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Abstract 

Estimates of the influence of nuclear deformations 
and shell effects on the lifetimes of 

exotic radioactivities 
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We estimate the influence on the lifetimes of exotic radioactivities of nuclear ground­
state deformations and of the attenuation of fragment shell effects by the fragments' in­
teraction. These corrections are generally of the order of one power of ten, representing 
modifications of the barrier penetrabilities amounting to a few percent. The corrections 
to the lifetimes do not ruin the current reasonable correspondence between theory and 
experiment. In fact, the fit is improved slightly. 
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1. Introduction 

Exotic radioactivity (the very asymmetric spontaneous decay of nuclei by the emission of 

fragments heavier than a particles) was anticipated on theoretical grounds and was subsequently 

confirmed by experiment. For a review of the history of this topic and for tabulations of the 

data, see refs. 1-3. At this time there exist eight reported cases of such radioactivity and seven 

significant lower limits on the lifetimes (see Table I and Figs. 1,2). On the theoretical side, there 

are available the extensive surveys described inl,2) as well as the estimates of the present authors 

in4,6). In the latter work an attempt was made to estimate the decay lifetimes and their ratios to 

a-decay in a way free of any adjustable parameters. The calculations were based on Gamow 

penetrability factors for one-dimensional barriers constructed as follows. Beyond the contact or 

scission configuration, the barrier was obtained by adding the nuclear proximity attraction to the 

electrostatic repulsion between the decay products (assumed spherical). In the relatively narrow 

range between the contact configuration and the parent configuration (which was also assumed to 

be spherical and whose mass is known experimentally), the barrier (or, equivalently, the integrand 

in the Gamow penetrability formula) was obtained by a smooth power-law interpolation. The 

resulting ratios of the calculated penetrability factors for exotic decay and for a-decay are com­

pared with the measured branching ratios for these two modes in Fig. 1. Fig. 2 shows the calcu­

lated exotic penetrabilities themselves, together with empirical values deduced by dividing the 

observed e~otic half-lives by a pre-exponential factor (taken to be 10-22sec for even-A and lO-20sec 

for odd-A parent nuclei). The degree of correspondence of theory and experiment is within about 

two orders of magnitude in Fig. 1 and one order of magnitude in Fig. 2, which would imply that 

the penetrability integrals have been estimated correctly to within a few percent. (An error of 

one power of ten in the lifetime for 14e emission from Ra translates into an error of about 3% in 

the penetrability integral.) In order to learn whether this degree of agreement represents the 

essential correctness of the underlying physical assumptions or, on the contrary, whether it is the 

result of accidental cancellations of large corrections, it is of interest to estimate the effect on the 
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theoretical predictions of known or anticipated deviations from the idealized model used in refs. 

4,5. 

The present paper deals with two such refinements: 1) the known deviations from sphericity 

of the ,parent and/or daughter nuclei and 2) the anticipated attenuation of the fragment ground~ 

state shell effects caused by the nuclear interaction between the fragments. In the course of this 

analysis we have also confirmed the existence of systematic odd-even effects in the exotic half­

lives, as already noted in ref. 3. 

2. The Effect of Deformations 

We shall restrict our attention to the case of most practical relevance, in which the emitted 

fragment is still considered spherical, but the parent and/or daughter may have an axially sym­

metric deformation. The potential-energy barrier will now depend on the polar angle 0 between 

the axis of symmetry of the daughter or parent nucleus and the direction of the emitted fragment 

(see Fig. 3). 

In analogy with refs. 4,5 we construct the post-contact (post-scission) barrier at each angle 0 

by adding to the electric repulsion the proximity attraction between the fragments. (Both 

interactions are now affected by the daughter's deformation.) This estimate of the barrier is used 

down to contact or, more precisely, down to the point where the separation between the centers 

of the fragments is equal to the sum of the radius of the emitted fragment and the radius vector 

of the daughter's surface at the angle O. (In the case of a deformed daughter, this point is just a 

shade inside the true contact configuration, as may be seen from Fig. 3. Having noted this here 

we shall, nevertheless, go on referring to this point as the contact or scission configuration for the 

angle 0.) Again in analogy with refs. 4,5 we shall construct the pre-scission part of the barrier at 

the angle 0 by smooth interpolation between the contact configuration and the parent 

configuration. 

Denote the radius vectors specifying the surfaces of the parent and daughter by 0 (0) and 

0 1(0) respectively, and the radius of the emitted fragment by O2, As in refs. 4,5 take as the 

disintegration variable at each angle 0 the total extension L of the system, as measured along the 
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radius vector specified by (). The contact configuration corresponds to 

(1) 

and the initial parent configuration corresponds to Lo where 

Lo =2G«(}) (2) 

For an arbitrary post-scission configuration specified by L , the separation () between the centers 

of the fragments is given by 

(3) 

and the separation s between their surfaces (along the direction ()) is 

(4) 

For L = L. the potential-energy barrier appropriate to disintegration in the (}-direction is 

< now written as 

(5) 

where M 1 ,M 2 and M are the masses of the fragments and the parent nucleus, respectively, and 

Vc and Vp are the Coulomb and proximity energies, given explicitly in the appendix. 

For Lo < L < L. the same power law interpolation for V (L ,()) is assumed as in refs. 4,5: 

V(L ,(}) = a (L -Lo)" (6) 

where the parameters a ,v are determined (at each angle) by the requirement of a smooth fit at 

L =L •. 

Without referring to the explicit formulae in the appendix, the qualitative effects of parent 

and daughter deformations on the penetrabilities of interest may be described as follows. If the 

parent is deformed but the daughter is spherical (approximately the case of 14C emission from Ra 

and of other exotic radioactivities) the post-scission part of the barrier is unaffected but the pre­

scission part for polar emission is thinner compared to equatorial emission (in the case of a prolate 

deformation of the parent). If both the parent and daughter have the same deformation (approxi-
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mately the case for a-emission from well-deformed nuclei) the post-scission barrier is lower and 

thinner for polar emission compared to equatorial emission, while the width of the pre-scission 

barrier is approximately independent of angle. 

An estimate of the decay lifetime can be obtained by a suitable average over all directions 

of emission. Thus, in the simplest treatment of radioactive decay, the attenuation of the wave-

function amplitude referring to decay along the () direction will be dominated by the barrier pene-

tration factor 

ox+ ~ 1. J2M. V dL 1 (7) 

where Le is the exit point defined by V(Le ,()) = 0 and Mr is the effective inertial mass associ-

ated with the disintegration degree of freedom (equal, in the post-scission regime, to the reduced 

mass of the separating fragments). The square of the angle-averaged attenuation factor governs 

the decay probability, and an estimate for the decay lifetime T follows as 

T= To G (8) 

where 

{

I [~ a-I = J d (cos())exp -! J J2Mr V 
o L. 

(9) 

and TO-I is a barrier assault frequency for the process in question. In order of magnitude, To is 

expected to be given by the period of collective nuclear (quadrupole) oscillations in the case of 

conventional fission (--1O-2Isec). It is expected to decrease somewhat with increasing asymmetry 

of the division, on account of the decreasing characteristic wavelength and period of the deforma­

tion describing the incipient formation of a smaller fragment. 

,. 
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It is important to stress that we do not imply that the effective inertia Me// in the pre­

scission regime is equal to the reduced mass M,. Since it is only the product Me// V that enters 

the penetrability formula, our procedure is fully equivalent to a smooth interpolation of Me// V 

according to the power law described by eq. (6). Thus, in place of eq. (6), we can equally well 

write 

M, V(L ,0) = aM, (L-Lo)" = a' (L-Lo)" , 

where a' and II are determined by the requirement of a smooth fit at L = Lc. All numerical 

results remain strictly unaltered by this change in point of view, according to which Me// V is 

taken to be M, V in the post-scission regime, but no statement is made about the separate values 

of Me// and V in the pre-scission regime . 
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3. The Attenuation of Fragment Shell Effects 

The energy release (or Q -value) in a disintegration is given by eq. (5) as 

Q = M-MI-M2 (10) 

Because the nuclear masses M ,M 11M 2 contain shell effects, the resulting barriers and penetrabili­

ties reflect these effects directly. (It is precisely because of the strong shell effect in the daughters, 

dominated by the magic numbers Z = 82 and N = 126 that, in agreement with theoretical 

expectations, all the exotic decays seen so far lead to residual nuclei in that vicinity.) It is clear, 

however, that the use of eq. (5), where the fragment shell effects do not depend on the separation 

of the two nuclei, is likely to underestimate somewhat the barrier and to overestimate the shell­

effect enhancement of a decay into magic nuclei. The reason is that, as two nuclei begin to 

interact and their surfaces interpenetrate around contact, their shell effects are bound to be 

attenuated. Later, as the nuclei amalgamate, these shell effects will even be destroyed entirely, to 

be replaced eventually by the shell effect of the fused parent nucleus. In order to estimate the 

attenuation of the shell effects caused by the fragment interaction, we have developed the follow­

ing scheme, analogous in spirit to the semi-quantitative treatment of the attenuation of shell 

effects by nuclear deformations, which underlies the description of nuclear masses and deforma­

tions in refs. 6,7. 

Disregarding at first the diffuseness of the nuclear density distributions, imagine two sharp­

surfaced nuclei with radii Oland O2, each with its characteristic surface energy Es 1 = 471'0 1
2 

/ 

and ES2 = 471'0 2
2

/, and extra shell-effect contributions to the binding, which we shall denote by 

S1(00) and S2(00). (The quantity / is the specific surface energy.) 

If, slightly after contact, the shape of the nucleus (and of the sharp dinuclear potential well) 

is taken to be that of portions of two slightly overlapping spheres, communicating through a win­

dow of radius c, the total surface energy will be reduced by 271'c 2/. As regards the shell effects S 1 

and S 2, they may be expected to suffer an attenuation proportional to the area 71'C 2, which is a 

measure of the degree of communication between the two nuclear potential wells. Moreover, since 

S 1 may be expected to be destroyed completely when 71'C 2 is of the order 71'0? , and S 2 when 71'C 2 

-. .. 
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is of the order 'Ira 22 , one may try as an estimate of the shell effects at the stage when the window 

radius is c the following expression: 

for c °i (11) 

". 
where V int is the interaction energy (the decrease below the energy of non-interacting spheres) 

given by 

V int = -2'1rc 2"( (12) 

By elementary geometry, the window radius c is related to the (small) degree of overlap of the 

spheres (denoted by -8 ) by 

(13) 

where Ii = a 1 O2/( a 1 + O2), so that the interaction energy may also be written as 

{
4'1rIi "(8 for 8 < 0 

V int = 0 for 8 ::: 0 
(14) 

A straightforward generalization of the shell-attenuation factor in eq. (11) to the case of 

diffuse surfaces immediately suggests itself: replace Villi in that equation by the proximity 

interaction Vp , whose role is precisely to generalize the interaction given by eq. (14) to the case 

of diffuse surfaces. According to refs. 8,9,10 we have 

(15) 

where ~ = 8 / b , b is the Sussmann width (diffuseness) of the surface and <I> is the universal 

dimensionless nuclear proximity function, to which a conventional approximation is given in the 

appendix. It is readily verified that as the diffuseness b tends to zero, Vp tends essentially to 

Vint given by eq. (14) and thus vanishes for 8 > O. But, in general, V p is finite for 8 > 0 and it 

is in fact in this post-scission regime that we shall use eq. (15) to estimate the effect of shell 

attenuation on the exotic radioactivity. The logic here is that Vp continues to provide in the 

post-scission regime a measure of the degree of communication between the two diffuse nuclei, 

which communication tends to destroy the individual shell effects characteristic of non-interacting 
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systems. 

Using the above formulae, one readily verifies the following two ways of writing the expres-

sion that generalizes eq. (5) for the shell-attenuation effect: 

(16) 

where 

(17) 

or 

V(L ,0) = Dl+D2 -M + Vc + Vp 

(18) 

where D 1 and D 2 are the macroscopic (e.g. Droplet Model) parts of the fragment masses, so that 

Eq. (18) shows explicitly how the original shell effects are attenuated as the two nuclei 

approach. Eq. (16) shows that, operationally, our prescription for the shell attenuation results 

merely in a (slight) modification of the strength of the proximity interaction! 

In order to illustrate the magnitude of the shell-attenuation effect in a typical case, take the 

exotic decay of 222Ra into 20Bpb and 140. According to ref. 7 the shell effect in 208Pb is 

S 1(00) = -13.42 MeV and, using the canonical parameter set explained in the appendix, the 

corresponding attenuation factor at contact is 

2Rb 
1 + --2 4>(0) = 1 - 0.131 

0, 
(19) 

.... 

Thus the 208Pb shell effect is reduced by a modest 13% or about 1.76 MeV. The shell effect of a 

light nucleus like 140 is not easily estimated (on account of the difficulty of defining a smooth 

macroscopic energy, whose subtraction from the experimental mass would give the shell effect). 

Taking at face value the method of estimating shell effects for light nuclei described in sec. 7.3 of 
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ref. 6, the nominal shell effect for 14C turns out to be S 2( 00) = -{).56 MeV. The attenuation fac-

tor comes out to be close to zero at contact, so this small extra binding would be destroyed there. 

For even lighter nuclei, such as the a-particle, the definition of a shell effect is quite ambiguous 

and the use of the proximity formalism is only marginally justified (see ref. 8). For the sake of 

uniformity, when estimating decay branching ratios, we shall nevertheless apply the shell-

attenuation formula also to the a-particle, but with the modification that we shall not allow the 

attenuation factor to become negative. (This would imply, without any physical justification, a 

reversal in the 8ign of the shell effect.) In cases where the nominal attenuation function 

1 + 2Rb <P(~) does turn negative before contact (as it does for thea-particle) we shall adopt the 
C. 2 , 

convention of replacing it by (1 - :fb~ ), which forces the disappearance to occur at contact. 

Thus our attenuation of a shell effect in nucleus i will be described by 

Sdoo) (1 + ~: <P(~)) 

Sdoo) ( 1 - :(b~ ) 

if 1 + ~ <P(O) > 0 
C, 

if 1 + 2R: <P( 0) < 0 
C, 

(The second line is relevant only for nuclei lighter than about carbon.) 

(20) 

According to ref. 6 the nominal shell effect for the a-particle is -1.51 MeV and, according to eq. 

(20), this would be destroyed at contact with a heavy nucleus. On the other hand, eq. (20) would 

suggest that the shell effect of 218Rn (-3.58 MeV according to ref. 7) would be reduced by a mere 

0.27 MeV through contact with an a-particle. 

It will be clear that our prescription for the shell-attenuation effect is only the roughest kind 

of starting point, with large quantitative uncertainties. To gain more flexibility in writing down 

the shell attenuation form factor [1+( Vp /211"R 2-y)] we might well have allowed ourselves one or 

two adjustable parameters to govern the strength and/or range of the attenuation function (see 

also appendix). We prefer, however, to avoid at this stage the introduction of any undetermined 

factors and to retain the parameterless baseline estimate given by eq. (20). As our understanding 
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of the shell attenuation effect improves with time, the need for improving this baseline estimate 

will surely emerge. 

4. Results 

If the simple lifetime formula, eq. (8), were exact, a plot of the experimental T divided by 

the calculated G would be a constant, independent of the disintegrating system. Figures 4 and 5 

show the degree of correspondence with this expectation when our calculated values of Go and 

Gx are used. The top part of Fig. 4 shows log (Tol Go), i.e., log Too, with Too in sec. The dashed 

lines refer to the "old" calculations without corrections for deformation and shell-attenuation 

effects. The solid lines ("new" calculation) include such corrections. In both cases the values of 

TOO are spread over two orders of magnitude, but it is immediately clear that much of this spread 

is due to an odd-even effect, the odd-A nuclei in question having Too values longer on the average 

than even-A nuclei. The lower part of Fig. 4 displays the corresponding plots of log Tax for the 

exotic radioactivities. An even larger odd-even effect is apparent. The averages and RMS devia-

tions from a constant of the eight plots in Fig. 4 are as follows: 

For a-radioactivity 

<log Too> o~~ = -21.45 ± 0.51 - Too = 3.55 X 10-22sec 

<log Too> o~~'" = -21.73 ± 0.45 - Too = 1.86 X 1O-22sec 

<log Too> .~: .. = -22.42 ± 0.29 - Too = 3.80 X 1O-23sec 

<log Too> .::: = -22.66 ± 0.17 - Too = 2.19X 1O-23sec 

° ° {0.97 Old} 
<log TO > odd I <log TO > m.. = 0.93 new ~ 1 
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For exotic radioactivity 

<log TOX> oo~~ = -20.09 ± 0.48 - TOX = 8.13X 1O-21sec 

<log TOX> o~~tJ1 = -20.36 ± 0.40 - TOX = 4.37XI0-21sec 

<log To
O
X > old = -21.88 ± 0.63 _ T.oX = 1.32XlO-22sec 

teen 

<log To
O
X> IletJ1 = -22.32 ± 0.71 _ ToO

X = 4.79XlO-23sec 
nell 

{
1.79 Old} 

<log Toz> odd / <log T;> nell = 1.96 new ~ 2 

In round figures then, the pre-exponential factor for exotic decays of even-A nuclei is 

TOX ~ 1O-22sec when the old calculation is used for ax and 0.5 X lO-22sec for the new calculation; 

the odd-A exotic decays are hindered by about two powers of 10. 

Figure 5 shows separately the effect on log TOX of including In the calculation the shell 

attenuation (upper part) and deformations (lower part). The former lowers Tl by about an order 

of magnitude. The latter has little effect for the lighter nuclei but increases TOX by about an order 

of magnitude for the most strongly deformed, heaviest isotopes. 

Figure 6 shows a comparison of the experimentally deduced values of ax with the "new" 

calculations (compare Fig. 1). With the odd-even effect included and allowances made for shell 

attenuation and for deformations, there are now almost no significant deviations between theory 

and experiment. The largest deviation is in the case of 232tJ _ 20Spb + 24Ne, where the observed 

branching ratio to a-decay, given as (2.0 ± 0.5) X 10012, leads to a value of log ax greater by 

1.32 than our estimate. This is a factor 20 discrepancy in the lifetime, equivalent to a 3% error 

in the estimated penetrability. In the remaining 7 measured cases the discrepancy is usually well 

under a factor of 10. The RMS deviation for all 8 cases is 0.62, corresponding to a factor 4 aver-

age discrepancy. This is just about the same as the average discrepancy associated with the old 

calculation (Fig. 1). The slight improvement of the new over the old fit consists in the absence of 

discrepancies with lower limits on the lifetimes. (In Fig. 1 there are two - barely significant --

discrepancies, for 221Fr and 221Ra.) Also, the old calculation predicts that the most favoured 

exotic decay of 23°Th should be by the emission of 220, with emission of 24Ne a factor of 9.8 less 
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frequent. By contrast, the new calculation predicts 24Ne to be the most favoured case, in agree­

ment with observation. The emission of 220 is now a factor of 5.5 less frequent. Thus, with the 

new calculation, the anticipated most favoured decay is, without exception, the one actually 

observed. 

Whether these relatively slight improvements are really significant is not clear -- the princi­

pal message is that the introduction of the refinements considered here does not ruin the 

correspondence between theory and experiment. 

5. Discussion 

The present study suggests that our simple one-dimensional treatment of exotic radioac­

tivity does not owe its relative accuracy to accidental cancellations of large errors: the results 

appear quite stable with respect to inclusion of shell-attenuation and deformation effects. Even 

though our estimate of these corrections (as corresponding to about a factor of ten) must be 

regarded as very rough, we feel it is unlikely that these corrections could possibly change the ori­

ginal lifetime estimates by several powers of 10. The fact that even the largest ground-state 

deformations in the heavy actinide region enhance the lifetimes by no more than about a factor of 

10 shows that the occurrence of exotic radioactivity is not to be thought of as associated 

specifically with such deformations. In particular, the occurrence of octupole deformations in the 

Ra region should not be regarded as the explanation of the exotic disintegrations with the emis­

sion of a C fragment. Such disintegrations are expected to occur with about the same frequency 

(on a logarithmic scale) whether the parent nucleus is deformed or not. The simple reason for this 

relative insensitivity to deformations is that, in the case of these very asymmetric disintegrations, 

most of the barrier corresponds to separating fragments, and the parent deformation affects only 

the relatively small pre-scission part. Note, however, that this situation is expected to change as 

one goes to more symmetric divisions. Thus, in the case of normal spontaneous fission of 

deformed nuclei, the barrier to be penetrated is very much narrower than it would be in the 

absence of ground state deformations. 
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In this connection we should also stress that we have only considered the effects of ground­

state deformations. Deformations (around scission) induced by the mutual interactions between 

the fragments (and, more generally, by the dynamics of the disintegration process) have not been 

discussed at all. Again, in the case of normal fission, such deformations have an overwhelming 

effect on the spontaneous fission lifetimes. This makes it quite certain that our one-dimensional 

treatment of exotic radioactivity, based on spherical fragments beyond scission, is bound to fail as 

more symmetric divisions are considered. This failure would be mitigated in the case of magic 

fragments with their propensity for spherical shapes but, in general, one is faced, as in fission, 

with the discussion of barrier penetrabilities in two or more dimensions. This is a problem vastly 

more difficult than our one-dimensional treatment, which owes its relative accuracy to the 

extreme asymmetry of the division and, surely, also to the stiffness of the spherical daughter in 

the vicinity of the doubly magic 208Pb nucleus. In the absence of more comprehensive multi­

dimensional penetrability estimates, one should at least be aware of the serious limitations of the 

one-dimensional treatment and one should be prepared for large discrepancies in the case of more 

symmetric disintegrations, especially those involving non-magic fragments. 
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Appendix 

Let the radius vector R (0), locating the effective sharp surface of a deformed nucleus, be 

written as 

(AI) 

where R is the equivalent sharp radius and ).. is a scale factor ensuring volume conservation and 

given (without approximation) by 

(A2) 

We confine ourselves to only two deformation parameters, 0'2 and 0'4, but from then on we work 

out the relevant interaction formulae either exactly or to a high precision. By working to only 

the relevant lowest approximation in 0'2 and 0'4, the formulae can be considerably simplified at the 

price of some loss of accuracy. We used numerical values for 0'2 and 0'4 deduced from the compi-

lation of nuclear deformations in ref. 12, as calculated using the Strutinsky shell-correction 

method. These values (which exhibit peculiarities associated with the finiteness of the grid used 

in the configuration space) are only approximate representations of experimental values (where 

these are known), but the correspondence is amply adequate for our purposes. 

a) The Proximity Interaction 

As stressed in ref. 8 it is important to refer the proximity interaction with respect to the 

locations of the central radii C (or central radius vectors C (0)) of the interacting surfaces. 

According to ref. 8, p. 144, the relation between C (0) and R (0) is given by 

C (0) = R (0) - .!.. I\: b 2 
2 

(A3) 

where b is the Sussman width (diffuseness) of the surface (:=::::1 fm) and I\: is the total curvature of 

the surface at the point in question, given by 

1 1 
1\:=-+--

Rg R~ 
(A4) 
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Here R "R ~ are the two principal radii of curvature of the surface specified by eq. (AI). (R, 

refers to the curvature in the plane containing the normal to the surface and the symmetry axis 

and R ~ to the curvature in an orthogonal plane through the· normal.) 

with 

The formulae for R "R ~ may be written as follows: 

_R~ 
R ,( 8) - ~ w (8) 

u (8) = [ {112 +2{12({11 +2{12)cos28+(2{11{13+ I6{12{13-3{122)cos48 

+2{13(8{13-7 {12)COS68-I5{132COS88] 1/2 

w (8) = ({112 -2{11{12)+6({11{12+{122 -2{11{13)cos28+3(6{11{13+6{1~3-{1;)cos48 

+ 1O{13(2{13-{12)cos68-15{132cos88 

I 3 
I - - 0'2 + - 0'4 

2 8 

For a sphere, the relation between R and C reduces to 

(A5) 

(A6) 

(A7) 

(A8) 

(A9) 

(AlO) 

(All) 

(AI2) 

For the radius R of a nucleus with mass number A we use, as before, the semi-empirical formu-

lae from ref. 8: 

R = 1.28 A 1/3-0.76+0.8 A -1/3 f m (AI3) 

'"Y = 0.95I7[I-1.7826((N -2)/ A )2] Me V / f m 2 (AI4) 
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The proximity attraction between a deformed fragment specified by R lUI) and a spherical frag- . 

ment with radius R 2, whose center is located at the point (r ,e), is given approximately by 

(A15) 

where, according to ref. (8), p. 435, Ii turns out to be given by 

(A16) 

We have used the notation 

~= 8/b (A17) 

where 

(A18) 

In the above estimate we have neglected the small difference in magnitude and direction of the 

distance between the surfaces as measured along the radius vector and as measured along the nor-

mal at the point of least separation (see Fig. 3). 

The following approximation to ~(~) for ~ > 0 is given in ref. 9: 

{
-4.41 e -./0.7176 for ~ ~ 1.9475 

~(~) = -1.7817+0.9270~+O.01696f--O.05148f for 0 ~ ~ ~ 1.9475 
(A19) 

b) The Coulomb Interaction 

The i!lteraction between a uniform charge Z 1 e inside a surface specified by eq. (AI) and a 

sphere with total charge Z 2e placed outside the surface at the point (r ,0), is accurately approxi-

mated by the multipole expansion 

Vc (r ,e) (A20) 

where 
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S (r ,0) 

(A21) 

with the expansion coefficients 

(A22) 

(A23) 

64480 3 1 
+ 46189 0'4 + ... ) >1 (A24) 

c) Alternative Form of the Shell-Attenuation Function 

2 
The "parabolic" attenuation function 1 - ~ (eq. (11)) tends to zero with a finite slope at 

C 

c = C. an example of a possibly preferable function, which approaches zero smoothly, is 

(A25) 

Expressing c in terms of V jilt and then in terms of Vp , as before, we obtain the following "quar-

tic" bell-shaped attenuation function: 

( 
2Vp)2 

1+-­
E, 

~ [ 1 + 2R~~(;) r (A26) 

When the proximity interaction in small, this function damps out a shell effect twice as fast as the 
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parabolic one, although eventually they both give total damping at the same value of~. In the 

numerical example used in the text (of a 208Pb nucleus in contact with 140), the Pb shell effect of 

-13.42 MeV would now be damped by 24% instead of 13%, while the 140 shell effect would be 

essentially wiped out in both cases. A more general, one-parameter family of attenuation func­

tions, of which the above examples are two special cases, is 

(A27) 

with n an adjustable parameter. It remams to be seen which one of such phenomenological 

attenuation functions will turn out to be more nearly quantitative. 
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Figure Captions 

Fig. 1. The logarithm of the branching ratio of exotic to a-decay for 15 nuclei arranged in order 

of increasing mass number. The parent nuclei and emitted isotopes are indicated on the 

abscissa. 

Fig. 2. Comparison of calculated penetrability factors for exotic decay with empirical values 

deduced by dividing the observed half-life by a pre-exponential factor TO (equal to 

10-22sec for even-A emitters and 1O-2osec for odd-A emitters). Abscissa as in Fig. 1. 

Note the false zero on the ordinate. 

Fig. 9. Schematic illustration of a deformed parent nucleus decaying to a deformed daughter by 

0' emission, or to a spherical daughter by heavy-ion (exotic) decay. In the former case, 

what is referred to as "contact configuration" corresponds in fact to a very slight over­

lap. 

Fig. 4. The empirical pre-exponential factor TO, obtained by dividing the observed half-life by 

the calculated penetrability factor G. Deviations of the lines from a constant illustrate 

the imperfections of the theory. Note the odd-even effect in TO, equivalent to a hindrance 

by about one power of 10 for odd-A a-emitters and about 2 powers of 10 for odd-A 

exotic radioactivity. 

Fig. 5. The effect on the empirical exotic pre-exponential factors T
O
X of the shell-attenuation 

effect (upper part) and of parent deformation (lower part). Dashed lines refer to the 

"old" uncorrected calculations. 

Fig. 6. This is like Fig. 1, but with shell-attenuation and deformation corrections included. The 

inset repeats the plot with a true zero on the ordinate in order to illustrate the relative 

smallness of the remaining deviations between theory and experiment. 
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Table I 

Properties of 15 exotic radioactivities. 

Experimental 
branching 

ratio· 

-fXli" -fX(sec )t i"(sec) 

Penetrability 
integral Gx 

Old New 

Parent 
deformation* 

221Fr_207TI+ 14C <5.0XlO-14 4.8 min >5.76XI01S 1.069 X 1036 2.054XI036 0.065910.0579 
221Ra_207Pb+14C <1.2X10-13 30 sec >2.5 X 1014 5.212X1033 1.121XI036 0.065910.0579 

222R,a_208Pb+14C (3.7±0.5)XlO-10 38 s 1.03 X 1011 1.687 X 1032 3.817 X 1033 0.070310.0584 
223Ra_209Pb+14C (6.1±1.0) X 10-10 11.4 d 1.61 X lOiS 6.715 X 1034 9.146 X 1036 0.093410.0756 
224Ra_21Opb+14C (4.3±1.2)X 10-11 3.6 d 7.23X lOis 6.980X 1037 5.971 X 1038 0.098010.0764 
22SCa_2llBi+14C <4.0XlO-13 10 d >2.16XI018 1.519X1039 8.988 X 1039 0.102710.0819 
226Ra_212Pb+14C (2.5±1.0)XlO-11 1.6X103y 2.02Xl021 fi.157XI043 1.506 X 1044 0.102710.0819 
23OTh_206Hg+24Ne (5.6±1.0) X 10-13 7.7XI0·y 4.34 X 1024 2.513X1047 8.024X1046 0.125710.0814 
231Pa_207TI+24Ne 6 X 10-12 3.2 X 10\ 1.68 X 1023 9.540X 1043 5.466 X 1043 0.125710.0862 
232Th_206Hg+26Ne <6 XlO- ll 1.4X1010y >7.36XlO27~.234XlOso 2.386 X IOso 0.130310.0775 
232U _ 208Pb+24Ne (2.0±0.5)XlO-12 72 y 1.14XI0211.445X10421.055XI0420.13031O.0872 
233U _ 208Pb+2sNe (7.5±2.5)XlO-13 1.6X10Sy 6.73X1024 5.345X1044 4.469 X 1044 0.130310.0872 
237Np_207TI+3CMg <4 X 10-14 2.1 X 106y 1.66XI0277.262X10486.939X10470.13491O.0785 
240pu_206Hg+34Si <4.5XIO-14 6.5X 103y 4.56X 1024 5.110X 1049 6.196X1048 0.144210.0615 
241 Au_207Tl+34Si < 3 X 1O-1S 433 Y 4.55 X 1024 1.036 X 1047 3.157 X 1046 0.144210.0615 

• Ref 3 and private communication from S.W. Barwick 

t Ref 11 

t Ref 12 
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