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1. Introduction 

The high spin region of deformed nuclei has been the object of intensive study in the last 

decade (see ref: I for a recent review). New experimental techniques have pushed to higher and 

higher spin (-40h) the resolution of discrete lines in the yrast limit and at low excitation 

energy above it. For high spin and high excitation energy correlation methods have been 

developed(2) to disentangle the seemingly structureless spectra. In this regard, very recently, 

Deleplanque et al.,(3) using the feeding correction method, successfully measured very detailed 

features, such as the dynamic moment of inertia, in the quasicontinuum of some transitional 

Rare-Earth nuclei. Now several experimental groups are studying the quasicontinuum trying to 

understand, among other things, how the gamma decay proceeds after the neutron-evaporation 

in a compound nucleus reaction. 

On the theoretical side most of the effort has been concentrated on the yrast line and the 

side bands, the basic ingredient in all theories being the mean field approach (Hartree-Fock­

Bogoliubov, HFB) combined with the cranking method.(4) The variety of cranki;·g theories 

rank from the simplest one{S) which only includes Corio lis effects passing by the selfconsistent 

theories(6.7) to the modern symmetry-conserving mean field theories.(8) To take into account 

further correlations along the yrast band and to describe properly the low-lying vibrations, some 

authors{9.13) proposed to go beyond the mean field by taking into account the RPA corrections 

to the self-consistent cranking model, the cranked RPA or CRPA. A further property which 

makes the RPA appealing is the restoration of the broken asymmetries in the RPA order, 

separating the Goldstone modes from the normal modes. This property in the context of high­

spin states has been discussed by Marshalek.(I4) 

To study the nuclear properties above the yrast line till the continuum the finite tempera­

ture HFB theory (FTCHFB) has been developed.(ls.17) The experimental evidence(18) of giant 

resonances based on highly excited rotating compound states has motivated the formulation(19-

20-21) of RPA theories at finite temperature in the rotating system (FTCRPA). So far, the for-
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mulations of the FfCRPA have concentrated on solutions corresponding to real vibrations, i.e. 

the normal modes, but no attention has been paid to the solutions of the FfCRPA in 

the presence of Goldstone modes. On the other hand it is well known that the mass parame­

ter 14.22) associated with the Goldstone modes are equivalent to the dynamic moment of inertia 

for rotations, i.e. their masses, for the angular momentum operator, correspond to the moments 

of inertia recently measured by Deleplanque et al.(3) 

In this paper we concentrate on this more general problem. We first introduce some nota­

tion in section 2.1 and review the FfCRPA equations in section 2.2. In section 2.3 we expli­

citly show that the Goldstone modes satisfy the FfCRPA. The inertial tensor associated with 

the angular momentum and the particle number operators is discussed in section 2.4 and in 

part 3. 

We do a numerical application of the theory to the realistic case of the nucleus 164Er in 

part 4. Several properties of a hot nucleus as a function of the cranking velocity and the tem­

perature are investigated. The results are summarized in part 5. 

2. Theory 

The FfCRPA equations have been studied mostly in the context of the Linear Response 

Theory. However in the time independent picture the FfCRPA has received little attention. 

Therefore we give here a short derivation for the sake of introducing some notation adequate 

for our purposes and the convenience of the reader. We follow to a large extent the lines of ref. 

21. 

2.1. General considerations of the FTHFB and FTRPA theory 

In ref. 21 a notation was introduced which allows a very compact formalism for the tem­

perature dependent problem in the presence of pairing correlation. 

Let {Ok. of ; k = 1, ... ,.\o,f} be a set of quasiparticle operators which define the vacuum 

cP >, i.e. 

.. 



-,,' 

.. 

with 

We define the operators 

a = ,. 

5 

for II- = m 

for jJ. = -m 

k I, ... ,lvl 

m I,'" )4 

their anticommutation relations are 

{a,.,a.} = o~ 

where v stands for -II. In terms of these operators any single-particle operator 

F = FJ + ~ F,h~'Ci~Cim' + ~ (F~~,Ci~ Ci~, + F~~,Cim'Cim ) 
M.m' m<m' 

can be written as 

with 

~ 1 t F = ;y - + - ~ g:, 'a a ' 2 4J ,.,. ,. ,. 
!', ,.,.' 

g-O = FJ + .!. Tr (F11) 2 !of 

The more general Bogoliubov transformation can be represented by 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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[u v·) 
T= V u· (8) 

or by 

(9) 

with 

(10) 

and 

T= exp(i.2) (11) 

We shall use script notation when working with the generalized quasiparticle operators of eq. 

(2). 

Since we are interested in the description of hot nuclei, we have to replace the individual 

compound systems with definite excitation energy, particle number and angular momentum by 

the grand ensemble of nuclei. The ensemble is suppose lo be in thermal equilibrium with a heat 

bath. The nuclear temperature, chemical potential and cranking velocity determine the average 

quantities for the energy, particle number and angular momentum respectively. The expecta-

tion value of any operator F is obtained by averaging over all multiquasiparticle states, i.e. 

<F>T = "1;p,.<n iF: n> (12) ,. 

with 

: n> = a ... a : A.> 
I ". II. I '+' 

(13) 

The probabilities Pn are given by 
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Pn - exp[ -(3(E", + Es; + ... + E,,)] (14) 

and are normalized to unity; the quantities E" are the quasiparticle energies in the intrinsic 

frame 

E" = <q, i {[a",H'],a:} ! q,> 

H' = H - wJx - 'AN (15) 

The parameters wand A are the cranking velocity and the chemical potential above mentioned, 

Furthermore, since we have taken the states ! n> to be generalized Slater determinants, 

we can use the generalized Wick theorem to calculate the thermal averages (12) in terms of the 

single particle density matrix 

(16) 

In particular for a single particle operator we get from eq. (5) and (6) 

(17) 

2.2. The HFB and RPA equations at finite temperature 

The FTHFB equation determines the equilibrium distribution of nuclei in the grand 

canonical ensemble and their properties in the independent particle approximation. The 

corresponding density matrix .Sii 0 is given by(21) 

(18) 

with 

(19) 
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In the self-consistent basis determined by equation (18) ;rand :Jf are both diagonal 

(20) 

The finite temperature RPA determines the vibration of a nucleus close to thermal equili-

brium in the limit of small amplitudes. If we assume 

.Ji! (t) = .;;p 0 + (0.Ji· e -;!ll + h.c.) (21) 

the amplitudes 0.Ji! can be obtained(21) from the equations of motion; they are given by 

1 
(0 - E,. + E,.')o.9i,.,.' = 2" (j,., - I,.) ~ ~' .. , 0.9£' •• 

•• 
(22) 

with 

(23) 

and the effective interaction 

(24) 

The eq. (22) looks rather asymmetric, and the norms of the vectors 0 .:Jl are dependent of the 

temperature factors f,.. To avoid these problems we define 

0Sii. ,=(j,-/)Z, ,.,. ,. ,.,.,. (25) 

and take advantage of the hermiticity of the density matrix .:Jl to order the states /J.,/J.' so that 

E,.> E ,.'. Introducing these changes in eq. (22) we obtain 

(26) 

in exactly the same way as the usual RPA(23) with the following identifications: 
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.'J7 , , = (E - E )~ ~" + .l. tr , - I )1/2 Cy/ , {j, - I )1/2 . ./"".. " ,,' u""u,,. 2 V" " p""... • (27) 

Zl':., = II" , - 1)1/2.2:' ' 
1'1' V" " 1'1' 

(28) .. 

and ~/the nonn matrix 

(29) 

Afterwards we shall refer to eq. (26) as the Finite Temperature RPA equations. 

As with the zero-temperature RPA equation, the FTRPA equation can be derived in a 

time independent picture, from the ansatz 

(30) 

with 

(31 ) 

The components of the operator Bt are related to the eigenvectors of (26) by (28), as one 

would expect from the nonnalization condition 

Ou = <[BK,Btl >T = ~ z,.:z,.;lf" - I",) = ~ c~:Z: ,,<,,' ,,<,,' (32) 

Some other properties of the FTRPA can be found in ref. 20. 

2.3. Conservation laws in the Finite Temperature RPA 

We shall now concentrate on problems arising from zero frequencies. The nuclear many-

body problem is very complex and the reason why simple-minded theories, like the mean-field 

approximation, work is that by breaking symmetries one can take into account many correla-
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tions. The most commonly broken symmetries in mean-field theories are the translational 

invariance, particle number (if pairing correlations are included) and rotational invariance (in 

deformed nuclei). 

We shall first examine the zero-temperature case: let us assume that the two body hamil~ 

tonian 

(33) 

is invariant under a continous symmetry operation generated by a hermitian one body operato~ 

P, i.e. 

[H,P] =0 (34) 

Let us furthermore assume that this symmetry is broken in the HF approximation; that is, the 

single-particle density matrix does not commute with P. With these two assumptions it is easy 

to shoW<24) that the RPA approximation, calculated \:ith single particle energies and wave func-

tions obtained in the self consistent HF calculations, has one solution at zero energy. Thus, 

(35) 

.. 
where H RPA and PRP,~ are the RPA approximations to the operators Hand P. Since the RPA 

solutions appear pairwise at +n and -n, and the PYA operator is hermitian, it is obvious that 

at zero energy one solution is missing from a complete set. The missing equation can be found 

working with a set of canonical conjugated operators as Marshalek and Wenesd24) did. The 

equation they found is 
.. 

(36) 

where Q is the canonical conjugated variable to P, and the mass parameter M is determined by 

the commutation relation 
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[PRPA ,QRP.~ I = - i (37) 

This property of the RPA of separating the Goldstone mode from the other solutions is a great 

advantage of the RPA over other theories where the spurious solutions are mixed up with the 

physical modes. It is therefore interesting to see if this important property of the RPA is still 

present in the finite-temperature limit, where thermal averages have been taken. We will show 

below that this property of the RPA is still maintained at finite temperatures. 

Let us first show that if the symmetry associated with the operator P is broken in the 

mean field approximation, then the transformed density matrix under this symmetry .§i is also 

a solution of the FTHFB equations (18), provided the hamiltonian is symmetry-invariant. The 

transformed density matrix under P is 

(38) 

and the transformed hamiltonian (19) is 

= <([a",H],aj}>T = <[a",H],aj> = ~,,{~ (39) 

In the last line we have made use of the invariance of the hamiltonian under the symmetry P 

and of eq. (9) to obtain the transformed operators a:. Then from eqs. (18), (38) and (39) we 

finally obtain 

(40) 

If we now expand .A and A(2) around :.if and A(.jf), respectively. we get to first order in a 

.':j _ < iaP t -iaP> _.;;, . <[P t I > ..A",,' - e a".a"e T - ..A",,' - la ,a".a" T 

...... 
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(41) 

= ~,.,- if ~.9' .. ,<[a:a.,{[a,.,H],a:}l >= ~,., + ia o~,., 
,.,.' (42) 

We have introduced the notation ogp and oJP'in the right hand side of both equations. By sub-

stitution in eq. (40) we get to first order in a 

[02, ~ 1 + [ 2, 0Ji'] = 0 (43) 

Substitution of eq. (24) in the expression (42) for 07and the use of the basis in which ;rand ~ 

are diagonal allows us to write eq. (43) as 

(44) 

Comparison with eq. (22) clearly shows the existence of a solution at zero energy with ampli-

tudes 

(45) 

defined in eq. (41). 

In terms of (30) the statement above means 

.' 
<[ a:a .. [H',P]] >T = 0 (46) 

For the operator P we have employed the notation of eq. (5). The meaning of eq. (46) is clear: 

The broken symmetry in the FTHFB approximation is recovered in the FTRPA. 

The equation for the canonical conjugated operator can be obtained, as In the zero-

temperature limit, by the Marshalek-Weneser method, and is given by 



.. 
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.,. -i.,. 
<[ a a.,[H',Q]] >r = II < [a a.,P] >r 

I' IIf~ I' 
(47) 

The mass parameter M is given by the normalization condition 

-i = <[P,Q] >r = ~ .91'1"~jIjI{j1' - !I") 
1'<1" 

(48) 

The equations (46-48) determine completely the operator P,Q which appears in the presence of 

zero frequencies, and these together with the operators BK,B; form a complete set in the Finite 

Temperature RPA. 

It is interesting to notice that in the FfRPA the whole operator P appears and not just 

the 20 and 02 parts of its quasiparticle representation. This does not mean that the broken 

symmetry is now exactly conserved, since the equations (43) were obtained in the limit of small 

amplitude, i.e. small a's. 

2.4. The inertial tensor. 

In the former paragraph we have obtained the equations for the Goldstone mode in the 

case of only one broken symmetry. In general there are several, depending on the particular 

case. In what follows we shall concentrate on the conserved symmetries of the high spin region, 

namely, the angular momentum j and the number operators Np and NN, for protons and neu-

trons, respectively. 

The conservations laws are 

[H]] = 0 , [H,Np] = 0 , [H,NN] = 0 (49) 

In terms of H', eq.(l5), we obtain 

[H',JX ] = 0 , [H',Np] = 0 , [H',NN] = 0 (50) 

(51 ) 
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where J ± are defined by 

J ± = Jz ± iJy (52) 

These equations imply, as we have seen, the existence of zero-frequency solutions in the 

FfRPA, which satisfy the following relations: 

<[a:a.,[H','rll >r = 0, <[a:a.,[H',Npll >r = 0, <[a:a.,[H',NNI] >r = 0 (53) 

and 

<[a:a.,[H',J ±l] >r = ±w<[a:a",J ±] > (54) 

In calculations involving high spin states it is very convenient to work in the Goodman 

basis(16) to get operators with good signature because then the HFB- as well as the RPA matrix 

factorize in this representation. The operators Jx,Np and NN have a positive signature, and J ± 

a negative one. 

We first analyze the Goldstone modes in the positive signature subspace. Let us call 

tPx,tPP and tPN the canonical-conjugate operators of Jx,Np and NN. They satisfy 

Aside from the normalization relations for the normal modes, (see eq. (32», all other rela­

tions of the type <[C,DJ >r are zero, C and D belonging to the complete set 

~BK ,B i;Jx ,tPx;N P,tPP;NN ,tPN}. 

The generalization of relation (47) to define the canonical conjugate variables to the case 

of several zero frequencies is 
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the quantities gil I are the elements of the inertial tensor associated with the Goldstone modes. 

In particular gJ; I is the generalization of the Thouless-Valatin moment of inertia, ..lTv for fin­

ite temperatures, gp-;l(gN-,) are the equivalent quantities for rotations in the gauge space associ-

ated with the operator Np (N:v). The equations (56), together with the relation (55), define gij 

completely. They are given by 

where Cij is a cofactor of the determinant 

D= 
<[Ix,i"!] >T 
<[Np,i"!] >T 
<[NN,i"!] >T 

<[Ix,i"2] >T <[Ix ,i"3] >T 
<[Np,i"2] >T <[Np,i"3] >T 
<[NN,i"2] >T <[NN,i"3] >T 

9,,92 and 93 are one-body operators of the form 

defined by the gij independent equations 

<[a:a.,[H',i"!]] >T = <[a!a",Ix] >T 

(57) 

(58) 

(59) 

We turn now to the solutions of eq. (54) in the negative signature subspace. First we 

observe that because of the cranking term, there appears a solution at the cranking frequency w. 

The normalization of this solution is given, as for the normal modes. by eq. (32). Since 
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(60) 

the normalized operator 

(61) 

satisfies the FTRPA equation 

(62) 

Since rt and r are non-hermitian operators, it is not necessary to introduce canonical 

conjugate operators, and the complete set is given by {BK,B:,r,rl BK are the normal modes 

in the negative-signature subspace. 

3. Application for separable forces 

We shall now obtain the expression for the inertial tensor giJ 1 in the simple case of separ-

able forces. In this case the hamiltonian of eq. (23) takes the form 

(63) 

where t are the spherical single-particle energies, D p are one-body operators either hermitian or 

anti hermitian, and Xp the force constants. 

With this hamiltonian the effective interaction ~I""" of eq. (24) takes the form 

The FTRPA equations for the fJj operators of eq. (59), is given by 

1 • 
(E -E,)fJ +-~x9 ~9 if.-j.)fJ· =.9' I' /A], 2~PP,~ P ],], 

/A/A p I'I'.. ",,' ". /A,. 
(64) 
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for j = 1,2,3 and PI = J.t, P 2 = N p and P 3 = N!\'. Equivalently 

o J , ,.,. 
.9j Ill!' I :;gp Illl' 

E u - E u' - "2 ~ -tj . Xp E - E ' 
~ ~ p p ,. ,. 

(65) 

with 

(66) 

One can extract an equation for the -tjp simply by multiplying eq. (65) by 

if I!' - I,.) g: ' and summing up over Jl,Jl'. 
,.,.' 

The last step in the calculation is to evaluate the scalar products <[ Pk,i OJ I > of the 

determinant (58). 

They are given by 

(67) 

and the components if the inertial tensor gij are given by expresion (57). 

To find some limiting cases we shall now assume that there is only one broken symmetry. 

In this case 

(68) 

where J[v(P) represents the inertial parameter for rotations in the space associated with the 

operator P. Ifwe take in eq. (67), the zero temperature limit 

1,.-0,1-;.-1 (69) 

we get from (68) the well-known expresion(22), from the linear-response theory, for the 
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Thouless-Valatin moment of inertia. 

If the limit xp-O, we get from eq. (68) the generalization to finite temperature of the 

Inglis moment of inertia 

,9' ,if, - J ).9. ' 
~ng(P) = ~ ,,,. j! j! j!1! 

j!j!' Ej! - EI!' 
(70) 

The zero temperature limit on eq. (70) gives the well-known expression 

(71) 

4. Numerical results 

For a realistic calculation of the inertial tensor, eq. (57), in the FTRPA with separable 

forces, we use the configuration space and the effective interaction of Kumar-Baranger.(25) This 

hamiltonian contains the pairing-plus-quadrupole force 

(72) 

where c are the spherical single-particle energies, Q is the quadrupole operator symmetrized 

with respect to the Goodman symmetry(l6) and the operators P ;(P;) creates proton (neutron) 

Cooper pairs. In the notation of eq. (63) the operators D p will run over Q and P: ± PT. The 

configuration space contains the spherical oscillator shells with the principal quantum numbers 

N '" 4 and 5 for protons and N = 5 and 6 for neutrons. The force constants Gp and GN were 

adjusted to the ground-state properties of the rare-earth nuclei. Further details can be found in 

ref. 25. 

To solve self consistently the FTRPA we first have to solve the FTHFB equations (18) to 

determine the basis in which the one-body hamiltonian ?and the density matrix Jt are diago-

nal (see eq. 20). This was done for the nucleus 1MEr, as reported in ref. 17, for temperatures 

• 
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o ~ T ~ I MeV in intervals .;IT=.05 Mev and for angular velocities 0~w~.6 MeV in intervals 

.;lw=.025 MeV. In terms of excitation energy and angular momentum we cover the range 

O~E~ 15 MeV and 0~I~60 Ii, respectively. On each point of this grid the FTRPA equations 

are solved, in the way indicated in the preceding paragraph, to get the quantities g/; I. 

We shall concentrate on the diagonal terms of the inertial tensor gj; I, the inverse of 

which are the Thouless-Valatin moments of inertia in the space associated with the correspond-

ing operators. The Thouless-Valatin moment of inertia for rotations corresponds therefore to 

gjl I. This moment of inertia is also known in the literature as the dynamic moment of inertia 

...1'(2) to differentiate it from the usual (kinematic) moment of inertia ...1'(1). In the framework of 

our theory the last one would correspond to the self consistent moment of inertia. The proper 

definition of this quantity is given by 

<J > = I = ...1'(1) • w = a' • W x T ./sc (73) 

whereas(22) 

M = ...1'(2) • ~w = YTv . ~w (74) 

i.e . ...1'(1) corresponds to the finite quotient of I and w, and ...1'(2) is the slope of the curve I as a 

function of w. 

In Fig. la we show the angular momentum I as a function of the angular velocity for con-

stant temperatures for the nucleus 1 64Er. It is important to notice that we have solved the 

FTHFB equations with constant w, in steps of ~w =< .025, instead of constant I (i.e. for simpli-

city we did not use the gradient method). Because of this we do not see the backward parts of 

the backbendings, if any, but only alignments. For T "" 0.0 we see in Fig. la a strong neu-

tron(l7) alignment at w :::::: .225, a smaller proton alignment at w :::::: .325, and a much smaller 

neutron alignment at w :::::: .525. At T "" 0.2 and 0.4 MeV we still observe some structure, 

although smoothed out. 
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In Fig. 1 b we draw ...Y TV ("'y(2» for different temperatures as a function of the angular 

velocity. From eq.(74) we know that ...Y TV goes to ± 00 at each up-backbending. Since we are 

solving the equations for finite step size ..lw, the height of the peak in each upbending does not 

necessarily mean larger alignment but only how near our actual w is to wcrif At T = 0, as 

expected, we get three peaks. At T :0 0.2 and 0.4 MeV only the peaks corresponding to large 

alignments remain; the smaller one at w :.::::: .525 is already washed out at these low tempera-

tures. At higher temperatures little structure remains, and the moment of inertia converges to 

the rigid-body value. The comparison· with the experimental values(1) is not straightforward: 

for low angular velocities their values correspond mostly to the yrast line, and the agreement 

with ours is rather good; for higher angular velocities their window in energy is much larger, so 

that it is difficult to compare. Nevertheless the general trends to smooth out do agree in both 

experiment and theory. 

In Figs. 2 and 3 the mass parameter gN-;J, gp-;,I for neutrons and protons for different tem-

peratures is shown as function of the cranking velocity. The general behaviour that one expects 

for this parameter is related, in the RPA approximation, to the energy gap A : If the nucleus is 

in the superconducting phase, i.e. finite A, it is possible to have collective pairing-rotations, and _ 

as long as u is more or less constant we expect the collective parameter g-I to behave 

smoothly. At the normal phase (large w), A - 0, it is not possible to have such collective 

motion, and one expects g-I _ 0 as u - O. At T = 0.0 we observe for gN-;J in Fig. 2 a deep 

dip at w :.::::: .225 MeV caused by the coupling of gN~ to gJ7 1 that as mentioned goes to infinity 

at this frequency. The peak at w :.::::: .3 MeV can be interpreted as a single-particle effect: In an 

alignment process a pair of particles decouples from the Cooper-pair condensate and in the 

same way as it produces an increase to gJ7 1
, due to single particle contribution, does it for g,:;~. 

This can also be understood considering the expression 

·We are not directly comparing our results with theirs because they measured 1l6.111.16O£r but not IMEr. In the results 
presented here we have used the FfHFB minima of ref. 17. which were calculated before the e:otperimental values were 
available. The CPU time needed to calculate these minima for another nucleus is high. 
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(75) 

analog to (74), N is the number of neutrons. The quantity g;~ measures the change in the par-

ticle number when we change the chemical potential AN in ~N' In an alignment process the 

two particles sit at the Fermi surface, and the change in the particle number has to increase for 

fixed ~N, i.e. gl:;~ ~as to get larger. The abrupt dropping from gN~ :::::= 17 at w ::::: 0.30 MeV to 

zero at w :::::= .35 MeV is due to the mean field approximation where one observes a sharp phase 

transition. In a number-projected theory this feature would not appear.(1) 

For higher temperatures the expected general features appear: the domain for which g;;.) 

is different from zero decreases as T increases (the gap parameter A _ 0) and the single-particle 

effects are washed out. It may seem surprising that the single-particle effects change so fast from 

T = 0 to T ~ .1 MeV, but this is only a consequence of our not calculating with w as a con-

tinous parameter. 

In Fig. 3 the quantity gp-;' I, i.e. the proton mass parameter, is shown. The same general 

properties are expected, only the discontinuities are now expected where the proton alignment 

occurs, namely at w :::::= .325 MeV. Furthermore, since the proton gap lasts longer, the whole pic-

ture extends to higher angular velocities. The wiggles at temperatures .2, .3 and .4 MeV and 

high angular velocities (w > 0.3 MeV) are probably due to band crossings. Then, although Ap 

is very small,(l7) the matrix elements of the number operator are not exactly zero, and because 

of eqs. (68)-(67) this causes a maximum at each band crossing. 

In ref. 14 it was shown that the RPA correlated energy E(/) is given by the sum of the 

contribution of the normal modes ENM and the Goldstone modes EGM. In ref. 13 it was shown 

that the contribution of the last one is crucial to smooth out the strange behavior of E.VM • The 

contribution of the Goldstone modes in the positive signature subspace is given by( 13) 

EJ-:J = EJJ + ENN + Ezz + EJN + EJZ (76) 

with 
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(77) 

and in the negative signature by 

(78) 

In Fig. 4 the fluctuations <:lJ;>T ' <6Jy
2>T and <;lI}>T are depicted for different 

temperatures as a function of the angular velocity. At T = 0 we observe in all three quantities 

the irregularities related to the alignments mentioned above. At T =.2 there is a smoothing 

associated with admixture of other configurations. At T = .4, .6 there is an increase in 

<;lI;> T and <:l.l}> T at small angular velocities caused by the vanishing of pairing correla­

tions (the critical temperature for ~ - 0 is T - .5 MeV); in <;lIz2>T the loss of pairing does 

not show up because of the axial symmetry at I = O. Up to T = .6 MeV the three quantities 

behave very smoothly. The overall reduction in <jJ;>T and <jJy2>T at T = .8, 1.0 MeV is 

due{l7) to the decrease of the deformation jj at high temperatures. 

In Fig. 5 the fluctuations in the number operator for neutron <~lv.~>T and proton 

<~;> T is depicted. The general behavior of these quantities is determined by the pairing 

gap. For ~ - 0 the number operator becomes a conserved symmetry, and the fluctuations are 

zero. What one sees in Fig. 5 is the dramatic effect of the cranking velocity and the tempera-

lure on the pairing correlations. 

In Fig. 6 we show the quantities EjJ, ENN ahdEzz of eq. (77). Again, only at low tem-

peratures do the irregularities associated with the alignments show up. For T ~ .6 only the 

contribution stemming from the angular momentum, which is itself rather smooth. is different 

from zero. The nondiagonal contribution EJ•v and EJZ are very small everywhere. Finally. in 

Fig. 7. the total contribution of the Goldstone modes to the correlation energy is drawn: on the 

.. 
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upper part of Fig. 7 the quantity EJ;) of eq. (76); at T = 0 and w = 0 gives a lowering of the 

energy by --2 MeV, rising to --Ll MeV at w - .225, to --.6 at w - .325 MeV and to --.4 

MeV at w - .5. At temperatures T ~ .2 and .4 MeV we still observe angular-velocity depen­

dence, but again for T ~ .6 MeV the contribution is rather smooth. On the lower part of Fig. 

7 is shown the total contribution of the negative-signature Goldstone mode, eq. (78), to the 

total energy. At T = 0 and w os 0 the contribution is --.53 MeV; at w - .225 it increases to 

-.32 MeV and then smoothly decreases to -.35 at w = .6 MeV. At T = .2, .4 their sharp edges 

are slowly smoothed and up to T > .6 MeV the behavior is flattened at around -.3 MeV. 

5. Conclusion 

We have investigated the role of the Goldstone modes at high excitation energy and high 

angular momentum. We have shown that in the Finite Temperature Cranked Random Phase 

Approximation the modes associated with the broken symmetries, i.e., angular momentum and 

particle number, separate from the normal modes as in the zero-temperature theory. We have 

done a numerical application to a realistic calculation, namely the nucleus (64Er. For this 

nucleus, using the Baranger-Kumar hamiltonian and configuration space, we have solved the 

FTCRPA equations for several temperatures and angular velocities. We have discussed in 

detail the mass tensor, the fluctuations of the angular momentum and particle number opera­

tors as well as the contribution of the Goldstone modes to the correlation energy. 
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Figure Captions 

Fig. 1. 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 5. 

Fig. 6. 

Fig. 7. 

(a) The angular momentum I(h) as a function of the angular velocity for different 

temperatures for l64Er. 

(b) The dynamic moment of inertia ..7(2) versus the angular velocity for different 

temperatures for l64Er. 

The mass parameter g.;;~ for pairing rotations in the neutron gauge space as a func­

tion of the cranking velocity for different temperatures. 

Same as Fig. 2 for protons. 

The fluctuations of the angular momentum operators as a function of the angular 

velocity for different temperatures. 

The fluctuations of the particle number operator (upper part for neutrons, lower part 

for protons) as a function of the angular velocity for different temperatures. 

The contributions of the Goldstone modes to the correlation energy, eq. (77), as a 

function of the angular velocity for different temperatures. 

The total energies EJ+;), eq. (76) EtJ, eq. (78) as a function of the angular velocity 

for different temperatures. 
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