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SIMULATION OF SYNCHROTRON MOTION WITH RF NOISE

B8.T. Leemann, E. Forest, and S. Chattopadhyay
SSC Central Design Group,™ c/o Lawrence Berkeley Laboratory, Berkeley, California USA 94720

ABSTRACT

We describe the theoretical formulation behind
an algorithm for synchrotron phase-space tracking
with rf noise and some preliminary simulation
results of bunch diffusion under rf noise obtained
by actual tracking.

1. Introduction
Amplitude and phase noise in the voltage of a

radio-frequency (rf) cavity in a storage ring

induces diffusion of particles in a stored bunch in
the longitudinal synchrotron phase space, in absence
of other damping mechanisms (e.g., synchrotron radi-
ation). Such noise in the low-leval rf system
severely limited the beam 1ife-time in the initial
operation of the SPS at CERN.' A stable oscillator
(VCO) with a very low noise figure and a phase feed-
back loop with a carefully chosen loop transfer
function to reduce the overall noise power at the
synchrotron frequency’ as seen by the beam, cured the
problem at the SPS.*'" The study of rf noise and pos-
sible cures to reduce the induced bunch diffusion
continue to be important for future large storage
rings such as the SSC in the USA.

The basic theory of bunch diffusion under rf
noise 1s well developed.®** There has also been a
preliminary computer simulation of the effects of rf
noise on synchrotron motion by Mizumachi.® 1In this
paper we describe a synchrotron phase-space tracking
for a beam of particles seeing rf noise that differs
from the previous work® in three additional aspects:
(a) use of an improved longitudinal phase-space
fnvariant derived from the discrete synchrotron map;
(b) generation of rf phase noise with temporal auto-
corre’ation taken into account; and (c) inclusion of
the effects of rf phase feedback used to reduce the
noise power seen by the beam. In the following we
describe the theoretical formulation behind the
algorithm used to include these features and some
preliminary simulation results of actual tracking.
2. Discr n tron M vari i1th

Noise

The turn-by-turn finite difference equation for
particle motion in a stationary non-accelerating rf
bucke. (wg = 0 or v) in absence of noise is given by
the map?

nel = Pp = = kalwy)
W & (1)
el " %% " Ppay e

Py= 22 gp |, k= 2nnit (2)
Py PgVs

Here pg and vg are the momentum and velocity respec-
tively of the reference synchronous particle, &pp =
Pn=Ps, ¥ = 48, = &, - & are the momentum and

rf phase deviations from the synchronous particle,
h, the rf harmonic number; n, the off-energy func-
tion; V the peak rf voltage; and e the electric
charge of the particles. The function g(y) des-
cribes the shape of the rf voltage with

* Operated by Universities Research Association for
1_f.l’w U.S5. Department of Energy.
SSC-Report 80.

g(w+ 2v) = g(v)

9(0) = 0
(stationary bucket). Typically g(w) = siny, with
small amplitude synchrotron oscillations sampling an
almost linear rf voltage g(¢) = ¢. In both cases

(3)

g'(0) = 1. In general, with higher harmonic cavi-
ties one has the Fourier series representation
- -
ov) = Asin(ny); 9'(0) = T A0 . (4)
n=l n=1

With Landau cavities used to increase synchrotron
frequency spread by producing a nonlinear bucket,
one uses g'(0) = 0, while for the purpose of maximal
1inearization of the bucket in order to reduce rf
noise effects, one uses g'(0) = 1.

The map - in Eq. (1) can be decomposed into the
following two maps (with barred and unbarred vari-
ables corresponding to successive turns)

M .l;.l:(k) (5)
M. GayrP A(k): vy
1 v a (5]
Pacp P = P-kg(y) .

This is represented in Fig. 1(a). To simplify the
mathematics and improve the accuracy of the discrete
longitudinal invariant obtained perturbatively later
on, it is convenient to rewrite the above map and
variables so as to refer always to the center of the
cavity, with_new variables y = w and P = (P+P)/2.
The new map o is obtained by a similarity trans-
formation. # =.#,(k/2)#.#,(-k/2) and can be written

as ! k
AN A IAVAL I m
This 1s represented in Fig. 1(b). An alternative

but equivalent reformulation would be obtained in-
stead by always referring to the center of the arc.
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For linear rf voltage g(y) = v, it 1s easy to
obtain the quadratic invariant of #. The matrix
representation of the linear transformation 1is

k
_ 1 - 2 1
H = Kk K (8)

From the usual Courant-Snyder theory, we must have
for the Twiss parameters



k
sin ¥ =2 = tune of N.
2 4 (9)

S‘I‘Iu X
From Eq. (9),_we deduce immediately the quadratic
invariant of. &

I, - vie(sin?w)™

y=sinu; a=0.

P = gPe(Peb/2sing? . (10)

Clearly this invariant degrades as we go away from
the origin in (w, P) - space, since the linear
approximation g(y) = ¢ becomes increasingly less
accurate. The invariant I, is correct to all
orders in u (and hence k) hut is only quadratic in
(v, P). Therefore an expansion in (¢, P) is not the
best choice. Fortunately, the tcmporal synchrotran
tune u 1s usually very small (u ~ 10" ") for large
storage rings and provides us with a small para-
meter that can be exploited in a convergent per-
turbation scheme. It is thus preferable to keep the
nonlinearity in (y, P) to all orders and expand in
u. The resulting invariant will be exact in the
nonlinearity and expanded up to a certain order of
the small parameter u. (This is exactly opposite
to the treatment of nonlinear transverse betatron
motion where one stays exact in the betatron tunes
Vs Vs which are largs and expands in powers of x,
px. yYand p).

A well-defined perturbation approach for the
higher order (in u) invariants is provided by the
Lie-algebraic method,® where one rewrites.<#, and
_1;(klzl in terms of Lie operators

52
- up(:-‘:- N -l,(%) = up(:-!r(vm . (1)
where v 2
Clo) = f9(v)dy = 3=+ v(v) (12)
and :f:g = [f, g]) (13)

is simply the Poisson bracket operation. y(w) is
of order 3 and higher in v, containing purely the
nonlinear part of the rf voltage. The linear parts
of the map can be lumped together, thus giving for
the full map

L “n(:%(-):),;an(:-%-m):) . (14)
where

P 2

. = no(:-;:v'ﬂun{:-g :)up(:—%y':)

- exp(: M gy (15)
If we can find an H such that g = exp (:H:), then H
is an invariant. We introduce a "smallness® para-
meter o, ultimately to be set to unity, such that

() = exp(:-o3y(w):). 7 (a) exp(i-ohy(w):) .  (16)

Assuming the existence of H(o) in the formal power
series (in o) sense as follows

H(a) = I oM an
n=1

one can then verify that® H(-o) = -H(a), so that
only the odd powers n =1, 3, §, ... ara present in
the expansion. One can derivc a differential equa-
tion for #(o) with respect to o and using the prop-
erties of Lie operators and their adjoint repre-
sentation, one obtains® a hierarchy of equations for

the various Hy. For the gtandard cavity kick with
r(¢) = 1-cosy , we obtainé

ST i (y?sin?u+ F')H4sin? (3) (cnsq.-u—'— ) (18)
". 2 Hi%%;LHLthsin'_')' ¥

! an o(ysing—?) - Plcose-1)] .  (19)

sin?y

For the general rf voltage given by Eq. (4) with
g'(0) = 0, one obtains

t - A 2
H = -i;— + 4stn™(}) {nzl—: [cos(ny)-1 1*%"} (20)

« Lin'(BiE Asintne) 9
n=1 (21)

-%11n'(%)?' z nA“[cos(nt)-l] é

It {s easy to check that H in Eq. (18), to order
u’, can be written as

- -[g- #sinur(v)l . (22)

This 1s the same as the “"conjectured® Dome-Miznmachi
nonlinear invariant for the discrete synchrotron
map."' We have not only recovered but improved it
[Eq. (18)] and obtained higher order invariants as
well [Eq. (19), etc.] by a systematic perturbation
scheme.

We have tracked particles in the synchrotron
phase space, without noise, for many synchrotron
oscillations using the map .#given by Eq. (1),
and computed the linear quadratic invariant I [Ea
(10)], the nonlinear Dome-Mizumachi invarianta HOM
[Eq. (22)] and the "improved® nonlinear fnvariants®
H, and H, [Eqs. (18) and (19)] given by our perturb-
ation scheme for comparison. The relative davi-

ations of HQ* and H, are shown in Figs. 2(a) and
(b). The improvemcnt in the invariant is remarkable
and obvious from the figure.

3. Discrete Synchrotron Map With Noise
In the bunch frame, any deviation of the

designed pure sinusoidal rf field is seen by the
particles as a noise in the magnitude and sign of
the voltage. In the laboratory frame we can con-
veniently decompose any deviation of the rf voltage
V into a phase error (error in zero-crossing) and an
amplitude error as follows

Ve v0(1+a) sin(e+v.9) , (23)

where a and ¢ are the relative amplitude and phase
noise values, with their randomness determined by
the nature of the noise source. Since for the same
noise power levels, the phase noise is more destruc-
tive than the amplitude noise to the bunch phase-
phase,**" we neglect amplitude noise in this article
from now on (a=0).

The turn-by-turn finite difference equation for
particle motion as given by Eq. (1) are modified in
presence of phase nolse to

Past = Py = ~kalw,)
(24)

-y =P

v n " Tael ¥ e

n+l TP

It 1s convenient to refer the particle phase rela-
tive to a fixed ideal rf waveform (with no noise) at



the localized rf cavity (thin lens longitudinally),
rather than relative to the jittery rf waveform with
noise. In the frame of this absolute clock run by
the ideal cavity, the synchrotron map with phase
noise may be rewritten as

Pre1 = Pp = Kile, + w)

-P (25)

Yael " ¥n " Thel -
This 4s the form we used in the actual tracking.

The phase noise ¢, results from the sampling of
a random process every turn. For tracking with Eq.
(25), one will have to generate sequences of these
random numbers {ep), consistent with the realistic
noise characteristics of a driven rf cavity. We
thus turn to this issue in the next section.
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4. Generation of RF Noi for hrotro

Phase-Space Tracking

The phase noise of the rf cavity voltage is
characterized by a power spectrum and hence a cer-
tain autocorrelation in time (via a Fourler trans-
formation). The noise seen by a particle turn-by-
turn is correlated temporally according to this

autocorrelation function. It 1s necessary for the
tracking algorithm to be able to construct random
phase noise at any turn, based on its value(s) at
previous turn(s), such that the generated noise over
a large number of turns is consistent with thc known
autocorrelation pattern. This is the classic prob-
lem of mean square estimation in noise theory.’

In the limiting case of a memory-less noise
source corresponding to delta-correlation in time,
the noise is trivially generated by sampling a cer-
tain (Gaussian, for example) distribution of random
variables, generated by a random number generator
with different seeds, keeping the rms o of the
distribution the same at all samplings.

For finite autocorrelation times, we have to
include memory effects. For arbitrary correlation
pattern with M-step memory, we estimate the noise
on at the nth step by the linear combination of the
past M values

M
es 3

y a . (26)

m *n-m

Demanding that the error ('n":‘ ) be orthogonal to
the data ('n—i' Y= 'n-l) i.e.,

“n

e 'ﬁgl‘n'n~m|'n-p> =0 forps=1,...M (27)
guarantees that the mean square error <len en |°> is
minimum.? The coefficients ay are then determined by
solving the M simultaneous Eqs. (27) for the W
unknowns ay's in terms of the autocorrelations

Rm = <enlen-m>. for stationary noise. The condi-
tTnna1 variance at the nth step, given en-1,...,
on-M. equals the mean square estimation error?

a 3
. gle, - I1lﬂvn,nl >

e |
*ni®n-1,77 " "n-n

H

=R. - J aRrR_ . (28)

0 m] MM
The generated noise sequence (ep] is said to form a
M-point Markov chain. The algorithm gets unneces-
sarily complicated for M>2. In the following we
provide two algorithms for M = 1 and 2.
(a) One-point Markov chain algorithm

This {s the usua) Markov process where the noise
at the nth step depends on only the noise at the
(n-1)th step. The noise generation follows a
simple one-step hopping technique as 1llustrated in
Fig. 3, according to the following 1inear mean
square estimation procedure

n-4 n-3 n-2 n-il n
Fig. 3
’;‘ = 3,% (29)
"l‘l-al.ﬂ—l|'ﬂ‘l>- 0 ae “;’“o (30)
2
onlen_1=Rp-a R =o(1-al) (og=Ry) . (31)

Stationarity and Markovian character demands RnRp
= R .qpwhich implies the unique solution R, = 9} a—an

(2]
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The phase noise ¢ results from the sampling of
a random process every turn. For tracking with Eq.
(25), one will have to generate sequences of these
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4. Generation of RF Noise for
Phase-Space Tracking
The phase noise of the rf cavity voltage is
characterized by a power spectrum and hence a cer-
tain autocorrelation in time (via a Fourier trans-
formation). The noise seen by a particle turn-by-
turn s correlated temporally according to this

hrotro

autocorrelation function. It is necessary for the
tracking algorithm to be able to construct random
phase noise at any turn, based on its value(s) at
previous turn(s), such that the generated noise over
a large number of turns is consistent with thc known
autocorrelation pattern. This is the classic prob-
lem of mean square estimation in noise theory.’

In the limiting case of a memory-less nofse
source corresponding to delta-correlation in time,
the noise is trivially generated by sampling a cer-
tain (Gaussian, for example) distribution of random
variables, generated by a random number generator
with different seeds, keeping the rms o of the
distribution the same at all samplings.

For finite autocorrelation times, we have to
include memory effects. For arbitrary correlation
pattern with M-step memory, we estimate the noise

on at the nth step by the linear combination of the
past W values
L
es
o "I e . (26)
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Demanding that the error (.n-p;‘ ) be orthogonal to
the data ('n-l' e 'n-ﬂ) i.e.,

<¥n-1 ‘.g].l'hﬂﬂl'n-ﬂ> =0forp=1,...H (27)

guarantees that the mean square error <lep wn | is
minimum.? The coefficients a, are then determined by
solving the M simultaneous Eqs. (27) for the M
unknowns ap's in terms of the autocorrelations

Ry = <enlen-m>. for stationary noise. The condi-
tTonal variance at the nt step, given en-y,.:-,
¥n-M., €quals the mean square estimation error’
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The generated noise sequence (¢n) is sald to form a
M-point Markov chain. The algorithm gets unneces-
sarily complicated for M>2. In the following we
provide two algorithms for M = 1 and 2.
(a) One-point Markov chain algorithm

This is the usual Markov process where the noise
at the nth step depends on only the noise at the
(n=1)th step. The noise generation follows a
simple one-step hopping technique as 1llustrated in
Fig. 3, according to the following 1inear mean
square estimation procedure
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Stationarity and Markovian character demands R,Rp
= R .nwhich implies the unique solution R, = 93 g—=n



the above expectation, as shown by the results plot-
ted in Fig. 5. The growth of o scales with the
strength of noise opgise and the agreement of the
above two stays preserved. The actual tracking
included 2x102 revolutions in the ring.

The long term transport coefficients of diffusion

<l -1> <(I -1.)%
A= M_ and A = Lq_ (‘2)
Iy nTr a nTr

(Tp = revolution time) can be derived from short
term single particle tracking with independent
noise samples for several synchrotron periods.
results have been compared to a direct numerical
Iteration of the Lie-algebraic map #(n) for the
motion with noise [Eq. (24) or (25)] given by

ln = 4(n) Io

The

#(n) = exp(:-Pofl:)e:p(:P.fa:}......

oxp(:-Pn_1fn:)4g

(43)
fa ™ %0 " %
n+l |
-3
(ln'loj = - I [lu PU' Io]"
1=
n+l

1 -1 2
154
*27 L%  [Porlho: Tolify

n+l n+l 1-1 11
v+ I I i P4y Ry Tgll fyfye L.
1=l Jaiel

and then performing averages over noise samples.
Here # is the map without noise. The agreement of
the two results are exact within computer accuracy.
Using Eq. (43), one can also verify analytically
that the coefficients A, and A, in Eq. (42) satisfy
the usual fluctuat1on—d1sstpatfnn relation A, = -1
aA,/alg. This 1s consistent with the observed zefo
slope of &y as a function of time (Fig. 7), since
the slope of oy vs. time (Fig. 5,6) is found from
tracking to be relatively independent of Ig for the
amplitudes considered.

The effect of the single step correlation (Eq.
29) on the growth rate of o2 for an ensemble of
particles is shown in Figs. 6a and 6b. In this case
an ensemble of 42 coherent particles, distributed
along H (w,P) = H, (120 degrees, 0) has been tracked
for 200 synchrotron periods. Figure 6 shows the
results for @ = 0 (zero turn-to-turn correlation),
while the results for a = 0.5 are shown in Fig.
6b. The observed effect is in agreement with the
results obtained from averaging the square of the
an;lgt!c equation (Eq. 43) for the appropriate noise
model.

7. Conclusion

We have described some theoretical aspects of
synchrotron phase-space tracking with rf phase-noise
and feedback effects. Preliminary tracking results
are consistent with expectations and validate the
algorithm. The effects of phase feedback are
presently under investigation.
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