
' I I
f
i ·,
5

l
,, ..

LBL-21269
Pre print

ITll Lawrence Berkeley Laboratory
11:1 UNIVERSITY OF CALIFORNIA, BERKELEY

:- - ~ ~ ~~~~ 1 \I t::. LJ

Information and Computing);.- ·,_.~-;:~,~~:;.:.~;,,ro,w

Sciences Division Jui'i 2 s 1987
:_~. ~-~ •· ~ ,.,! .~.I'~;)

socui~·:ct'l rs ~.£cnoN

Submitted to Algorithmica

BIT TRANSPOSITION FOR VERY LARGE SCIENTIFIC AND
STATISTICAL DATABASES

H.K.T. Wong, J.Z. Li, F. Olken, D. Rotem,
and L. Wong

March 1986

TWO-WEEK LOAN COPY :···-·'
\.

. . ~. '
This is a Library Circulating Copy ~: .

r.:· h m· · ay-be borrowed for two w.~e~s~·,"~>'~'-......... WtriC • . ' ' ,ji;f.! .' o o:•f \ .~
)-' >'2.._'
l''

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

r
(JJ
\

~ -9)
b

"' 0 _s;

'Y

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

Bit Transposition for Very Large Scientific
and Statistical Databases

LBL-21269

H.K.T.Wong, J.Z. Li, F.Olken, D.Rotem, and L.Wong

Computer Science Research Department
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

March, 1986

This research was supported by the Applied Mathematics Sciences Research Pro
gram of the Office of Energy Research, U.S. Department of Energy under contract
DE-AC03-76SF00098.

LBL-2126Q

Bit Transposition for Very Large Scientific
and Statistical Databases

Harry K.T. Wong, J. Z. Li*, Frank Olken, Doron Rotem, Linda Wong
Lawrence Berkeley Laboratory,

University of California
Berkeley, California 94720

Abstract

Conventional access methods cannot be effectively used in large Scientific
/Statistical Database (SSDB) applications. A file structure (called bit transposed
file) is proposed which offers several attractive features that are better suited for
the special characteristics that SSDBs exhibit. This file structure is an extreme
version of the (attribute) transposed file. The data is stored by vertical bit parti
tions. The bit patterns of attributes are assigned using one of several data encod
ing methods. Each of these encoding_ methods is appropriate for different query
types. The bit partitions can also be compressed using a version of the run
length encoding scheme. Efficient operators on compressed bit vectors have been
developed and form the basis of a query language. Because of the simplicity of
the file structure and query language, optimization problems for database design,
query evaluation, and common subexpression removal can be formalized and
efficient exact solution or near optimal solution can be achieved. In addition to
selective power with low overhead for SSDBs, the bit transposed file is also amen
able to special parallel hardware. Results from experiments with the file struc
ture suggest that this approach may be a reasonable alternative file structure for
large SSDBs.

le Introduction and Motivation

Scientific/Statistical Databases (SSDBs) exhibit many specialized data usage
and characteristics ([12, 15]). Despite the advent of many advanced access
methods, the dominant fil~ structure for very large SSDBs is still the simple
sequential file. The major reason is a "mismatch" between conventional access
methods such as inverted files, B-trees, hashing, etc. and the characteristics of
SSDBs. First, since the cardinality of SSDBs attributes is typically small, most
access methods simply partition the database into a small number of still very
large files, with prohibitively expensive overhead for the pointers, structures,
tables, etc., with only limited selective power added. Second, since SSDBs are
largely static, the expensive overhead associated with the dynamic facilities of
most access methods is not justified. Third, the values of SSDBs attributes tend

Supported by the Office of Energy Research, U.S. DOE under Contract No.
DE-AC03-76SF00098.

* on leave from Dept. of Computer Science, Heilongjiang Univ., China.

to cluster, and current access methods often do not take advantage of this oppor
tunity for compression. Fourth, the access to SSDBs is typically long "sweep"
i.e., a long sequence of individual records is fetched and a small number of attri
butes extracted. This kind of range access is not supported well by most access
methods.

The search for an appropriate file structure begins with the "fourth point
mentioned above, which is the motivation for attribute transposed files ([l4, 1]).
Conventional files store the data as a collection of contiguous records, i.e., all the
fields for a single record are stored together on a disk page. Attribute transpos.ed
files store the data as a collection of contiguous attribute columns, i.e., all of the
data for a field (attribute) is stored together. B'it transposed files (BTF) store
the data as a collection of bit columns, i.e., all of the data for single bit position
of an attribute encoding is stored together. Thus the file structure we propose
can be seen to be an extreme form of the attribute transposed file.

The basic advantage of attribute transposed files is that only those attribute
columns which are needed for a query need be retrieved. In many statistical
applications only a small fraction of the attributes are needed for a query. Bit
transposed files offer three advantages:

(1) Clever data encodings will permit us to retrieve only a fraction of the . bit
vectors used to encode an attribute in order to perform a selection.

(2) The bit vectors are amenable to data compression via run length encoding,
especially if the data records have been sorted.

(3) Selection criteria can be formulated as boolean expressions on the bit vec
tors, facilitating fast evaluation and specialized hardware.

In summary the bit transposed file system offers an efficient means of per
forming selections.

2. Overview

The BTF system has three major components: an index encoder, transposed
bit vector loader, and a query processor on bit vectors.

The index encoder translates each field in each record in the database into a
series of bits based on several encoding schemes. The result is th~t each record of
the database is translated into a bit pattern.

The second component, called the transposer, stores the bit patterns in a
transposed manner so that for each bit position of the bit pattern, a file is pro
duced which contains the bit value of that bit position from all the records in the
database. The result is n BTFs where n is equal to the number of bit columns
that result after encoding. Because values in large statistical databases tend to
cluster, we have developed a compression method to compress the BTFs so that
long runs of O's and 1 's can be stored more efficiently.

The third component of this file structure is the query processor on BTFs.
The processor translates the retrieval requests on the database into a boolean

2

expression on the BTFs. The translation algorithm takes as input the encoding
schemes for the· attributes and the query type of the query. The generated
boolean expression is then subject to a process called common subexpression
removal which substitutes subexpressions from the query with results from previ
ous equivalent queries that have been saved by the system. The resultant
boolean expression is evaluated by using the primitive boolean operators AND,
OR, and NOT that can operate directly on compressed BTFs.

In the rest of the paper, section 3 describes the various index encoding
schemes with examples. Also, the problem of optimal index encoding assignment.
is formalized and solution discussed. Section 4 gives details and examples to the
transposition of records by bits. In Section 5, query processing algorithms for
decoding of queries and common subexpression removal are presented. Section 6
discusses the implementation and experimentation of the file structure and results
are listed in another appendix. In section 7, the related work to BTFs is
presented. Section 8 reviews the motivation of the paper. Section 9 discusses our
current work and concludes the paper.

3. Index Encoding Schemes and Optimization

In this section we will discuss the available index encoding schemes and the
problem of optimal index encoding assignment in our BTF transposed file struc
ture. Index encoding schemes are crucial to BTFs because they ultimately decide
how many boolean operations have to be performed on the bit vectors. There are
four basic schemes: binary, k-of-n, unary, and superimposed. Each one of these
schemes can have a composite version for attributes with large number of values.
Below we will describe each of them with examples and discuss the usage of the
scheme for different kind of queries. In section 3.6, the problem of automating
the design of optimal index encoding schemes is discussed and solution presented.

3.1. Binary Encoding

Given an attribute A with n possible values, the binary encoding of A is to
use log2(n) bits for each value v and the bit pattern for v is the binary number in
the range of 0 and n, corresponding to the ordinal integer of v among the n
values of A. As a convention, the bit positions are labeled b0, b 11 ••• , bm, from the
rightmost bit to the leftmost. This scheme requires the minimum of storage but
all bits have to be examined for retrieval.

As an example throughout this paper, we will use an application of radiation
experiment on dogs. This experiment database contains information such as dog
type,· weight, age, dosage, location, etc. Assume that there are 10 dog types. To
encode dog type using the binary encoding requires 4 bits and the bit patterns of
these 10 values range from 0000 to 1010.

3

3.2. K-of-N Encoding
This encoding scheme assigns bit patterns to attribute values by turning on

a distinct set of K bits from N bits. Hence it can encode up to (~) values. For
example, the 1-of-10 encoding for dog type mentioned above would involve the
following bit patterns:

0000000001
0000000010
0000000100

1000000000

An 2-of-5 encoding for dog type has the following bit patterns:

00011
00101
00110
01001
010i0
01100
10001
10010
10100
11000

Unlike binary encoding, this scheme requires examining only K bits for any
value. It allows a time-space tradeoff in the sense that more storage space (larger
N) would mean less bits to examine (smaller K).

3.3. Unary Encoding

This scheme requires N bits to encode N values and it is useful for attributes
that are involved mostly in range or inequality queries. For example, the follow
ing is the result of encoding dog type using the unary encoding scheme.

0000000001
0000000011
0000000111

1111111111

To retrieve all dog types that are larger than type 3 requires to examine only bit
b3 (if it is 1 or not). Similarly for all dog types that are below type 3 requires to

4

examine only bit b2 (if it is 0 or not). Range queries in the form of (a,b) can be
expressed as two inequality queries in the form of < a and > b. For example, to
find all dog types between 3 and 8 requires examining only bits b2 (greater than
2) and b8 (less than 9). Similarly queries such as ;*a can be expressed as < a or
> a. For example, to find all dog types not equal to dog type 3 requires examin
ing bits ~ (less than 3) and b8 (greater than 3).

3.4. Superimposed Encoding
Superimposed encoding scheme ([9]) is important for SSDBs which contain

large volume of bibliographical data or property data ([12]). To use superim
posed encoding for an attribute, a hashing function is first defined which maps
each desired keyword in the attribute into a bit pattern of N bits. Given an
attribute value (text with keywords), the collection of bit patterns of all the key
words are superimposed (logically ORed together) and the resulting bit pattern is
the encoded value. This scheme supports partial match queries. Given a list of
keywords·to be searched, the keywords are hashed, superimposed onto a bit vec
tor and the resulting bit pattern is matched against the superimposed codes of
the attribute. Because of the possible "false drops", this scheme can only be used
as a "filter" in the sense that only some records not qualifying are eliminated but
of the selected ones, a search for the keywords is still required to reject those that
were selectf!d because their codes coincide with .the superimposed code of the
query.

3.5e Composite Encoding

Each of the four encoding schemes mentio.ned above can be made "compo-
site". Given an encoding scheme E and a bit vector with length N, a composite
encoding scheme for E of D fields is the concatenation of D groups of bit vectors,
each of which is encoded using E and with length N. For example, suppose there
are 1000 possible values for the attribute dosage in our experiment database. An
1-of-1000 encoding would require 1000 bits for each value. A composite 1-of-10
encoding with 3 fields, which involves the concatenation of three 1-of-10 fields
together, can be used. 'To find a particular dosage value, only 3 bits have to be
examined, 1 from each field. Composite k-of-n encoding with d fields can be
viewed as a n-bit radix number with d digits. It is not required for the fields of a
composite encoding scheme to have the same length. For the example above, we
could have the first field encoded as 2-of-5 and the last two as 1-of-10.

Given an attribute encoded in a particular scheme, to find the correspon
dence between a value or the attribute and its bit pattern is done by a code table
lookup. The major advantage of the composite encoding scheme is the reduction
or the code table size. The reason is that the number of possible encoded values
or a composite encoding scheme is the product or the number of possible encoded
values or its fields, but the size of its code table is just the sum of the size of the
code tables of its fields. In fact, in the case that all fields have the same encod
ing, then the same code table can be used. Another advantage of composite
encoding is that for attributes with large number of possible values, multiple

5

levels of grouping can be made so that selection can be performed based on the
disired level. For example, in the composite encoding of dosage above (three 1-
of-10 fields), there are three levels of grouping of values, one at the hundreds, one
at the tens, and one at the ones level. Selection performed at the hundreds, tens,
or ones level involves respectively one, two, or three bits. For large SSDBs, hav
ing multiple levels of grouping of values is very important and composite encod
ing scheme is invaluable.

Table 1 summarizes the properties of the encoding schemes. For each
scheme, the possible number of encoded values, the number of bits to. examine in
case of exact match, inequality, or partial match are given. The formulas are
expressed in terms of d (the number of fields, in the case of non-composite encod
ing, d=1), n (the width of each field), and k (the number of bits to turn on in the
case of k-of-n encoding). As can be seen from the table, binary encoding schemes
provide the most compact encoding in terms of space, but require the examina
tion of all bit positions for exact or inequality queries. K-of-n encoding schemes
require the examination of kd bits for exact match, but are expensive to answer
inequality queries. Unary encoding schemes . are best for inequality search
(requires only d bits), but it is space-expensive. None of the above three encoding
schemes can handle partial match ~ueries. Superimposed encoding schemes pro
vide such a capability, but they cannot handle other query types.

#values exact match > partial match ·

binary 21ld nd nd N/A

k-of-n (k)d kd nd -N/A

unary (n+l)d 2d d N/A

superimposed 0(21ld) N/A N/A *

Table 1: The properties of encoding schemes

* depends on code density, typically is nd .
2

3.6~ Index Encoding Optimization

In this section, we will consider automating the optimal index encoding for
one encoding scheme, the k-of-n. The result in this section has been generalized
to the other encoding schemes ([11]), but for space reason, the generalization will
not be presented in this paper.

6

..

Given an attribute A with v possible values, the k-of-x encoding method
stores each value as a binary number with x digits. Exactly k digits are l's and
the other x-k are O's. Clearly we can represent at most (k) (the number of com
binations of x objects taken k at a time) different values for the attribute using

this method and therefore we have the constraint that (k) must be at least v.

To meet this constraint we can choose to increase both x and k, increase only x

while keeping k small, or increase only k. In any case k will not exceed ; since

(k) is maximized at either k=; or k= x;l and w~ will show that increasing k

means more boolean operations to answer a query. On the other hand, a large x
means that more storage will be required to store the bit vectors. Hence we have
a time space tradeoff problem. In this section we address the following problem:
Given a certain amount of space to store the bit vectors, what is the optimal par
titioning of this space among m attributes such that the expected query process
ing time is minimized. A more formal definition of the model and a dynall!ic pro
gramming solution to this problem is now given.

Given a database of N records on m attributes A1~, • • • .Am, we would like
to store the records as a set of bit vectors. The total number of bits reserved for
encoding all att.ributes is c, so that the total storage requirement is C*N. We
assume that attribute ~ has v1 possible values and appears in a query with proba
bility Pt· Our problem is to find for each attribute ~ , a k1 and a '!=i such that the
values for~ will be encoded in a k1 of-x1 encoding. We assume that when a value
for attribute ~ is mentioned in a query, the amount of boolean operations
required to find the appropriate records will be proportional to k1 because this is
the number of columns we have to AND / OR in this case1• Therefore, minimiz
ing the expected time to answer a query amounts to minimizing

The constraints are

We observe that the minimum value for any x1 is log2(v1), by information theoretic
arguments and also the maximum value for k1 that we will consider is log2(v1)

because otherwise we can use the usual binary encoding with this cost for query
processing. The above optimization problem can be solved by dynamic program
ming techniques by using the following principal of optimality. Let us denote by

1 To simplify the presentation, we only consider exact match queries here. In
[11], a more general problem will be addressed.

7

OPTy(1,2, · · · ,j)

the optimal expected query cost for the above problem where we only consider
attributes A 1.A2, .. ,A1 and allow these attributes to use a total of y bits. We observe
that

OPTw(1,2, ,j+l) = miny{OPTy(1,2, .. ,j)+OPTw-y(j+l)}.

In words, every partitioning of w bits for the first j+l attributes .is achieved by
finding some y where y<w such that the first j attributes use y bits and the attri
bute A;+1 uses the remaining w-y bits. Among all such feasible partitionings, we
have to find the value for y which minimizes the sum of these costs. This pro
vides ·us w.ith an iterative approach where at each iteration we add one more
attribute into consideration until we finally find OPTc(1,2, .. ,m) which is the
optimal way of partitioning C bits among m attributes. A program which imple
ments this idea was written in PASCAL and it took a very short time to compute
optimal allocations for all practical size databases that we are currently using in
our experiments. The details of the testing of the algorithm appear in Appendix
A.

4. Bit Transposition

In this section we will describe the file structure using some examples. The
steps in obtaining the BTFs involve the following: first, the encoding schemes are
decided for selected attributes; then the attributes are encoded for all records in
the database; for each bit position of the encoded record, a file consisting of all
the bits across the whole database is generated and stored; finally, the files are
compressed.

The database of radiation experiment on dogs is used again here to illustrate
these steps. The attributes of the database include the dog type, weight, age,
dosage, location, observation, etc. Assume the following encoding schemes

attribute #values scheme

dog type 10 2-of-5
weight ·s unary (8 bits)
age 20 binary (5 bits)
dosage 200 composite unary

(3 fields of 6 bits)
location 10 1-of-10
observation 1000 keywords superimposed on 10 bits

Using these encoding schemes, the database is transformed into bit patterns.
For each bit position, a bit vector is stored as a file. For the example above, the

8

•0

number of bit vectors files is as follows:

attribute

dog type
weight
age
dosage
location
observation

#hit vectors

5
8
5
18
10
10

These bit vectors are then subject to compression. The compression method
we use is a variation of the header compression scheme proposed by [3], which in
turn is a variation of the run length encoding scheme with efficient access to the
compressed data. Because of space limitation, the reader is referred to the above
paper for the details of the compression method. The BTF compression scheme
has the additional capability of suppressing the compression in the case where the
overhead exceeds the gain of compression. This happens when there are a large
number of short runs of 1 's and O's. Tb.e suppression algorithm involves look
ahead and constant evaluation and balance of the cost of the overhead vs the
storage gain from the compression.

5. Query Processing

In this section, the query processing aspects of BTF.S are presented. The
primitive operators on bit vectors are first discussed, followed by a short descrip
tion of the query language, then the algorithms for decoding of· queries and com
mon subexpression removal.

5.1. Boolean Operators on Bit Vectors

. The primitive operators on bit vectors are the boolean operators AND, OR,
and NOT. These operators can be efficiently implemented by breaking up the bit
vectors into words and feed to the boolean operators of the CPU. More efficiency
is gained when the compression rate of the bit vectors is large. In the case of
computing the AND operator between two bit vectors, for example, the runs of
O's in one of the bit vectors can be "skipped", and the corresponding part of the
other bit vector can also be skipped. For bit vectors with large compression rate
(which is one of the dominant characteristics of SSDBs), this skipping action can
be used to produce very fast boolean operators over bit vectors.

5.2. Query Language

The current BTF query language is a simple boolean expression language
which allows range, exclusion, and set conditions. For example, to retrieve all
female dog records between age 3 to 5 and weigh more than 10 lbs, the following

g

query can be used.

sex=1 1\ age=3:5 1\ weight> 10

The query "retrieve all dogs except German Sheppards (which has value 105) or
dogs that have developed cancer in the brain", can be expressed as

dogtype,-H05 V obser\ration={"cancer" ,"brain"}

(Note that in the current implementation of the BTF there is actually a menu
. driven user interface which alleviates the user from having to memorize the inter

nal codes of the attributes.)

In general, all queries have the forms:

(1)

where EXI\ can have the following form: (1) A fJ V, where fJ is in { <,>.~} and V

is a value of attribute A; (2) A-VS, where VS is a set of values from attribute A;
and (3) A V1:V2, where V1 and V2 are values of attribute A.

5.3. Decoding of queries
Given a query, a series of table lookup has to be performed to translate the

query into boolean expression of bit vectors. The first table is the attribute index
encoding table which recor~ the encoding scheme for each attribute and contains
a pointer to the attribute's bit assignment table. The bit assignment table
records the bit pattern for each attribute value. In the case of composite encod
ing, there can be up to d bit assignment tables where d is the number of fields of
the composite encoding scheme.

Given the bit assignments for each attribute in the query, the next step is to·
generate boolean expression on bit vectors. Below, we will illustrate this step by
some examples.

1. Simple exact match queries.

(a) find all German Shepherds

From table lookup, value 105 is found to have bit assignment 01100 in a 2-of-5
encoding scheme. The query '

dogtype=105

is translated to

10

-

and can now be evaluated. (Remember that the bits are named from right to
left.)

(b) find all 5-year-old dogs.

Age 5 is encoded as 00101 in a binary encoding scheme, so the following expres
sion is generated

(c) find all 5-year-old German Shepherds.

is translated to

2. Queries with set conditions

find all dogs that have been radiated on locations 1, 4, or 7.

The query is expressed as

location={1,4,7}

Since location is encoded as a 1-of-10, the query is translated to

location (b0 Vba Vb5).

3. Queries with range conditions

(a) find all dogs lighter than weight class 7.

Recall that attribute weight is encoded as unary, the above query is translated
simply to

weight (b5).

(b) find all dogs receiving 30 or more dosage units.

Attribute dosage is encoded as a Composite unary with 3 fields of 6 bits. Assume
dosage 30 is encoded as 000111,000011,011111. The query can be translated to

11

In the section to follow; the translation algorithm will be presented more for
mally. Given a query in form (1), if EXP1k has been translated into boolean
expressions B1k, we can easily translate the query 'into

Below the translation schemes of expression EXP1k to ~k are given, classified
by the different encoding schemes. In the following, the symbol "-" is defined as
a short hand notation for "is translated into".

1. Binary Encoding Scheme.

Let attribute A have N bit vectors called b1,b2, ..• ,bN, and the value to decode
is V=e11e2, ••• ,eN. Among the e's, assume that e1l'e~, · · · ,eim are 1. Also, let the value
set to decode is VS={V11 • • • ,VP}, and V1=en, · · · ,e1N for i=l to p. The translation
scheme of binary encoding for the various- forms of boolean expressions involving
A, VS and V are as follow:

(a) A=VS, denote the result of translation as B ... (V)

P N
A=VS- V /\Xl,

l=lJ=l

where,

(b) A> V, denote the translation result to be B>(V)

where io=O and im+ 1-l=N,

{c) A<V, denote the translation result as BdV)

{d) A~V,

12

2. Keof-N Encoding Scheme.

Let the value set VS be the same as before, and each element Vq in VS have
the form eq11 ••• , eqN. Among these e's, k of them are 1, and they are denoted by
eq111 • • • 1eq1k. The translation scheme of K-of-N encoding for A==VS is as follows:

. P K

A= VS - V 1\ bqt1• q-li=l

The other forms of boolean expressions have the same translation schemes as
presented in binary encoding above.

3. Unary Encoding scheme.

· Let attribute A have N bit vectors called h11 ••• IbN, and the value to decode
is V=e11 ••• , e~rei+~~ ... 1 eN where e1==0 and e1+1=1. Let the value set to decode be
VS={V11 ••• , VP}, and Vi=e11 ••• , e111~1+ 11 ... , ~ where ~1=0 and e11+1=1 for j=l to
p. The translation schemes are as follows:

(a) A-VS

p

A=VS - ,V ht1 1\ bt1+11
J-1

(b) A>V

(c) A<V

A<V- bt+lr

(d) A=,*V

and A=V1:V2 is similar to binary encoding scheme.

13

The translations for superimposed encoding scheme are the same as that for
binary encoding. For composite encoding scheme, the translation schemes are the
combination of the translation schemes presented above.

5.4. Common Subexpression Removal

The usage patterns of SSDBs often exhibit strong locality of reference in the
sense that subsets of the database are often isolated and analysed intensively over
a period of time. During this period, the queries against the data will often have
a large amount of common subexpressions. The result of evaluating these subex
pressions can be saved and used to simplify the future queries, as a result, better
performance. This process is referred to as common subexpression removal ([4, 5,
6, 7, 10]) in the literature. We have solution for this problem in the context of
BTF involving conjunctive queries (the majority of SSDBs queries involve only
the AND operator in our experience).

A temporary result database is maintained which keeps track of the queries
and their corresponding bit vectors as a result of previous query evaluations.
When a new query arrives, this database is consulted to determine if substitu
tions can be made to the query from these saved queries (called subexpressions
from this point on) so that fewer boolea:q operations are required to perform on
the bit vectors. In addition, the temporary result database is regularly updated
by a policy that observes the Least Recently Used (LRU) practice. That is~ if
space for the temporary result database runs out, the subexpression (and its
corresponding bit vector) which is used least in substitutions is removed in favor
of a new query. ·

Formally, a conjunctive query can be represented as a set where the ele
ments are the primitive conditions on the corresponding attributes. The objec
tive of common subexpression removal is to find the least number of subexpres
sions (from the temporary result database)) that contain the maximum number of
elements of the incoming query~ Let

St={au,at2• · · · ,atk)

Sr{a2~r~. · · · .~~}

be ·a set of subexpressions that have been saved. Let

be the new query. The problem is to find a collection S's, call it II

14

so that

and

.....

IIIIII + liS- U Sill is minimal.
s.en

This problem is similar to the set covering problem [9] except that the query set
is not required to be covered entirely and for a subexpression to be eligible as a
source of substitution, all the elements in a subexpression must appear in the
query set. The set covering problem is a NP-complete problem. Below we will
describe an efficient heuristic that has been shown to provide very close approxi
mation to optimal solutions.

Define a subexpression to be a candidate if all its elements appear in the
query expression. The algorithm G below is a greedy heuristic that accepts an
incoming query (referred to as Q in G) and selects candidates in descending order
of their sizes. The output of G is a shorter but equivalent query where the ele
ments that the candidates cover are replaced by the candidates themselves.

Algorithm G

S - t/J; /* S collects eligible candidates * /
DO WHll.E (there exists candidate with size > 2)

Find the largest candidate, call it lc;
Remove the elements in lc from Q;
Save lc in S as part of the solution;

END DO
Q- Q uS;

Q contains the final elements to be evaluated.· This simple algorithm pro
duces optimal solutions in over gg% of our test queries. Our experiment shows
that on the average, the common subexpression removal process reduces the size
of incoming queries by about 20%. The formal treatment of the common subex
pression removal problem in terms of analysis and detailed experimentation is
presented in a separate paper [16J.

6. Implementation

A prototype of the BTF structure has been implemented in a VAX/VMS
environment using mainly C with some assembler coding. The physical level of
the prototype includes a compression package, an index encoder, a bit vector
bulk loader, a set of boolean operators on compressed bit vectors. At the logical
level, we have an user interface module, and a query processer. The architecture
of the system is given in Figure 1 in terms of control and data flow.

15

The largest database we have running using the bit transposed file is a
110,000 records cancer incidents database available from the National Institute of
Health. Some informal performance experiments were performed- comparing the
retrieval time of the BTF with Datatrieve, a DEC relational DBMS, against the
cancer data. The selected queries are typical inquiries on cancer data, according
to specialists in our laboratory. The result is that BTF incur much smaller over
head (up to 10 times) and the retrieval time is consistently 10 times or more fas
ter than Datatrieve. More details of some of experiments can be found in Appen
dix B. Besides the space and retrieval time, the loading time of the data is also
of interest. We selected four attributes of the cancer database to have tran
sposed bit vectors. Indices for the same attributes were generated in Datatrieve
for a fair comparison. The transposition of the records into bit vectors took
about half an hour on our VAX, but it took Datatrieve 5 days to create two
indices and g days for 4 indices. In fact, only about 75% of the database was
loaded because of the excessive CPU time.

7. Related Work

As we mentioned in the Motivation Section, the basis of our approach is the
transposed file, which is popular among SSDB implementors ([13]). The BTF can
be thought of as an extreme version of the transposed file. In addition to the
advantages associated with the transposed file for SSDBs, the bit transposed file
offers three potential benefits: indexing capability with minimum of overhead
because bit vectors are data and indices; better compression rate because of the
front compression opport1:1nity (such as a telephone book) and the lack of word,
or even byte boundary; and the inherent parallelism (and hence effiCiency) associ
ated with the boolean logic on bit v.ectors.

Two earlier and simple versions of the BTF appear in [2] and [8]. The
former only has the binary encoding scheme whereas the latter only the 1-of-n
scheme. Neither consider other encoding schemes for different query types,
compression of bit vectors, or optimization problems.

Suppose we encode an attribute with large cardinality of values with a 1-of-n
encoding, and then apply run length encoding compression to each bit vector.
This is equivalent to a fully inverted file with difference encoded inverted lists
(for each attribute value). By varying the encoding, we can interpolate (in terms
of space and access time) between fully inverted files and simple sequential files.
In [1], index encoding techniques are used as a compression method where the
cardinality of the value set of an attribute can change with time. The index
encoding techniques presented in this paper are used primarily as a means to pro
vide tradeoff and optimization of storage and retrieval speed. Also, since the
static nature of SSDBs is emphasized, the dynamic property of index encoding
schemes as proposed in (1] is avoided on purpose.

8. Summary

16

The motivation of our research began with the examination of why current
access methods are not in use for large SSDB processing. We will review our
observations and examine whether our proposal provides part of the solution.

The first characteristic of SSDBs is that attributes tend to have small cardi
nality. As a result, most current access methods would add limited selective
power yet incur large overhead. The BTF takes advantage of this property
because small cardinality of attributes implies that it is possible to have small
number of bit vectors, hence values can be efficiently retrieved. Also, there is
minimal overhead associated with bit vectors because bit vectors are data and
indices.

The second characteristic of SSDBs is the clustering effect of attribute
values. The BTF takes advantage of this property by compressing the bit vec
tors. Unlike traditional compressed data, however, there is no need to
uncompress in order to use the data. Instead the compressed bit vectors are used
to implement efficient boolean operators.

The third characteristic is the static (or append only) property of SSDBs
that tend to underuse the dynamic mechanism of most access methods. Tran
sposed files (especially bit transposed files) exhibit poor update performance
because they require a disk seek per attribute (bit) vector for each record
modified, unless updates are hatched. We presently provide only append opera
tions for BTFs.

The fourth characteristic of SSDBs is that queries tend to access many
records but only on a few attributes. This property is the basic motivation of the
transposed files. The BTF can be thought of as a transposed file with a built-in
"generalized" indexing mechanism which incurs minimal overhead. Generalized
indices because the elaborate index encoding schemes provide a continuum of
indexing levels based on access requirements and storage considerations.

Because of the simplicity of the file structure and query language, optimiza
tion problems for database design, query evaluation, and common subexpression
removal can be formalized and efficient exact solution or near optimal solution
can be achieved.

9. Current work and Conclusion

From our experience of implementing the BTF, it is apparent that simple
yet powerful multiprocessor hardware can be built to support the file structure.
We have a preliminary design for a transposer and a VLSI design for a boolean
logic machine. The transposer consists of a 32 by 32 register matrix. 32 words
{32 bits each) are read in at a time and the bits are sliced into the matrix hor
izontally. The transposition is done by reading the data vertically from the top
32 registers. The entire database can be transposed using this matrix. The same
transposer can also be used to convert from the bit transposed form to record for
mat. The boolean logic machine is organized as a tree where each node is a sim
ple processor with only AND, OR, and NOT operations built in. Given a query,

17

the "tree machine" is dynamically reconfigured to correspond to the parse tree of
the query. The data, which is in the form of bit vectors, is fed to the tree
machine from the leafs. The result is propagated upward in a pipeline manner
towards the root, which produces the result. A prototype 8-processor chip has
been designed. The processors are connected in a full crossbar which has the
necessary logic to make it dynamically reconfigurable.

Another optimization opportunity we are currently exploring is the determi
nation of the optimal order of evaluating the bit vectors in a query to minimize
running time. The idea is to take advantage of the different compression rates of
the bit vectors. Large compression rate of a bit vector implies that the skipping
action by the boolean operators mentioned earlier will be more pronounced, as a
result, more efficiency can be gained ([11]).

We envision the BTF to be used in coexistence with other access methods,
especially in situations where efficient index encoding is difficult to obtain.
Examples include attributes with continuous domains and very large cardinality.
Our current implementation of the BTF, in fact, accommodates other file struc
tures such as sequential files, and transposed files. We are also extending the
concept of BTFs so that hierarchical relationships can be modelled and manipu
lated efficiently ([17]).

In conclusion, we believe that the BTF offers an interesting approach to
SSDBs because of its simplicity, low overhead, inherent efficiency due to the
parallel bit operations in computers, the optimization opportunities, and amena
bility to parallel hardware implementation.

Acknowledgements

We would like to thank Arie Shoshani for his valuable comments. Credits
are to Michael Ger for implementing the index encoding algorithm and providing
the test data. We would also like to thank the referees for their helpful com
ments.

Appendix A Index Encoding Optimization Algorithm Result

This appendix lists the test runs and the CPU time it took the optimization
algorithm to obtain the optimal results. Table 2 contains the input and output
of the test runs. For each test run, each attribute has two pairs of numbers.
The left number of the upper pair represents the number of possible values for
the attributes and the right number is the frequency of the attribute being
accessed. The lower pair of numbers (a, b) represents the result of the optimal
bit assignment.

Fig. 2 shows the CPU time comparison of the exhaustive search method and
our dynamic programming method. In some instances, the latter's running time
is less than 1% of the brute force method. As can be seen, this method is
efficient enough for most practical databases.

18

•

Appendix B Performance Comparison

The database is a real cancer incidents records. It contains information such
as the patient's sex, age, cancer site, type of cancer cells, year, etc.

Table 3 lists the size of the test database in Datatrieve and BTF. The over
head column of BTF is the size (in number of 512-byte pages) of the bit vectors.
The overhead for Datatrieve is the size of the indices.

The list of queries contains twenty queries, ten in BTF syntax, and ten in
Datatrieve syntax.

Fig. 3 shows comparison of running time of the listed queries by the BTF
system and Datatrieve.

List of Queries

1. B: year=75
D: find r01key4 with year = 75

2. B: year 73:78
D: find r01key4 with year bt 73 and 78

3. B: year=73:77 1\ racerea=2
D: find r01key4 with year bt 73 and 77 and racere = 2

4. B: year-{75,77} 1\ sexre=1
D: find r01key4 with (year = 75,77) and (sexre = 1)

5. B: sexre= 1 1\ race rea= 1
D: find r01key4 with sexre = 1 and racere = 1

6. B: year=74 1\ agere=10:12
D: find r01key4 with year = 7 4 and agere bt 10 and 12

7. B: site=570:579 1\ sexre=l
D: find r0lkey4 with site bt 570 and 579 and sexre = 1

8. B: year=76:78 1\ sexre=2 _
D: find r01key4 with (year bt 76 and 78) and sexre = 2

9. B: year={73,75,77} 1\ site=859
D: find r01key4 with year = 73, 75, 77 and site = 859

lO.B: year={76,78} V histolog={9730,9731}
D: find r01key4 with (year= 76,78) or (site = 9730, 9731)

19

References

1. Batory, D.S., "Index Encoding: A Compresion Technique for Large Statistical
Databases", Proc. 2nd Workshop on Statistical Database Management, 1983, pp
306-314.

2. Batory, D.S., "On Searching Transposed Files," ACM Transaction on Data
base Systems, Vol. 4, no. 4, Dec., 1979, 531-544.

3. Brill, R.C, Tolken, S.E., "Subset Selection by Boolean <;Jalculation", Unpub
lished memo, 1977.

4. Eggers, S., Olken, F., Shoshani, A., "A Compression Technique for Large Sta
tistical Databases", in Proc. 1981 International Conference on Very Large Data
Bases, Cannes, France, Sept, 1981.

5. Finkelstein, S., "Common Expression Analysis in Database Applications",
Proe. of 1982 ACM SIGMOD Conference, Boston, MA, pp. 235-245.

6. Jarke, M., "Common Subexpression isolation in Multiple Query Optimiza
tion", in Query Processing in Database Systems, Springer-Verlag, 1985.

7. Kambayashi, Y., Ghosh, S., "Query Processing Using the Con.Secutive
Retrieval Property", ln Query Processing in Database Systems, Springer-Verlag,
1985.

8. Kim, W., "Global Optimization of Relational Queries: A First Step", in Query
Processing in Database Systems, Springer-Verlag, 1985.

9. IOyoki, Y., Tanaka, K., and Aiso, H., "Design and Evaluation of a Relational
Data Base Machine Employing Advanced Data Structures and Algorithms", in
The 8th Annual Symposhtm on Computer Architecture, May 12-14, 1981, Min
neapolis, Minn.

10. Knuth, D.E., The Art of Computer Programming, Volume 3, Addison Wes
ley, 1973.

11. Larson, P.A., Yang, H.Z., "Computing Queries from Derived Relations",
Proc. of 1985 International Conference on Very Large Data Bases, Stockholm,
Sweden.

12. Li, J.Z., Wong, H.K.T., "On Formal Properties of Bit Transposed Files",
1986, LBL Technical Report LBL-21281.

13. Shoshani, A., Olken, F., Wong, H.K.T., "Characteristics of Scientific

20

..

Databases", Proc. 1984 International Conference on Very Large Data Bases,
Singapore, 1984.

14. Turner, M., Hammond, R., Cotton, F., "A DBMS for Large Statistical Data
bases," Proc. 1979 International Conference on Very Large Data Bases, Rio de
Janeiro, 1979.

15. Wiederhold, G., Database Design, McGraw-Hill, 2nd Edition, 1983.

16. Wong, H.K.T., "Micro/Macro Statistical/Scientific Database Management",
The First IEEE International Conference on Data Engineering, Los Angeles,
March, 1984.

17. Wong, H.K.T., Li, J.Z., Rotem, D., "Common Subexpression Removal for
Bit Transposed Files", 1986, LBL Technical Report LBL-21283.

18. Wong, H.K.T., Li, J.Z., "Hierarchical Bit Transposed Files", 1986, LBL
Technical Report LBL-21284 .

21

Query
processor

!

QUERY
PROCESSING

Parser =~parse=$o Evaluator
.,. OUTPUT
it vector file) (a b

tree ~:

Boolean
operator

(AND. OR. NOT)

f. ,,
II

::.-.;;
•• ••
•• ,,
••
ol

•• II

:•
•' •• •• ----- -------~-~------~ ~- -•L-----

Compression
package

bit vector files

A
II

~~ If
II

Bit
trans poser

~
II

::STORAGE
11 SYSTEM
II
II
II
II
II
If

•• •• ••
•• •• It ••

attribute index encoding table t 1

_ and =:-~-~J
attribute bit assignment tables

A
II
II

Index
encoder

Ji1c. IArehlteetunl view of BTF (.... functional flow: ~. output-input).

22

Table 2

Max. Attr. Attr. Attr. Attr. Attr. Attr. Attr. Attr. Attr. Attr.
Run bits 1 2 3 4 s 6 7 8 9 10

70 89000, 30 2567,20 780,30 1000, 2 s. 6000 40,60
(19, 9) (14, 6) (12,5) (10, 16) (5,1) (10, 2)

2 80 800,20 56,400 70,3000 667,30 20,400 769,90 2, 1000 36,600 50,300 4,200
(10, 10) (6, 3) (13, 2) (10, 10) (6,3) (12, 5) (1, I) (10, 2) (6,3) (2, 2)

3 70 5670,30 456,20 900, 70 690,200 456,39 690,20
(IS, 7) (9, 9) (13, 5) (14,4) (9,9) (10, 10)

4 80 9400,30 600,60 56,400 70,20 700,1000 60,600 9, 100 567,30
(14, 14) (12, 5) (8,3) (7, 7) (13, 4) (12, 2) (4, 4) (10, 10)

5 80 6790,30 69000,200 34567,90 23, 1000 560,20 90,30
(13, 13) (23, 6) (19, 7) (S, 7) (10, 10) (7, 7)

6 80 500,20 600,30 700, 10 60,100 30,200 6, 100 36,9 . 25,10 46, 100 3, 1000
(13, 4) (13, 4) (12, 5) (12, 2) (9, 2) (6,1) (6, 6) (5, 5) (11, 2) (3, 1)

•

toz~ __ ._ __ ~ __ _. __ _. __ ~~--~~

0 2 3 4 s 6 7

Run

23

TableJ

Number or Database size Overheads
records (in pages) (in pages)

BTF 110,000 6,974• 1,332
Datatrieve 83,729t 8,100 10,134

0 The size of the database af'ter four attributes are index encoded.
t Only about 75% of the oripnal datbue ia loaded becauae or exceaive CPU time.

-... u
;
= ·e -u
e
i=

450~------------~------------~

DATATRIEVE

oL-~~~~~~~~~~-J

0 2 3 4 s 6 7 8 9 10 ll
Query

fie. J

24

..

"

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

,.,. •,;r

LAWRENCE BERKELEY LAB ORA TORY
TECHNICAL INFORMATION DEPARTMENT

UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

... - --

