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Abstract 

Analytical solutions for the pressure distribution and the flow field are derived for 

several idealized situations involving a vertical plane or cylindrical interface between two 

fluids of different density and viscosity in an infinite anisotropic aquifer bounded by two 

horizontal planes. The interface, or transition zone, between the two fluids may be 

either sharp or of finite width. The buoyancy flow induced by the density difference will 

cause the two-fluid interface to tilt. A characteristic time scale by which the buoyancy 

tilting occurs is deduced. The conditions at the well are found to have only a small 

influence on the buoyancy flow except very close to the well. The buoyancy flow 

decreases with increasing width of the transition zone. G:>mbined buoyancy flow and 

forced-convection tilting are treated in detail for a straight non-vertical interface in the 

plane-interface case, where the tilting angle variation is given by a simple formula with 

only two independent parameters. 
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Introduction 

The motion of an interface between two fluids with different densities and viscosi­

ties due to buoyancy flow and forced convection is studied. The main impetus of this 

study is the need to calculate the motion of the interface that occurs when fluid of one 

density and viscosity is injected into an aquifer stratum with fluid of another density 

and viscosity. The interface region constitutes a transition zone between the aquifer 

regions with different fluids. During an initial time period, the interface is primarily 

vertical. This situation is intrinsically unstable due to the difference in density between 

the two fluids. Buoyancy will cause the fluid of lower density to flow towards the upper 

part of the aquifer. The two-fluid interface will gradually tilt. Forced convection will 

act on the differences in viscosity, and hence in flow resistance, along different flow paths 

and thereby in fi uence the tilting. Depending on the situation, the forced convection may 

either reinforce or cou~teract the pure buoyancy tilting. It is often of great interest to 

be able to predict the rate at which the two-fluid interface tilts: 

One area of recent interest where buoyancy flow is recognized as. an important 

phenomenon is aquifer thermal energy storage (ATES). This technology involves long­

term storage of hot or chilled water mainly for space heating or cooling purposes. 

Research on this concept has been increasingly active during the last 10 years [Lawrence 

Berkeley Laboratory, 1978; Tsang et a/., 1980; Swedish Council for Building Research, 

1983]. Theoretical studies [Sauty et al., 1982a; Doughty et al., 1983; Chen and Reddell, 

1983] as well as field experiments [Iris, 1979; Molz et al., 1979, 1981, 1983; Sauty et al., 

1982b] and numerical simulations thereof [Tsang et al., 1981] have been compl.eted. 

Strong buoyancy effects can cause a substantial reduction of the recovery factor for an 

ATES system [Mathey, 1977; Molz et al., 1981]. This may require active measures, such 

as specific well configurations, unconventional well designs, or elaborate 

injection/extraction schemes, in order to prevent the detrimental effects of buoyancy 
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flow [.Molz eta/., 1983; Buscheck eta/., 1983]. 

To focus our discussions, the material presented here is discussed in terms of ther-

mally induced density and viscosity differences between the two fluids and the motion of 

a thermal front. However, the theory also applies to general two-fluid interface motion 

where density and viscosity differences occur, if capacitive effects of the solid matrix are 

properly accounted for. Examples of such occurrences are salt-water intrusion in a 

fresh-water aquifer, contaminated fluid moving in an uncontaminated aquifer, and water 

flooding in a petroleum reservoir. 

Thermohydraulic equations 

The coupled groundwater and heat flow process in the aquifer stratum is governed 

by two :partial differential equations. The volumetric ground water flow 7[ is related to 

the pressure gradient and the gravity force through the empirical law of Darcy: 

7f = _.!.('VP +pgz) 
JL 

(1) 

The intrinsic permeability is k. The water density p and the viscosity JL are temperature 

dependent. 

Equation (1) assumes isotropic permeability in the aquifer. In this paper we will 

also consider cases where the aquifer has different permeabilities in the horizontal (x ,y) 

and the vertical (z) directions. The permeabilities in the horizontal and the vertical 

direction are denoted k and k ', respectively. Then we have: 

k aP k aP 
q =---

11 JL ay (2) 
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Compressibility effects are neglected, and the divergence of the groundwater flow q 

is then zero at each point: 

(3) 

The aquifer temperature satisfies the equation for convective-diffusive heat transfer: 

(4) 

where C and Cw are the volumetric heat capacities for the aquifer (matrix plus water) 

and water, respectively. The thermal conductivity is denoted >-.. 

The convective heat flow is given by TCw q. The thermal velocity is 

Cw -vr = -- q c 

which represents the convective displacement of the temperature field. 

(5) 

The aquifer stratum is confined by impermeable layers at which the perpendicular 

ground water flow component vanishes. The temperature of injected water is given. 

We will first discuss the simpler case of pure buoyancy flow and then the case of 

combined forced and natural convection. 

Buoyancy flow 

A non-uniform temperature field in the aquifer gives a variable fluid density and an 

ensuing buoyancy flow in the aquifer. We will in particular consider the situation when 

the aquifer may be divided into a warm region ( T = T 1) and a cold. region ( T = T 0). 
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These regions are separated by a thermal front zone, through which the temperature 

falls from T 1 to T 0. The idealization of an infinitely thin or sharp thermal front will 

also be considered. This is often quite a useful approximation. 

Let r be any closed curve in an isotropic aquifer (k '=k ). The line integral along r 

of the pressure gradient is automatically zero. Darcy's relation (1) then gives: 

f P... -q · ar = -gz · f P a, 
r k r 

(6) 

The right-hand term represents a net driving force due to density variations along r. 

The left-hand side gives an integral of the tangential component of the flow q along r. 

The flow is weighted with the flow resistance coefficient J.t/k. The right-hand side is 

known when the temperature and hence the density field is given. Equation (6) provides 

some information on the magnitude of the flow velocities. 

Figure 1 shows a case when the curve r crosses a sharp thermal front. The density . 

and the viscosity on the warm and cold sides are denoted Pv J.l.l and p0, J.l.o respectively. 

The vertical distance between the two points where r crosses the thermal front isH. It 

follows from (6) that 

(7) 

Let L r denote the arc length of r, and qr a suitable mean tangential component of q 

along r. Equation (7) may then be written: 

(8) 

The first factor will appear often m the following. We will call it the characteristic 

buoyancy flow q 0: 

(9) 
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Analytical solutions 

-
Based on equations (1-3), it is possible to derive explicit expressions for the pressure 

distribution and the buoyancy Bow pattern in some idealized situations. Figures 2a-h 

show the eight cases, A-H, explained in detail below. The permeability may be different 

in the horizontal (k) and the vertical (k 1
) directions in all cases except in case H. We 

will use the notation IC . J k 1/ k . 

Case A is a sharp, vertical thermal front in an infinite aquifer bounded by two 

impermeable horizontal planes. The thickness of the aquifer stratum is H. A vertical 

cross-section through the aquifer becomes an infinite strip. The expressions for the pres-

sure distribution and the flow field are derived in Appendix A. The flow field is shown 

in Figure 3. A solution of a limited version of this problem for two fluids with different 

density, but equal viscosity (JJo=JJ1) and isotropic permeability (k '=k) has previously 

been given by de Jossel£n de Jong [1960]. Verrui.it [1980] solved the problem with 

different viscosity of the two fluids in an isotropic porous medium. 

The cross-section of the aquifer stratum is .a semi-infinite strip in case B and C. 

There is a sharp, vertical thermal front. The warmer region to the left has a horizontal 

thickness L . The left boundary is impermeable in case B. In case C the hydrostatic 

pressure P·=-p1gz prevails along the left, vertical boundary. 

Case D and case E consider an infinite aquifer with cylindrical symmetry bounded 

by two horizontal planes. The warmer region occupies a cylindrical volume with radius 

L. There is no flow horizontal flow at the inner boundary in case D. In case E there is 

hydrostatic pressure P =-p1gz at the inner boundary at radius r =Rw . 
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In case F we have, as in case A, an infinite aquifer bounded by two horizontal 

planes. The thermal front has a thickness D . The viscosity in this case is assumed to 

be constant, i.e. J.t=J.to=Jt 1• The density is p1 in the warm region and Po in the cold 

region. The density is assumed to increase linearly through the thermal front region. In 

general, the thermal-front diffuseness D is time dependent and may be related to ther-

mal conductivity A by 

D =JI!·vfl¥ (10) 

For our calculation of pressure distribution and buoyancy flow for a given time, a typical 

time t has to be chosen, and D is then proportional to ../);. 

Case G is similar to case D with cylindrical symmetry and no horizontal flow at the 

inner boundary, but with a diffuse thermal front of thickness D. The viscosity is con-

stant, i.e. p.=p.0=p. 1, and the density varies logarithmically through the thermal front 

region. 

In case H the aquifer is an infinite circular cylinder. A vertical cut perpendicular to 

the cylinder axis becomes a circular disk with radius R ( cf. Figure 2h). The permeabil-

ity must be isotropic (~e=l) in this case. 

The analytical solutions for these cases are derived in Appendices A-H. The given 

expressions are only valid at tlie moment when the thermal front is vertical. 

The motion of the thermal front is determined by the magnitude of groundwater 

flow across the front. Let z denote the vertical coordinate, and let z =0 be at the mid-

point of the aquifer. The horizontal groundwater flow across the front is denoted q1 (z ). 

The following expressions are obtained for the considered cases: 

·•.) 
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A. Infinite strip. 

[ 

l+sin( ~) l 
ql ( z) = ~eq 0·..!..ln 

1r 1 . (1r'Z) -sm-
H 

B. Semi-infinite strip. Impermeable left boundary. 

. [ (2n +l)1rz ] 
sm . H 

J.'o + J.'1 coth (2n +l)1r~eL 
JJo+JJt JJo+JJt H 

C. Semi-infinite strip. Hydrostatic pressure conditions at the left boundary. 

4 oo ( 1 )n 
ql (z) = ~eq 0·- E-

1f' n =O 2n +1 

. [ (2n +l)1rz ] 
sm H 

J.'o + JJ1 tanh (2n +I)1rx:L 
JJo+JJ1 J.'o+JJ1 H 

D. Cylindrical case. No horizontal flow at inner boundary. 

4 oo ( l)n 
ql (z) = ~eq 0·- E-: 

1i n =O 2n +I 

where 

. [ (2n +I)1rz ] 
sm H 

(11) 

.. 

(12) 

(13) 

h 

(14) 

(15) 
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Here we have used the modified Bessel functions Kn and In . 

E. Cylindrical case. Hydrostatic pressure conditions at inner boundary. 

where 

O L _ (2n +1)11'~~:£ 
n- H 

K (8 L) . 
1 + I n . 

I 1(8nL) 

I o(OnR) 
+ 

Ill 

K 0(8nR) P.o+P.t 

F. Infinite strip with diffuse thermal front.· 

D 
(2n +1)11'"2' 

I 0(8nR) 

K o(OnR) 

I 0(8nL) 
+ 

Il(O,.L) 
J.lo 

P.o+P.t 

.....;.1_-_e __ n_D __ . sin [ {2n ~1)1fz l 
(2n +1)11'11:"2 

where 

D =. fK. fill 
. V7rVc 

H 

(16) 

K o(O,.L) 

K I(O,.L) 

(17) 

(18) 

(19) 

(10) 

The flow q1 (z) refers to the middle of the thermal front region. For large values of 

~~:D / H equation (19) becomes: 

(20) 
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G. Cylindrical ca.se with diffuse thermal front. 

'l 4 oo ( I )n 
ql (z) = Kqo· - . - ~-

In [(L +D /2) ]· 1f' n=O 2n +I 
(L -D /2) 

where the function ~ is defined by: 

and 

rf+ _ (2n +1)7r1C(L +D /~ 
n- H 

eo _ (2n +I)7r1CL 
n- H 

en-= (2n +I)7r1C(L -D /2) 
H 

The How ql (z) refers to the middle of the thermal front region (r =L ). 

H. Circular disk. 

(2I) 

(22) 

{23) 

(24) 

(25) 

(26) 

The flows q1 (z) are all odd functions of z. Figures 4-I4 show the dimensionless 

buoyancy flow ql (z )/(Kqo)• O<z <H /2, for the different cases. The quotient between 

the different viscosities !3-JJ.o/ 11. 1 is an important parameter. In 'these figures, we will use 

. ,, 



two values for /3, which correspond to the following temperatures: 

T 0=5 o C Ito (27) - /3=-=4.82 
1'1 

T 1=90 o C 

T 0=40 ° C 
Jlo - /3=-=2.09 
1'1 

Values for f3 1 (J.to=J.t1) are also given. 

Figure 4 shows the buoyancy flow across a vertical, sharp thermal front for an 

infinite strip, case A. This curve is also shown in Figures 5-9 and Figure 13 f~r com_-

parison. The buoyancy flow is somewhat lower when the aquifer is limited to the circu-

lar disc of case H (Figure 4). In cases B and C, the left region with temperature T 1 has 

a width of L . The buoyancy flow across the thermal front does not differ much from 

the infinite case A when K.L I H is greater than about 0.3 (Figures 5-8). The buoyancy 

flow of the cylindrical cases D and E has the same character as that of the plane cases B 

and C, except that it is more sensitive to small values of K.L I H ( cf. Figures 5 l:l.nd 9, 

Figures 6 and 10, Figures 7 and 11, Figures 8 and 12). The infinite strip, case A, is evi-

dently a good approximation for the buoyancy flow across the thermal front except for 

thin regions with different temperature. 

Figure 13 sh~ws the buoyancy flow for a vertical thermal front region with a thick-

ness D in an infinite aquifer. The deviation from case A with a sharp front is again 

rather small, when K.D I H is less than say 0.3. The flow increases linearly with z for 

large K.D I H in accordance with equation (20). 

The buoyancy flow for the cylindrical case with a diffuse thermal front,· case G, 

depends on two independent parameters K.L I H and K.D I H. Figure 14 shows the buoy-

ancy flow for K.L I H =1. As in case F, the flow increases linearly with z for large 
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K.D /H . . 

Tilting of a thermal front 

The buoyancy flow will cause a thermal front to tilt. A quantitative measure of the 

rate of tilting is of great interest. For the case when there is no forced convection, the 

tilting rate may be defined as follows. 

Consider a straight, vertical thermal front at a time t. The total water flow across 

the upper half of the thermal front is called the tilting flow. The same amount passes in 

the other direction through the lower half of the front. The tilting flow Q1 is defined 

by: 

H /2 
Q 1 - J q 1 ( z ) dz 

0 

0 

=- J q1 (z) dz 
-H /2 

(28} 

Figure 15 illustrates the tilting of a vertical front. Each point on the front is dis-

. placed a length vr dt during a small time increment. The displacement in the normal 

direction of the front is VTn ·dt, where Vrn is the thermal velocity component perpendic-

ular to the thermal front. The curved thermal front (Figure 15b) is approximated by an 

appropriate straight line (Figure 15c). The front is tilted an angle w1 dt during the time 

increment dt. A heat balance for the thermal front gives: 

1 H H Cw · 
- · - · - tan(w1 dt) = - Q1 dt 
2 2 2 c (29) 

The time incr~ment is small so tan(w1 dt )=w1 dt. The tilting rate then becomes: 

(30) 

.. 
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The tilting flow Q1 is obtained by integrating q1 (z) over the interval O<z <H j2. 

The integr~tion of each term i.n the different series of equations (11-14, 16, 19, 21, 26) is 

straightforward. 

The tilting flow for case A is found to be:. 

( G =0.915 .... Catalan's constant) 

The corresponding rate of angular tilting is: 

32G 
Wo=~ ·IC· 

1 ·-
H 

The corresponding tilting time t 0 is then: 

1 HC 
to=-=--:---

w0 ICCw k 

?r
2
CJLo+JLt) 

32G (Po-Pt)g 

( 3~G ">3.0 l 

{31) 

{32) 

{33) 

The second factor on the right hand side is a function only of the temperatures T 0 and 

In case H, the circular disk, it is possible to obtain an analytical solution for the 

case when the straight thermal front is tilted an angle a from the vertical direction. See 

Appendix H. The tilting flow and the tilting rate in case H become: 

Q1 = .!.. q0 R · cos(a) 
1f' 

8 w, =-· 
1f' 

Cw qo 

c 
1 1 

·-·-~~ 
2R cos(a) ( ~ ""2.5] (34) 

The tilting rate is thus reduced in the proportion 2.5/3.0, when an infinite strip (case A 

with ~e=1) is compared to a corresponding circular disk with a vertical thermal front. 

The tilting rate w1 jw0 is shown in Figures 16-18 for .8=4.82, 2.09, and 1.0 respec­

tively for the cases A-F and H. Figure 19 shows case G. The deviation from the tilting 

rate Wo of the infinite strip is small, when ,.;;L I H is greater than about 0.5. The 
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.diffuseness of the thermal front reduces the tilting flow ··with about 50% when 

~eD/H=l. 

Superposition of buoyancy and forced convection 

In general, tilting in an aquifer is a combination of buoyancy flow and forced­

convection tilting. The pure buoyancy flow is due to the density variations of the fluid. 

The other part, the forced-convection tilting, is not influenced by the density variations, 

but is due to viscosity variations when forced convection is present. Let P6 and P1 c be 

the two contributions to the total pressure: 

p =Pb+Pfc 

Let P6 be the solution of: 

V · [ ~ (vP, +pgZ) l = 0 

then 

v· [: vP1, ]=o 

(35) 

(36) 

(37) 

The equations (36) and (37) are for simplicity written for the isotropic case, but can be 

easily generalized for the anisotropic case as shown below. 

The two equations (36) and (37) have different characters. Equation (37) for P1 c is 

linear. The pressure P1c and the corresponding forced-convection flow are proportional 

to the flow rate at the injection/extraction well. Equation (36) for P6 has a source term 

from the variable density. The pressure P6 and the corresponding buoyancy flow are 

proportional to the driving density difference p0-p1 between the two regions. 
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The situation shown in Figure 20 is of particular interest. A sharp, straight ther­

mal front is tilted an angle 0' in an infinite aquifer bounded by two horizontal planes. 

Water at a flow rate of Q 1 (m3H20is,m) is injected through the aquifer from left to 

right. The volumetric groundwater flow q has two components: 

(38) 

The forced-convection part it c is the solution of (37). The flow is constant and hor­

izontal in the undisturbed regions far away from the front to the right and to the left 

(q1 c - Q If H ~x ). The buoyancy part q11 is the solution of (36). It becomes zero far 

away from the front. 

We may express the different parts of the groundwater flow in terms of the dimen-

sionless parameters xI H, z I H, the tilting angle a, the viscosity ratio /3, and the aniso-

tropy factor K.. Thus we write: 

{39) 

Q 1 -It ( X Z a ) 
7itc =H. q H' H'0 'fJ'K. (40) 

The flows q' and q" are dimensionless. It can be shown in a straightforward but 

lengthy way that they depend on only' the five given parameters. 

Let do be the change of tilting angle during a time increment dt. Consider the tri-

angular area between thermal front and the vertical cut in Figure 20. This area increases 

when the tilting angle changes from 0' to o+do. Heat balance gives: 

1 H H 
- ·- ·- [tan(o+do}-tan(a)] · C(T 1-T 0) = Cw(T 1-T 0)Q1 dt 
2 2 2 

( 41) 

or 

d 8Cw 
- [tan(a)] = -- · Qt 
dt H 2C 

(42) 
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The tilting flow Q1 defined by (28) for the pure buoyancy flow case will now be 

generalized to include forced convection and a non-vertical front. Let · s, 

-H /2<s <H /2, be a coordinate along the straight front. The tilting flow Q1 is defined 

by: 

H 
12 

1 Q 1 Jo 1 Q 1 
Q, = f

0 
qn (s )ds - 2H =- qn (s )ds + 2H 

-H /2 
(43) 

where qn is the flow normal to the front and Q t! H is the mean flow through the 

aquifer. (For pure buoyancy flow and a vertical front Q 1=0 and s -z, and (43) 

reduces to (28)). In general Q1 has a component Q61 from the buoyancy Bow and a 

component Q11 from the forced convection: 

(44) 

The two components are obtained from (39) and ( 40) by integration over the upper (or 

lower) part O<z <H /2 for x =0: 

(45) 

Qft = Q 1 · fJt (a,j3,~e) (46) 

The two functions f 61 and ! 1 t depend only of the dimensionless parameters a, /3, and 

K: •. 

The forced-convection tilting flow is zero for a vertical front (a=O). We have from 

(31): 

(47) 

,,, (0,/3,~e) = 0 (48) 

The variation of tilting angle with time is given by (42-46) for the present case of a 

sharp, straight front in an infinite horizontal aquifer. The two functions J 61 (a,/3,~e) and 
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f 11 ( o:,/3,~e) are ye~ to be determinea: In the next section it will be shown that they are 

related to each other by a simple formula. 

Stable front solution 

For a straight thermal front there exists a situation where the buoyancy tilting flow 

Q61 and the forced-convection tilting flow Q1 1 balance each other. In this case the total 

tilting flow Q1 becomes zero and the thermal front is stable. 

Consider again the infinite strip with a tilted thermal front as shown in Figure 20. 

We assume a constant horizontal flow throughout the aquifer strip: 

- Ql A q =-x 
H 

{49) 

The pressure in region 1 must satisfy {cf.(2)): 

(50) 

{51) 

The pressure is then, except for an integration constant: 

{52) 

·" In region 0 we have in the same way: 

P.oQ 1 
P = -p0gz --- x 

kH 
{53) 

The thermal front is given by x =latl (o:) · z, -H /2< z <H /2. The normal com-

ponent of the flow and the pressure must be continuous at the front. The flow is 
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constant. The remaining. requirement of continuous pressure at the front gives with (52) 

and (53): 

J.l1 Q 1 ( J.toQ 1 ) 
-p1gz - -- · tan a )z = -p0gz - -- · tan( a z 

· kH kH 
(54) 

or with (9) 

(55) 

We have, when (55) is satisfied, the simple horizontal flow (49). 

The tilting angle of equation (55) is negative when the forced flow Q 1 is positive. 

Figure 21 illustrates the physical situation. The buoyancy flow rotates the front clock-

wise (p1 <p0 ). The forced convection displaces the front downstream. The viscosity is 

lower to the left (J.t 1 < ~t0). The flow in the lower protruding warm edge is enhanced. 

More water flows in the lower than in the upper part. This gives a counter-clockwise 

rotation of the front. The buoyancy and forced-convection effects oppose each other, 

when the tilting angle is negative. The two effects balance each other when the angle a 

satisfies (55). 

Equation (55) may be used to deduce a relation between the two tilting functions 

f hi and f ft of equations (45) and {46). Consider a certain case when, except for Q 1, 

all variables a, /3, K, and q 0 and so on are given. The pumping rate Q 1 is then chosen 

so that (55). is satisfied. The flow is then given by (49). The thermal front will be dis­

placed downstream, but the tilting flow Q1 is zero. We have with (45) and (46): 

qoH /3+1 
Q1 = qoH · f hi (a,/3,K) + (-) tan(a) · /3-1 · f ft (a,/3,K) = 0 (56) 

The value of Q 1 from (55) has been inserted. 
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From (56) we get the remarkable equation: 

1 ,8+1 
I bt (o:,,B,K) = tan( a:) · ,8-1 · I ft (o:,,B,K) (57) 

The formula is valid for any values of o:, (3, and K, although Q1 =0 only when (55) is 

satisfied. 

The function I 11 has to be computed with a numerical model. The buoyancy flow 

function I 61 is then obtained from (57). 

Effect of anisotropic permeability 

· The vertical permeability k 1 may differ from the horizontal permeability k, as 

shown m (2). However, it is possible to transform a.n anisotropic case to an isotropic 

one. 

We start with an anisotropic case with the permeabilities k and k 1• We have the 

coordinates x, y, and z, the pressure distribution P and the flow q=(qz ,q11 ,qz ). In 

order to obtain an equivalent isotropic case, the horizontal coordinates are multiplied by 

the anisotropy factor K.=../fT1'k , namely 

X
1 = KX z 1 = z (58) 

where x 1, y 1, and z 1 are the coordinates in the isotropic case. 

Let us consider a groundwater flow problem in the old and new coordinates. The 

pressure at corresponding points is unchanged. The flow in the horizontal plane is 

divided by the factor K, while the vertical flow is divided by K.
2

: 

P'(x',y 1,z 1
) = P(x,y,z) (59) 



1 
q'z = -qz 

1\, 

1 
q'u = -q" 

K. 
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The new flow q' and pressure P 1 satisfy Darcy's law (2) and the mass conservation 

equation (3). 

We will apply this result for the case with a sharp thermal front in an infinite 

aquifer bounded by two horizontal planes. The front is tilted an angle a in the anisotro-

pic case. The transformation (58) to the isotropic case requires that the horizontal coor-

dinate be multiplied by a factor K.. The tilting angle then changes to a new value a' 

according to 

tan(a') = JCtan(a) (60) 

Let us first treat the pure buoyancy tilting ( Q 1=0). The tilting flow for the aniso­

tropic case is from ( 45): 

(61) 

The boundary conditions are that the normal flow is zero at z =±H /2 and that the 

Bow vanishes far away from the thermal front. These boundary conditions are directly 

fulfilled in the transformed problem. The tilting flow is then: 

Qbl 
1 = qoH · I bl (a',,B,1) 

According to (59) we also have that the horizontal flow is divided by JC: 

Qbl I = _!_ Qbl 
1\, 

From (61-63) we obtain the important relation: 

I bt (a,,B,JC) = JC I bl (a',,B,l) 

From (57), (60), and (64) we get in a similar way for the forced convectiqn: 

I /I (a,j3,JC) =I /1 (a',,B,l) 

(62) 

(63) 

(64) 

(65) 

.. 

.. 



.. 
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The factor tc does not appear in this case. 

The two functions f ft (a:,/3,tc) and f 61 (a:,/3,tc) have now been reduced to one unk­

nown function f ft (a:',/3,1). The two remaining independent variables are the tilting 

angle a:' and the viscosity ratio /3. The function f 11 (a:',/3,1) is treated in the following 

section . 

Forced-convection tilting 

The partial differential equation for the pressure P 1 c for the forced convection 

component is given by (37). Equation (65) implies that we need to consider only a case 

with isotropic permeability (tc=1). Figure 20 shows an infinite aquifer strip with a 

sharp, tilted thermal front. There is a constant horizontal flow Q If H in the undis-

turbed aquifer far away from the thermal front. 

The tilting flow Q1 1 is defined by ( 43). The forced-convection tilting function 1s 

from (46): 

(66) 

The function f ft is zero for a vertical front {48). The derivative of f ft with 

respect to a:' is obtained by differentiating (57). For a:'=O we get with the use of (47): 

aJ 1,(a:',/3,1) 4G 13-1 
.aa:' = ,r · /3+1 a:'=O (67) 

The limiting case with a horizontal front (a:'= 90 •) is simple. The flows in the upper 

part and the lower halves are inversely proportional to the viscosities. It follows with the 

use of (43) and (66) that: 
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I ( 0 • Q ) 1 /3-1 . 
II 9 ,p,li. = 2 . /3+1 (68) 

In order to evaluate f 11 for tilting angles between 0 o and 90 o , the pressure distri­

bution P1 c and the flow pattern have been computed numerically with the U:se of a 

finite difference model. Figure 22 shows an example of the flow pattern. The tilting 

angle of the thermal front is c/. The viscosity is lower in the warm region to left 

(p1 <p0), which for this case implies lower flow resistance for forced convection in the 

upper part of the aquifer. Therefore, the flow becomes stronger in the. upper half, and 

the thermal front will tilt. 

The numerical calculations have been performed for two viscosity ratios according 

to (27). The calculations were made for several angles o:'. Table 1 shows the result. 

The tilting rate formulas in the following section will contain the quantity: 

,rz -· 4G 
1 /3+1 

tan(a') . /3-1 . I 11 (d,/3, 1) (69) 

This expression is plotted in Figure 23 from the values of Table 1 with s =tan( a') as 

independent variable. The points for the two values of {3 lie very close to each other. It 

is reasonable to approximate equation (69) with a single curve. We have with good accu-

racy: 

,rz 
4G tan~ a') . 1:: . I II (c/,{3,1) = I I (tan(a')) 

We will call f 1 ( s) the basic tilting function. It is shown in Figure 23. 

(70) 

From the basic tilting function we get with (70), (65), (60), and (57) the two tilting 

functions I 11 (a,{3,K) and I bl (a,/3,K): 

4G lb1(a,{3,K) = - ... ·K · I 1 (Ktan(a)) ,.. (71) 
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f 11 (a·,/3,~) = 4? · ~tan(a) · 
13
!3-1 

· / 1 (1\:tan(a)) 
7r~ +1 

(72) 

The value f 1 (0) is obtained from the derivative of (70) with respect to a' at the point 

a 1=0. We have with (67): 

f ,(0) = 1 (73) 

The asymptotic value of f 1 (s) for large s is from (68) and (70) of the form 1r2 j(8Gs ). 

The dashed curve in Figure 23 shows this asymptote. The function f 1 ( s ) is linear in 

the interval O<s <2. We have with good accuracy: 

f,(s)~1-f1·s !1=0.235 (74) 

The function f 1 ( s) is given in Table 2. 

Tilting rate formula 

A relatively simple formula for the tilting rate of a sharp thermal front in an 

infinite aquifer strip will be presented in this section. See Figure 20. The tilting angle is 

a function of time: a=a(t ). The aquifer may exhibit a vertical anisotropy (~~1). The 

value of the forced-convection flow Q 1 may be positive, zero, or negative. The combined 

effect of buoyancy and _forced convection is considered. 

The equation for the change of the tilting angle is given by (42). The tilting flow is 

~ obtained from ( 43-46). The two tilting functions f bt ( a,/3,~) and f 11 ( a,/3,~) are given 

by (71) and {72) respectively. Finally we get by the use of the basic tilting function 

f 1 ( s ), and the basic tilting time t 0 (33) the following equation for a'( t ): 

d 1 
-(tan( a))= - f 1 (1-:tan(a)) · 
dt t 0 [ 

Q I /3-1 l 1+-- · -- t:u1(o) 
q 0 // /3+1 

(i5) 



Let us use the variable 

s = ~~:tan(a) (76) 

We also introduce the parameter: 

(77) 

The quantity 1 is a measure of the forced-convection flow Q d H. compared to the 

characteristic buoyancy flow q 0. An alternative expression for 1 may be given if (9) is 

used: 

(78) 

Using the characteristic tilting time {33), we have: 

32G /3-1 
i=--·--· 

il' /3+1 
{79) 

The last factor of {79) has the following physical interpretation. The horizon tal 

volumetric flow is Q d H. The corresponding thermal velocity (5) is Cw Q If( CH ). The 

thermal front is displaced a distance Cw Q 1t 0/( CH) during the characteristic tilting 

time. The last factor of (79) is therefore the quotient of this displacement and the thick-

.ness of the aquifer stratum. 

We may write {75) in the following way: 

ds = ..!:_ · I 1 ( s )( 1 +1s ) 
dt t 0 

(80) 

The basic tilting function f 1 ( 8) is g1ven by Figure 23 and Table 2. The tilting 

8 =x:tan(a) is function of the dimensionless time ~et jt 0 . There is only one parameter 1· 

.. 
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In order to solve equation (80) it is rewritten in the follo,ving way: 

ds = £.dt 
It ( s )( 1 +!'S ) t 0 

(81) 

We introduce the following integral: 

B 

J ds 1 

S(s ,I)= 
0 

lt(s')(l+ls') (82) 

The variable s is positive: O<s <oo. The parameter 1 may assume any value: 

oOO<I<oo. For negatiYe I the integrand becomes infinite when s 1=1/1- The integral 

.is infinite for· s =-1/1· We get one curve for O<s <-1h and another for -1/l<s <oo. 

See Figure 24. 

We can use approximation (74) when O<s <2. The integration of (82) is then ele-

mentary. \Ve get: 

S(s ,1) =_I_ ·In[ /I+~ts '] 
1+ l1 1-l1s 

O<s <2 

Expression (83) is not defined when 1=-11. Then we have by direct integration: 

(84) 

The function S (s ,1) is shown in Figure 24. 

The solution of (80) during a period with constant,. is with (81-82) given by: 

s ~ = s ( t ~) (85) 

The tilting s =t.:tana will follow the curves of Figur<>s 2-1. As an example of appli-

cation, Figure 2.'j illustrates what happens during a st.orag(• cycle. \\'e haxe an injection 

period with ~t=l. Then there is a st.orage period with 1=0. During the extraction 
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period we take ')'=-1. Figure 25 shows the three curves S (s ,'/') from Figure 24. We 

start at t =0 with a vertical front: s =0, and follow the curve S (s ,1) for a time interval 

t corresponding to the duration of the injection period. The tilting s at the end of the 

injection period becomes s 1. During the ensuing rest period the tilting follows the curve 

S (s ,0) from 8 =s 1 to s =s 2. The curve S (s ,-1) is followed during the extraction 

period to a final tilting 8 3. 

Figure 26 illustrates what may happen if the durations of the injection, storage, 

and extraction periods are increased. The three curves S(s ,1), S(s ,0), and S(s ,-1) are 

again shown from Figure 24. The extraction curve S ( s ,-1) has two branches. The tilt-

ing s 2 after the injection and the storage periods is greater than s =1. Therefore, the 

tilting proceeds along the upper branch of S (s ,-1). 

·The tilting s moves toward the asymptotic value -1/'1' during the extraction phase 

for the case when T ~ > T 0. The upper decreasing branch is followed, when the initial 

tilting 8 2 is greater than -1/')'. For a case with cold water injection and extraction, 

T 1 < T 0, the asymptotic value is approached during the injection period. At the asymp-

totic limit we have with the use of {76): 

-1 Kq oH .8+1 
s = K.tan(o) = - = -- . --

'/' -Q 1 /3-1 
{86) 

This is precisely the condition {55) for a stable front. The flow is horizontal and con-

stant throughout the aquifer (49). 

We will end this section with an explicit formula for the tilting angle a(t ). We 

assume that O<s <2, 8 =K.tan{o), so that {80) is valid. Our case concerns a period with 

pure buoyancy flow {'1'=0) or injection with a positive ')'-value. The thermal front is ini-. 
tially vertical: 

... 
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i>O a(O) = 0 (87) 

From (76), (83) and (85) we get: 

(K:tan(o) < 2) (88) 

Relation between motions of a thermal interface and a solute-concentration 

interface. 

The tilting of a two-fluid interface has been discussed in terms of thermally induced 

density and viscosity differences between hot and cold fluids and the motion of a thermal 

front. The theory also applies to general two-fluid interface m~tion where density and 

viscosity differences occur. The relation between the case involving heat transport and 

that involving solute transport will be discussed below. · 

Capacitive effects of the solid matrix in the aquifer will cause the tw·::rfluid interface 

to move at a lower velocity than individual fluid particles. The mechanism by which the 

capacitive effects occur is different for heat and solute transport. For heat transport, the 

capacitive effects are due to the heating up of the solid matrix of the porous medium and 

are accounted for by the· factor C / Cw in the equations presented in this paper ( cf. equa-

tion (5)). In the case of solute transport, the solute may react with or be adsorbed onto 

the solid matrix and we have to use another factor, which will be derived in the follow-

ing paragraphs. 

Let v be the groundwater velocity and vr the velocity of the two-fluid interface. 

A retardation factor R, may be defined for the case when the flow is approximately 

one-dimensional [D(IV£8 and De Wie8f, 1966; Jauanclel et al., 198-l]: 

v 
Ra =- (89) 
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The retardation factor for solute transport may also be written [Grove, 1976]: 

R, = ( 1+-P_b ~-(d-l (90) 

Here, Pb denotes the bulk density of the solid matrix, Kd is a measure of solute adsorp-

tion capacity of the medium, called the distribution coefficient, and n is the effective 

porosity of the porous medium. Values of Kd have been measured in the laboratory and 

in the field [Patterson and Spoel, 1981; Pickens et al., 1981]. 

The velocity of a thermal front is given by equation (5). · The fluid velocity IS 

I 7f I In . The retardation factor for heat transport then becomes:· 

1 c 
R, =- -­

n Cw 
(91) 

The formulas given in this paper for the motion of the thermal front can be applied 

to a two-fluid interface during solute transport if the retardation factors (90) and (91) 

are equal, i.e. if we set 

c --=nR c 8 
w 

(92) 

where R, is given by equation (90). 

In the case of a conservative, I.e. non-reactive, solute, Kd =0 and R, =1. Then 

C I Cw should be set to n . 

For the case of solute transport, an additional phenomenon needs to be considered. 

This is the well-known and much studied dispersion tensor, which takes into account the 

inhomogeneity of the porous medium. Recent work by Giiven et a/., [1985], based on an 

analysis of field data, indicates that if one takes into account in detail the vertical 

.. 



permeability distribution of the aquifer, the remaining dispersive effect will be very small 

-- on the order of that of laboratory samples. For one-dimensional flow, there is an 

equivalence relation [Sauty, 1982a] between thermal conductivity A and dispersivity d 

given by 

{93) 

Thus if one-dimensional flow across the two-fluid interface is a good approximation, then 

the results of cases F and G in this ·paper are applicable by substituting for A in equa­

tions {19) through {25) according to equation {93). If this approximation is not valid, 

then one would have to introduce the dispersion term into the governing equation {4) 

and redevelop the complete theory. 

Summary and conclusions 

The present paper describes the results of a detailed study of the motion of a two­

fluid interface, where the two fluids have different densities and viscosities. While the 

equations and solutions are presented in terms of a thermal interface, discussions are 

given to show how they are applicable to other kinds of fluids with different solute con­

centrations and other physical properties. 

The basic equatio~s for the thermohydraulic process in the aquifer are given by {2), 

(3), and (4). The groundwater flow in the aquifer with its displacement and, in particu­

lar, its tilting of the thermal front may be considered as a superposition of a buoyancy 

flow and a forced-convection flow. The buoyancy flow is at work all the time, while the 

forced convection takes place during periods of injection and extraction. 
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First the pure buoyancy flow of a vertical front is analyzed. The starting point of 

the analysis is a series of exact solutions for the groundwater flow for various geometries 

shown in Figures 2a-h. The flow across the thermal front determines the tilting rate of 

the front. The most important case is the sharp front in an infinite aquifer bounded by 

two horizontal planes. This case gives the tilting rate with good accuracy except for 

quite thin warm regions (K.L I H <0.3) and for quite thick thermal fronts (K.D I H >0.3). 

The superposition of buoyancy and forced convection is defined by equations {35-

37). A detailed analysis is made for the case with a sharp, tilted thermal front in an 

infinite aquifer bounded by two horizontal planes {Figure 20). The tilting flow Q1 may 

be written ( 43-46): 

Tre characteristic buoyancy flow q 0 is defined by {9). The two functions f bt and· f 11 

for the buoyancy tilting and the forced-convection tilting respectively depend only on 

the tilting angle a, the viscosity ratio /3 J.lol J.t 1, and the anisotropy parameter 

K.=vk'lk. 

For a certain combination of tilting angle and forced-convection flow rate the total 

flow in the aquifer is constant and horizontal. The tilting rate is then zero {55). From 

this we may deduce a relation (57) between / 61 ( a,j3,K.) and I 11 ( a,/3,K. ): 

(57) 

The effect of anisotropic permeability is analyzed. It is possible. to reduce an aniso-

tropic case to an isotropic case by a simple coordinate transformation (58). The forced-

convection tilting function (46} reduces to: 

I 11 (a,/3,K.) =I,, (o-',/3,1) (65) 
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with 

tan( a') = ~tan( a) (60) 

The remaining unknown function I ft (d,,B,1) is computed numerically. It is shown 

that we. can express the results with a single function I 1 ( 8 ): 

I ft (a',,B,1) = 4? tan(a') .8/3-1 I 1 (tan( a')) 
1r"' +1 

(70) 

The basic tilting function I 1 (8 ), which is given in Figure 23 and Table 2, is linear in the 

interval 0<8 <2 : 

1,(8)=1-1 1·8 I 1=0.235 (74) 

The final formula for the tilting rate of a sharp, tilted front in an infinite aquifer 

bounded by two horizontal planes becomes: 

d8 ~ - = - It (8 )(1+i8) 
dt t 0 

(80) 

8 = ~c:tan( a) (76) 

(77) 

The solution of (80) is simple for 0<8 <2 when (74) is valid. The tilting 8 will follow 

the curves in Figure 24. Two examples of the tilting angle variation a( t ) during a 

storage cycle are given by Figures 25 and 26. 

Some specific observations and conclusions are summarized below: 

1. The buoyancy tilting flow is induced by a density difference between the fluids, 

whereas the forced-convection also induces a tilting flow because of a difference in 
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viscosity. 

2. The two basic parameters for -the tilting rate of the thermal front are the charac­

teristic tilting time t 0 and the forced-convection tilting parameter "f given by equa­

tions (33) and (77) respectively. 

3. The buoyancy tilting rate (32) is inversely proportional to the height H of the 

aquifer. 

4. The tilting rate is proportional to an effective permeability that equals .JfTk, 

where k is the horizontal permeability and k 1 is the vertical permeability. 

5. For fluid of one temperature, T 1, injected into an aquifer of another temperature, 

T 0, the tilting rate depends on the temperatures, since the density, and particularly 

the viscosity, exhibit a strong temperature dependence. 

6. Let L denote the distance from the well to the vertical thermal front. The 

influence on the buoyancy tilting from the boundary of the well is negligible if 

K.L I H >0.5. This applies both to the plane and the cylindrical case. 

7. The diffuseness of the thermal front diminishes the tilting rate. Let D be an 

appropriate width of the front. The tilting rate is reduced by 50%, when D 

increases from D =0 to tcD I H =1. 

8. During forced convection there exists a situation (55) where the front is stable, i.e. 

with no tilting flow. This situation occurs during extraction of hot water which 

was stored in a cold aquifer, or during injection of cold water into a warm aquifer. 
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Nomenclature 

C aquifer volumetric heat capacity (matrix plus water), Jjm 3K. 

Cw volumetric heat capacity of water, Jjm3K. 

d dispersivity, m. 

D thickness of diffuse thermal front in cases F and G, m. 

i 61 buoyancy tilting function. 

111 forced-convection tilting function. 

11 basic tilting function. 

II =0.235 

g standard gravit.y, 9.81 mjs2. 

G Catalan's constant (=0.915 ... ). 

H thickness of aquifer stratum, m. 

k permeability (horizontal), m2
• 

k 1 vertical permeability, m2. 

L horizon tal thick ness of region left of the thermal front in 

case B, C, D, E, and G, m. 

n effective porosity of porous medium. 

P pressure, Pa. 

P6 pressure for buoyancy flow part of equation (35), Pa. 

P1 c pressure for forced convection part of equation (35), Pa, 

7j volumetric groundwater flux, m3H20jm2s. 

q6 volumetric groundwat.er flux for buoyancy flow part 

7iJc volumetric groundwater flux for forced convection 

part of ~quatio11 (35), m3H20/m2s. 

. 3 n 
x-component of 7j, m ll::P/m-s. 
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qy y-component. of q, m3H20/m2s. 

q= z-component. of q, m3l-I::P/m2s. 

q1 horizontal buoyancy flow across thermal front, m3H20jm2s. 

q 0 characteristic buoyancy flow defined by equation (9), m3H20/m2s. 

Q1 tilting flow, m3H20/s. 

Qbt buoyancy tilting flow, m3H::P/s. 

Q11 forced-convection tilting flow, m3H20/s. 

Q 1 forced-convection flow rate through aquifer, m3H20 /s. 

r radial coordinate, m. 

R radiusof circular region in case H, m. 

R 8 retardation factor for solute transport. 

Rw radius at inner boundary in case E, m. 

s tilting parameter equal to K:tana. 

S tilting function defined by equation (82). 

t time, s. 

t 0 characteristic tilting time defined by equation (33), s. 

T temperature, • C. 

T 0 temperature of region 0, • C. 

T 1 temperature of region 1, • C. 

vr th-ermal velocity equal to Cw 7J jC, m/s. 

x horizontal coordinate, m. 

y horizontal coordinate, m. 

z vertical coorclinat.e, m. 

a tilting angle. Angle between st.raight thermal front and vertical axis. 

a' tilting anglC' for isotropic case (~=1). 

!3 viscosit.y factor, (•qual to Jtu/Jt 1. 

~~ forc-ed-conHct.ion t.ilting parameter defln<.'cl by <'quation (ii). 
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anisotropy factor, equal to Jk 1/ k . 

thermal conductivity, W /mK. 

dynamic viscosity, kg/ms. 

dynamic viscosity in region 0, kg/ms. 

dynamic viscosity in region 1, kg/ms. 

density, kgjm3. 

density in region 0, kgjm3. 

density in region 1, kgjm3. 

angular tilting rate defined by equation (30), rad/s. 

angular tilting rate for case A, given by equation (32), rad/s. 
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TABLE 1. The Function f ft (a1,,8,1) as a Function of the Tilting Angle o:' and the 
Viscosity Ratio ,8 for the Isotropic Case (~e=1). 

Tilting angle o:' 

,B=Jio/111 o· 15 ° 30 ° 45 ° 60 ° 75 ° 90 ° 

2.09 0.000 0.033 0.067 0.099 0.131 0.158 0.176 
4.82 0.000 0.061 0.125 0.189 0.251 0.302 0.328 
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TABLE 2. The Basic Tilting Function f 1 (8 ). 

Tilting parameter 8 · x:tan(a)· 

0 0.268 0.577 1.000 1.732 3.732 00 

a'(x:=l)t oo 15 ° 30 ° 45 ° 60 ° 75 ° 90 ° 
ft(8) 1 0.937 0.864 0.765 0.593 0.329 0 

t The tilting angle d corresponding to a certain value of 8 is given for the isotropic 
case (x:=l). 
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Appendix A. Analytical Solution for a Sharp, Vertical Thermal Front in an 

Infinite Strip. 

An analytical expression for the pressure distribution in case A, which is shown in 

Figure 2a, will be derived in this appendix. The aquifer stratum occupies the regiOn 

-oo < x < oo, -H /2 < z < H /2. The thermal front 1s located at x =0, 

-H /2 < z < H /2. 

Let P (x ,z) denote the pressure distribution m the aquifer. In regiOn 1, 

x < 0, -H /2 < z < H /2, the pressure satisfies: 

-(- --)+- - (-+plg) = 0 a k aP a [ k 1 aP ] 
ax 111 ax az 111 az 

In region 0, x > 0, -H /2 < z < H /2, we have: 

a k aP a [ k 
1 ap ] -(- --)+- .- (-+Po9) = 0 ax Jlo ax oz 11o az 

The upper and lower boundarie::. are impermeable: 

aP oz +Po9 = 0 

H 
Z = ± 2' -00 < X < 0 

H 
z=±- O<x<oo 2. 

Hydrostatic conditions prevail far away from the thermal front: 

X- -00 

x- +oo 

The pressure and the groundwater flow are continuous at the thermal front: 

P (-O,z) = P (+O,z) 

k aP k aP --·-=--·-
1'1 ax Jlo ox 

H -- < z 
2 

< H 
2 

If 
x=O -- < 

' 2 

\Ve start with the following expressions: 

.. < !I 
'l 

(Al) 

(A2) 

(A3) 

(A4) 

(A5) 

(AG) 

(A7) 

(AS) 
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00 

X <0: P (x ,z) = -p1gz + E an Un (x ,z) 
n=O 

00 

X >0: P(x,z)=-pogz + E bn U 11 (x,z) 
n =0 

( ) . [ (2n +1)7rz ] un x ,z = sm H · e 

(2n +1)11"~~: 1 z 1 

H 

(A9) 

(A10) 

(All) 

It is not difficult to verify that these expressions satisfy (A1-A6) for any choice of the 

coefficients an and bn . The coefficients are determined by the two remaining conditions 

(Ai) and (AS): 

4 (-1)" 
(2n +1)2 

In particular we have for the flow across the thermal front: 

( ) · k aP . 4 ~ (-1)" . [ (2n +1)7rz l q f Z = - - " - = IC q 0 · - LJ · Sill 
Jl 1 ax 1r n=0 2n +1 H 

The series may be expressed in the simpler form of equation (11). 

(A12) 

(A13) 

(A14) 

Appendix B. Analytical Solution for a Sharp, Vertical Thermal Front m a 

Semi-Infinite Strip; Impermeable Left Boundary. 

An analytical expression for the pressure distribution in case B, which is shown in 
0 

Figure 2b, will be derived in this appendix. The aquifer stratum occupies the region 

0 < x < oo, -H /2 < z < H /2. The thermal front 1s located at. x =L, 

-1/ /2 < z < H /2. 
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Let P (x ,z) denote the pressure distribution in the aquifer. In region 1, 

0 < x < L, -H /2 < z < H /2, the pressure satisfies equation (Al). In region 0, 

x > L, -H /2 < z < H /2, we have equation (A2). 

The upper and lower boundaries are impermeable: 

oP 
oz +Po9 = 0 

z=±H 0 < x < L 
2' 

H 
z =±-, L < X < 00 

2 

(Bl) 

(B2) 

Hydrostatic conditions far away from the thermal front give (A6). The left boundary is 

impermeable: 

oP =O 
ox 

x=O _H < z < H 
' 2 2 

The pressure and the groundwater flow are continuous at the thermal front: 

P(-L ,z) = P(+L ,z) H < H -- < z 
2 2 

k oP k oP H H --·-=--·- x=L -- < z < 
Ill ox llo ox ' 2 2 

\Ve start with the following expressions: 

(B3) 

(B-t) 

(B-5) 

O<x <L: P (x ,z) = -p1gz + .~o a, sin [ (
2

" ;1}1rz ]· cosh [ (
2

" ~)~"' }B6) 

X >L: 
00 [ l (:!n+l)1ft.:(z-L) 

P (x ,z) = -pogz + E bn sin (2n ;))1rz · e H 

n =0 
(Bi) 

These expressions satisfy (Al-A2), (Bl-B3), anq (A6) for any choice of the coefficients a,p 

and bn: The coefficients are determined by the two remaining conditions (B4) and (B5). 

q oH ll1 
an =-

k 
______ I----- . _i_ ( -1 )" 

Jlo III 7r~ (211 +1)::! 
---sinh(O,. )+ cosh(0,1 ) 

J1o+J11 Jlo+Jtl 

(B8) 
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(B9) 

whrre 

_ (2n +1)r.I\:L 
(Jn H (B10) 

Finally we obtain the flow across the thermal front (12) by differentiation of (B6) or 

(Bi). 

Appendix C. Analytical Solution for a Sharp, Vertical Thermal Front in a 

Semi-Infinite Strip; Hydrostatic Pressure Conditions at the Left Boundary. 

An analytical expression for the pressure distribution in case C, which is shown in 

Figure 2c, will be derived in this appendix. The aquifer stratum occupies the region 

0 < x < oo, -H /2 < z < H /2. The thermal front 1s located at x =L, 

-H /'2 < z < H /2. 

Let P (x ,z) denote the pressure distribution in the aquifer. In region 1, where 

0 < x < L , -H /2 < z < H /2, the pressure satisfies equation (A1). In region 0, 

where x > L, -H /2 < z < H /2, we have equation (A2). 

The upper and lower boundaries are impermeable, which implies the boundary condi-

tions (Bl-B2). Hydrostatic conditions far away from the thermal front giYe (A6). 

Hydrostatic conditions prevail at the left boundary: 

P (O,z )=-plgz _H < z < H 
2 2 

(Cl) 

The pressure and the groundwater flow are continuous at the thermal front as expressed 

by (B4) and (B.S). \Ve start with (I3i) for x >L and the following expression for 

O<x <L : 

P( ) ~ . [pn +l)rr.:] . I [(2n +l)r.n~.r] 
x ,z = -p1gz + LJ a,. sm H · s1n 1 /l 

n =0 

(C2) 
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Expressions (C:2) and (B7) satisfy (A1-A:2), (B1-B2), (C1), and (A6) for any choice of the 

coefficients a,1 and bn : the coefficients are determined by the two remaining conditions 

(B-!) and (B5). 

1 

where ()n is defined by (B10). 

4 (-1)" 
i2 (2n +If 

(C3) 

(C4) 

The flow across the thermal front (13) is obtained by differentiation of (C2). or (Bi) 

with an and bn given by (C3) and (C4) respectively. 

Appendix D. Analytical Solution for a Sharp, Vertical Thermal Front in the 

Cylindrical Case; No Flow at the Inner Boundary. 

An analytical expression for the pressure distribution in case D, which is shown in 

Figure 2d, will be derived in this appendix. Cylindrical coordinates, r and z, are used. 

The aquifer stratum· occupies the region 0 < r < oo, -H /2 < z < H /2. The. ther-

mal front is located at r =L, -H /2 < z < H /2. 

Let denote the pressure distribution m region 1' 

0 < r < L , -H /2 < z < H /2. The pressure satisfies: 

1 a k aP 1 . a [ k 1 aP 1 ] --(- r--)+- - (--+rho 1g) = 0 
r ar Jli ar az Jli az 

(Dl) 

In region 0, r > L , -11/2 < z < H /2. vVe have for the pressure P 0( r ,z ): 

--,-(- r-, -)+-,- -- (-,-+rlw 0g) = 0 1 a k aP o a [ k 1 aP o ] 
r dr Jlo dr d:: l'o d:: 

(0:2) 

The upper and lower boundari(·s are imJH•rmcable: 
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aPl 
=0 

H 
0 < r ·< L az +plg z =±-

'>' .. (D3) 

8P 0 
=0 

H L az +pog z=±- < r <oo 
2 ' 

(D4) 

At the inner boundary, r =0, symmetry requires that: 

_H < z < H 
2 2 

(D5) 

Hydrostatic conditions prevail far away from the thermal front: 

r-+ oo (D6) 

The pressure and the groundwater flow are continuous at the thermal front: 

_H < z < H 
2 2 

(D7) 

Ill Ito 
r=L _H < z < H 

' 2 2 
(D8) -- . --=-- . --

We start with the following expressions: 

(D9) 

P ( ) _ _ ,. +. ~ b . [ (2n +l)1rz ]· }:-- [(2n +l)7r~>~r l-o r ,z - Pog- LJ n sm H \. o H 
n=O 

(DIO) 

Here we make use of the modified Bessel functions In and [(n . These expressions satisfy 

(Dl-D6) for any choice of the coefficients an and bn. The coefficients are determined by 

the two remaining cqnditions (D7) and (D8). 

1 
[( o(On ) 

J( I(()n) 

1 . _!_ (-It (Dll) 
II( On) 11"::! (2n +1)::! 

(DI2) 
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where On is given by (B10). 

Finally we obtain the flow across the thermal front (14} by differentiation of (D9) or 

(D10). 

Appendix E. Analytical Solution for a Sharp, Vertical Thermal Front in the 

Cylindrical Case; Hydrostatic Pressure Conditions at the Inner Boundary. 

An analytical expression for the pressure distribution in case E, which is shown in 

Figure 2e, will be derived. in this appendix. Cylindrical coordinates, r and z, are used. 

The aquifer stratum occupies the region Rw < r < oo, -H /2 < z < H /2. The ther-

mal front is located at r =L, -H /2 < z < H /2. 

Let P 1(r ,z) denote the pressure distribution m region 1, where 

Rw < r < L , -H /2 < z < H /2. The pressure P 1 satisfies equation (D1). For the 

pressure P 0( r ,z) in region 0, r > L, -H /2 < z < H /2, we have equation (D2). 

The upper and lower boundaries are impermeable, which implies the boundary con-

ditions (D3-D4). Hydrostatic conditions far away from the thermal front give (D6). We 

also haYe hydrostatic pressure conditions at the inner boundary, r =Rw: 

_H < z < H 
2 2 

(E1) 

Pressure and groundwater flow are cont.inuous at the thermal front as expressed by (D7) 

and (D8). 

\Ve start with the following expressions: 

00 00 

P 1( r ,z) = -p1gz + E an un ( r ,z) + E bn vn ( r ,z) (E2) 
n=O n=O 

00 

P 0(r ,z) = -p0 g:: + E c,1 v,1 (r ,::) (E3) 
n =0 
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where 

( ) _ . [ {2n +1)1l'z ]·I [ {2n +1)11'1\:r ] 
Un r ,z - sm H 0 H (E4) 

( ) _ . [ (2n +1)1l'z ]· r.( [ (2n +1)11'1\:r ] vn r ,z - sm H J' o H (E5) 

These expressions satisfy {D1-D4) and (D6) for any choice of the coefficients an, bn, and 

en. The coefficients are determined by the three remaining conditions (E1), {D7}, and 

{D8). 

QoH J.l1 1 4 . (-1)" 
X an - ·-· 

k I 1(0nL) il {2n +1)2 
(E6) 

1 

J.lo-J.ll K o(OnL) I o( OnR) 
+ 

J.ll I 0(0,!') J.lo K o(OnL) 

I I(onL) K o(OnR) 
+ 

K I(onL) J.lo+J.l1 J.to+J.l1 Il(onL) J.to+J.l1 

bn 
I o( ()nR) 

=- . an 
J( o( OnR) 

(E7) 

J.lo I 1(0nL) . [I+ K I(onL) I o(B.R) l 
Cn =-- . J( o(OnR) . an J.ll K 1(0nL) I I(OnL) 

(E8) 

where 

(E9) 

(EIO) 

Finally we obtain the flow across the thermal front (16) by differentiation of (E4) or 

(E5). 
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Appendix F. Analytical Solution for an Infinite Strip with Diffuse Thermal 

Front. 

An analytical expression for the pressure distribution in case F, which is shown in 

Figure 2f, will be derived in this appendix. The aquifer stratum occupies the region· 

-oo < x < oo, -H /2 < z < H /2. The thermal front region, which has a thickness 

D , is loca:ted at -D /2 < x < D /2, -H /2 < z < H /2. The viscosity is constant in 

this case The density IS P1 lll region 1, where 

X < -D /2, -H /2 < z < H /2, and P1 Ill region 0, where 

x > D /2, -H /2 < z < H /2. The density .in the thermal front region varies linearly 

with x between p1 and Po= 

(Fl) 

The pressure distribution P 1(x ,z) in region 1 satisfies (Al) with JL 1=JL. For the 

pressure P 0(x ,z) in region 0, we have equation (A2) with JLo=Jt. The pressure PD {x ,z) 

in the thermal front region is the solution of: 

a k aPD a [ k' apD ] -(- --)+- - (-+p(x )g) = 0 
ox JL ox oz JL oz 

The upper and lower boundaries are impermeable, so that 

aP az +pg = 0 H z =±-. 
2 

(F2) 

(F3) 

for the different regions. Hydrostatic conditions far away from the thermal front give 

(A.5-A6). 

The pressure and the groundwater flow are continuous at the interfaces between 

the thermal front region and the surrounding regions: 

P 1(-D /2,z) = PD (-D j2,z) II < !-/ (F -l) -- < z 
2 2 

P 0(D /2,z) = PD (D /2,z) /1 < II (F5) -- < z 
•> ., 



.. 
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k aP 1 k aPD H <H -- . --=-- . -- x=-D /2 -- < z 
J.l ax JL ax I 2 2 

(F6) 

k aP 0 k aPD H < H --. --=-- ·-- x=D /2 -- < z 
J.l ax J.l ax I 2 2 

(Fi) 

We start with the following expressions: 

00 

P 1(x 1Z) = -p1gz + L; an un (x 1Z) (F8) 
n=O 

00 

P o(x 1 Z) = -pogz + L; bn Vn (x 1Z) (F9) 
n=O 

00 00 

PD(X 1Z)=-p(x)gz + L;cnun(X 1z)+ L;dnvn(X 1Z) (FlO) 
n =0 n ==0 

where 

. 2n +1 1rz [ l 
(2n +l)li"Kz 

un (x 1Z) = sm ( H ) · e H (Fll) 

. 2n +1 1rz [ l 
(2n +l)lrKZ 

Vn (x 1 Z) = sm ( H) · e H (F12) 

These expressions satisfy (A1-A2) 1 (F2-F3) 1 (A5-A6) for any choice of the coefficients an 1 

bn 1 en 1 and dn . The coefficients are determined by the four remaining conditions (F4-

F7): 

qoH J.l 

2k 
4 

qoH J.l 

'2k 

( -1 )" 

(2n+1)2 
H [ D e 

(2n +1)7rx:-
2 

4 (-1)" 
(2n+1)2 

- e 

D 
(2n +l)lrt.::! 

H 

(2n +~lr.:f l (Fl3) 

(F14) 

(FI5) 

(F16) 
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In particular we have for the flow across a vertical cut m the middle of the thermal 

reg1on: 

x=O {F17) 

The result may be expressed as the series of equation {19). 

Appendix G. Analytical Solution for the Cylindrical Case with Diffuse Ther-

mal Front. 

An analytical expression for the pressure distribution in case G, which is shown in 

Figure 2g, will be derived in this appendix. The aquifer stratum occupies the region 

0 < r < oo, -H /2 < z < H /2. The thermal front region, which has a thickness D, 

is located at L -D /2 < r < L +D /2, -H /2 < z < H /2. The thermal front region 

must" not extend into the well, i.e. D <2L . The viscosity is constant in this case 

(Jl=Jlo=Jl1). The density is p1 in region 1, 0 < r < L -D /2, -H /2 < z < H /2, and 

p0 in region 0, r > L +D /2, -H /2 < z < H /2. The density in the thermal front 

region varies with r between p1 and p0 according to: 

[ 
(L +D /2) l [ r l Ptln r +poln (L -D /2) 

p( r ) = -.-...::...---==---==-----=....------==-
. In [ (L +D /2) l 

(L -D /2) 

{G1) 

The pressure distribution P 1(r ,z) in region 1 satisfies {Dl) with Jlt=Jl. For the 

pressure P 0(r ,z) in region 0, we have equation (D2) with Jlo=Jl. The pressure PD (r ,z) 

in the thermal front region is the solution of: 

1 a k aPD a [ k' aPD ·] - -~ (- r -~ -)+- - (--+p(r )g) = 0 
r d r Jl ~ r ~ z Jl a= 

(G2) 

The upper and lower boundaries are impermeable, so that 



.. 

aP -+pg = 0 
az 

H 
z =±-

2 
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(G3) 

for the different regions. The no-horizontal-flow condition at the inner boundary, r =0, 

and hydrostatic conditions far away from the thermal front give (D5-D6). 

The pressure and the groundwater flow are continuous at the interfaces between 

the thermal front region and the surrounding regions: 

P 1(L -D /2,z) = PD (L -D /2,z) H H (G4) -- < z < 2 2 

P 0(L +D /2;z) = PD (L +D /2,z) H <H (G5) -- < z 
2 2 

k apl H H 
r =L -D /2 -- < z < -

' 2 2 
(GB) -- . --=-- . --

k aPo k aPD -- . --=-- . --
J.l ar J.l ar r =L +D /2, -: < z < : (G7) 

vVe start with the following expressions: 

00 

P1(r,z)=-p1gz + E anun(r,z) (G8) 
n=O 

00 

Po( r ,z ) = -pogz + E bn vn ( r ,z ) (G9) 
n=O 

00 00 

PD(r,z)=-p(r)gz + E cnun(r,z)+ E dnvn(r,z) (GIO) 
n =0 n =0 

where the functions un (r ,z) and vn (r ,z) are given by (E4) and (E5) respectively. 

These expressions satisfy (D1-D2), (G2-G3), (D5-D6) for any choice of the 

coefficients an, bn, en, and dn. The coefficients are determined by the four remaining 

conditions ( G4-Gi): 

1 

In [ (L +D /2) l 
(L -D /2) 

4 (-1)". 
(2n +If [ <P(O,;) l ,(Gil) 

I 0(0,;) 



Cn 

dn 

2qoH tt 
-

k 
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1 

In [(L +D /2) l 
(L -D /2) 

1 

In [ (L +D L2) l 
(L -D /2) 

4 
" 7r-

4 

(-1)" 
(2n +1)2 

·-· (-1)" 
~ (2n +1)2 

2q 0H tt 1 4 {-1)" =- ·-· 
k " (2n +1)2 

In [ (L +D L2) l 7r-

(L -D/2) 

where the function cl> is defined by: 

and 

B + = (2n +l)1r~~:(L +D /2) 
n H 

B _ = {2n +1)7rx:{L -D /2) 
n H 

4>(Bn+) 

I o( en+) 

cf>(en-) 

K o(B;) 

cf>(O;) l(G12) 
K o(B,i) 

(Gl3) 

(Gl4) 

(G15) 

(Gl6) 

(G17) 

In particular we have for the flow across a vertical cut in the middle of the thermal 

region: 

k f:)PD 
q! (z) =--.-

tt ar r=L (G18) 

The result may be expressed as the series of equation {21). 

Appendix H. Analytical Solution for a Sharp Thermal Front in a Circular 

Region. 

An analytical expression for the pressure distribution in case H, which is shown in 

Figure 2h, will be derived in this appendix. The aquifer has the shape of an infinit.e 
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circular cy Iinder with an horizon tal symmetry axis. A vertical cut through the cylinder 

becomes a circular disk with radius R. We first consider the case with a vertical ther-

mal front. Both polar coordinates (r ,¢>) and cartesian coordinates (x ,z) are used. Here 

¢> denotes the angle with respect to the upward vertical direction, which is denoted z . 
Let P 1(r ,¢>) denote the pressure distribution in the the left part of the circular region, 

0 < r < R, -1r < ¢> < 0. In the right part, 0 < r < R, 0 < ¢> < 1r, the pressure is 

P 0(r ,¢>). The pressures P 1 and P 0 both satisfy: 

(Hl) 

The periphery of the disk is impermeable. Let r and z denote unit vectors in the radial 

and vertical direction respectively. Then we have: 

r =R , - 1r < ¢> < 0 (H2) 

r =R , 0 < ¢> < 1r (H3) 

The pressure and the groundwater flow are continuous at the thermal front: 

0 < r < R , ¢> = 0 and ±r. (H4) 

k aP 1 k aP o -- . --=-- . --ax Jlo ax 0 < r < R , ¢> = 0 and ±7r (H5) 

where x is a horizontal coordinate .. 

\Ve start with the following expressions: 

oo r 
Pl(r,¢>)=-a:rcos(¢>)+ E a"(R)2

" ·sin(2n¢) 
n =1 

(H6) 

00 

Po( r ,¢>) = -a:r cos(¢>) + E bn ( _!:._ r~" · sin(2n ¢>) 
n =1 R 

(H7) 

These expressions satisfy (Hl) for any choice of"the coefficie?ts a-, a,, and b,1 • The 

coefficients arc determined by the four remaining conditions (H2-I-I.'l): 
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1r (2n +1)(2n -1) 

The pressure in the aquifer is now: 

Pi(r ,¢>) = _ (JloPI + JliPo)gz _ qo~Jli P(Rr ,¢>) 
Jlo+Jl1 

(H8) 

(H9) 

(HIO) 

(Hll) 

where i =0 for 0 < ¢> < 1r and i =I for -1r < ¢> < 0. We have introduced a dimen-

sionless pressure: 

- 4 00 1 P (r 1 A.) - - ~ · (r ')2n · sin(2n A.) 
•'~' -- 1r n~I (2n +1)(2n -1) 'I' 

(HI2) 

This series may be expressed in closed form with the ·use of the complex number 

w = r 'cos(¢>)+ i r 'sin(¢) = (z +ix )/R (HI3) 

The dimensionless pressure (H12) may then be written: 

P = - _!_ Im [ ( w _..!._) In ( 1 +w) ] = - _!_ lm [ f ( w ) J 
1r. w I-w 1r 

(HI4) 

The symbol Im denotes the imaginary part. An evaluation of the complex function 

f ( w) gives: 

P = - _!_{ ( r 1--
1-) cos(¢) · arctan [ 2' 'sin(~) ] 

1r r·' . 1-(r ')-
(HIS) 

+.!..(r'+.l,) sin(¢). In [l+(r')2..,+ 2r'cos(¢) l} 
2 r l+(r')--2r 1cos(¢) 

In particular we have for the flow across the thermal front: 

ql (z) =- qoR . oP = ~. Re [ df.] ox 11' dw 
(H16) 
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Here Re denotes the real part. The result is given in equation (26). 

In this particular case it is possible solve the problem with a straight thermal front 

which is tilted an angle a from a vertical position. By making the substitution: 

¢/ = ¢r-a (HI7) 

we find that equations (HI-H7) remain unchanged except that the gravitational constant 

g is replaced by g ·cos(a). This means that all pressures and flows are reduced by the 

factor cos(a) when the thermal front is tilted an angle a. 
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I 
I 

I 

XBL854-11027 

Fig. 1. Closed curve r in an aquifer with a sharp thermal front (dashed line). 



A. 

H 

E. 

-57-

B. c. D. 

L L 

F. G. H. 

2R 
XBL 854-11025 

Fig. 2. Cases considered for analytical solutions: (A) Infinite strip. (B) Semi-

infinite strip with impermeable left boundary. (C) Semi-infinite strip with hydrostatic 

conditions along the left boundary. (D) Cylindrical ca.se with no horizontal flow at inner 

boundary. (E) Cylindrical ca.se with hydrostatic pressure conditions at inner boundary. 

(F) Infinite strip with thermal front thickness D. (G) Cylindrical .ca.se with thermal 

front thickness D. (H) Circular disc. 
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z -
H 

XBL 854-11028 

Fig 3 F . . low field - . q m case A ( . IC=l). 
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o.s 
0.4 

(~)·~ 0.3 

0.2 

0.1 

0 
0 0.5 1.0 1.5 2.0 

:~0 (:~) 
XBL 854-11055 

Fig. 4. Dimensionless horizontal groundwater flow across the thermal front for the 

infinite strip (case A) and the circular disc (case H). The parameters within parentheses 

concern the circular disc. 
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Fig. 5. Dimensionless horizontal groundwater flow across the thermal front for the 

semi-infinite strip with impermeable left boundary (case B). Variation of the anisotropy 

factor K.. 
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Fig. 6. Dimensionless horizontal groundwater flow across the thermal front for the -

semi-infinite strip with impermeable left boundary (case B). Variation of the viscosity 

ratio /3. 
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Fig. 7. Dimensionless horizontal groundwater flow across the thermal front for the 

semi-infinite strip with hydrostatic -pressure along the left boundary (case C). Variation 

of the anisotropy factor "· 
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Fig. 8. Dimensionless horizontal groundwater flow across the thermal front for the 

semi-infinite strip with hydrostatic pressure along the left boundary (case C). Variation 

of the viscosity ratio (3. 
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Fig. 9. Dimensionless horizontal groundwater flow across the thermal front for the 

cylindrical case with no horizontal flow across the inner boundary (case D). Variation of 

the anisotropy factor 1<:. 
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Fig. 10. Dimensionless horizontal groundwater flow across the thermal front for the 

cylindrical case with no horizontal flow across the inner boundary (case D). Variation of 

the viscosity ratio (3. 
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Fig. 13. Dimensionless horizontal groundwater flow across the thermal front for the 

infinite strip with thermal front thickness D (case F). 
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Fig. 14. Dimensionless horizontal groundwater flow across the thermal front for the 

cylindrical case with thermal front thickness D (case G). 
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Fig. 15. Definition of the angular tilting rate Wt. (a) Thermal front at a time t. 

(b) Thermal front at a time t +dt. (c) Linear approximation of situation (b) with the 

same total flow. 



-71~ 

. 2.0 

1e8 

1.6 fJ = 4.82 

1.4 

1.2 D C.Ot 
1.0 

A c.oo 
0.8 H 
Os6 

0.4 

0.2 

0 
0 0.5 1.0 1.5 2.0 

~L~~ 
XBL 854-11032 

Fig. 16. Tilting rate w1 for viscosity ratio .8=4.82 ( T 1=90 • C, T 0=5 • C). In case 

F the tilting rate is given as a function of KD /H. 
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Fig. 17. Tilting rate w 1 for viscosity ratio .8=2.09 ( T 1=90 ° C, T 0=5 ° C). 
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Fig. 18. Tilting rate w1 for viscosity ratio /3=1. 
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Fig. 19. Tilting rate w1 for the cylindrical case with thermal front thickness D . 
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Fig. 20. Aquifer strip with tilted thermal front. Watrr is pumped through the 

strip at a flow rate of Q 1. 
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Fig. 21. Aquifer strip with tilted thermal front.. (a) Clockwise rotation due to 

buoyan-cy flow (p1 <p0). (b) Counter-clockwise rotation due to forced ronnction 
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Fig. 22. Groundwater flow pattern for forced convection m an aquifer strip with 

tilted thermal front. 
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Fig. 23. The quantity (69) a.s a function of s =tan (a'). The solid line gives the 

ba.sic tilting function f 1 (s ). The da.shed line gives the a.sympt.ote mentioned in the text. 
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Fig. 24. The function S ( s ,/). See (83) and (84). 
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Fig. 25. An example of tilting angle variation a{ t) during an injection-st.orage-

extraction cycle. 
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Fig. 26. An example of tilting angle variation a(t) during a longer injection-

storage-extraction cycle. 
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