Time-reversal

excitation is accomplished by phase-shifting all of the preparation

pertod pulses by w/2. Therefore, when the phases of the pUlses are x

and x, the sequence produces HD(O) • 1/3(Hyy - Hxx ); during the

mixing period, when the phases of the pulses are y and y, the

Hamiltonian becomes -1/3(Hyy - Hxx)' i.e. the negative of the prepara

tion period Hamiltonian. The differences between the sequences are

discussed in detail in Section D of the text. The total prepara

tion/mixing time t is achieved by repeating the basic pulse cycle m

times. To separate the mutliple-quantum orders, the preparation

period pulses are incremented by a phase ~ for each value of t 1•

About 2 ms after mixing, the z-component of the magnetization is

monitored with standard detection schemes shown in Figure (3.7). The

entire sequence is repeated for different values of t 1 to obtain the

multiple quantum free induction decay. Fourier transformation with

respect to t 1 then yields the mUltiple-quantum spectrum.
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multiple quantum excitation. Even selective (n=O,±2, •• ,±N), odd

selective or both; selective excitation of only one multiple quantum

order, etc ••• are just a few examples of the possible or desired

schemes.'-3 'The preparation period addressed here is an even selec-

tive sequence of the form (n/2)x - t - (n/2)x. The propagator, U(t),

for this sequence is:

U(t) - exp (i~I ) exp(-iH. tt) eXP(-i~21 )2 x ln x

and assuming no resonance offset, Aw-O, U(t) becomes

U(t) - eXP(i~2I ) exp(-iH t) eXP(-i!2I )x zz x

(3.3)

(3.4)

Two ways can be invokeQ. to understand what happens to the equilibrium

density matrix under this pulse sequence: either a step-by-step

approach or an effective Hamiltonian approach both leading to the same

result can be employed. The latter is the more convenient, although

the former will be examined in order to gain insight into single

quantum NMR. The equilibrium density operator, proportional to I z , is

acted on by a (n/2)x pulse to give I y which then evolves freely under

the internal Hamiltonian Hzz for a time t, resulting in

pet) - exp(-iH t)I- exp(iH t)zz y zz

If pet) 1s expanded in the outer product eigenbasis {IMi><Mj Il,

described in Chapter I, Section C.3.b. then
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~-

(3.6)

where Wij • (wi - Wj)' is the difference in energy between IM i > and

IMj >. The most important point to note is that since 1y = -1/2 [1+ 

1_J only states differing by 6M = ~1 can be connected. Only single-

quantum transitions are induced by a single w/2 pulse.

A second way of viewing the same event is to expand pet) into

products of single-spin operators which were described in Chapter I,

Section C.3.c. 7 Equation (3.5) can be rewritten as

p( ~) • 1- i [I H J - !'t2 [ [1- H J H J .• y + t Y, zz 2 y , zz' zz + •••

Evaluation of the nested commutators results in products of operators

such as 1y1 ' Iz2 '" Izq where q, the number of interacting spins,

ranges from 1 to N. Only single-quantum/multiple-spin terms can arise

from this density operator. Conversion of the single-quantum cohere-

nces to mUltiple-quantum coherences is accomplished by the second

(w/2\ pulse.

Rather than having the pulses act on the density operator step by

step, it is mathematically more convenient to let the pulses act on
,

Hint to create an effective Hamiltonian Hint'

(3.8)
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In this case, rotating Hzz by n/2 about the x axis results in

(3.9)

The rotated dipolar Hamiltonian, Hyy ' contains both zero quantum oper

ators from Hzz and double quantum operators of the form I+iI+ j + I_iI_ j

from the second term of Equa~ion (3.9). The preparation period·

density operator becomes

(3.10)

• I z

The density operator now contains multiple-quantum/multiple-spin

terms. Because Hyy is a pure zero/double quantum operator, the

density operator of Equation (3.11) will excite only zero or even-

quantum coherences. Most importantly the Hamiltonian under which p(O)

evolves must contain bilinear operators to excite multiple quantum

coherences.



84

2. Evolution Period

Multiple-quantum coherences cannot be detected directly. Since

the detection coil is only sensitive to single spin operators I+ or

I_, multiple quantum coherences, for example operators of the form

I+,I+2I_3••• I+q , are not observable. A method of indirect detection

is used: the multiple quantum coherences evolve under an internal

Hamiltonian for a time t" the frequency information is then stored

and later retrieved during the detection period in t 2• The evolution

of the coherences depends entirely on Hint.

The density operator after a time t, is

where Plj(t) - <M1Ip(t)IMj>. Each multiple-quantum coherence between

IMi > and IMj > is frequency labelled by Wij' the energy difference

between the two states.

Now the density operator after a time t, is:
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• 1: e-nLlwt 1 Pij (t) IMi ><Mj I
i ,j

This equation indicates that a multiple quantum coherence between IMi >

and IMj > oscillates at n times the frequency offset rather than the

actual frequency offset, Llw. A schematic drawing is presented in

Figure (3.4). The n-fold increase in oscillation frequency is used"in

a number of experiments: in particular, it forms the basis of the NMR

imaging experiments in solids16 described in Chapter 5, and also forms

the basis of the method of time proportional phase incrementation,

which is used to separate multiple quantum orders in a spectrum.

c) Time Proportional Phase Incrementation17

Effectively, the internal Hamiltonian becomes Hint • Hzz + Hz and

the density operator evolves as

(3.14)

Clearly without the second oscillating exponential in the equation the

different n-quantum coherences would not be readily distinguishable.

Performing the experiment with a large enough resonance offset is in-

convenient; instead a trick is used. The overall phase of the

preparation period is incremented proportionally to t 1 , i.e. Ll~·

Llw't 1• This artificially introduces a resonance offset term, Llw',

into the evolution period. Formally, incrementing the phase of each
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y y

Figure 3...4. An n-quantum coherence between IMi > and IMj > oscillates

at n times the frequency offset, 6w, rather than the actual offset 6w.
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pulse by A~ corresponds to an overall phase shift of the propagator

U(T). If the phase of the pulse was I~, now it is I~+A~' where

The propagator for the pulse is

-i-2~(exP(-iA~I )I~exp(iA~I »
exp(-i! I~+M» • e z 'f' z

2

as a result of the relationship

The preparation period propagator becomes

•
UA~(T) • eXP(-i~I~+A~) exp(-iHzzTJ eXP(i~I~+A~)

(3.16)

(3.17)

(3.18)

• exp(-iA~I ) U(T) exp(iA~I )z z

since [Iz , Hzz] • O. Therefore, the initial propagator is phase

shifted by A~ around I z ; because it is phase shifted proportionally

to t 1, so that
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~~ = ~w't
1

the density operator after t 1 is

SUbstituting Equations (3.18) and (3.19) into the above, the density

operator becomes

(3.21)

which is equivalent to Equation (3.14). Now the different mUltiple-

quantum coherences oscillate at n~w' and are readily separated by

Fourier transformation.

3. Mixing Period

Multiple quantum coherences are converted to detectable single

quantum coherences during the mixing period. There exists a basic

sYmmetry between the preparation and mixing periods, collectively

called excitation periods. Similarly to the preparation period, two

approaches can be used to examine the effects of the mixing period.

Either one pulse is applied to the system and then single quantum

coherences evolve under the dipolar Hamiltonian, for a time .', into
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observable signal proportional to I+; this approach is similar to the

step-by-step analysis of the preparation period. Or else the multiple

quantum experiment is considered to be a four pulse experiment with

the detected operator now proportional to I z • The latter is more con

venient formally, since the mixing period propagator V(t') can now be

written as

(3.22)

V(L') is very similar in form to U(t), the preparation period propaga-

tor.

4. Detection Period

The multiple quantum signal for a preparation time t and a fixed

evolution time t, can be detected at this point. The signal is

s(t) • Tr {Izp(t)} (3.23)

• Tr[IzV(tt) exp(-iHzzt,) U6,(t)P(O)U~~(t)exP(iHzzt,)V-'(t')]

The trace is invariant to cyclic permutation, and when p(O) = Iz '

Expanding the trace in the eigenbasis of Hzz results in the expression
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(3.25)

and

By repetition of the experiment for different values .of t 1, a multi-

pIe-quantum free induction decay is mapped out. The signal of a

multiple quantum coherence between IMi > and IM j > is characterized by:

1) a complex amplitude, Qji(-T)Pij(T), with magnitude and phase.

2) a transition frequency: Wij

3) an order dependent offset term: n6w.

The final step is to Fourier transform the signal with respect to t 1•

C. Multiple-Quantum Intensities

1. Statistical Model for Line Intensities

A simple estimate for line intensities assumes that each symmetry

allowed coherence will have the same magnitude but random phase. 18

Therefore, in this statistical limit, all symmetry-allowed transitions

are excited equally.19 The integrated spectral intensity per order is

the intensity per transition times the number of allowed transitions.

The number of allowed transitions are calculated from the energy

levels as follows. N coupled spins-1/2 produce 2N energy levels char-

acterized by their total Zeeman quantum number M as shown in Figure

(3.5). The energy levels are divided into N+1 Zeeman manifolds with
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M - -2- j~ -.
M -1

I--
T l'
I I

M - 0-
• lI

M - 1-
M - 2 :-

Figure 3.5. Energy level diagram resulting from 4 coupled spins-1/2.

The Zeeman manifolds are characterized by their total Zeeman quantum

number. M. The number of states within each manifold is given by

Equation (3.26) which describes the number of ways of choosing pout

of N spins to be "up" ·instead of "down", where p • N/2 + Mi. The

number of multiple quantum transitions of order 6M • n is given by the

sum over the products in Equation (3.27). As an example, for 4

coupled spins, there is one 4-quantum transition and 28 two-quantum

transitions. Clearly the number of n-quantum transitions decreases

with increasing order.
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splittings due to dipolar couplings or chemical shifts occurring

within each manifold. The number of states is given by

within each manifold. In this equation p is defined as the number of

spins pointing "up", consistent with the value of Mi. Ignoring

symmetry, the number of multiple quantum transitions of order n is

given by a sum over the products,20

N-n (N)( N )
p:o p n+p.

which is equivalent to

n~O,

n;O

(3.27)

(3.28)

The number of zero-quantum transitions is equal to

,
2

Using Stirling's approximation, the number of n-quantum transitions is

N .
4 2

(Nn)'/2 exp(-n IN) when n;O (3.30)

for large Nand n«N. The number of transitions drops off in a

Gaussian manner and the statistical model predicts that the integr-

ated intensities will therefore decrease rapidly with increasing

order. In Chapter IV, this model is used to account for the multiple-
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quantum intensities.

2. Time-Reversed Excitation in Solids

The intensity of a multiple quantum coherence between IMi > and

IMj > is characterized by the product of the two complex numbers,

Qji(-T)Pij(T), of Equation (3.25). Figure (3.6) shows the multiple

quantum spectrum of benzene oriented in a liquid crystal. Within each

order n, the phases of the individual transitions differ relative to

one another. But, as long as the individual transitions do not

overlap, a magnitude spectrum can be used to calculate the integrated

intensities.

However, in a solid, essentially an infinite spin system, the

number. of multiple quantum· transitions within a particular order is

very high. This is readily calculated from Equation (3.28) - for

example, already for the six spin system of Figure (3.6), the number

of single-quantum transitions is 972. Therefore, in a solid, where

the size of the system· is essentially unlimited, the numerous multi-

ple-quantum transitions will overlap and destructive interference will

drastically reduce the integrated mUltiple-quantum intensities within

an order n. As a result, high multiple-quantum orders, although

present, will not be visible. To overcome this problem, all lines

within an order should be generated in phase. 2,12 This condition is

attained by using a time-reversed mixing period, which imposes the

+condition U • V ; i.e. the preparation period propagator must be equal

to the hermitian conjugate of the mixing period propagator. When U =
+V , the intensity of an individual transition becomes:
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Figure 3.6. Multiple-quantum spectrum of oriented benzene (14 wt %in

Eastman nematic liquid crystal I 15320 at 24.00 ) obtained by Warren

warren~8 When individual transitions within each order can be re

solved, as here, the wide range of phases apparent in part (a) does

not affect the integrated intensity of each order. A magnitude

spectrum (b) can be obtained and shows only slight broadening.

However, in a solid, where the number of transitions is essentially

continuous, overlapping lines with different phases will drastically

reduce the integrated n-quantum intensities. To overcome this

problem, all lines within an order are generated in phase by using

time reversal excitation.
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~-

(3.31)

The Hamiltonians acting during the preparation and mixing periods

will be denoted Hp and HM, respectively. The propagators are

1) U(L). e-iHpL

2) V(L). e-iHML

When U(L) • ·V+( L) • V-1(L), ·then Hp • -Hw Time reversal, in this

context, means reversing the sign of the preparation period

Hamiltonian to create the mixing period Hamiltonian. Now the in-'

tensity of a multiple quantum transition will be characterized by

IPij(L)1 2, a real number, rather than Pij(L)aji(-L), a complex number.

Therefore, within an order, different multiple quantum transitions

will have different magnitudes but the same phase. We have obtained

very high multiple quantum coherences in a solid by using a time re~

versed mixing period. The mUltiple quantum spectrum of adamantane in

Figure (3.2) is an example of a system in which 64 orders and beyond

have been excited. 21
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D. Pulse Sequence Design

Experimentally, a very convenient Hamiltonian that can be used to

create mUltiple-quantum coherence in solids is22

H(O) = l(H - H )
D 3 yy xx

where

1
I j _+ • =F - (I2 jx

Thi-s Hamiltonian contains only double-quantum operators, as opposed to

Hyy ' which contains both zero and double quantum operators. To create

the time-reversed mixing period, i.e. change the sign of the

Hamiltonian, a simple phase shift of ~/2 about the z-axis is needed:

exp(-i~ I )(H -H )exp(i~ I ) • H -H- z yy xx - z xx yy2 2

Note that a ~/2 phase shift appied to Hyy does not create (-Hyy )

because the zero-quantum operators existing in this Hamiltonian

(Equation 3.9) are invariant to z rotations. A variety of pUlse

sequences can be used in order to create the average Hamiltonian of

Equation (3.32) under which coherences of even order can develop. In

solids, the o-pulse limit, where Hint is assumed to be much less than

Hrf , is not a good apprOXimation. Therefore, evolution during the



97

pulse and finite pulse widths will .be assumed for the design of these

pulse sequences.

A simple semi-windowless sequence which can be constructed is

shown in Figure (3.3b). Here eight pulses of length t p separated by

delays t p ' as shown, result in the average dipolar Hamiltonian of

Equation (3.32). In fact, only four pulses are really needed to

create the desired average Hamiltonian but eight are used for purposes
/

of symmetrization. In the toggling frame, I z moves through the

sequence

(Zy) (YZ) (ZY) (YZ) (ZY) (YZ) (ZY) (YZ) (3.34)

wi th delays t p as indicated. A very brief descri.ption of average

Hamiltonian theory and the notation used here is given in Chapter I,

Section E. The sequence is symmetrized about the midpoint of the

cycle with respect to both the resonance offset and dipolar

Hamiltonians. The resulting average Hamiltonians and higher order

correction terms are

H(O) • 1 (H - H )o 3 yy xx

- (1)
H 0

-(3)
• H o . ... -

H-(O) • 0
OFF
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H-{2n-1) .. 0
= OFF

H
-{O) .. 0
rf

The third pulse sequence shown in Figure (3.3) is very similar to

the first but now delays, denoted by 6 and 6', have been included in

order to provide more control to the experimentalist. The delay 6'

still includes the delay t p from Figure (3.3b). Therefore, when 6' =

26 + t p ' the average dipolar Hamiltonian is once again 1/3{Hyy - Hxx ).

The odd order correction terms, average resonance offset and rf in-

homogeneity Hamiltonians are still identical to those of Equation

<3.35).

A third variation of the pulse sequence is shown in Figure

<3. 3d) .22 Now, in the toggling frame, I z moves through the sequence

(Zy) (YZ) (ZY) (YZ) (ZY) (YZ) (ZY) (YZ)

with delays 6 and 6' as indicated. Although

H{O) • 1 (H - H )
D 3 yy xx

(3.36)

-(3)
• HD

. ... . H-{2n-1) .. 0
D



H-(O) .. 0
OFF

H-(O) .. 0
rf

and
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now the sequence is no longer symmetrized for resonance offset and the

odd order correction terms to the average resonance offset Hamiltonian

are no longer zero. But the sequence is symmetrized for rf inhomo-

geneity resulting in

• O. (3.38)

In summary, for all three sequences (b,d)Hj)(O). 1/3(Hyy -Hxx )

and the odd order correction terms to HO vanish; the resonance offset

and rf inhomogeneity average Hamiltonians are both zero. The differe-

nces between the sequences arise from the correction terms to these

average Hamiltonians: in sequences (b) and (c) all odd order correc-

tion terms to the offset Hamiltonian are zero whereas in sequence (d),

the odd order correction terms to the rf inhomogeneity Hamiltonian are

zero. We designed sequences (b) and (c) to overcome resonance offset

effects which are particularly important in mUltiple-quantum imaging

experiments ,in solids described in Chapter V. Here, coherences must

be prepared in the presence of large offsets created by the imposition

of an external field gradient. In the experiments described in the

next Chapter, sequence (c), rather than sequence (b), was used as it

was found to be more convenient experimentally. Sequence (d) was also
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.employed in a few instances and is more appropriate when rf inhomo-

geneity is a serious problem.

E. Experimental Implementation

1. Preparation Period

Although the density operator prepared at time 1 contains

predominantly even-order coherences, pulse imperfections can lead to

the creation of unwanted odd-order coherences. These can be reduced

by cycling the phases of all pulses in the preparation period between

00 and 1800 in alternate experiments, and co-adding the resulting

signals appropriately.23 In addition, it is necessary to label the

orders of coh~rence by using the method of TPPI discussed in Section

8.1.c.

2. Evolution period

During the evolution period, the system responds to the internal

Hamiltonian,

H • H + Hint z zz

where Hz formally contains an order-dependent offset term resulting

from TPPI. The interferogram is mapped out point-by-point for succes-

sive values of t 1• The spectral width of the multiple-quantum

spectrum is given by 1/6t1 , and the number of orders detected, (~nmax

+ 1), is determined by the phase increment, 6, • 2~/(2~ax + 1). Both
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At, and A~ must be chosen so that all signals from different coherence

orders fit into the available bandwidth without aliasing and without

overlapping•. The actual values of At, and A~ will be given along with

the multiple-quantum spectra shown in the next chapter.

3. Mixing Period

The time-reversed mixing period is implemented by phase shifting

all of the preparation period pulses by 900 • The mixing period then

contains pulses with phases y and y. As a result, the average mixing

period Hamiltonian is the negative of the average preparation period

Hamiltonian of Equation (3.32). The 900 phase shift in the mixing

period is chosen relative to the phase of the preparation period at t 1

• O. In other words, it is independent of the incremented phases in

the preparation period due to TPPI. As seen in Equation (3.21), the

effect of the phase increment can be formally removed from the

preparation period and placed in the evolution period. As a result,

these phase increments do not affect the phase shift needed for the

mixing period.

If, at t 1 • 0, the mixing period is not 900 phase shifted from

+ +the preparation period, then U ~ V , but V is still related to U by a

rotation around z:

(3.39)

By sUbstituting Equation (3.39) into Equation (3.24), the multiple-

quantum signal takes the form
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<3.40 )

Expanding the trace in the eigenbasis of Hzz results in

S(t) .. t' I () 12 e-inBe-iwijt1
to Pij t

i ,j

Now there exists a phase term, nB, which determines the overall phase

of each order. For instance, when B .. 900 , in other words when the

preparation and mixing periods appear to have the same phase, then all

even orders will be 1800 out of phase. It is important to note that

within each order, the· phases of the individual transitions are all

the same due to /Pij(t)1 2 , a real number. When TPPI is included, the

signal becomes

set) .. E
i ,j

-inaw'te 1 <3.42)

The multiple-quantum orders, n, are separated by aw' and their phases

relative to one another are determined by B.

4. Detection Period

After mixing, a 2 ms delay is inserted, during which spurious

transverse magnetization is allowed to decay. The desired signal is

stored as population information along the z-axis. At this point, the
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signal can be detected in many ways. Three schemes are presented in

Figure (3.7). The first is just a simple ~/2 pUlse. In solids, where

the FIO decays very rapidly, receiver ringing and pUlse breakthrough

may distort the signal. A better detection scheme is shown in Figure

(3.7b) where a (~/2)x detection pulse is followed by a 100~s spin-

locking pulse along y. Now spin temperature inversion, achieved by a

1800 phase alternation of the detection pUlse, can be used to reduce

artifacts arising from receiver ringing. A single point in t 2 in then

sampled for each value of t 1 , with the width of the single-quantum

spectrum determining the optimum receiver bandwidth.

The third detection scheme shown in Figure (3.7c), a pulsed spin

locking sequence24 of the form

results in a large increase in signal to noise over the earlier

methods. The pulsed spin-locking is useful for signal enhancement in

samples containing low 1H concentrations. To obtain the maximum

signal, the optimal value of e is roughly 450 and the delay between

pUlses 40 ~sec. One point is sampled after the first pUlse and after

each ey pulse: usually 512 or 768 spin locked points were acquired,

subject to the constraints of the T1p of the material.2~ All these

points are then averaged together to give a final amplitude for a par

ticular value of t 1• Again, 1800 phase alternation of the detection

pUlse is used to reduce reviever ringing artifacts. The entire

sequence is repeated for different values of t 1 to obtain the multiple
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SOX

a)0 _

b)

-
c) •••

....
L........------&.....----...........--t... 1---..........------

Figure 3.7. Detection schemes used to monitor the final z magnetiza

tion in the mUltiple-quantum experiment in solids~ Figure 3.4.

describes the pulse sequences up to this point. a) single 90x pulse

used in experiments of Chapter IV, Section B.3. b) a 90x detection

pulse followed by a 100 ~sec spin locking pulse along y. This

sequence is preferable to (a) as now 1800 phase alternation of the

detection pulse can be used to reduce artifacts from receiver ringing.

For each value of t 1, the magnetization is sampled twice: once with a

90x detection pulse and once with a 90~ detection pulse, both followed

by the spin locking pulse along y. These two points are then sub-

. tracted from one another to produce a final point for the t 1 value.

c) pulsed spin locking sequence useful for signal enhancement in

samples containing low 1H concentrations. Again, as for (b), 1800

phase alternation of the detection pulse is used to reduce artifacts

from receiver ringing.
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quantum free induction decay.

5. Tune-up Procedure

Usually the sequence of events which leads to the mUltiple

quantum experiment are the following.

a) Pulse amplitudes and phase are set carefully on a small water

sample (either a capillary tube or a spherical bulb) with standard

tune-up sequences. 26 ,27

b) The preparation and mixing periods of the mUltiple quantum

pulse sequence are placed "back-to-back" by setting t 1 • 0 and 6t1 = 0

for a fixed preparation time~. The experiment is then reduced to a

simple time reversal procedure. Clearly, if the sequence was working

perfectly, then the si~al obtained by applying a ~/2 pUlse after the

"back to back" sequence would be the same as the signal obtained from

only a single ~/2 pulse. In order to improve the overall performance

of the time-reversal sequence on a solid sample, the amplitude of the

rf pulses are adjusted, either on the amplifier itself or with a

variable attenuator placed in the rack, to obtain maximum signal.

c) In addition, an optimum cycle time t c must be found for the

sample being studied., The best t c is selected by varying the delays 6

and 6' between pulses to optimize the signal for a fixed value of t.

In other words, if ~ is chosen arbitrar~ly at 600 ~sec for instance,

then two cycles times that may be compared are a 60 ~sec cycle applied

10 times or a 40 ~sec cycle time applied 15 times. The one resulting

in the largest signal at 600 ~sec is considered to be the better cycle

time. Generally, the longer cycle time applied fewer times appears to
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work better. At long t, signal losses occur because the time reversal

sequence begins to fail: pulse imperfections and effects due to

higher-order correction terms accumulate over many cycles, and the

subsequent degradation in performance ultimately reduces the SIN in

the multiple q~antum spectra.

6. Spectrometer Implementation

Experiments were performed on two home-built spectrometers oper

ating at 1H Larmor frequencies of 360 MHz and 180 MHz. 28 ,29 Both

spectrometers are equipped with quadrature phase generation circuits

that produce rf pulses with relative phases of 00 , 900 , 1800 , and 2700

at 30 MHz intermediate frequency. Additional phase shifts needed for

TPPI are generated by a 30 MHz 8-bit digital phase shifter in series

with the quadrature generation network.

The pulse programmer for each spectrometer is governed by a 10

MHz clock, which limits the minimum increment in t 1 to 100 nsec. When·

additional bandwidth is needed to accommodate the mUltiple-quantum

sepctrum, we use a home-built delayed clock generator to shift the

phase of the clock pulses by one, two, or three quarter-cycles. In

crements of 25, 50, 75 nsec thus become available, increasing the

bandwidth to 40 MHz. Ultimately, the performance of the experiment is

limited by the accuracy of the phase shifter. 30

a. Phase Shifter

The key element in the multiple-quantum experiments is the

digitally controlled phase shifter. It is described in detail in
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references 28 and 29. Here, the actual steps occurring in the

experiment are described, with aid of the schematic diagram of Figure

(3.8). At the top of the figure, the phases of the pulses as they

must ultimately appear in the pulse sequence are shown. For each

value of t 1, the experiment is repeated twice: once the version of

part (a) is used and then, for purposes of eliminating the odd

multiple quantum orders and artifacts due to receiver ringing,

sequence (b) is used. (b) is subtracted from (a) to obtain the final

signal amplitude for the value of t 1• The differences between (a) and

(b) are that the phase of the preparation period pulses have been

shifted by 1800 as well as the phase of the detection pUlse.

To implement pulse sequences (a) and (b), the quadrature gates

and phase shifter are set up as shown at the bottom of Figure (3.8).

The quadrature phases for sequences (a) and (b) always remain the same

and the phase shifter is used to make the appropriate changes. When

the phase shifter is set in increment mode, then the output phase is

the sum of the value on the increment counter plus the value loaded in

the RAM. Initially the RAM phase is set to 00
• The increment counter

can be increased by the amount shown on the thumbwheel switches each

time the backpanel INC is strobed. This feature is .used to regularly

increment the phases of the preparation period pUlses for TPPI. To

switch between the phase shifted preparation period and the fixed

phase mixing period the control word can be toggled, by strobing the

TOGGLE gate during the evolution period, between the sum mentioned

above and the value indicated on the manual thumbwheel switches. In

these experiments, the value on the manual side is set to 100 (= 900 )



108

PULSE SEQUENCE

a) (XXXl<Xxxx)</>

Phase cycling to
eliminate odd
multiple-quantum orders

Quadrature gates

XXXl<XXXX

Phase shifter

Increment Switch to
a) mode for TPPl manual

ram phase _ 0° (2.5 "sec)

YYY'ii"ijyy

Spin temperature
inversion to eliminate
receiver. ringing

IMPLEMENTATJON

XXXl<XXXX

Manual mode
phase shift
quadrature
output by 90°

L..._~ 'It-,---

....-....l,. '''"<---

Switch to
increment mode
increment phase
in ram by 1800

....----'. ""<---

Incr. mode
b) ram phase 

1800

Switch Manual

Reset ram
phase - 00

Switch to incr.
mode

'---~'''",---
XBL 861-299

Figure 3.8. Schematic diagram of the time-reversal multiple-quantum

pUlse sequences. For each value of t 1 , the experiment is repeated

.twice, and sequence (b) subtracted from (a) to obtain the final signal

amplitude. To implement the experiment, the phases of the pUlses at

the output of the quadrature gates and the digitally controlled phase

shifter are set up as shown. For parts (a) and (b) of the experiment,

the quadrature phases remain the same and the phase shifter is used to

make appropriate phase shifts. The details are described in Section
.E.6.
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in order to impleme~t the time-reversed mixing period. The phases of

the pulses, which were x and x at the output of the quadrature box,

are now y and y at the output of the phase box. A settling time of

roughly 2.5 ~sec is needed after toggling between increment and

manual. For detection, a fixed phase is still needed, therefore the

phase shifter remains on manual. The detection pulse appears as x

followed by spin-locking pulses along y. Now part (a) of the

experiment has been performed. To execute part (b), the control word

is toggled back to increment and the phase in the RAM is incremented

by 1800 by applying a logic pulse to the backpanel RAM BNC. This

occurs during the recycle delay period of part (a). Now the phase of

the preparation period is again the sum of the increment counter plus

the value loaded i.n the RAM, which is 1800 : the phases which were

(xxxxxxxx) are now (xxxxxxx). Again the control word is switched;

during the evolution period, to the Manual side. The detection pUlse

which is y (x after the manual phase shift) is changed by a loop

counter in the pulse program. The same sequence of events is then

repeated for different values of t 1 ~ During the recycle delay of part

(b) the RAM phase is reset to 00 by applying a pulse to the RAC INIT

and the control word is toggled to the increment mode.

b. Split Ram

When the spin locked detection sequence was used, then both the

repetition of the basic pulse cycle and the acquisition of the data

points had to take place in the RAM of the pulse programmer.

Therefore, in order to be able to address the RAM contents at two dif-
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ferent locations, a "split" RAM was used. Both spectrometers have a

128-128 split in the RAM; this can be changed fairly easily if

desired. The most important points to recall in using the split RAM

are that it is merely a means of addressing the RAM counter in two

different places, and that the contents of the RAM are loaded sequen

tially. Therefore, to access that RAM at line 0, a "PA 01 00" state

ment should be used in the "FIFO" part of the pUlse program; a "PA 03

00" statement should be used to address line 128. Even though diffe

rent places in the RAM are being accessed, physically there is still

only one RAM, labelled as 01 to the microprocessor. Therefore, the

output statements in the RAM should all be labelled as 01. The last

point in using the split RAM is the following: the RAM is loaded

sequentially; therefore, if the first part of the RAM loader contains

k output statements, then the second part will begin at line k + 1.

If (k + 1) is less than 128, then the address line (which is 128) and

the beginning of the second part of the program will not coincide.



111

F. References

1. G. Bodenhausen, Prog. NMR Spectrosc. 14, 137 (1981).

2. D.P. Weitekarnp, Adv. Magn. Reson. 11, 111 (1983).

3. M. Munowitz and A. Pines, Adv. Chern. Phys. in press.

4. u. Fano, Rev. Mod. Phys. 29, 74 (1957).

5. a) S. Vega and A. Pines, J. Chern. Phys. 66, 5624 (1977).
b) S. Vega and A. Pines, J. Chern. Phys. 68, 5518 (1978).
c) A. Wokaun and R.R. Ernst, J. Chern. Phys. 67, 1752 (1977).

6. G. Drobny, A. Pines, S. Sinton, D.P. Weitekarnp, and D. Wemmer,
Faraday Syrnp. Chern. Soc. 13, 49 (1979).

7. a) D.W. Sorensen, G.W. Eich, M.H. Levitt, G. Bodenhausen, and
R.R. Ernst, Prog. NMRSpectrosc. 16, 163 (1983).
b) K.J. Packer and K.M. Wright, Mol. Phys. 50, 797 (1983).

8. a) W.S. Warren, D.P. Weitekarnp, and A. Pines, J. Chern. Phys. 73,
2084 (1980).
b) G. Drobny, A. Pines, S. Sinton, W.S. Warren, and D.P.
Weitekarnp, Philos. Trans. R. Soc. London Ser.A 299~ 585 (1981).
c) W.S. Warren and A. Pines, J. Chern. Phys. 78, 2808 (1981).
d) S. Sinton, D.B. Zax, J.B. Murdoch, and A. Pines, Mol. Phys.
53, 333 (1984).

9. a) A. Bax, R. Freernan, and S.P. Kernpsell, J. Magn. Reson. 41, 349
(1980).
b) A. sax, R. Freernan, and S.P. Kempsell, J. Am. Chern. Soc. 102,
4851(1980).
c) A. Bax, R. Freernan, and T.A. Frenkiel, J. Am. Chern. Soc. 103,
2102 (1981).
d) U. Piantini, D.W. Sorensen, and R.R. Ernst, J. Am. Chern. Soc.
104, 6800 (1982).
e) M.H. Levitt and R.R. Ernst, Chern. Phys. Lett. 100, 119 (1983).
f) L. Braunschweiler, G. Bodenhausen, and R.R. Ernst, Mol. Phys.
48, 535 (1983).

10. a) D.P. Weitekarnp, J.R. Garbow, J.B. Murdoch, and A. Pines, ~
Arn. Chern. Soc. 103, 3578 (1981).
b) J.R. Garbow, D.P. Weitekarnp, and A. Pines, J. Chern. Phys. 79,
5301 (1983).

11. a) L. Mueller, J. Arn. Chern. Soc. 101, 4481 (1979).
b) Y.S. Yen and D.P. Weitekamp, J. Magn. Reson. 47, 476 (1982).
c) A. Bax, R.H. Griffey, and B.L. Hawkins, J. Magn. Reson. 55,
301 (1983).



112

12. Y.S. Yen and A. Pines, J. Chern. Phys. 78, 3579 (1983).

13. a) R.H. Schneider and H. Schmiedel, Phys. Lett. A 30, 298 (1969).
b) WoK. Rhim, A. Pines, and J.S. Waugh, Phys. Rev. Lett. 25, 218
(1970).
c) W.K. Rhim, A. Pines, and J.S. Waugh, Phys. Rev. B. 3, 684
(1971).
d) A. Pines, W.K. Rhim, and J.S. Waugh, J. Magn. Reson. 6, .457
(1972).

14. W.P. Aue, E. Bartholdi, and R.R. Ernst, J. Chern. Phys. 64, 2229
(1976).

15. A. Pines, D. Wemmer, J. Tang and S. Sinton, Bull. Am. Phys. Soc.
23, 21 (1978).

16. A.N. Garroway, J. Baum, M.G. Munowitz, and A. Pines, J. Magn.
Reson. 60, 337 (1984).

17. a) G. Drobny, A. Pines, S. Sinton, D.P. Weitekamp, and D. Wemmer,
Faraday Symp. Chern. Soc. 13, 49 (1979).
b) G. Bodenhausen, R.L. Vold, and R.R. Vold, J. Magn. Reson. 37,
93 (1980).

18. J.B. Murdoch, W.S. Warren, D.P. Weitekamp, and A. Pines, J. ·Magn.
Reson. 60; 205 (1984).

19. D. Wemmer, Ph.D. Thesis, University of California, Berkeley, 1979
(published as Lawrence Berkeley Laboratory Report LBL-8042).

20. a) R.A. Hoffman, Adv. Magn. Reson. 4, 87 (1970).
b) A. Wokaun and R.R. Ernst, Mol. Phys. 36, 317 (1.978).

21. J. Baum, M. Munowitz, A.N. Garroway, and A. Pines, J. Chern. Phys.
83, 2015 (1985).

22. W.S. Warren, D.P. Weitekamp, and A. Pines, J. Chern. Phys. 73,
2084 (1980).

23. E.O. Stejskal and J. Schaefer, J. Magn. Reson. 18, 560 (1975).

24. a) E.D. Ostroff and J.S. Waugh, Phys. Rev. Lett. 16, 1097 (1966).
b) W.-K. Rhim, D.P. Burum, and D.O. Elleman, Phys. Rev. Lett. 37,
1764 (1976).
c) D. Suwelack and J.S. Waugh, Phys. Rev. B22, 5110 (1980).
d) M.M. Maricq, Phys. Rev. B25, 6622 (1982).

25. A.G. Redfield, Phys. Rev. 98, 1787 (1955).

26. a) R.W. Vaughan, D.O. Elleman, L.M. Stacey, W.-K Rhim and J.W.
Lee, Rev. Sci. Instr. 43, 1356 (1972).
b) W.-K. Rhim, D.O. Elleman, L.B. Schreiber, and R.W. Vaughan, J.



113

Chern. Phys. 60, 4595 (1974).

27. U. Haubenreisser and B. Schnabel, J. Magn. Reson. 35, 175 (1979).

28. G. Drobny, Ph.D. thesis, University of California, Berkeley, 1983
(published as Lawrence Berkeley Laboratory Report LBL-15254).

29. J.R. Gar bow , Ph.D. thesis, University of California, Berkeley,
1983 (published as Lawrence Berkeley Laboratory Report LBL
16119).

30. A. Garroway, J. Magn. Reson. 63, 504 (1985).

~-



114

IV. MULTIPLE-QUANTUM NHR STUDIES OF CLUSTERING IN SOLIDS

A. Introduction

In this chapter, we describe the application of nuclear magnetic

resonance to the question of clustering in materials lacking long-range

order. In such materials, standard methods of structural characteriza

tion, such as x-ray crystallography, are not useful. Examples of such

disordered materials range from minerals, semiconductors, polymers and

liquid crystals, to species adsorbed on surfaces and in zeolites.

These materials often display important physical or electrical proper

ties; for example, a critical level of hydrogen incorporation into

amorphous silicon renders it a semiconductor used' in many industrial

apPlications. 1

As an example of the type of problem we face in these disordered

solids, Figure (4.1) illustrates two extreme, possible, atomic con

figurations: in the first, the atoms are distributed randomly but uni

formly within the sample, and in the second they are grouped together,

forming clusters. Usually, an NMR spectrum of a solid will not reveal

the basic difference between these two situations. In both cases, the

spectrum will normally be broad and featureless; the linewidth, due

primarily to the dipolar couplings between spi~s, does not contain

sufficient information to establish any statistical information on the

atomic distribution as seen in Figure (4.2).

In contrast, by capitalizing on the dipolar couplings in a diffe

rent manner, a time-resolved mUltiple-quantum NMR experiment can be
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Figure 4.1. Possible atomic distributions in solids. Uniform and

clustered distributions can be distinguished by time-resolved solid

state mUltiple-quantum NMR.
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Figure 4.2. 180 MHz 1H NMR spectrum of the liquid crystal with chemi

cal formula (C19H21 N) in the nematic phase. The distribution of 1H in

the sample can not be determined from this broad and essentially fea

tureless spectrum.
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used to address the question of atomic distribution in such

materials. 2,3,4 For example, if the uniformly distributed material is

irradiated with rf quanta in an NMR experiment, it might be expected to

absorb them continuously; whereas isolated clusters will absorb only a

finite number. 5 We show that indeed a time resolved mUltiple-quantum

experiment, whose statistics are very sensitive to atomic distribu

tions, can be used to probe the nature and extent of clustering in

solids.

We begin in Section IV.B, by examining multiple-quantum dynamics

in solid-state NMR. The development of multiple-quantum coherence in a

solid is followed experimentally and explained by the emergence with

time of a widening network of multiple-spin correlations throughout the

system. This phenomenon leads to the notion of an instantaneous effec

tive size for the system, which can be calculated directly from the

multiple-quantum spectral intensities. The rate of growth of this

time-dependent parameter is determined entirely by the distribution of

atoms in the sample.

In Section IV.C, the size and extent of 1H clustering is determin

ed in a variety of systems from this point of view. More particularly,

model experiments are demonstrated on uniform distributions, totally

isolated clusters, and various concentrations of clusters ranging from

dilute to fairly dense •. For concentrations of clusters, a second time

dependent parameter is introduced in Section IV.C.4 to ascertain the

size of the clusters independently of the size of the system,. which may

include inter-cluster correlations. Emphasis is placed on illustrating

how the different distributions affect the mUltiple-quantum dynamics
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and how the tendency to clustering and information on cluster sizes can

be determined from the time-dependence of the multiple-quantum intensi

ties. In Section IV.D, we use this technique to study hydrogen

clustering in hydrogenated amorphous silicon. Extensions of the exper-

iment and a summary are presented in Section IV.E.

B. Multiple-Quantum Dynamics in Solid State NMR

1. Multiple-Spin Processes and Time Development of the Dipolar

Coupling Network.

In multiple Quantum NMR individual spins become correlated with

one another over time, through their dipolar couPlings. 6 In this way,

the usual Zeeman selection rule can be overcome and "forbidden transi-

tions", where the difference in magnetic quantum number 6M is equal to

O,~1,~2, •• ,~N, can be excited. When aM-N, N spins "flip" collectively

from the ground state to the highest excited state. Experimentally,

such multiple quantum coherences are formed in solids by applying a

radio-frequency pulse sequence to the system for a time 1, thereby cre-

ating the non-secular Hamiltonian,

of Equation (3.32), which induces the spins to act collectively or in a

group.7 The density operator at the end of the preparation period

takes the form
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(4.1)

Evaluation of the nested commutators results in products of

single-spin operators such as I+ 1 I+2 I+3 I+4; each product of opera

tors is associated with powers of DijT. As a result, when Dij T«1, the

associated operator term will not be significant. Symbolically, these

products of operators can be visualized as the development of many-body

correlations through the pairwise dipolar couplings. A schematic

drawing of the time development of spin correlations is shown in Figure

(4.3). For short times Equation (4.1) reduces to the first few terms:

(4.2)

Now, only low multiple quantum orders will develop and only spins with

large dipolar couplings Dij will effectively interact. As the prepara~

tion period T becomes longer, ·p(T) will contain longer products of spin

operators, indicating that more spins are becoming correlated with one

another. In addition, spins with smaller dipole couplings will now be

able to interact as well. In order for spins to become correlated, the

Hamiltonian must act for a time T roughly proportional to the inverse

of the pairwise dipolar interactions. As a result, the preparation

time T can be short if spins are near one another, and must be longer

if spins further apart are to communicate with one another. Therefore

the rate at which multiple quantum coherences develop is determined by

the dipolar coupling distributions present in the system.
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Figure 4.3. In multiple quantum NMR, spins, symbolically represented

here by hatched circles, become correlated with one another over time,

through pairwise dipolar interactions: the closer the spins, the

shorter the time needed for interactions to develop. For uniformly

distributed spins (a), correlations will be expected to develop

monotonically with time. In a clustered material (b), however, the

magnitudes of the inter versus intra-cluster dipolar couplings are·

quite different. At short times, the number of correlated spins will

be limited to the number of atoms in the cluster whereas at long times

intercluster interactions will develop and all the spins will become

correlated with one another. The difference between clustered and

uniform distributions should be observable in the time-dependence of

the n-quantum absorption •

•
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Because the spatial arrangements of atoms are reflected by the

magnitude of the dipolar couplings, a time dependent multiple quantum

experiment can yield information concerning the distribution of spins

in a material. If a solid is composed of a uniform distribution of

atoms, where the dipolar couplings between spins may be roughly compar

able, then the time development will be expected to look like the one

depicted in Figure (4.3a). As the uniformly distributed spins absorb

more and more quanta of radiation, the spins become correlated with one

another in a continuous manner. Over time, the number of communicating

spins is essentially unbounded. And, the effective "size" of the

system grows monotonically. However, if a solid contains isolated

clusters, then the variation between inter and intra cluster dipolar

couplings is large enough to preclude inter-cluster correlations on the

experimental time scale. One can imagine clusters as independent

groups of size N able to absorb only up to N quanta of radiation. Con

sequently, as shown in Figure (4.3b) after an initial induction period,

during which multiple quantum coherences develop between spins with

large dipolar couplings, the number of correlated spins will be ex

pected to remain roughly constant over time and will reflect the size

of the isolated cluster. If this group is truly independent of any

other groups, then no additional interactions can build up on the ex

perimental time scale. On the other hand, if small but non-negligible

dipolar couplings do exist between spins of different groups, then with

time, the groups will communicate with one another. If the concentra

tion of clusters is high, less time will be needed for intergroup com

munication to occur. Ultimately, for very long times, a large network
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of correlated spins will develop. Clearly, the difference between a

uniform and clustered environment will be reflected directly in both

the rate of development, and distribution, of mutliple quantum cohere

nce.

2. Time Development of Multiple-Quantum Coherences

Figure (4.5) contains a set of 1H mUltiple-quantum spectra obtained

from hexamethylbenzene (using sequence (4.4» with preparation times

ranging from 66 ~sec to 792 ~sec. The most frequently used pulse

sequence is adapted from Figures <3.3) and <3.7) and reproduced here

for convenience in Figure (4.4). All experimental details are

presented in Chapter 3, Section E. The plots of Figure (4.5) illustr

ate the distributIon of spectral intensity over the coherence orders at

the specified preparation times. Separation of the different orders

has been accomplished by TPPI so that the subspectrum of each order n

occupies 156.25 kHz. As coherences of +n and -n are equally probable,

the full spectra are naturally SYmmetric about n • O. Consequently,

only one half of each spectrum is needed to obtain all the information

available (

A general tendency for coherence of higher order to develop with

time is clearly evident in the spectra shown in Figure (4.5); the

results are particularly striking for t • 792 ~ec, where there are

strong signals extending out to, and apparently beyond, n ~ 64. Sub

spectral structure and linewidths are determined by the response of the

prepared system to the local field of all the other spins during the

subsequent evolution period. Here, a spectrum of broad featureless
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1/3 (Hyy - Hxx).
t,

- 1/3 (Hyy - Hxx)

t2L
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XBL 8512-5061

Figure 4.4. Two-dimensional multiple-quantum pulse sequence for

solids. The preparation and mixing periods are composed of 8 ~/2

pulses of length t p separated by delays A and A'. The total

preparation/mixing time t is achieved by repeating the basic cycle m

times. When the phases of the pulses are x and X, the Hamiltonian is

equal to 1/3 (Hyy -Hxx); during the mixing period, when the phases of

the pulses are y and 1, the Hamiltonian becomes - 1/3 (Hyy - Hxx )'

i.e. the negative of the preparation period Hamiltonian. To separate

the mutliple-quantum orders, the preparation period pUlses are

incremented by a phase ~ for each value of t,. During the detection

period, a pulsed spin locking sequence is used for signal enhancement

in samples containing low 1H concentrations.
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Figure 4.5. 360 MHz l H multiple-quantum spectra of hexamethylbenzene

for t • 66 to t • 792 usec recorded with the sequence of Figure (4.4).

The basic cycle time used for this spectrum is 66 usec (tp • 3 usec,

6 • 2.5 usec, and 6' • 8usec). For t ··66 to 462 usec, the t 1 incre

ment is 100 ns and the phase increment is 2n/64; this separates each

order by 156.25 kHz. For t 2 528 usec, the t 1 and phase increments are

50 ns and 2n/128, respectively. The distribution of spectral in

tensity over the coherence orders broadens continously as the prepara

tion time increases. The lowermost trace, an expanded view of the

spectrum obtained for t • 792 usec, emphasizes the highest orders of,
coherence observed.
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lines arises from the almost continuous distribution of

eigenfrequencies in a sample containing virtually an infinite number of

spins.

Monitoring the time development of the multiple quantum coherences

in this infinite spin system therefore reveals that correlations do

indeed develop between spins in a monotonic fashion. As time

progresses, more spins can absorb more quanta of radiation and very

high multiple quantum orders can be detected. However, if clusters of

spins exist, then the time development of the multiple quantum cohere

nces is expected to be interrupted; .the number of interacting spins

will be limited, to a large extent, by the size of the cluster. Shown

in Figure (4.6) are 'H mUltiple-quantum spectra for a polycrystalline

sample (shown in the inset) in which hydrogen atom clusters of diffe

rent molecules are effectively isolated from one another owing to the

large perchlorinated cyclopentadiene rings. For this model clustered

material, the appearance' of the multiple-quantum spectra remain very

similar up to 300 ~sec, after which many high multiple-quantum orders

begin to develop. Now there is a discontinuity in the development of

mUltiple-quantum coherence. The higher orders are at~ributed to inter

molecular interactions. Both materials will be addressed in more

detail in a later section.

3. Monitoring of Time Reversal Via The Refocusing of Multiple

Quantum Coherence

Although it may appear to be stochastic, the time development of a

spin system according to Equation (1.28) is actually well determined,
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T - 60 "sec

12

Figure 4.6. laO MHz 1H mUltiple-quantum NMR spectra of the polycrys

talline sample 1,2,3,4-tetrachloronaphtalene-bis(hex

achlorocyclopentadiene)-adduct for T • 60 to 960 ~sec. The basic

cycle time is 60 ~sec (tp • 2.5 ~sec, ~ • 2.5 ~sec, ~, • 7.5 ~sec)

Thet1 increment is 400ns and the phase increment 2n/16i each order

is therefore separated by 78.125 kHz. The time development of the

multiple-quantum coherences over time is discontinuous in this

clustered material. The spectra change very little over the first 300

~sec. indicating a limited spin system on this time scale. At longer

times, when intermolecular interactions develop, the system is no

longer bounded and higher multiple-quantum orders arise in the

spectrum.
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and can be reversed if the sign of the effective. internal Hamiltonian

is changed. That coherent averaging methods can reverse supposedly

irreversible dipolar dephasing has already been amply demonstrated by

"magic echo" experiments. 9 However, we can gain added insight into

sucn dephasing and .rephasing by visualizing the time reversal process

explicitly through multiple-quantum spectroscopy. The novelty here is

that we can show how time reversal is effective even for very high

order, multiple-spin processes.

Part (a) of Figure (4.7), shows a pulse sequence designed to

reverse the formation of the network·of spin correlations occurring in

mUltiple-quantum excitation. The plan is to allow coupling to develop

normally for a rather long, fixed time to' and then to refocus the

mUltiple-quantum coherences over the interval t'. The refocusing

during t' is accomplished by phase shifting the excitation pUlses by

900 to change the sign of the average Hamiltonian. The mixing period

is altered symmetrically to fulfill the requirement for overall time

reversal relative to the preparation period.

The reversibility of multiple-quantum excitation is illustrated ex

perimentally in Figure (4.7b). Shown at the left are three 180 MHz 1H

spectra of adamantane obtained in the usual fashion with sequence

(3.3d) and t • 462, 330 and 66 ~sec. Directly opposite are the equiv

alent refocused spectra, recorded with to • 528 ~sec and t' = 66, 198

and 462 ~sec. In each case, the net forward preparation times are

identical, since t~ to - t'. To the extent that the time reversal

works perfectly, the development of all the mUltiple-quantum coherences

during to will be retraced during the t' interval, during which the
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Figure ij.7. a) Experiment designed to refocus multiple-quantum

coherence in solids. High-order coherences created during ~O evolve

backwards in time during ~t to return to low-order coherences. Phase

cycling and spin temperature inversion have not been implemented in

this experiment.

b) 180 MHz 1H spectra of adamantane illustrating the feasibility of

refocusing multiple-quantum coherence via time reversal.

Left: Spectra obtained with sequence d of Figure (3.ij) for ~ • 66,

330, and ij62 ~sec. High-order coherences develop normally with

H(O) • 1/3(Hyy - Hxx ) during the preparation period.

Right: Spectra obtained with the sequence in part (a) of this figure

for ~O • 528 ~sec and ~t • 462, 198, and 66 ~sec. In each case, the

reversal of the time development during ~' leaves the net forward pre

paration time equivalent to that'used for the corresponding spectrum

at the left. The observed spectral distribution arises as the system

evolves backwards in time from high-order to low-order coherences.
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clock governing the dipolar Hamiltonian appears to run backwards.

Indeed, the spectra to be compared in Figure (4.7) are reasonably

similar. In particular, note that for T = 66 ~sec, only two-quantum

coherence is ·observed after normal excitation by the sequence of Figure

(33 d). For the comparable spectrum produced by the sequence in Figure

(4.7a) the system generates coherences up to n • 32 during the initial

development period of 528 ~sec, and then reverses the process for T' =

462 ~sec to leave primarily two-quantum coherence.

This demonstration of time reversal complements similar single

quantum approaches. For example, in the magic echo experiment, a pulse

sequence applied to the system after the free induction signal has

decayed can. restore the signal to its initial intensity under ideal
\

conditions. However, in the magic echo experiment there is no direct

evidence that the time r.eversal is proceeding through mutliple-spin

events. By following the development of mUltiple-quantum coherence, we

have shown here that time reversal can turn back the clock for coherent

evolution involving large numbers of nuclear spins.

4. Measurement of an Effective System Size in Solids

The number of correlated spins at a particular preparation time

dictates the intensity distribution of the signal over the mUltiple

quantum orders. For a finite N spin system, ignoring symmetry, we

showed, in Chapter III, Section C.l that the integrated spectral in

tensity per order can be approximated by the intensity per transition

times the number of allowed transitions. If all possible coherences

have been excited with equal probability, then the integrated intensity
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per order can be related to the number of allowed n-quantum transi

tions 10 ; in an N spin system, the number of n-quantum transitions is11

This expression can be approximated by a Gaussian distribution, for

large N and n«N. As a result, the integrated multiple-quantum

intensities falloff in a Gaussian manner,

I(n) • exp
2-n

N
(4.4)

and are indeed dictated by the size of the system.

In a solid, the exact calculation of the time development of the

multiple quantum coherences is impossible owing to the need for prior

knowledge of an enormous number of spin-spin couplings. Therefore, for

simplicity, we assume that the infinite spin system can be subdivide~

into finite spin systems which gro~ in the time-dependent fashion

portrayed in Figure (4.3). Then for each preparation time, we can

represent the number of spins that have become correlated up to that

time by an effective system size N(t). This time-dependent parameter

is calculated in the manner of Figure (4.8) by fitting the integrated

intensities to a Gaussian distribution and associating the standard

de~iation, a, of the Gaussian with (N(t)/2)1/2. The pattern and rate

of growth of N(t) over time will reflect the distribution of atoms in

the sample. Its change with time is determined by the structure of the
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Figure 4.8. Top: 180 MHz l H multiple quantum spectrum of the liquid

crystal p-hexyl-p'-cyanobiphenyl in the nematic phase for a prepara

tion time ~ • 660 ~sec. In this spectrum, the basic cycle time is 60

~sec, the bandwith 2.5 MHz and the separation between orders 78.125

kHz.

Bottom: The data points are measured from the spectrum above by in

tegrating each peak corresponding to each multiple quantum order. The

resulting intensities are then fit to a gaussian distribution whose

standard deviation, a, is associated with (N/2)1/2. The solid curve

is the plot of the best fit value for N. N, the effective system size

characterizes the number of correlated spins, in this case 20, at each

preparation time.
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solid, and is influenced by factors such as spin topology and the rel

ative magnitudes of intramolecular and intermolecular dipolar interac

tions. In the following sections, the time-dependent mUltiple-quantum

behavior of uniform distributions, concentrations of clusters and

isolated clusters is studied from this point of view. In addition, tne

degree of clustering in hydrogenated amorphous silicon is determined.

C. Studies of Clustering in Solids

1. Uniform Distributions

a. Adamantane (C 10H16; polycrystalline)

Adamantane forms a plastic crystal in which the nearly spherical

molecules tumble rapidly and isotropically in the solid phase. The

motion averages all intramolecular dipolar couplings to zero, but does

not eliminate intermolecular couplings. However, the motion leaves

only one distinct coupling between every pair of.molecules, thereby re

ducing the adamantane molecule to a point dipole source containing 16

spins. The molecules pack into a face-centered-cubic lat~ice, with

each adamantane molecule surrounded by 12 neighbors at a distance of

6.60 A, 6 more at 9.34 A and an additional 16 at 11.4A. 12

In Figure (4.9a), we examine the time development of the n-quantum

transitions by plotting the integrated intensity of each order, normal

ized to the total spectral intensity, versus preparation time. The

different orders appear t~ grow in monotonically with time and very

high multiple-quantum orders are attained. Values of N(t) versus tare

plotted in Figure (4.9b). The intensity of each order was normalized
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Figure 4.9. a) Intensity versus preparation time for n •

2,4,6,8,10,12,14,16 in adamantane. In future plots, the same symbols

will be used for the same mUltiple-quantum orders. The intensity for

each order has been normalized relative to the total spectral in

tensity, and smooth curves have been drawn through the data points to

aid the eye. Very high mUltiple-quantum coherences develop over time

1n a monotonic fashion.

b) Number of correlated spins versus preparation time for adamantane.

The smooth curve through the points emphasizes the continuous expan

sion of the effective size of the unbounded spin systems.
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relative to n • 2 for each preparation time. In this manner reasonable

estimates for N(t) can be obtained even when the very highest orders

possible cannot be observed experimentally. Deviations from strictly

statistical behavior are most pronounced in the. tail of the distribu

tion, where the combinatorial method consistently underestimates the

intensities of the highest orders. 10 The effective size of the system,

N(t), increases monotonically with time, indicating that the number of

correlated spins is steadily growing larger. Based on the discussion

in Section B.l, this type of multiple-quantum behavior is expected for

a uniform distribution of atoms.

b. Squaric Acid (C404H2; single crystal)

Squaric acid is monoclinic but pseudo-body-centered-tetragonal at

room temperature. It is a layered two-dimensional structure consisting

of hydrogen-bonded "squaric" subunits of C404. The hydrogens form

chains perpendicular to the a-c plane, with the hydrogens in different 

sheets separated by b/2 • 2.6 A. 13 During the experiment the crystal

was oriented with the b axis perpendicular to the static magnetic

field. The crystal was doped with chromium ions to reduce the l H spin

lattice relaxation time. The time development of the n-quantum in

tensities for squaric acid, shown in Figure (4.10a), appear very

similar to those of adamantane. The chains of hydrogen atoms form an

infinite spin system where the number of correlated spins, shown in

Figure (4.10b), also increase continually with time.
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Figure 4.10. a) n-quantum intensity versus preparation time for

squaric acid. The numbers of orders increase continuously over time.

b) Number of correlated spins versus preparation time. As is char

acteristic of an infinite spin system, the effective size of the

system grows rapidly and uninterruptedly with time.



1392. Isolated Clusters: Liquid crystal

In a nematic liquid crystal sample, owing to restricted motion of

individual molecules about their long axes, intermolecular dipolar cou

plings are averaged to zero while intramolecular couplings remain but

are scaled down. 14 The nematic phase of the 21 spin p-heptyl-p'

cynabiphenyl (C 19H21 N) liquid crystal sample was thus selected to

demonstrate an "ideal" case of truly isolated clusters on the NMR tim

escale, in the sense that individual molecules maintain solid-like

characteristics while still being completely independent of one

another. Thus, this liquid crystal which contains 21 protons should be

a good model for a 21 spin cluster. Figure (4.11a) shows a plot of the

n-quantum intensity normalized to ~he total intensity, versus pre

paration time; at short times, the number of multiple quantum orders

increases, whereas for times greater than 1000'~sec the number of

orders and their relative intensities remain unchanged. Reflecting the

trends of the multiple quantum intensity plot, the effective system

size Net), plotted in Figure (4.11b), grows for times up to 1000 ~sec,

after which it remains completely constant with a value of 21. The

effective system size does not grow beyond the actual size of the

molecule confirming that intermolecular couplings are zero and that

only spins within the molecule can become correlated with one another.

This type of behavior, the levelling of N(t), is characteristic of iso

lated clusters.

3. Concentration Effects: 1,8-0imethYlnaphtalene-dG

Solid solutions of six spin clusters were prepared to examine the

effects of different degrees of cluster concentrations on the multiple
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Figure 4.11. a) n-quantum intensity versus preparation time for the

liquid crystal p-hexyl-p' cyanobiphenyl in the nematic phase. After

roughly 1000 ~sec, no new mUltiple-quantum orders develop and their

relative intensities remain unchanged. b) N(T) versus T for the

liquid crystal sample. After an induction period, the effective

system size N(T) levels off at 21, indicating that the number of

interacting spins is limited to the size of the individual liquid

crystal molecules which contain 21 protons.
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quantum dynamics. The six spin clusters are formed by intimately

mixing 1,8-dimethylnaphtalene-d6 (DMN-d6) with perdeuterated DMN-d12 ;

three concentration levels, 5, 10 and 20 mole %, are considered in

addition to the neat material. For the latter, the shortest inter

molecular 1H_1 H distance is 2.0 A along the b axis and the intra

molecular methyl groups are separated by 2.93 A. 15 The unit cell is

arranged such that the methyl groups of a pair of molecules are point

ing toward one another. Dilution of the protonated.DMN-d6 in a per

deuterated lattice forces the inter-cluster distances to increase

without affecting the intra-cluster distances. Therefore, relative

differences in the development of multiple quantum intensities can be

attributed to inter-cluster correlations.

The existence of local spin clusters can already be discerned in

the multiple-quantum spectra of the dilute 5 mole %DMN, shown in

Figure (4.12) together with comparable spectra from neat DMN. The neat

spin system is essentially unbounded, a state which is reflected in the

spectra by a steady growth of the number of orders observed. In marked

contrast, the spectra obtained from the 1:20 solid solution never

extend beyond n • 6.

Figure (4.13) shows plots of the integrated n-quantum intensity to

the total intensity for the four samples of DMN described, versus pre

paration time. Clearly, the trend indicates a more rapid development

of multiple-quantum orders as the concentration of the clusters is

raised. In the 5 mole %solution, after an initial induction period,

the number of orders remains fixed up to roughly 500 ~sec, after which

the intensities begin to grow slowly. By contrast, the 10 and 20 mole
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Figure 4.12. 360 MHz ' H multiple-quantum spectra of dim

ethylnaphthalene recorded with the sequence of Figure (4.4).

Top: Neat DMN, ring positions deuterated.

Bottom: 1:20 solid solution in a perdeuterated host.

The two sets of spectra clearly demonstrate the different multiple

quantum excitation pathways possible in bounded and unbounded spin

distributions. Only low order coherence can develop among the six

isolated spins in the dilute system; consequently the distribution of

mUltiple-quantum intensity changes very little over the range of pre

paration times shown. By contrast, the effective size of the neat

material increases continuously over the same range of times.
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Figure ~.13. n-quantum intensity versus preparation time for solid

solutions containing

a) neat 1,8-dimethYlnaphtalene-d6 (DMN-d6).

b) 20 mole %solution o~ DMN-d6 in 1,8-dimethYlnaphtalene-d12 (DMN

d 12)·

c)·10 mole %solution of DMN-d6 in DMN-d 12 •

d) 5 mole %solution of DMN-d6 in DMN-d12 •

The neat compound and the 5 mole %solution are examples of unlimited

and clustered spin systems respectively. The 10 and 20 mole %samples

are examples of more concentrated clustered environments. The general

trend indicates that as the cluster concentration is lowered, the

mUltiple-quantum intensity distribution changes less with time.
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%solutions show orders growing in slowly all the time. Qualitatively,

the features and ultimate intensities of the 10 and 20 mole %samples

appear very similar, differing predominantly in the time scale of

development. The multiple quantum intensities in the neat material in

crease very rapidly.

Plots of N(t) versus t are drawn for the 100, 20, 10 and 5 mole %

solutions of DMN-d6' in Figure (4.14). The values of N(t) are repres

ented by the smooth solid line. Two extreme behaviors are illustrated

in this figure: in the 5 mole %solution, N(t) grows very little up to

500 ~sec and then begins to increase slowly at longer times, whereas in

neat DMN-d6' N(t) increases very rapidly. In the first case, the con

centration of clusters is dilute enough to localize the interacting

spins to the clusters only, for the duration of 500 ~sec; in the

second case, the unbounded spin system allows an increasing number of

atoms to interact with one another, over time, in a monotonic fashion.

In neat DMN-d6' even though the ring positions are deuterated, the

density of spins is high enough and the inter and intra-molecular cou

plings comparable enough to bl~ the distinction between a clustered

distribution and a uniform environment of hydrogen atoms. In the

intermediate cases of 10 and 20 mole %solutions, where the concentra

tion of clusters is raised, but where well-defined groups still exist,

N(t) grows continuously although more slowly than for neat DMN. On the

time scale of the experiment, spins from different groups are close

enough together to influence the multiple quantum dynamics to the point

where inter-cluster separations are too small to produce a discernible

plateau in N(t) versus t. Higher cluster concentration levels result
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Figure 4.14. Number of correlated spins versus preparation time for

the four solutions of DMN-d6 described in Figure (4.13). The filled

circles represent values for the effective system size N(t), and the

open ones values for the effective cluster size N(c(t). The size and

extent of clustering can be determined from the pattern and rate of

growth of N(t) and Nc(t).

a) both parameters grow uninterruptedly, indicating an unbounded spin

system.

b) and c) In both samples, Nc(t) remains constant over time, indicat

ing clusters of six atoms; the more rapid growth of N(t) in the 20

versus 10 mole J solution reflects the fact that the six spin clusters

of DMN-d6 become closer to one another as the 1H concentration is

raised.

d) After an initial induction period, N(t) remains essentially con

stant up to approximately 500 pSec, indicating a bounded system of six

atoms. At longer times when clusters interact, Nc(t) remains level at

six.
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in more rapid inter-cluster communication, ~s demonstrated by the

steeper growth of N(t) for the 20 versus the 10 mole %solution.

4. Two-Gaussian model

In the intermediate cases, where clusters exist but are not suffi-

ciently isolated to preclude small interactions between them, a second

time dependent parameter is introduced to ascribe a size to the

clusters independently of inter-cluster events. A schematic drawing of

a two Gaussian model is presented in Figure (4.15). The simplest

approximation is to attribute the multiple quantum intensities to two

independent events: the intra-cluster correlations which have already

matured, and the inter-cluster correlations that continue to develop

between spins of different groups. The multiple quantum intensities

due to the subgroup of clustered spins are approximated by a Gaussian

whose variance is associated with Nc/2, while the remaining intensity

is approximated by a second Gaussian of variance N2/2. The total in

tensity is the sum of both contributions and is written as:

A least squares iterative program using the Newton-Raphson method is

. employed to fit the multiple-quantum intensities to the above equation.

Now two time-dependent effective sizes can be extracted from the multi-

ple quantum spectral intensities: a cluster size Nc(t) arising from

the two-Gaussian model, and a system size N(t) whose value may in-

corporate spins from numerous groups. Recall that N(t) is calculated
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Figure 4.15. SChematic drawing of the two-Gaussian model. The inset

represents clusters interacting with one another on the experimental

time scale. In order to determine the cluster size, a parameter Nc is

introduced to describe events occurring within a cluster, indepen

dently of those occuring between clusters. The multiple quantum in

tensities (filled circles) are the sum of intra and inter-cluster

correlations both of which are associated, independently, with a

Gaussian of standard deviation (Nc /2)1/2 and (N2/2)1/2, respectively.

Only when most of the multiple quantum intensity is due to intra

cluster correlations is this approximation valid.
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by fitting the integrated intensities to a single Gaussian. The

pattern of growth of both parameters will be used to establish the size

and extent of clustering in solid samples. In the same spirit as for

N(t), absence of chance in Nc(t) over time is evidence that clusters

exist, although they may be near one another. The magnitudes of mc ' m2

and N2 will change to account for the increasing number of communicat

ing clusters over time until finally m2 will become larger than me and

the approximation will no longer be valid. Only when the correlations

due to clusters dominate the mUltiple quantum intensities, or when me >

m2 , can the inter versus intra-cluster interactions be addressed separ

ately.

Returning to Figure (4.14), the values of Nc(t) for the 4 con

centrations of DMN are now plotted along with the values of N(t) .dis

cussed earlier. Considering the two extremes once again, we note that

Nc(t) is not necessary to determine the cluster size in the 5 mole %

solution, as here N(t) remains fixed for a sizeable duration of time.

Nc(t) can be calculated at longer times and results in values close to

six. By contrast, Nc(t) and N(t) both increase in the 100 %DMN

sample, confirming that the density of spins is too high to assign a

cluster size to this material. For the intermediate concentrations of

10 and 20 mole %where N(t) grew uninterruptedly, Nc(t) now remains

constant over time with values hovering about six. These data confirm

that DMN contains predominantly clusters of six atoms which become in

creasingly close to one another as the l H concentration is raised.
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5. More Dilute Spin Systems and Clusters .

a. 1,8-DimethYlnaphtalene-d10

1,8-dimethylnaphtalene-d10 (DMN-d10 ) is very similar to 1,8-DMN-d6'

but here, in addition to ring deuteration, the methyl groups are par

tially deuterated as well, leaving only two hydrogen atoms on the

entire molecule. The inter and intra-molecular 1H_ 1H dis~ances are

not affected by the additional methyl deuteration. Two solid solutions

of DMN-d10 , 5 and 10 mole %, were prepared in the same manner as those

of DMN-d6. Plots of the integrated n-quantum intensities appear in the

upper portions of Figures (4.16a) and (4.16b). In the 5 mole %solu

tion, where the 2-quantum intensity is essentially dominant at all

times, the effective system size N(T) is calculated directly from the

binomial formula of Equation (4.3). For the 10 mole %solution, the

combinatorial formula is used up to 600 psec, after which the intensi

ties can be approximated by a Gaussian as usual.

A comparison of the six spin and two spin model clusters at compar

able 1H concentrations reveal similar trends for N(T) and NC(T); in

both 5 %cases, N(T) remains level up to approximately 500 psec after

which it increases slowly, whereas in the 10 %cases N(T) rises more

steeply. What distinguishes the two materials from one another are the

actual values of the effective system and cluster sizes. In DMN-d 10 ,

contrary to DMN-d6' N(T) remains close to two; in the 10 %SOlution,

Nc (t) can be calculated at long times and lies between three and four.

These results demonstrate that the multiple quantum dynamics are sensi

tive enough to distinguish clearly between two spin and six spin

clusters of very similar compounds.
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Figure 4.16. n-quantum intensity (top) and number of correlated spins

(bottom) versus preparation time for two solid solutions:

a) 5 mole J 1,8-dimethYlnaPhtalene-d10 (diagrammed in the inset) in
DMN-d12 •

b) 10 mole J DMN-d10 in DMN-d12 •

For the 5 mole J solution N(t) remains close·to 2. In the 10 mole %
solution, N(t) grows with time but Nc(t) remains essentially constant

hovering between 3 and 4. The cluster size in these samples is very
small.
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b. Hexamethylbenzene (C6(CH3)6; polycrystalline)

Hexamethylbenzene (HMB) exists in a triclinic unit cell with the

planar benzene rings forming a nearly hexagonal net. 16 Two varieties

of anisotropic molecular motion determine the dipolar properties of

this system. First, each methyl group rapidly reorients about its C3

axis, rendering the three 1H nuclei equivalent. Second, the entire

molecule undergoes fast-limit six-fold hopping about the C6 axis of the

benzene ring,17 which reduces the intramolecular dipolar couplings

between ortho, meta, and para methyls. Intermolecular couplings remain

but, as in adamantane, interacting molecules behave as point sources.

Within a molecule, average distances between protons on different

methyl groups range from 3.3 A (ortho) to 6.6 A (para), and between

molecules, C-C distances range upwards from 3.7A. Sheets of molecules

in the a-b plane are separated by 5.3A. The specific systems to be

considered here are (1) a solid solution of HMB in perdeuterated HMB

with a molar ratio of 1:10, (2) a sample of HMB randomly deuterated to

a level of 80-90%, (3) neat sample of HMB, and (4) a 1:20 solid

solution as well. All the samples are polycrystalline, the mixtures

haVing been obtained by evaporation of solvent.

Plots of the integrated n-quantum intensity, for neat, randomly

deuterated, and the 9 mole % HMB, sample versus preparation time, are

presented in Figure (4.17). Measured values of N(t) for the two

deuterated hexamethylbenzenes and for neat HMB are plotted in Figure

(4.18). It is evident that the same series of spectra is eventually

obtained in each case, but that the preparation time required to
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Figure 4.17. n-quantum intensity versus preparation time for solid

solutions of hexamethylbenzene (HMB)

a) neat bexamethylbenzene.

b) 80-90% randomly deuterated hexamethylbenzene.

c) 9 mole %HMB-h18 in HMB-d18.

The growth of the multiple-quantum orders in the neat material is very

similar to that of adamantane (Figure 4.9) and squaric acid (Figure

4.10) as expected. The randomly deuterated material is intermediate

between the neat and dilute sample, where few orders grow in slowly

over time.
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N

181. IU-IOI21

Figure 4.18. N versus ~/tc for neat hexamethylbenzene (squares), a

1:10 solid solution of HMB-h18 in HMB-d 18 (open circles), and randomly

deuterated HMB (shaded circles). The basic cycle time was 66 ~sec in

these experiments. The rates of increase of the effective size are

slower in the two dilute systems.
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r~alize a particular distribution depends strongly on the in

dividualdipolar characteristics. Consequently, we can replace the in

dependent variable, ~, by a scaled variable, a~, to define a common

time dependence for N. It is apparent from the data that a = 1 for

neat HMB, a = 1.65! 0.10 for the randomly deuterated material, and

a = 3.1! 0.3 for the 1:10 mixture.

Intramolecular dipolar couplings, presumably large, strongly in

fluence multiple quantum spectra at short preparation times. Since the

dilution of HMB in a deuterated lattice does not affect these cou

plings, we might expect to see no changes in the initial development of

coherence in the mixture. However, the straightforward scaling of the

time dependence for T ~ 250 ~sec clearly indicates that the strongest

.intramolecular couplings have matured much earlier, apparently before.

50 - 100 ~sec have elapsed. This is consistent'with the crystal and

molecular structure of HMB, which forces the longest intramolecular

1H - 1Hdistances to be comparable to, and sometimes greater than the

shortest intermolecular distances. It is interesting to note here that

the observed scaling factor of ~3 for N(T) is close to the predicted

scaling of the intermolecular second moment by the square root of the

concentration of protonated molecules in the dilute mixture. This

prediction follows from treating all distant molecules as point dipole

sources, with each reproducing a local field averaged to one distinct

value by the rapid six-fold molecular reorientation.

Random deuteration of HMB affects both intramolecular and inter

molecular dipolar couplings to some extent. Analysis of this material

by multiple-quantum spectroscopy enables us to distinguish it both from
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neat HMB and from the other dilute system with approximately the same

total number of l H nuclei. The growth of N(t) with t for the randomly

deuterated molecules is intermediate between the two extremes, a dif

ference more striking than the subtler changes observable in the

single-quantum l H spectra. We can account for the more rapid formation

of spin correlations in the randomly deuterated sample, as compared to

the 1:10 mixture, by noting that the distribution of l H nuclei is both

higher and more uniform throughout the randomly deuterated material.

More spins are in a position to communicate with each other at any

given time.

For neat and randomly deuterated HMB, the two-Gaussian model is not

a good approximation as the values of mc are usually much larger than

the values of m2. For t ~ 132 ~sec however, mc is still less than m2'

and here Nc is equal to 18. For both the 9 and 5 mole %solutions

however, the two Gaussian model can be used over longer preparation

times; results for the 5 mole %solution are plotted in Figure (4.19b)

along with the values of N(t). As expected, N(t) increases too rapidly

to resolve the individual cluster size. On the other hand, the values

of Nc(t) remain constant, over time, at roughly 15, indicating that

fairly large clusters do exist in the dilute sample. The values of

Nc(t) for the 9 mole %sample are very similar to those of the 5 %

sample as can be ascertained from the similar intensity plots of Figure

(4.19a) and (4.T7c).

c. 1,2,3,4-tetrachloronaphtalene-bis(hexachlorocyclopentadiene)

adduct (polycrystalline)
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Figure 4.19. a) n-quantum intensity versus preparation time for a 5

mole %solution of HMB-h18 in HMB-d 18' b) Number of correlated spins

versus preparation time for this sample. In the 5 mole %solution,

N(t) grows steadily whereas Nc(t) remains level at roughly 15 indicat

ing fairly large clusters.
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This polycrystalline sample encompasses the characteristics of a

clustered material as well as a neat sample. On the one hand, the

bulky hexachlorocyclopentadiene groups isolate hydrogen atoms of

different molecules from one another, creating a sharp variation of

inter versus intra-molecular dipolar coupling strengths: on the other

hand, the "cluster concentration", or cluster to solvent-atom ratio, is

high. No crystal structure is available for this material. The 1H NMR

spectrum is very broad, on the order 50 kHz, and structureless. A zero

field NMR spectrum was obtained and computer simulations were performed

to determine the positions of the 4 hydrogen atoms. With an assumed C2

axis of sYmmetry, only four distances are needed to characterize the

hydrogen spectrum:.r11 =2.83 A, r12-2.22 A, r12'- 4.34 A, and r22- 5.01

A18 •

The integrated multiple quantum intensities in Figure (4.20a) show

a discontinuity in the development of the multiple quantum coherence.

Up to 300 ~sec, only two and a small amount of four quantum coherence

have grown; thereafter, many high orders appear rapidly. It is

interesting to note the difference between the time development of

these intensities relative to those of the liquid crystal sample shown

in Figure (4.11a). The plot of N(t) versus t in Figure (4.20b) reflects

the trends of the multiple quantum intensities; the effective size of

the sys~em remains at four for times ranging up to 300 ~sec and then

shoots up rather rapidly. From these trends it is clear that

correlations develop very quickly for hydrogen atoms within the

molecule; at longer times, the smaller dipole couplings become more

important and communication occurs between spins on different molecules
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Figure 4.20. a) n-quantum intensity versus preparation time for the

polycrystalline sample 1,2,3,4-tetrachloronaphtalene-bis(hex

achlorocyclopentadiene)-adduct. The 2-quantum intensity is not

plotted so that higher mUltiple-quantum orders can be seen more

clearly. The time development of the multiple-quantum intensities is

discontinuous.

b) Number of correlated spins versus preparation time for this sample.

The effective system size N(t) remains at 4 for times up to 300 ~sec,

indicating that only the 4 hydrogen atoms within the molecule have

become correlated thus far. At long times, because of the high

density of Clusters, a large number of intercluster "interactions can

develop. As a result, N(t) grows rapidly with time, and Nc(') increa

ses as well.
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as well. Due to the high density of spins once intermolecular

interactions are allowed, Nc(L) grows slowly rather than levelling off

at .four, thus confirming the two-fold character of this material. The

plateau in N(L) at short times is evidence of a clustered material of

four atoms and the increase in Nc(L) and N(L) at long times is

indicative of a large network of hydrogen atoms.

D. Application to Hydrogen Clustering in Hydrogenated Amorphous

Silicon

1• Background

Hydrogen incorporation into amorphous silicon thin films has

improved their electrical and optical properties to a point where.they

now playa significant role in the electronics industry. In addition

to passivating "dangling bond" defects, the hydrogen modifies the

electronic structure of these materials. Films containing between 8

and 20 atom %hydrogen are "device quality" and have roughly 1015

defects/cm3; films with higher hydrogen content can also be prepared

but usually have higher defect densities than device films. In recent

years, a number of researchers have characterized amorphous

hydrogenated silicon (a-Si:H) by numerous techniques and have furnished

information on the relationship between the structure of a-Si:H and its

properties. 1

Structural information gained from electron microscopy indicates

that device films can differ from one another to the extent that some

show no features down to 10 A while others show structures on the order
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of 100 A. In contrast, nondevice and polymeric films (>50 atom %1H)

show columinar growth islands and other structural features.

Information on the different types of silicon-hydrogen bonds have been

obtained by infrared spectroscopy; predominantly monohydride (Si-H)

silicon-hydrogen bonds are observed in device films whereas dihydride

(Si-H2),trihydride (Si-H3) and polymeric «Si-H2)n) species are

observed in the higher hydrogen containing films. From proton nuclear

magnetic resonance it has been ascertained that the hydrogen is

inhomogeneously distributed in device materials. 19 ,20 Approximately 4

atom %hydrogen is present as spatially isolated monohydrides and

molecular H2, and gives rise to a narrow (3-4 kHz) resonance line. The

remaining hydrogen results in a broad (25 kHz) resonance line·

indicating clusters of monohydrides. While the magnetic resonance

linewidths and magnitude of the narrow component remain constant, the

magnitude of the broad component grows with increasing hydrogen

content. Heating the material to 600 K causes the hydrogen associated

with the broad component to evolve, leaving only a narrow resonance·

line in the NMR spectrum.

Many questions concerning the distribution of hydrogen in a-Si:H

films still remain unanswered. A drawing of local hydrogen structure

shown in Figure (4.21) serves to illustrate the issues raised in this

Section: What is the nature of the hydrogen distribution responsible

for the broad resonance line? How does the dense hydrogen coexist with

the dilute hydrogen? On the atomic level, what are the differences

between device and nondevice quality films? By using mUltiple quantum

NMR, a technique inherently sensitive to spatial arrangements of atoms,



165

XBL 8510-4450

Figure 4.21. Schematic 3-dimensional drawing of clustered

monohydrides in hydrogenated amorphous silicon (a-Si:H). The silicon

atoms are in a tetrahedral bonding configuration. Silicon atoms,

hydrogen atoms and covalent bonds are represented by open circles,

filled circles and solid lines, respectively. The drawing is intended

to motivate questions concerning the distribution of hydrogen in a

Si:H thin films.
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we present the first study in which the size and extent of hydrogen

clustering, in selected a-Si:H thin films, has been determ~ned.

Five different a-Si:H samples, prepared by plasma deposition, are

considered: two device quality films with different hydrogen

concentrations, one nondevice quality film, one polymeric and one

annealed sample. Sample preparation procedures, i.e. the reactant gas

composition, the substrate temperature, the power of the rf electrode

and the final atom % 1H, are listed in Table 1.

2. Experimental Results and Discussion

Multiple quantum spectra of the a-Si:H samples for two different

preparation times are shown in Figure (4.22). A comparison of the

spectra at 1-180 and 360 ~s~c was made to see whether the intensity

distribution of the multiple quantum orders 'changes with time or

remains constant. Two extremes can be observed; the 50 atom% spectra

clearly show higher orders at longer times whereas the 8 atom% spectra

remain very similar, suggesting a bounded spin system. Although not

shown in Figure (4.22), spectra were also obtained to assess the

contribution of the isolated monohydrides and molecular H2 to the

multiple quantum experiment. After annealing the 8 atom % 1H device

sample, the remaining hydrogen « 4 atom %) yields a spectrum with a

narrow 1H resonance line (4 kHz). No multiple quantum coherences are

created for short preparation times and only at times greater than 360

~s can small amounts of two quantum coherence be observed. Therefore,

on the experimental time scale, the dominant contributions to the

mUltiple quantum spectra result from spins responsible for the broad
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Sample Gas

COI11Position

Temperature

(oe)

Power

(w)

*Annealed 100% SlH4

Device A 100% SiH4

275

275

4

8

Device B 230 18 16

Nondevice 100% SiH4

*annealed 600oC, 90 minutes

75

25

25

50
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Figure 4.22. 180 MHz 1H multiple quantum spectra of a polymeric, non

device, and two device quality a-Si:H samples are plotted for two dif

ferent preparation times, L • 180 and 360 ~sec. From top to bottom,

these samples contain 50, 25, 16 and 8 atomic %1H, respectively.

Over time, the distribution of intensity across the multiple quantum

orders does not change in the 8 atom %sample, suggesting a bounded

spin system. As the hydrogen concentration increases, the spectra

begin to change more from one preparation time to another.
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resonance line.

In order to quantify the number of correlated spins at different

preparation times, the intensity distributions of the multiple quantum

spectra, plotted in Figure (4.23), have been characterized by the two

time-depe~dentparameters, N(t) and Nc(t). The number of correlated

spins is plotted versus preparation time for the a-Si:H samples in

Figure (4.24). Reflecting the trends seen in both the multiple quantum

spectra and the intensity plots, N(t) remains roughly constant over

time for the 8 atom %device quality sample, confirming the hypothesis

that the spin system is limited to isolated clusters of atoms. By

contrast, N(t) grows with time for the 16 atom %, the nondevice 25 atom

%and the polymeric 50 atom %1H samples. The behavior of Nc(t) is

indicated by the dashed lines in Figure (4.24). The increase in both

N(t) and Nc(t) for the polymeric sample indicates a uniform distribu

tion of spins. The effective cluster size values of the 16 and 25

atom %samples are now very similar to the values of" N(t) obtained for

the 8 atom %sample, indicating that the 25 %, 16 %, and 8 atom %

samples all contain small clusters of four to seven atoms. The uniform

distribution of atoms in the polymeric sample is consistent with t~e

fact that it was prepared differently from the others and contains

«Si-H2)n) species.

Having established that the two device samples and the nondevice

sample all contain clusters of roughly six atoms, we can now

distinguish features between them from the pattern of growth of the

effective system size, N(t), versus time. Depending on how close the

clusters are to one another, the increase in N(t) will be more or less
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Figure 4.23. n-quantum intensity versus preparation time for

hydrogenated amorphous silicon thin films containing a) 25 atom %'H;

b) '6 atom %'H; c) 8 atom %'H. As the concentration of hydrogen

increases, higher multiple orders develop over a shorter period of
time.
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Figure 4.24. Number of correlated spins versus preparation time for

50(a), 25(br, 16(c), and 8(d) atom J a-Si:H samples. After an initial

induction period, N(t) is essentially constant for the 8 atom %
sample, remains nearly level up to 250 ~s for 16 atom %sample, grows

continuously for the 25 atom %sample, and increases very rapidly for

the 50 atom J sample. The dashed lines which represent values of

Nc(t) level off at approximately six for both the 16 and 25 atom %
samples. The values of N(t) for the 8 atom J sample are very similar

to the values of Nc(t) for the other two samples. These data indicate

that the two device samples (8 and 16 atom J), and the nondevice

sample (25 atom J) all contain clusters of approximately six atoms;

as the hydrogen concentration is increased, the clusters become closer

to one another. In contrast, the polymeric 50 atom J sample is com

posed of a uniform distribution of spins as evidenced by the growth of

both N(t) and Nc(t).
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dramatic. For the 8 at. %device sample, N(t) is essentially constant

for all times; for the 16 at. %device sample, N(t) is nearly level for

times up to about 250 ~sec, after which it begins to increase and, for

the nondevice sample the growth in N(t) is continuous. Therefore, what

distinguishes one sample from another Is that the concentration of

clusters increases as the hydrogen concentration is raised. The above

results are corroborated by the experiments performed on model

compounds with known concentrations of 6 spin clusters. Solid solutions

of 1,8 dimethylnaphthalene d6( ring positions deuterated) in

perdeuterated dimethylnaphthalene were prepared and the multiple

quantum experiments, done for comparable 1H concentrations, result in

plots of N(t) and Nc(t) shown in Figure (4.14), that are very similar

to those obtained for the a-Si:H samples.

c. Conclusion

In conclusion~ by using a time resolved solid state multiple

quantum experiment, the extent of 1H clustering in selected a-Si:H

films has been determined. It is found that two device quality films

with 8 and 16 atom %1H and one nondevice quality film of 25 atom %1H

all contain clusters of approximately 6 atoms. As the 'H concentration

is increased from 8 to 25 atom %, the multiple quantum experiments

indicate that these clusters become physically closer to one another.

In contrast, a polymeric sample with 50 atom %1H was also investigated

and found to consist of a uniform distribution of spins. The

geometrical implications of modeling the hydrogen microstructure of

a-Si:H with six spin clusters are worth considering. For samples



174

containing 8, 16, and 25 atom % l H, the concentration of cluster

defects would be approximately 0.7, 2, and 3.3 "atomic" percent,

respectively. If clusters were distributed randomly over a silicon

lattice, their average distance from one another would be 14, 10, and 8

A respectively. This is superimposed on a "random" lattice of isolated

monohydride groups with an average spacing of approximately 8 A. Thus

the transition from device quality a-Si:H to nondevice quality (which

occurs at roughly 20 atom %l H) is seen as increasing the concentration

of clusters until their separation roughly equals the separation of

dilute monohydride groups. This "lattice saturation" phenomenon may be

relevant to electronic structure models based on disorder 21 and quantum

well localization. 22

E. Conclusion

1. Extension of the Multiple-Quantum Experiment in Solids

a. Maintaining a Fixed t, Period

In the mUltiple-quantum experiments described here, the important

information is contained in the integrated intensities of the orders

rather than in the different spectral frequencies occurring within each

order. Therefore, the linewidth is not a necessary component of these

experiments. During the t 1 interval of the multiple-quantum

experiment, the collectively excited groups of spins evolve in the

local dipolar fields of all the other spins. The linewidth or

subspectral structure is thus determined during this period. If the t 1

period is kept constant, then each order would appear as an infinitely
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sharp line containing the magnitude of the n-quantum coherence. 23 This

version of the experiment gives better signal to noise, as the lines

are infinitely narrow and is also much shorter, as the number of

sampled points is now only (2n/# of detected orders) for a particular

preparation time.

A second version of the experiment, which would not only result in

the features described above, but would also reveal the integrated

intensities versus preparation time all at once, employs the method of

parame~er proportional phase incrementation. 24 This method was used

earlier as a search procedure to select a preparation time which

optimizes the intensity of a particular n-quantum order. While the

evolution time t, is kept fixed, the parameter 't is simultaneously

incremented with the phase of the preparation period. The result is an

excitation function describing the magnitude of the n-quantum coherence

versus preparation time. Therefore, only one experiment would now be

needed to obtain the desired intensity information, rather than a set

of experiments for different preparation times.

Eliminating the linewidths i"n the mUltiple-quantum experiments is

reasonable in most cases, although certain materials may require

special care. For instance, in hydrogenated amorphous silicon, where

the single-quantum linewidth can be decomposed into two resonance

lines, it may be important to investigate the multiple-quantum

lineshape as well.

b. Scaled Pulse Sequence

One of the problems noted in this chapter concerns the rapid time-
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development of the number of correlated spins under the Hamiltonian

1/3(Hyy-HXX ). For instance, when the distribution of atoms in the

sample is composed of a high concentration of clusters, then inter-

cluster correlations may develop too rapidly to resolve the desired

intra-cluster interactions. One means by which the size of the cluster

can still be ascertained is to approximate the multiple-quantum

intensities with the two-Gaussian model.

A second solution is to enhance the time resolution of the

experiment by scaling the non-secular Hamiltonian under which the

mUltiple-quantum coherences evolve. Then, the number of correlated

spins will develop more slowly and intra-cluster interactions will be

more readily distinguished from inter-cluster correlations. The idea

behind scaling (Hyy·Hxx ) is to "add" a component of (Hxx + Hyy + Hzz )

to the average dipolar Hamiltonian:

H(O). a(E -H ) + b(H + H
yy

H )
D yy xx xx zz (4.6)

Hyy - Hxx is now scaled by (ala + b) and clearly nothing evolves under

(Hxx + Hyy + Hzz ). A pulse sequence can be constructed by noting first

that

H(O). (b + 2a) H + bH + (b+a) H
D ~ IT ~

(4.7)

using (Hyy - Hxx ) • (Hzz + 2Hxx ). In addition, we try to obtain

H~~b . 0 and try to symmetrize the sequence with respect to the average
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dipolar Hamiltonian. The sequence is designed assuming finite pUlse

widths.

At this point many pulse sequences can be designed and one in

particular is proposed in Figure (4.25). I z , in the toggling frame,

moves between

(zi) (iX) (Xy) (y~) (~i) (ii) (iy) (YZ) (4.8)

with delays as indicated. When b • 2a, the calculated average dipolar

Hamiltonian is equal to 1/3(Hyy - Hxx ) as usual; - 0)
H~FF = 0 and the odd

order correction terms to HD are zero. When b > 2a, (Hyy - Hxx ) will

be scaled down.

2. Summary

Multiple quantum NMR, a technique which induces spins to act

collectively through their dipolar couplings, is used to dete~mine the

spatial distribution of atoms in materials lacking long~range order;

in particular, the size and extent of clustering is probed. Based on .

the proximity of spins to one another, correlations between them will

develop more or less rapidly. A time-resolved multiple quantum

experiment measures both the number of correlated spins and the rate at

which these develop. The key feature in the time-dependent experiments

is that in clustered materials, where groups are physically isolated

from one another, the number of absorbed quanta and correlated spins is

essentially bounded, on the experimental time scale, by the size of the

cluster. In a uniform distribution, however, the interacting network
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Figure 4.25. Pulse sequence designed to scale (Hxx - Hyy ) by

(a/(a + b». When the multiple-quantum coherences are created under

this new Hamiltonian, the number of 'correlated spins will develop more

slowly.
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of spins increases monotonically with time. These events are displayed

in the multiple quantum spectra by changes in the overall intensity

distribution across the mutliple quantum orders. The intensity

envelope is quantified by two time-dependent parameters, the effective

system size N(T) and the effective cluster size NC(T). Thus by

studying the trends in N(T) and NC(T), i.e. whether they level off or

grow with time, we can ascertain the size and extent of clustering in

solids.

Model systems containing different hydrogen environments were

investigated by this technique: a liquid crystal in which inter

cluster couplings were z~ro; solid solutions consisting of protonated

samples mixed with perdeuterated counterparts in which inter-cluster

distances were varied by manipulating"the level of dilution; neat

protonated polycrystalline solids where inter and intra-cluster dipolar

couplings were roughly comparable and hydrogenated amorphous silicon

thin films containing different concentrations of hydrogen atoms. The

atomic distributions in these materials ranged from truly isolated

clusters to uniformly distributed arrangements, with emphasis on the

intermediate cases where concentrations of clusters were addressed.

These techniques are presently being used to study clustering of

molecules adsorbed on zeolites and trapped in silicate glasses.
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F.Appendix

To calculate the effective cluster size Nc in Chapter IV, we fit

the experimental data to the sum of two gaussians (Equation 4.5)

2-n IN.. m e c
c

First, we let In .. experimentally measured value of the integrated

intensity of the nth quantum coherence and I~ • predicted value of In'

We want the square error,

SE .. E(I* - I )2
n nn

a 2
+ .1.... e-n Ib 2

f>1
(4.9)

(4.10)

to be a minimum. Therefore, the derivative of the SE with respect to

all its predictors should be zero and we try to solve the following

four equations simultaneously:

aSE 0aa
1

..
aSE .. a
aa2

(4.11)

This can be done by Newton's method. 25 More specifically if
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~-

then the four equations are

o = f. =
J

= E
n

(4.12)

where 1~j~4. The derivatives needed for Newton's method are

* ]aI
ax: (4.13)

The first derivatives are

(4.14)

(4.15)

The second derivatives are, for j ; k,

o
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(4.16)

The program (written by Karen Gleason) operates as follows:

a) Make a first guess for mc ' Nc ' m2' N2 and choose NMAX- the

maximum number of allowed changes in the four variables before the

program ends- and R2• The first guess is calcUlated by fitting the

integrated intensities of orders n-2 and 4 to a Gaussian of variance

NC with magnitude mc ' and also by independently fitting the intensi

ties of the two highest orders to a Gaussian of variance N2 with

magnitude m2.

b) Compute the square error (SE).

c) Compare (SE/VAR) < (1-R2)

or NLOOP > NMAX

d) If the compare statement is yes, then the program is done.

If not, then mc ' Nc ' m2 and N2 are changed by Newton's method

the loop counter NLOOP is incremented by 1 and the new SE is

calculated.

It is interesting to comment on the fit of the data to both the

single Gaussian, to obtain N, and to the two-Gaussian model to obtain

Nc • For uniform distributions (adamantane, squaric acid) the fit to a

single Gaussian was generally quite good - R2 was usually 0.99. For
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totally isolated clusters (liquid crystal) the value of R2 was ex

cellent, usually 0.999. When concentrations of clusters existed as in

1,B-dimethylnaphtalene-d6' hexamethylbenzene, or amorphous silicon

hydride then the fit to a single Gaussian was worse, sometimes as low

as 0.92. Here" the two-Gaussian model was used and R2 was generally

0.98-0.99.

What these numbers seem to indicate is that when the size of the

cluster is well-defined at any particular preparation time, then ~he

data can be fit to a single Gaussian. This appears to be the case for

uniform distributions, where the size increases monotonically with

time, and for truly isolated clusters. For concentrations of clusters'

the idea was the following: when clusters interact with other

clusters, then the intensities are approximated by two independent

events. The first is the correlation between spins within a cluster.

For the second event the idea is to "redefine" the system by saying

that the spins within the cluster are defined as a single spin and

that different clusters or "spins" now interact with one another.

This second set of interacting "'spins" will have a size N2• Now two

sizes can be stipulated: one is the actual size of the cluster and the

other is the size of the interacting "spins", N2, which can perha~s be

thought of as a fudge factor. If clusters were not interacting with

one. another, then the sum of two Gaussians could be used to determine

the distribution of clusters present in the system. In this case

though, the dynamics are more complicated as clusters are interacting.

But assuming that mc > m2 and that the fit to the two Gaussian model

is good, then although cluster size distributions may exist, they

occur in low concentrations.
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V. APPLICAT.IONS OF COMPOSITE PULSES AND MULTIPLE-QUANTUM METHODS TO

SPATIAL LOCALIZATION AND IMAGING

A. Spatially Selective NMR with Broadband Radiofrequency'Pulses

,. Introduction

It is often useful in many areas of chemistry to be able to

obtain spectroscopic information from a localized region of a sample

noninvasively. Spatial localization is desirable in a number of

systems, ranging from heterogeneous solids such as coals, catalysts

and semiconductors to living tissues and organisms. For example, the

elucidation of the action of a catalyst may be aided considerably by

restricting· observed signals to those originating from the surface

layer alone, eliminating the otherwise overwhelming contribution from

the bulk. The need for spatial localization is also felt keenly in in

!!!£ NMR and magnetic resonance imaging, where signal frequently must

be obtained from a selected organ without interference from surround

ing tissues. Thus spatially selective excitation, which can be dire

cted at specific sites in a heterogeneous system and which can yield

accurate chemical information from these sites, is a highly desirable

goal for spectroscopy in general and NMR in particular.

In a recent Communication', Tycko and Pines introduced a

technique designed to localize NMR signals in space by combining the

radio-frequency (rf) gradient of a surface coi1 2 with an excitation

sequence narrowband in rf field strength. 3-6 The excitation sequence

is a variant of a composite n pulse7 that inverts spin populations
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only within a small range of rf field amplitudes. This chapter

enlarges upon the earlier work in three important areas. 8 First, a

pulse sequence is suggested that has the required narrowband proper

ties with respect to the rf amplitude but at the same time uniformly

excites over a substantial range of resonant frequencies. This allows

the technique to be used in situations where the observed signals span

a large chemical shift range, without requiring unreasonably high rf

power. Second, experimental results on a phantom sample and using a

surface coil are given to demonstrate both the degree of spatial lo

calization that may be achieved and the chemical shift range that may

be covered. Third, we present a brief discussion of the relationship

of our method to spatial localization methods proposed by ather

authors, with the intent of pointing Qut the experimental conditions

under which differ~nt techniques may be preferred.

2. Development of Pulse Sequences

a. Narrowband Localized Excitation (NOBLE).

A NOBLE pulse sequence is oomprised of two parts.' The first is

a narrowband inversion sequence P, which inverts spin populations in a

narrow range of rf amplitudes centered about a nominal value

w?(rad/sec). The second is a read sequence R, which in the simplest

case may be single pulse. The free induction de9ay (FID) after apply

ing P and R in succession is subtracted from the FID after R alone.

The remaining signal arises only from those regions in space where P

inverts spins and R excites signal. Signal contributions due to re

sidual transverse magnetization created by P are eliminated either by
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dephasing in a delay between P and R or by phase cycling of P.

Dephasing may result from an applied pulsed static field gradient, or

from transverse relaxation if T2 < T1•

This method leads to very simple expressions for the signal

amplitude and phase. Suppose that P produces an inversion W(w1'~w) at

an rf amplitude w1 and a resonance offset ~w, where W is defined as

usual 1,3-7 to run between -1 and 1, with -1 indicating equilibrium

spin populations and 1 indicating complete population inversion. In

addition, suppose that R excites transverse magnetization with an

amplitude A(w1 ,~w) and a phase ~(w1'~w). Then the signal amplitude is

proportional to S(w1'~w), given by

(5.1)

and the signal phase is ~(w1 ,~w). An additional factor of w1 would be

present in Equation (5.1), arising from the detection efficiency, if

the same surface coil were used for both excitation and detection. 9

The fact that the signal phase depends only on R is significant. In

general, the direction of the net rotation axis of P, loosely speaking

the "phase" of P, changes considerably with w1. If the signal phase

were to depend on the phase of P, contributions to the total acquired

signal with different values of w1 and the same value of ~w could

interfere destructively.10 Thus, a loss of sensitivity would result.

NOBLE avoids this problem, since only the inversion produced by P and

not the phase plays a role.
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b. Selective Inversion Sequences

There remains considerable flexibility in the choice of specific

sequences for P and R, sUbject to the constraint that the duration of

the sequences must be short compared to T, and T2• Narrowband

sequences have, been derived using iterative schemes by our

laboratory3,4 and by Shaka and Freeman. S The iterative schemes can

generate pulse sequences with arbitrarily small bandwidths in w,.

Typically, however, the bandwidths in ~w are also small, i.e.

W(w, ,~w) is a strong function of ~w as well as w,. Using fixed point

methods, some progress has been made towards the development of iter

ative schemes for generating inversion sequences that are narrowband

with respect to w, and broadband with respect to ~w.4 For the present

purpose, however, we" programmed a computer to search for sequences

that meet given bandwidth criteria. It was found that less than nine

pUlses do not meet the inversion profile requirements over both w, and

~w. Therefore, in a typical search, the program examines all pulse

sequences composed of nine pulses with nominal flip angles of '800 and

with the individual phases in multiples of 'SO. The desired values of

W(w, ,~w) are specified for 26 combinations of w, and ~w. The actual

values of W(w,,~w) are calculated for each possible sequence. The

sequence with the smallest variance between the actual W(w, ,~w) values

and the desired W(w, ,~w) values is selected. Only sequences with

symmetric phases are considered, reducing the number of sequences that

must be tested and eliminating the need to examine both positive and

negative values of ~w." Once a sequence is found, it can be refined

by changing the pUlse phases in SO increment. Simulations
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indicate that phase errors within 50 of the nominal phase do not

appreciably alter the inversion profiles, therefore further refinement

of the pulse phases is not necessary.

The sequence 18°3018°20518°23018°85180018085'8023018020518030'

which we denote PO' results from such a search procedure. The contour

plot in Figure (5.1.) illustrates the inversion performance. Accord

ing to Equation (5.1), Po allows the signal amplitude at 001 = oo? to be

greater than 75% of its maximum for all resonance offsets in the range

-0.3oo? < ~oo < 0.3oo? Significant signal at undesired values of 001 can

only develop when I~ool > 0.3oo?

c. Read Sequences.

Any sequence composed of an odd number of nominal 1800 pulses

such as PO' will invert spin populations when 001 is any odd multiple

of oo? Thus large signal contributions may arise from regions in

space where 001 is approximately an odd multiple of oo~ in addition to

the desired region where 001 is approximately equal to oo? In refere

nce 1, Tycko and Pines suggested using a single nominal 600 pulse for

R. A nominal 600 pulse becomes a 1800 pulse at 001 = 3oo?, making

A(3oo?,0) • O. Bendall has demonstrated the same approach for suppres

sing high flux signals with depth pulses. 12 ,13 In Figure (5.2a), we

show a plot of S(001'0) for NOBLE using Po and a nominal 600 pulse for

R. Although S(3oo?,0) • 0, there is substantial signal on either side

of 3oo? Signals on opposite sides of 3oo? have opposite phases so that

partial cancellation may be expected, but the suppression is not

ideal. The signal at oo~ is reduced from its maximum factor of 13/2,
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Figure 5.1. Contour plot of inversion performance versus resonance

offset (Aw/w~) and rf field strength (w1/w~) for the composite pUlse

sequence PO: 1803018°20518°23018°8518°018°8518°23018°20518°30. Each
pulse is specified by two angles, e" where e denotes the flip angle

and, the phase. Po produces narrowband inversion with respect to w1

and broadband inversion with respect to' Aw.
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Figure 5.2. Simulations of NOBLE signal amplitude S(w1. 6w ) with the

inversion pUlse PO' as specified in Figure (5.1). and various read
sequences R:

a) S(w1' 0) for R • n/3

b) S(w1' 0.2w~) for R • n/3

c) S(w1' 0) for RO • 90180120030909027012090300

d) S(w1' 0.2w~) for RO • 90180120030909027012090300
An additional factor of w1 arising from the detection efficiency with

a surface coil is included. The read sequence RO of (c) and (d)

effectively eliminates the signals f~om the 3w~ region while maintain

ing almost maximum intensity in the w~ region.
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since it is excited by a 600 pulse rather than a 900 pulse. In addi

tion, as can be seen in Figure (5.2b), a 600 pulse is not broadband

over the desired range of frequency offsets.

A better choice for R would have the following three properties.

First, it would be a broadband inversion sequence near 3w~, inverting

spins and exciting no signal over large ranges of both w, and 6w.

Second, it would excite nearly the maximum signal at w, • w~. A

sequence that has these properties is 9°'80'2°03°909°27012°903°0'

which we denote RO• RO is derived from the composite n pulse

27°18036°09°9027°27036°909°0 developed by Shaka and Freeman,14 simply

by dividing all pulse lengths by three. That RO has the first proper

ty above is a consequence of the work of Shaka and Freeman; 14 that it

has the other two properties might be coincidental. Figures (5.2c'),

and (5.2d) are plots of S(w1 ,6w) for NOBLE using Po and RO• The

selectivity with respect to w1 and the useful range of 6w are illustr

ated; the signal profile is essentially identical between 6w ." ° and

6w • 0.2.

At this point, we stress that other choices for P and Rare poss-

ible. Po and RO were selected principally to provide a large

bandwidth in 6w and to eliminate signal contributions from the 3w?

region. Other considerations may require different sequences, for

example a P with a narrower bandwidth in w1 in order to produce finer

spatial resolution. 1,3-5 Read sequences that do not excite signal at

higher multiples of w1' e.g. both 3w? and 5w~, can be found.

A potentially important possibility is the use of an adiabatic

frequency sweep15 or an equivalent phase modulated pUlse16- 18 as the
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read sequence. Adiabatic sweeps discussed in Chapter II can invert

spins essentially completely for arbitrarily large values of 001 above

a threshold oo~ that depends on the sweep rate. 17 ,18 Below oo~, the

conditions for adiabaticity18 are not satisfied and transverse

magnetization is created. Thus by placing the threshold between oo?

and 3oo?, all contributions to the signal except those near oo? could be

eliminated. In addition, if the fine spatial resolution afforded by P

is not required, an adiabatic sweep could be used alone. This would

be an entirely new approach to spatial localization.

3. Experimental Demonstration of NOBLE

a. Experimental Design

Experiments were performed at 180 MHz on a phantom sample of

H20(1) using a three turn surface coil. The configuration of the

sample and coil is shown in Figure (5.3a). The sample consists of a

10 mm long section of delrin rod with a diameter of 4 mm, into which

five holes have been drilled with a spacing of 2.0 mm. The holes are

filled with H20(1) and are labelled as positions 1 through 5 in order

of increasing distance from the plane of the coil. The coil diameter

is 1,.5 em. To provide a one-dimensional image of the sample, a pulsed

field gradient of approximately 1.14 Gcm- 1 is applied along the long

axis of the sample. Figure (5.3b) is a one-dimensional image of the

phantom sample obtained by giving a single pUlse and Fourier trans-

forming the ensuing FID. Signals from positions 1 through' 5 are

clearly distinguished. The decrease in signal intensity with increas-

ing number is a consequence of both the smaller pulse flip angle and
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Figure 5.3. Top: Surface coil and sample geometry.

The sample consists of a delrin rod (4mm diameter) containing 5 small

holes filled with H20(1).

Bottom: 1H spectrum of the phantom sample recorded after a n/2 pulse

at position 1. A static field gradient 1s used to obtain the one dim

ensional image.
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the reduced detection efficiency with increasing distance from the

surface coil. Th~ value of wl/2~ at each position was determined by

adjusting the pulse length so as to produce a null of the signal. In

order of increasing position number, the values are 33, 21, 12.5, 7.9

and 4.9 kHz. The experimental timing sequence is shown is Figure

(5.4). The static field gradient serves only to allow a direct

visualization of the spatial distribution of signal contributions for

demonstration purposes and, less importantly, to cause transverse

magnetization to dephase during t in Figure (5.4). The static field

gradient is not a relevant component of the spatial selectivity of

NOBLE.

b. Experimental Results

Figure (5.5) illustrates the degree of spatial localization re-

suIting from NOBLE. Figure' (5.5a) is the image resulting from excita-

tion by RO; Figure (5.5b) is the image resulting from excitation by

RO after inversion by PO. The pulse lengths are adjusted to the rf

amplitude at position 3, i.e. w? · 12.5 kHz. Figure (5.5c) is the

difference of Figures (5.5a) and (5.5b). Appreciable signal remains

at position 3 only.

The resonance offset range of the Po and RO sequences is

demonstrated in Figure (5.6). NOBLE is applied with the pulse lengths

adjusted to localize the signal to position 3. Without changing the

pUlse lengths, the rf carrier frequency is changed in increments of

1000 Hz. Good localization is preserved up to resonance offsets of

o3000 HZ, or w/w 1 • 0.24.
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Preparation CPo) T

IlL "S-ltIS

Figure 5.~. Experimental timing diagram. The selective inversion

pulse, PO' shown in Figure (5.1) is followed by a period t, during

which transverse magnetization is allowed to dephase. The free induc

tion decay is recorded following .the read pUlse, RO' of Figure (5.2c).

A pulsed static field gradient along the long axis is used to provide

the one dimensional image of the phantom containing H20(1). The NOBLE

experiment is performed by subtracting the inverted signal from the

FID obtained after RO alone. The signal that results when the pUlses

are applied with a surface coil arises only from a localized region in

space.
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Figure 5.5. 1H spectra obtained according to the NOBLE method for the

phantom water sample shown. Pulse lengths were calibrated with re

ference to the nominal rf amplitude, w? • 12.5 kHz, 'existing at posi

tion 3.

a) RO • 90180120030909027012090300. The spectrum contains

signals from all five bulbs.

b) Spectrum read by RO following a spatially selective inversion

pUlse, Po • 1803018°20518°23018085180018°8518°23018°20518030'
adjusted for bulb 3.
c) Difference spectrum obtained by subtracting b) from a). Only

signal from position 3 is retained in this spatially localized

spectrum.
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BULB 3 SELECTIVITY

Frequency Offset: l:aw/w~ I: 0 0.08 0.16 0.24

IL --L.;I -!-� ~I_=__--_:;,

-7.0 -3.5 0 3.5 7.0

Frequency (kHz)

XBL 855- 2643

Figure 5.6. Stacked plot illustrating the broadband properties of the

composite inversion pUlse with respect to resonance offset. Each peak

1s a spatially localized signal from bUlb 3. obtained under NOBLE with

frequency offset as marked. Spatial selectivity is achieved success~

fully up to a frequency offset of approximately 25% of the nominal rf
amplitude.
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4. Discussion of Spatial Localization Methods

Various methods for spatially localizing NMR signals, with the

preservation of spectral information, have been developed. Some of

these rely on static field gradients,19-30 some rely on rf field

gradients,1,5-6,12-13,31-40 and some rely on a combination of the

two. 12 ,41 Methods that rely on static field gradients have the

advantage that signals can in principle be localized to a well-re

stricted sensitive volume, for example a cube. They have the dis

advantage that pulsed gradients in three independent directions are

required for localization in three dimensions. Methods that rely on

rf field gradients have the advantage of comparative simplicity,

insofar as probe or magnet design is concerned, and can exploit the

sensitivity advantage and partial localization inherent in surface

coils. 2,42 The major disadvantage of rf gradient methods, including

NOBLE, is the diffuse sensitive volume, as determined by the shapes of

surfaces of constant transverse rf fields. Spatial localization

achieved by the selection of a particular value of the of the B, field

is not necessarily restricted to a point on the axis of the surface

coil but will also occur along the transverse component of the rf

field. This results in a sensitive volume whose shape is defined by

the rf field profile of the surface coil. This disadvantage can be

overcome to an extent by alternative coil geOmetries,43 multiple ex

citation coils,37 separate excitation and detection coils,35 and the

combination of rf and static field gradients.'2,41

For the present discussion, we limit ourselves to rf gradient



202

methods. In addition to NOBLE, there are two other techniques that

have been developed to date to acquire NMR signals only from a limited

spatial region in an rf gradient. One of these, that of Shaka et

al.,5,6 also makes use of narrowband inversion sequences. Signals

from outside the region of interest are eliminated in a phase cycling

scheme involving the coaddition of four 5 or sixteen6 FID signals.

Provided that the same inversion sequence is used, the sensitive

volumes of NOBLE and the four step version of Shaka et ale are the

same. The latter method is susceptible to destructive interference

within the sensitive volume arising from phase variations in the in

version sequence as discussed above. Whether this proves to be a

significant distinction in practice is determined by the choice of the

inversion sequenoe and by the signal distribution within the sensitive

volume. The sequence '800'80270 '89'80 demonstrated by Shaka et al. 6

produces no phase variations on resonance, a consequence of the anti

symmetric rf phase~ of such sequences.

Shaka and Freeman have also des'cribed another method designed to

function over a large range of resonance offsets. 40 Here, composite

prepulses, broadband in both ~w and w" are incorporated into phase

cycling schemes in order to achieve the desired localization. As more

prepulses are applied, the w, profile becomes progressively narrower.

The best signal profile, which covers a large range of resonance

offsets and is narrowband in rf field strength, arises from a 24 stage

scheme containing three prepulses. The phase 'of the signal is well

behaved with this method.

The second technique is the depth pUlse method of Bendall et
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al.12-13,34-39 Depth pulse sequences all consist of strings of pUlses

combined with specific phase cycling schemes. The pUlses themselves

do not possess narrowband properties. Rather, the sensitivity to the

rf amplitude results from the extensive phase cycling, which cancels

signals from undesired spatial regions. Thus, the depth pulse method

is conceptually quite different from NOBLE, arising out of the phase

cycling tradition in NMR rather than the more recent composite pUlse

tradition. 7 '

Depth pulse sequences that provide localization in the vicinity

of w1 · w? similar to that in Figure (5.2) require the coaddition of

16 or more FID signals. 13 Procedures for eliminating signal from the

3w? and SW? regions have been suggested, and require 32 and 64 FIDS

respectively.12 The useful resonance offset ranges of the depth pUlse

sequences.are similar to that exhibited using Po and RO•

We expect NOBLE, when combined with a suitable inversion pUlse,

to be useful under a number of relevant experimental conditions.

First consider a situation in which the intrinsic signal to noise

ratio is high and in which time'is limited. In this case, NOBLE

offers the advantage of good time resolution. In addition to the re

quirement of fewer FID signals, NOBLE can be repeated with an

arbitrarily short recycle delay without appreciable degradation of the

spatial selectivity. This is because the longitudinal magnetization

before each shot in the undesired spatial regions is a constant, in

dependent of the pulse phases in the previous shot, once a steady

state is reached. Rapid pulsing can lead to a greater signal to noise

ratio in a fixed time.
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Another important limit is an experiment with a low intrinsic

signal to noise ratio and with no time constraint. In such an experi

ment, none of the techniques has an overriding, intrinsic advantage.

A decision is likely to be made on the basis of experimental con

venience. The use of separate excitation and detection coils,35 and

the use of multiple excitation coils to restrict the sensitive volume

have been developed for depth pulses by Bendall et al. 37 Ideally,

these ingenious multiple coil experiments could be combined with the

selectivity of NOBLE.

An alternative for experiments in .which considerable signal

averaging is permitted or required is to use a rotating frame chemical

shift imaging (RFCSI) technique. 3'-33 Briefly, a two-dimensional RFCSI

experiment consists of collecting a series of FIDS, acquired in the

intervals labelled by t 2, following excitation by a pUlse. of variable

length t" from a surface coil or other source of an inhomogeneous rf

field. A double Fourier transform yields' a two-dimensional "spectrum"

with spectral information along one axis and rf strength, i.e. dis

tance, information along the other axis. RFCSI clearly differs from

NOBLE and depth pulse sequences in that signal from all,spatial

regions is preserved but is separated by the Fourier transformation

with respect to t,. In order to achieve a spatial resolution and

extent comparable to that in Figures (5.2) and (5.5), a minimum of

approximately 16 values of t 1 would have to be sampled. Thus the

m1.nimum time for an RFCSI experiment is comparable to that of a depth

pulse experiment, but is eight times greater than that of a NOBLE ex

periment. The signal to noise ratio in an RFCSI spectrum is expected
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to be less than that in a depth pUlse or NOBLE spectrum by a factor on

the order of 12 for a fixed total number of acquired FIDS. 31 However,

spectral information from all spatial regions is acquired at once,

making for greater efficiency if such information is desired. In a

sense, the relationship of RFCSI to depth pulses and NOBLE is

analogous to the relationship of sensitive line methods to sensitive

point methods, as explained in discussions of NMR imaging. 44- 46

5. Conclusion

a. Composite ~/2 Pulses

A composite ~/2 pulse sequence narrowband in frequency and

broadband in resonance offset would eliminate the need for a differe-

nce technique entirely. Progress. has been made towards developing ~/2

pulse sequences which are narrowband in 001 by using iterative schemes

with two fixed pOints. 47 ,48 When the initial sequence (37.5)90.

(37.5)0 (37.5)90 is iterated with the scheme [0, 15, 180, 165, 270,

165, 180, 15, 0](2), where the values in brackets indicate phase

shifts, the inversion profile becomes sharper as seen in Figure (5.7).

The iteration procedure consists of phase shifting the initial

sequence by the phases indicated above and then concatenating the

phase shifted parts. A second interation, Figure (5.7c) results in an

even sharper profile; now the inversion profile is smoothed out and

has also become more narrowband.

When the z-component of the magnetization goes through 0.00, then

the transverse magnetization is at a maximum. The slope of the cross-

ing of Mz from -1 to 1 essentially indicates how narrowband in 001 the
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signal will be. The x-y component of the magnetization is plotted in

the bottom of Figure (5.7). After two iterations of the initial

sequence with the 9-pulse scheme two important features are observed

in the signal profile: the range of rf field strengths over which the

signal"exists is very narrow and yet the signal is zero out to rf

field strengths which are eight times the nominal value. This is a

consequence of the properties of the initial sequence as well as the

iteration scheme. These sequences can be used as ~/2 pulses from

which signal can be obtained from a very localized region in space.

b. Summary

We have presented a composite pulse sequence, narrowband in space

and broadband in frequency, which can be used in conj unction wi'th a

surface coil to acquire a chemically shifted NMR signal from a 10-

calized region of a sample. The 9 pulse population inversion

sequence, used in the NOBLE method, spatially localizes signals -in an

rf field gradient to a region where the rf amplitude w, approximately

satisfies O.75w? < w, < '.25w?, ·and retains a useful resonance offset

range of -O.3w? < ~w < O.3w? Undesired signals arising from spatial

regions where w, is approximately 3w? are suppressed by using a read

sequence that is a broadband composite ~ pulse near 3w? It is

suggested that adiabatic frequency sweeps may be used to suppress

signals from regions where w, is a higher multiple of w? A combina

tion of these selectlve t.echniques with SHARP spectroscopy49 may allow

high resolution surface coil NMR in the presence of inhomogeneous

static fields.

,



207

Initial Pulse (37.5)90 (37.5)0 (37.5)90
Iterative Scheme [0. 15. 180, 165, 270, 165, 180, 15, 0]

oIteration 1 Iteration 2 Iterations

o '.0 2.0 3.0 ".0 5.0 6.0 7.0 8.0

1.0

0.0

-1.0
~-Io-"""'''''''''''''-''-'''''''--''--'o 1.0 2.0 3.0 ".0 5.0 6.0 7.0 1.0 o 1.0 2.0 3.0 ".0 5.0 6.0 7.0 6.0

RF field strength (CII,/CIIP)

(c) 243 pUsss

{

J
o 1.0 2.0 3.0' ".0 5.0 6.0 7.0 1.0 o '.0 2.0 3.0 ".0 5.0 6.0 7.0 6.0

RF field strength (CII,/CIIP)

(1)

o 1.0 2.0 3.0 ".0 5.0 6.0 7.0 80

Figure 5.7. Top: Simulations of population inversion as a function

of the rf field strength for the sequence (3.75)90 (37.5)0 (37.5)90(a)

and its first two iterates (b) and (0) generated by [0, 15, 180, 165,

270, 165, 180, 15, OJ.

Bottom: Simulations of the transverse magnetization Mxy as a function

of rf field strength for the same pUlse sequences as above. In both

cases, the features of the inversion (top) and signal (bottom) profile

are smoothed out for higher iterations. In addition, the range of rf

field strengths over which inversion, or signal, occurs becomes

narrower. These sequences can be used as narrowband n/2 pUlses to

obtain signal from a very localized region in space.
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B. NMR Imaging in Solids by Multiple-Quantum Resonance

1. Introduction

NMR imaging is now a well-established technique. for studying

biological systems50 • In its most general form, an imaging method

uses a magnetic field gradient to encode the positions of the nuclear

spins with a spatially varying Larmor frequency. Once the variations

in resonant frequency have been decoded appropriately, an image of the

nuclear spin density or, more generally, of any mix of NMR parameters

can be created.

In a linear magnetic field gradient, g, the spread of frequencies

across a thickness Az is gAz.If features on the order of Az are to

be resolved, then the externally imposed field, gAz, must itself be

resolved relative to any background or internal field. For solids,

the dominant background field is usually the local dipolar field, BL•

In biological systems familiar from 1H imaging, rapid isotropic

molecular motio~ often averages ,these internal dipolar fields to zero.

However, in a strongly protonated solid, where molecular motion is re-

stricted, a typical value for BL might be 5G so that a gradient

greater than 50 Glcm (0.5T/m) would be needed in order to achieve a

resolution of mm. One approach51 - 54 to this problem is to reduce

the effective local field by a mutliple-pulse line-narrowing

sequence. 55- 56 The alternative approach is to leave the local field

untouched, but to impose a gradient large enough to meet the condition
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2. n-Fold Increase in Gradient Strength

In this section, we demonstrate a prototype imaging experiment

for solids based in spirit on this "brute force" method of increasin"g

the gradient, but which relies instead on the properties of multiple

quantum NMR transitions57 to increase the effective gradient strength

by an order of magnitude. 58 Specifically, we intensify the effect of

the gradient upon the evolution of the spin system by creating high-

order multiple-quantum coherences and following their development in

the static field gradient. A mUltiple-quantum coherence of order n =

Mi - Mj , where Mi and Mj are the magnetic quantum numbers for high

field states IMi > and IMj >, evolves n times more rapidly in an inhomo

geneous field than the usual single-quantum coherence. That is, if a

single-quantum transition in the presence of a field gradient appears

with resonance offset dW, then an n-quantum transition appears at ndw.

This effect was described in Chapter "III, Section A.2.b. The line

widths resulting from the effective local dipolar fields do increase

with order, as shown in Figure (5.8a); but an n-quantum linewidth

does not increase by as much as a factor of n. Therefore, the n-fold

increase in gradient strength will still permit rather modest

gradients to be used. This feature has been exploited previously in

NMR diffusion measurements. 59

3. Experimental Design

The mUltiple-quantum pulse sequence, shown in Figure (5.9) is

partitioned into preparation, evolution, mixing, and detection
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Figure 5.8. a) Square of the linewidth versus n-quantum order in ada

mantane. The different symbols lndicatedifferent preparation times:

t • 660 psec (squares); t· 528 psec (circles); t· 396 psec

(triangles); t· 264 psec (diamonds). The general trend seems to in

dicate that the linewidth increases with order. b) n-quantum line

width versus preparation time for dif ferent mUltiple orders as listed

in the figure. The linewidth within an individual order increases for

longer preparation times. The mUltiple-quantum spectra from which

these linewidths were calculated were obtained with the pulse sequence

shown in'Figure (5.9).
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Figure 5.9. "The mUltiple-quantum pulse sequence.

The preparation and mixing periods (t) comprised of cycles of eight

w/2 pulses with duration t p and rf phases x and x, produce average

Hamiltonians ~o) • -1/3(Hyy - Hxx ) for 6' • 26 + t p• To sep.arate

multiple quantum orders, the relative phase ~ between preparation and

mixing period is incremented in proportion to the evolution time t 1•

About 2 ms after the end of the mixing the z component of magnetiza

tion is monitored with an x pulse and a 100~s spinlocking pUlse. The

time-domain data are Fourier transformed with respect to t 1 to produce

the mutliple-quantum spectra of Figure (5.11).
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periods. The basic cycle of rf pUlses is (xxxxxxxx), where x and x

are ~/2 pulses with phases of 00 and 1800 , respectively. With the

pulse spacing as shown in the figure, the zeroth-order average homo-

nuclear dipolar Hamiltonian is

H(O) .. -31 (H -H ) .. -I: D.. (1 i I j - 1X1.IXj )'
yy xx i<j lJ y Y

(5.2)

under which coherences of even order can develop in a strongly coupled

dipolar system60 • The coherences then evolve freely for a time t 1

under the influence of the resonance offset and dipolar Hamiltonians,

A phase shift of 900 in the rf pulses creates a time-reversed mixing

period60 ,61, which is followed by detection of the magnetization using

conventional methods. The detection scheme employs spin-temperature

inversion62 to reduce artifacts from reveiver ringing. One point is

sampled for each value of evolution time, and the resulting signal is

Fourier transformed against t 1 • Separation of the mUltiple-quantum

orders according to n is accomplished via the method of time propor

tional phase incrementation63 of the pulses in the preparation period.

Finally, we alternate the phases of the preparation pulses by 1800 to

remove any imperfections due to odd-order mUltiple-quantum

contributions. 64

In imaging experiments the pulse sequence must work properly
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under the resonance offsets created by the dc field gradient; in this

regard the pulse sequence (xxxxxxxx) is superior to the (xxxxxxxx)

cycle). The implementation and experimental considerations have been

presented in Chapter III, Section E. Though the zeroth order average

dipolar and resonance offset Hamiltonians are the same for both

cycles, the symmetrization of the first sequence guarantees that the

odd-order correction terms to the offset Hamiltonian in the Magnus ex

pansion vanish. 55 ,56,65 This has been described in more detail in

Chapter III, Section D.

4. Experimental Results and Discussion

The phantom used in the mUltiple-quantum experiment is composed

o-f three parallel glass melting poi.nt tubes (1. 2 mm Ld., 1. 65 mm

o.d.), arranged linearly. The center tube is empty, while the outer

tubes are loaded wlth a 4 mm length of compressed adamantane. The

sample, consisting of the two cylindrical adamantane plugs (1.3 mm

dia. x 4 mm) separated by 2.0 mm, is aligned with its cylindrical axes

perpendicular to the z-axis field gradient, as is pictured in the

inset of Figure (5.10).

Figure (5.10) shows the 360 MHz l H single-quantum adamantane

spectrum with and without a 48 mT/m field gradient. Although the

gradient, which amounts to 20kHz/cm, broadens the line from 12 kHz

(full width at half height) to 14.5 kHz, the signals from the two ada

mantane plugs remain unresolved. The corresponding multiple-quantum

spectra of the adamantane phantom are in Figure (5.9). The main peaks

represent multiple quantum coherences out to n a 14. Very high-order
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Figure 5.10. Adamantane 1H (single-quantum) spectra with (b) and

without (a) a z gradient of 20kHz/em. Sample geometry is shown in the

inset. The applied gradient is inadequate to resolve the signals from
t.he two adamantane plugs.
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coherences (n > 60) can be prepared and detected in adamantane66 but

here we have selected, somewhat arbitrarily, a preparation time (t =

396 ~sec) which is sufficient to excite transitions up to n = 20 with

reasonable intensity.

Figure (5.11) clearly demonstrates the attraction of imaging by

multiple-quantum resonance. Peaks from the two adamantane plugs just

begin to separate at n • 4, and are well resolved out at n = 10, where

the gradient is effectively 10 times larger than for single-quantum

coherence.

The multiple-quantum approach also possesses another interesting

advantage, which derives from the separation of the evolution and

detection periods. The spins are labelled by the static gradient

during the evolution period t 1, but are detected later dur.ing the t 2

interval. Consequently, while the bandwidth of the evolution fre

quencies during t 1 might be very great (say 10MHz) in order to facili

tate clear separation of the orders, no thermal noise is admitted

during this interval. Any thermal noise comes to the receiver during

the t 2 interval, but the bandwidth can actually be very narrow here.

For imaging, this substantial benefit of the separation of evolution

and detection is analagous to the advantage' of a pulsed gradient over

a steady gradient in diffusion measurements 67 • Realization of this

advantage requires that t 1 noise(57b, p.199), due to fluctuations in

the preparation and mixing periods, be minimized.

We have demonstrated here the essential feature of 1H imaging by

multiple-quantum NMR in strongly coupled solids: spatial resolution

is enhanced considerably by the increased effective magnetic gradient
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Figure 5.". Adamantane'H (multiple-quantum) spectra with (b) and

without (a) a static z gradient. The preparation and mixing times (cf

Figure 5.9) are 396~, corresponding to 6 cycles of the 8 pulse

sequence with 3~ ~/2 pulses. The t, increment is 100 ps and the

phase increment is 2~/32; this separates each order by 312.5 kHz.

For clarity the vertical scale has been expanded for orders 8-14.

Even with a small gradient (20 kHz/cm) the two adamantane plugs can be

resolved.



217

seen by high~order coherences. Although we have displayed transitions

of many orders, in an actual imaging scheme it might be advantageous

to use only one order. Techniques of mutliple-quantum filtering68 and

of selective preparation60a suggest themselves.
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APPENDIX: COMPUTER PROGRAMS

Computer Programs used in Chapter II are v~rsions of CAMPUL, LOPTRAJ

and associated subroutines Rabi and RfRabi. The notation in the programs is

different from that used in the text. Here

or

1
lSw'r • ."tan I

To simulate the inversion of the MIP over resonance offset, 'CAMPUL is used.

For the linear sweeps and the CAP, the "phase function is substituted by

and

respectively. For all calculations of inversion over resonance offset, sub-

routine Rabi is used. When the inversion over rf field strengths and/or re-

sonance offset is desired, then rf Rabi must be substituted with appropriate

changes in the program.

To calculate the composite pulse sequence from the continuously modu-

lated pulse, a version of Loptraj is used. Again to calculate the best
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pulse sequence over offset (as in Loptraj) Rabi is used. Loptraj calculates

a pulse sequence with constant phase increments. Minor changes need to be

made to calculate a pulse sequence with unrestricted phases; a search over

owt and the cut-off time t c must be implemented in that case.

For Chapter IV, the program SPLOC5 was designed to find the best pulse

sequence for a specified inversion profile over resonance offset and rf

field strength.
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c PrograM CAMPUL
c Calculates inverslon over a range of offsets using the HIP phase
c function. Flip angles and phases are found directly froM MIP by
c specifying the phase increMent.
c
c

DIMENSION p(3),t(2000),ph2(2000),flip2(2000)
COMMON theta,ph,flip

c
pi=4.0*ATAN(1.0)
l"adian=180.0/pi

c
TYF'E50

50 FORHAT('$How Many resonance offset values?: ')
ACCEPTll<,npt

c
TYPE60

60 FORMAT('fEnter dw(tau): ')
ACCEPT*,dwt

c
TYPE70

7~ FORMAT('SEnter the nUMber of pulses: ')
ACCEF'T*, npulse

c
TYF'E65

65 FORMAT('SEnter the increMent of the phase in degs: ')
ACCEPT*, arl

c
TYF'E80

80 FORMAT('fWhat do you want the data file naMed?: ')
ACCEF'T90, fna'Me

90 FORMAT(A)
OPEN(UNIT=3,NAME=FNAME,STATUS~'NEW')

c
ione=l
write(3,39),ione,npt

39 forl'lat(i6)
TYPE95

95 FORMAT('fEnter the offset:')
ACCEPT*,ext

c
dlvs=ext/(npt-l.0)
voff=0.0
wl=SGRT(1.0+(dwt*dwt»
n=(npulse/2.0)+1.0
arlr=aM/radlan

c
phl=al'lr/2.0
var=EXP(-phl/dwt)
tMe=SGRT(1.0-(var*var»
t i Me=tMe/va 1·

t (1) =ATAN (tirle)
ph2(1)=0.0
fllp2(1)=2.0*~(1)

c
ph 1=aMr /2. 0+arlr

c
DO 200 J=2,n
varl=EXP(-phl/dwt)
tMel=SORT(1.0-(varl*varl»
til'lel=tMel/va,"l
t (J) =ATAN (tirlel)
ph2(J)=phl-aMr/2.0



flip2(J)=(t(J)-t(J-1»
ph1=phl+al'l'"

200 CONTINUE
c

DO 400 I=l,npt
p(1)=0.0
p(2)=0.0
p(3)=1.0
theta=(pi/2.0)-ATAN(voff)
freqef=w1/SIN(theta)
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c

500
c

600
c

40

400
c

540

550

560

10
1000
c

20
1050
c

DO 500 J=l,n
1\= (n+1)-J
ph=ph2(/\)
flip=freqef*flip2(K)
CALL RABI(p)
CONTINUE

DO 600 J=2,n
ph=ph2(J)
flip=freqef*flip2(J)
CALL RABI(p)
CONTINUE

WRITE(3,40) -p(3)
FORMAT(E14.6)
voff=voff+divs
CONTINUE

print540,nplllse
forMat(/,15x,i16,lx,'PULSE STEPS')
p'"lnt550,dwt,arl
forl'lat(/,5x,'dwtau=',f10.4,5x,'phase increl'lent=',f10.4)
print560
forl'lat(//,10x,'PHASE',15x,'FLIP ANGLE',/)
phl=0.0
voff=0.0
wl=SGRT(1.0+(dwt*dwt»
theta=(pi/2.0)-ATAN(voff)
freqef=wl/SIN(theta)
DO 1000 J=l,n
K= (n+1)-J
phl=ph2(K)*radian .
flipl=freqef*flip2(K)*radian
PRINT10,phl,flipl
FORMAT (2F"1S. 3)
CONTINUE

DO 1050 J=2,n
phl=ph2(J)*radian
fllpl=freqef*flip2(J)*radian
PRINT20,phl,flipl
FORMAT(2F18.3)
CONTINUE

END
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c
c
c
c

c

c

c

c

c

c
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subroutIne rabi(p)
written by JiM Murdoch.
Calculates the evolution of the Magnetization vector over a resonanLe
offset resulting froM a pulse of specified phase and flip angle.

diMension r(3.3).p(3).pp(3)
COMMon voff.ph,flip

voff2=voff*voff
veff2=voff2 + 1.0
veff=sqrt(veffZ)
vt=veff*flip
cvt"'cos(vt)
svt=sln(vt)
cp=cos(ph)
sp=-sin(ph)

aa=(1.0 + voffZ*cvt) I veffZ
cc=voff * (1.0 - cvt) I veffZ
ff=svt I veff
dd=-voff * ff

cccp=cc * cp
ccsp=cc * sp
ffcp=ff * cp
ffsp=ff * sp

cp2=cp * cp
sp2=sp * sp
qq=(cvt - aa) * cp * sp

r(I.I)=aa*cp2 + cvt*spZ
r(1.2)=qq - dd
r(1.3)=cccp + ffsp
r(2,1)=qq + dd
r(Z,2)=cvt*cpZ + aa*sp2
r(Z,3)=-ccsp + ffcp
r(3,1)=cccp - ffsp
r(3,Z)=-ccsp - ffcp
r(3,3)=(voff2 + cvt) I veff2

do 20 1=1,3
sUI'l=0.0
do 10 j=I,3

10 SUI'l=SUM + r(i,j) * p(j)
Z0 pp(i)=sul'l
C

do 30 i=1,3
30 p(i)=pp(i)
c

)"eturn
end



IJ

c
c
c

c

c

c

c

c

c

subroutine rfrabi(p)

Adapted frOM subroutine Rabi to allow for resonance offset
effects and different rf field strengths siMultaneously.
diMension r(3,3),p(3),pp(3)
cO~Mon voff,ph,flip,rf

1- f2=1- f*l- f
lIoff2=\loff*\loff
veff2=voff2 + rf2
lIeff=sqrt(veff2)
vt=veff*fl ip
cvt=cos(v't)
svt=sin(v't)
cp=cos(ph)
sp=-sin(ph)

aa=(rf2 + voff2*cvt) I veff2
cc=voff*rf* (1.0 - cvt) / veff2
f f=svt*l- five f f
dd=-voff * ffll-f

cccp=cc * cp
ccsp=cc * sp
ffcp=ff * cp
ffsp=ff * sp

cp2=cp * cp
sp2=sp * sp
qq=(cvt - aa) * cp * sp

r(1,1)=aa*cp2 + cvt*sp2
r(1,2)=qq - dd
r(1,3)=cccp + ffsp
1-(2,1)=qq + dd
r(2,2)=cvt*cp2 + aa*sp2
r(2,3)=-ccsp + ffcp
r(3,1)=cccp - ffsp
r(3,2)=-ccsp - ffcp
r(3,3)=(voff2 + cvt*rf2) I veff2
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do 20 i=1,3
s~IM=0.0
do 10 j=1,3

10 SUM=surl + 1- (i, j) * p (j)
20 pp(i)=SUM
c

do 30 i=1,3
30 pCi)=ppCi)
c

l-etul-n
end
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c PrOqraM LOPTRAJ
c Cal~ulates a sequence of radiofrequency pulses froM the
c inversion trajectory of the continuously Modulated pulse(MIP).
c This prograM finds the best cOMposite pulse, broadband over
c resonance offset, with constant phase increNents.
c

diNension zw(2000),p(3),x(2000),y(2000),z(2000),difx(2000),
1 dify(2000 l ,thC2000),thpC2000),MlcN2xC2000),NlcN2y(2000),
1 MlcN2z(2000),wlx(2000),wly(2000),wlz(2000),dot(2000),
1 Nult(2000),xp(2000),yp(2000),zpC2000),NpC2000),
1 N12dot(2000),N12norC2000),coef(2000),N12flpC2000),tiMe(2000),
1 bth(300),bflip(300),bvoff(300),bcoNp(300)

CONNon voff,ph,flip
real NlcM2x,MlcN2y,NlcN2z,Nult,Mp,M12dot,N12nor,M12fID

c
c
c
c
c
c
c
c
c
c

c
1

c
c
C

5
c

c

c

Enter initial paraMeters:
npulse: nUMber of pulses in the sequence
ndwt: total nUMber of dwt over which to search
dwt0: initial value of dwt
ddwt: increMent in dwt
npt: nUMber of points to calculate over a range of offsets
VMX: highest value of resonance offset
deg: value of the constant phase increMent

do 2000 npulse=4,12,4
ndwt=400
dwt0=1.0
ddwt=0.1
npt=30
vl'lx=I.S
deg=30.0

bestave=-1.0
divs=vMx/Cn~t-l.0)

dwt=dwt0
pi=4.0*ATANC1.0)
radian=180.0/pi

Calculate the tlNes WhlCh correspond to the chosen phase increMent

do 1000 id=l,ndwt
sUN=0.0
n=np~llse/2.0
q=deg/radian*n
qn=q/n
do 5 I\=I,n
var=EXPC-CK*qn)/dwt)
tNe=SQRTC1.0-Cvar*var»/var
tlNeCK)=ATANCtNe)
continue

ratt0=pi/2.0
v10=SQRTC1+(dwt*dwt»
dt=2.0*ratt0/FLOATCnpulse)

xC 1) =0.0
y(1)=0.0
:;:(1)=1.0

do 10 1=2,npulse
1\=1-1,0
J=n-K



30
, c

21

'J
22

if(J.eq.0.0) go to 12
if(J.lt.0.0) go to 13
tt=-I. 0*ti Ph? (J)
go to 14

12 tt=0.0
go to 14

13 J=-l. 0*J
tt=tiple (J)

c
c Calculate tile on-l-esonance invel-sion for a value of dwt
c
14 val=COS(tt)

pht=-dwt*ALOG(lIal)
x(I)=(dwt/vI0*val*COS(pht»+(1.0/v10*val*SIN(pht»
y(I)=(dwt/vI0*val*SIN(pht»-(1.0/vI0*val*COS(pht»
z(I)=-SIIHtt)
tt=tt+dt

10 contlnue
c

x(npulse+l)=0.0
y (npulse+l) =0. 0
z(npulse+l)=-1.0

c
c Calculation of the constant phase pulse that gives the saMe
c evolution of the ~agnetization between tl and t2 as the
c continuously Modulated pulse.
c

do 20 J=2,npulse+l
difx(J)=x(J)-x(J-l)
dlfy(J)=y(J-l)-y(J)
th(J)=ATAN(difx(J)/dify(J»
thp(J)=th(J)+pi

20 contimle
c

do 30 I=2,npulse+l
MICM2x(I)=(y(I-1)*z(I»-(z(I-1)*y(I»
MlCM2y(!)=(z(I-l)*x(I»-(x(I-l)*z(I»
MlCM2z(I)=(x(I-l)*y(I»-(y(I-1)*x(I»
wlx(I)=v1e*COS(th(I»
wly(I)=v10*SIN(th(I»
wlz(I)=v10*0.0
dot ( I ) = (P11 c P12 x ( I ) *w 1 x ( I) ) + (P11 c p12y ( I ) *w 1Y ( I ) ) + (P11 C M2z ( I ) *w 1z ( I ) )
IF(cot(I).G~.0.0) go to 3U
th(I)=t~p(I)

continue

IF(th(2).ge.0.e l go to 21
th(2)=th(2)+pi*2.0
dlfth=(th(2)-th(3»*radian
IF(difth.ge.0.0) go to 22
dlfth=dlfth+360.0
nth=difth/45.0
Mth=2.(dlfth/4~.0-nth)

I th =nth +Plth
gth=lth*45.0/radlan
th(2)=th(3)+gth
th(npulse+1)=th(2)

c
do 50 J=3,npulse
do 35 I=J-1,J
Mult(I)=(x(I)*COS(th(J»)+(y(I).SIN(th(J»)
xp(I)=x(I)-(Mult(I).COS(th(J»)
yp(I)=Y(I)-(Mult(I)*SIN(th(J»)
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48

49
50

zp (I> =z (I)

Mp(I)=SQRT«xp(I)**2)+(ypCI)**2)+(zp(I)**2»
35 continue
c

M12dot(J)=(xp(J-l)*xp(J»+(yp(J-l)*yp(J»+(zp(J-l)*zp(J»
M12nor(J)=Mp(J-l)*Mp(J)
coef(J)=Mi2dot(J)/M12norCJ)
IF(coef(J).EQ.0.0) GO TO 49
IF(coef(J).GT.0.0.AND.coef(J).LE.l.0) GO TO 48
M12flp(J)=ATAN(SQRT(1.0-coef(J)*coef(J»/coef(J»+pi
go to 50
M12flp(J)=ATAN(SQRT(1.0-coef(J)*coef(J»/coef(J»
go to 50
M12flp(J)=pi/2.0
continue
M12flp(2)=ATAN«x(2)*SIN(th(2»-y(2)*COS(th(2»)/z(2»
M12flp(npulse+l)=M12flp(2)

c
c Calculation of the inversion of the Magnetization over
c resonance offsets resulting froM the newly found cD~~osit~

c pulse.
c

sUM=0.0
voff=0.0

c
do 60 J=l,npt
p (1) =0. 0
p(2)=0.0
p(3)=1.0

c
do 70 I=2,npulse+l
ph=th(I)
flip=-M12flp (I)

CALL RABI(p)
70 continue
c

SUPI=SUPI-P (3)
voff=voff+divs

60 continue
.ve=suM/npt
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"

c

80

87

if(ave.lt.bestave) go to 1000
bdwt=dwt
btc=tlPle (n)
best.ve=ave
do 80 I=2,npulse+l
bth(I)=th(I)
bflip(I)=M12flp(I)
continue
lIoff=0.0
di ....sl=0.1
do 85 J=l,:21
p(1)=0.0
p(2)=0.0
p (3)=1.0
do 87 I=2,npulse+l
ph=th(I)
flip=-M12flp (I)
CALL RABI (p)
continue
bvoff(J)=voff
bCOMp(J)=-p(3)
voff=voff+divsl
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dwt=dwt+ddwt

continue

Search through all values of dwt to find the best inversion
per forr'lance.

85
c
c
c
c
1OO0
c

5013

5513
1

600
1

650

71313

701

702

710
913

705

7:'13
100

prlnt500,npulse
forMate/II,' BEST AVERAGE CRITERION FOR',i10,lx,'PULSE STEPS')
prlnt550,npt,vMx
forMatC/,5x,' an average over',i4,lx,'values of woff/w1 froM'
'0 to',fB.4)
print600,ndwt,dwt0,ddwt
forMat(/,5x,i4,lx,'values of dwt',8x,'initial value:',f8.4.5x.
'increMent:',f8.4,/)
print650,bestave,vMx
forMat(/,5x,'(-W >=',f9.6,' froM 0 to',f8.4)
print700,bdwt,btc
forMat(/,' The best dwt=',f8.4,2x,' The cut off tiMe=',f8.4)
pl-111t701,deg
forMat(/,5x,'The phase incr.in deg=',f3.1)
pn nt702
forMat(//,5x,'FLIP ANGLE',5x,'PHASE')
do 90 I=2,npulse+l
print710,bth(I)*radian,bflip(I)*radian
forMat(5x,f10.5,3x,f10.5)
continLle
pl-int705
forMat(//,5x,'OFFSET',12x,'Z-MAG.')
do 100 J=1,21 ..
print720,bvoff(J),bcoMp(J)
forMat(5x,f10.6,3x,f10.7)
continLt~

if(deg.eq.90.0) go to 780
if(deg.eq.45.0)go to 760
If(deg.eq.30.0) go to 750

750 deg=45.0
go to 1

760 deg=90.0
go to 1

c
780

2000
c

1I~lx=vrlx-0. 2
deg=30.0
if(IIMX.LE.0.4) go to 2000
go to 1
continue,
end



c
c
c
c
c:

c

c

PloOgl-iHl SPL.OC5
PrograM finds th@ best pulse sequence for a soec:ifled
inversion profile over resonance offset and rf field
stJ°engths.

DiMension p(3),flipp(100),rfl(100),voffl(100),bflip(10,100)~

1 bphase(10,100),fline(500),phine(100l,flioMin(100),
1 phMax(100),phMin(100),phase(100l,flipMax(100),av(100),
1 desinv(100),deswyt(j00)

COMMon voff,ph,flip,rf

232

type*,'NuMber of pulses'
aecept*,npulse
type*,'AII initial flip angles'
aecept*, (fl ipl'lin (I), I=1, 11pulse)
type*,'Incr. of phases 1 to NP'
accept*, (fline (I>, I=1, I1pulse)
type*,'Max.fllp angles 1 to NP'
aceept*, (flipPlax (I), I=l,npulse)
type*,'AIl initial phases'
accept*, (phMi n (I), 1=1, npLlltie)
type*,'Incr. of phases 1 to NF"
accept*, (phine (I>, I=I, npulse)
type*,'Max. phase 1 to NP'
accept*, (phMax (I), I=1, npulse)
type*,'NuMber of offset values'
aceept*,nof
type*,'Values of offsets frOM Min to Max value'
accept*, (voff1 <I), I=I, liof)

type*,'NuMber of rf values'
accept*,nrf
type*,'Value~ of rf frOM Min to Max'
accept*, (r f1 (I>, I=I, m-f)
type*,'Enter desired inverslon at each rf point'
accept*, (desinv(I),I=I,nlof)
type*,'Enter weighting at each rf point'
accept*, (deswgt (I), I=I, 111° f)

c
c set up dUMMy pulse sequences and variances
c

ipulse=(npulse/2.0)+1.0
iv=1
av(l)=10

30 do 20 K=I,npulse
b flip (iv, k) =90
bphase(iv,k)=270

20 continue
iv=iv+l
av(iv)=av(iv-l)+10
if(iv.gt.5)go to 1
go to 30

c
c
c
1

10

Initialize paraMeters

pl=4.0*ATAN(1.)
I-ad ian=180. 0/p i
do 10 I=I,npulse
flipp(I)=flipMil1(I)
phase(I)=phMln(I)
continue
rf1 (nrf+l)=0.0
voffl(nof+l)=0.0

',>



flag=0.0
np t=no f*111- f

c
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2

3

sUP1=0.0
phaseCipulse)=0.0
phaseCl)=phaseCnpulse)
1=1
phaseC1+l)=phaseCnpulse-I)
ifC1.ge.ipulse) go to 90
1=1+1
go to 3

'II

c
90 flippCl)=flippCnpulse)

1=1
4 flippCI+1)=flippCnpulse-1)

ifC1.ge.ipulse) go to 150
1=1+1
go to 4

c
c Calculate inversion over specified offsets and rf values
c for an N pulse sequence
c
150 voff=voff1(1)

do 100 Kf=l~nof

rf=l-f1 (1)

do 200 kp=l, nrf
p(1)=0.0
p(2)=0.0
p(3)=1.0

c
do 300 I=l,npulse
flip=flippCI)/radian
ph=phaseCI)/radian
call l-frabi Cp)

300 continue
var=desinvCKr)+pC3)
var=var*var*deswgtCKr)

160 SU~=SUM+var

c
200 rf=rflCkr+l)
100 voff=vofflCkf+1)
c

avar=sUP1/npt
ifCavar.ge.av(5» go to 2000
av (5) =aval
ifCav(5).ge.avC4).and.avC5).~e.avC3).and.avC5).ge.avC2).and.

1 av(5).ge.avC1» then
iv=S
go to 1600
end if
lfCav(4).ge.avCS).and.avC4).ge.avC3).and.avC4).ge.avC2).and.

1 av(4).ge.avCl» then
iv=4
go to 1500
el,d if
ifCav(3).ge.avCS).and.avC3).ge.avC4).and.avC3).ge.avC2).and.

1 av(3).ge.avCl» then
iv=3
go to 1500
end if
lfCav(2).ge.avCS).and.avC2).ge.av(4).and.avC2).ge.avC3).and.

1 av(2).ge.avCl» then
iv=2



1500

1200
1600

1000
c
c
c
2000
2500

c

3000

c

4000

go to 1500
end if
iv=l
avel-=av (5)
av(5)=av(iv)
av (ill) =allel-
do 1200 k=l,npulse
bflip(5,k)=bflip(ill,k)
bphase(5,k)=bphase(iv,k)
continue
do 1000 k=l,npulse
bflip(iv,k)=flipp(k)
bphase(iv,k)=phase(k)
continue

IncreMent values of phases

if=ipulse
flipp(if)=flipp(if)+flinc(if)
if(flipp(if).le.flipMax(if» go to 2
flipp(if)=flipMin(if)
if=if+l
if(if.le.npulse) go to 2500

ip=ipulse+1
phase(ip)=phase(ip)+phinc(ip)
if(phase(ip).le.phMax(ip» go to 2
phase(ip)=phMin(ip)
ip=ip+l.0
if(ip.le.npulse) go to 3000

print*,'flag=',flag
print*,'Five best flip angles and phases'
do 4000 iv=1,5
pl"int*, (bflip (iv, I), I=l,npulse)
print*, (bphase (iV, 1),1=1, npulse)
print*,'va~iance=',av(iv)
pl-int*,' ,
pl"int*,'
continue
end
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