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GLOSSARY 

Anisotropy: Directional dependence of prop­
erties or behavior. 

Coincidence ~ite lattice (CSL): Lattice formed '" 
by the translations common to two mis­
oriented grains. 

Domains: Symmetry-related crystalline re­
gions. As a result of a symmetry-breaking 
transition (such as ordering) a single crystal 
transforms to an assembly of domains. Any 
two domains are related by one of the bro­
ken symmetries. 

Habit plane: Major plane of contact between 
two phases. 

Homogeneous: When referring to elastic inclu­
sions: having the same elastic constants as 
the matrix; when referring to nucleation: 
random nucleation without the aid of de­
fects. When referring to strain: everywhere 
the same. as in a linear transformation; op­
posite of heterogeneous. 

Invariant plane (line) strain: Form of strain 
that leaves a plane (line) unstretched and 
unrotated. 

Motif: Group of atoms associated with each 
lattice point in a crystal lattice; also called 
basis. 

Orientation relationship: Rel~tive orientation 
of two crystals. specified by pairs of parallel 
planes and directions. by a rotation tensor. 
or by the angle and axis of rotation. 

ENCYCLOPEDIA OF PHYSICAL SCIENCE 
AND TECHNOl.OGY. VOL. 10 

Parent/product: Phase before/after transfor­
mation. Also referred to as matrix/precipi­
tate, matrix/inclusion, high-temperature 
phase/low-temperature phase, group/sub­
group, austenite/martensite, disordered 
phase/ordered phase. 

Space group: Set of symmetry operations that 
leaves a crystal structure invariant. 

Special point: Point of high symmetry lying at 
intersection of symmetry elements in a lat­
tice. 

Strain accommodation: Process of elastic or 
plastic deformation around an inclusion al­
lowing a change in shape, orientation, or 
volume during a transformation. 

Variant: One of a set of crystallographically 
equivalent inclusions; for example [I 0 0]. 
[0 1 0]. and {O 0 I] needles are variants of the 
same type of (I 00) needle precipitates. The 
term is also used to describe the four (usu­
ally nonequivalent) solutions of the marten­
site problem. 

A phase is a structurally and chemically ho­
mogeneous volume of material. A phase trans­
formation (sometimes called transition) entails a 
change in either structure or composition, or 
both. The structural aspects of phase transfor­
mations in crystalline solids include the diffu­
sionless martensitic transformation which is a 
purely structural change and proceeds by the 
athermal movement of a glissile interface. How­
ever, structure is also important in transforma­
tions involving short-range diffusion such as or­
der-disorder reactions, polymorphic changes, 
or recrystallization and grain growth. Even in 
those transformations that require long-range 
diffusion such as precipitation, eutectoid, or dis­
continuous reactions, the structure of the inter-

Copyright CO 1987 by Academic Press. Inc. 
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face between parent and product phase has im­
portant implications for the morphology or the 
growth mechanism of the new phase. 

Two types of structural change may be distin­
guished, a purely crystallographic change due, 
for example, to a rearrangement of atoms within 
a rigid lattice, and a dimensional change due to a 
distortion of the lattice. The former type is de­
scribed by the concepts of pure crystallography 
and group theory and forms the basis of the the­
ory of group-subgroup transitions. The latter 
type focuses on the change in lattice dimen­
sions, largely ignoring the atomic arrangement 
in the lattice; it forms the basis of the theory of 
elastic inclusions and of martensite theory. Most 
transformations induce both types of structural 
change. crystallographic and dimensional, but 
usually one or the other dominates. 

A general homogeneous distortion can be 
written as the distortion tensor A. which may be 
separated into a pure distortion 0 and a rigid 
body rotation R: 

A = RD 

The pure distortion may be decomposed further 
into a pure shear 5 and a pure volume expan­
sion V: 

A = R5V 

This decomposition is useful because it sepa­
rates the changes in orientation (R), shape (5), 
and volume (V). Grain boundaries are described 
by a change in orientation, martensite transfor­
mations are dominated by the shape change, and 
precipitation reactions often have large orienta­
tion, shape, and volume changes, but each com­
ponent has a different effect on the final mor­
phology. 

I. Crystallography Principles 

In most solids the atoms are arranged in a 
periodic network such that their mutual coordi­
nation is optimized. The basic repeat unit of this 
network or crystal lattice is the unit cell. The 
atomic structure remains invariant under trans­
lation through any vector t that is the sum of 
integral multiples of three basic vectors 81, 82, 

and 83. The set of all such translation vectors t 
forms the translational group T. When a mathe­
matical point in space is repeated through the 
vectors of the translation group the Bravais lat­
tice is obtained (Fig. la). For certain angles and 
ratios between the basis vectors additional sym­
metries such as reflection, inversion. or rotation 
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FIG.1. lIIustration of three basic symmetry elements: 
translation symmetry leads to the Bravais lattice (a). 
rotation symmetry exists for special angles (here 90°) 
between basis vectors of the Bravias lattice (b), and 
screw axis symmetry results from special distance 
(here y = !) between atoms in the motif (c). 

arise, for example, the 4-fold rotation aXIs In 

Fig. I b. The set of all such point symmetry ele­
ments Rthat leave a given Bravais lattice invari­
ant is called its point group G. [See CRYSTAL­
LOGRAPHY.] 

If all lattice points of the Bravais lattice are 
occupied by identical atoms we have a simple 
(primitive) crystal with all the translation and 
point symmetry elements of the Bravais lattice. 
Not all crystals are this simple, however. and 
most solids contain more than one atom per lat­
tice site. The group of atoms that occupies a 
lattice point is called the basis or motif. The po­
sition of atoms in the basis and the arrangement 
of identical bases in the Bravais lattice are dic­
tated by bonding requirements. For certain bond 
angles and distances in the motif two new sym­
metry elements arise (screw axes and glide mir­
rors) that are a combination of a point symmetry 
element R with a fractional translation T in the 
unit cell (e.g., 1 0 0). An example of a motif 
giving rise to either a 2-fold axis or a 2-fold 
screw axis, or no symmetry, depending on the 
bond distance y is shown in Fig. I c. A Bravais 
lattice is projected along its 2-fold h axis. The 
two identical atoms in the motif are a vertical 
distance y apart. If y is irrational the crystal has 
no rotational symmetry. if y = 0 it has a 2-fold 
rotation axis and if y = ! it has a 2-fold screw 
axis, that is, an identical position to any point in 
the cell is reached by rotation through 1800 fol­
lowed by a translation of T = ~ along the rotation 
axis. Applying this operation twice is the same 
as a simple translation along the axis. The set of 
all such symmetry elements (RI T) (including sim-

• 
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pie point symmetry elements for which T = 0) 
forms the space group. 

Thus translation group T. point group G. and 
space group S are characterized by their specific 
s.ymmetry operations t. R. and (RIT). Only a rela­
tively s-:nall nu.mber of different crystallographic 
translation. pomt. and space groups exists. the 14 
Bravais lattices. the 32 point groups, and the 230 
space groups. Any crystal belongs to one of the 
230 space groups. Each space group has a char­
acteristic point group and Bravais lattice. Since 
the translations T in the space group elements 
,are on the order of unit cell dimensions, they are 
considered microscopic symmetry elements, in 
contrast to point symmetry operations that con­
cern directions only and therefore represent the 
~a~roscopic symmetry of a crystal. A complete 
IIstmg of crystallographic symmetry groups is 
compiled in the International Tables for Crystal­
lography. A brief account of the concepts and 
notations necessary to represent and understand 
symmetry groups will be given below. 

A. TRANSLATION GROUP 

Many of the physi~al properties of cry<&tals 
result from their invariance under translations t 
of the translation group. It is this periodicity that 
allows investigation of crystal structures and 
phase transformations by diffraction techniques. 
Some aspects of phase transformations are best 
described in terms of Fourier series as the most 
natural way to express periodic functions. Crys­
tallography makes use of the fact that in order to 
describe a crystal structure it is sufficient to 
sp~cify the dimensions and content of a single 
umt cell. The strain tensor of a transformation 
from one crystal structure to another is derived 
from the correspondence between unit cells. 
These and other aspects of translational symme­
try are utilized in the theoretical and experimen­
tal investigation of phase transformations. 

B. POINT GROUP 

For certain dimensions of the unit cell a Bra­
vais lattice is invariant under rotation as well as 
translation. The set of rotations, reflection, or 
inversion operations R that leave the lattice 
points of such unit cells invariant is called the 
point group. Point symmetry in general charac­
terizes the set of equivalent directions, hence it 
describes the macroscopic symmetry of an ob­
ject. For example. many flowers have 5-fold ro­
tational symmetry. a cylinder has infinite rota-
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FIG. 2. Construction illustrating the rotation angles a 
that are consistent with translation symmetry t. 

tional symmetry (R = 00) about its axis, and a 
sphere has infinite rotational symmetry about 
any axis. However, only 1-,2-.3-.4-, and 6-fold 
rotational symmetries are compatible with trans­
lation symmetry and therefore only those rota­
tions occur in the 32 crystallographic point 
groups. To illustrate this consider the row of 
atoms in Fig. 2, which is a section of a larger 
space lattice with translation period t. If the 
whole assembly is rotated about a lattice point 
by 1: a degrees the new lattice points must again 
conform to translational symmetry, that is, they 
must be an integral multiple N of horizontal 
translations t apart. Thus 

X = Nt = 2t cos a, or cos a = NI2 

The five possible rotation symmetries and their 
notation are listed in Table I. Each type"' of rota­
tion axis (or rotor) is characteristic for a particu­
lar crystal system. In addition there are two 
more crystal systems that arise from combina­
tions of these elements: the orthorhombic sys­
tems with two diads at right angles and the cubic 
system with three tetrads and four triads. Each 
of these seven crystal system has a characteris­
tic space lattice. The angles and edge lengths of 
the unit cell of each space lattice must be com­
patible with the symmetry of the crystal system. 
The unit cells of the seven space lattices are 
shown in Fig. 3. It can be seen that each cell has 
more symmetry elements than just translation 
and the unique n-fold rotor. For example the 
monoclinic unit cell which has a diad through 
each lattice point automatically has other diads 
going through the face and edge centers [see Fig. 

TABLE I. The Five Rotation Angles Compatible with 
Translation 

N a n Notation Crystal system 

2 3600 I Monad Triclinic 
-2 1800 2 Diad Monoclinic 
-I 1200 3 Triad Rhombohedral 

0 900 4 Tetrad Tetragonal 
600 6 Hexad Hexagonal 
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FIG. 3. Unit cells of the seven primitive space lat­
tices: triclinic (a). monoclinic (b). orthorhombic (c). 
rhombohedral (d). hexagonal (e). tetragonal (0. and 
cubic (g). 

4a). In addition to mirror planes on the faces 
normal to the unique axis it also has a mirror 
halfway between them. Any of these symmetry 
elements, when applied to the monoclinic unit 
cell, will reproduce its lattice points in identical 
positions, that is, leave the lattice invariant. 
These symmetry elements are shown in two pro­
jections (Fig. 4b and c) using diad symbols and 
mirror notation to indicate their locations. A 
complete list of standard symbols used for rota­
tion axes, mirror planes, centering translations, 
screw axes, and glide mirrors is given in Table 
II. 

c. GROUP PROPERTIES 

The properties of the point group are easily 
visualized using the point symmetry of the 
monoclinic crystal system, characterized by a 
diad. The lowest symmetry monoclinic point 
group contains only two elements, the identity 
(I) and the diad (2). This set is written as G = {I, 
2}, in shorthand G = 2, and it represents a group 
since (I) it contains the identity operation (I), (2) 
it is closed. that is, the product of any two suc-
cessive operations is equivalent to a single oper­
ation which is itself part of the group (e.g .. 2 
followed by 2 is the identity I), and (3) each 
element R has an inverse R-I such that RR- 1 = 
R-'R = 1. 

There are two other monoclinic point groups. 
G = m and G = 21m. again characterized by the 
diad but containing additional symmetry ele­
ments. The holohedral (highest symmetry) 
monoclinic group contains four elements: G = 
{I. I. 2. mI. In shorthand this is referred to as 

/I 

/I 

(el 

b 

FIG., 4. Monoclinic space lattice with location of di­
, ads and mirrors: perspective view (a). projection along 
b axis (b), and perpendicular to b axis (c) in notation 
used in International Tables for Crystallography (see 
Table II). 

G= 21m with the oblique line indicating that the 
diad and the mirror refer to the same axis. The 
operation of such a group is best illustrated in a 
multiplication table (Table III) which lists the 
products (successive application) of any two ele­
ments. It is clear from this table that any two 
successive operations are equivalent to a single 
operation which is itself an element of the group. 
In our example, each element happens to be its 
own inverse, that is, yields the identity when 
applied twice in succession. This need not al­
ways be the case, for example. a tetrad needs to 
be applied four times to produce the identity. 
This is known as the order of the symmetry ele­
ment. Thus a hexad IS of order six and a mirror 
of order two. The inverse of a 60° rotation (61) is 
a 300° rotation (6S). 

D. STEREOGRAPHIC REPRESENTATION 

A convenient graphic 'representation of the 
point group symmetry is the stereographic pro­
jection. Consider a general direction. indicated 
by a pole in the stereogram (Fig. 5a) in a crystal 
with 21m monoclinic symmetry. that is. with 
point group G = {I. T. 2. mI. Operation on this 

, 
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TABLE II. Crystallographic Symmetry Elements and Their Notation 

Type of symmetry element Written symbol Graphical symbol 

Center of symmetry 1 0 

Perpendicular In plane of 
to paper paper 

Mirror plane m --, \ 
Glide planes abc I ""l 

Glide in plane Arrow shows 
of paper glide direction 

Glide out of 
plane of paper 

n 
_a_o_O_ 71 

Rotation 2 • 3 ... 
4 • 6 • Screw axes 21 • 3.,32 .... 

4 1 '~' 4] ••• 61 , ~, 6], 64 , 6~ ••••• Inversion axes j 

4 
6 

crystal by all four symmetry operations will take 
this pole to the four positions shown in Fig. 5b 
(open and closed circles represent poles in dif­
ferent hemispheres). The number of crystallo­
graphically equivalent poles in a stereogram is 
equal to the number of symmetry elements in its 
points group. This number is known as the order 
of the group. Stereograms characterizing all 32 
crystallographic point groups are shown in Fig. 
6. Note that they are subdivided into the seven 
crystal systems and that each crystal system has 
more than one possible point group. The holo­
hedral group describes the symmetry of the 
space lattice of that crystal system. Thus the 
monoclinic space lattice has 21m symmetry. 

TABLE III. Multiplication Table for 
2/ m Monoclinic Point Group 

1 2 m 

I 1 2 m 
I m 2 

2 2 m 
m m 2 I 

fA 

* ~ 
Only when the lattice points are occupied by 
atoms or groups of atoms does the space lattice 
become a crystal. And only when the group ·of 
atoms at each lattice site, the motif, has lower 
symmetry than 21m does the crystal have a 
lower than holosymmetric point group. An ex­
ample is shown in Fig. 7 where the motif is made 
up of two dissimilar atoms aligned with the diad. 
This motif is not invariant under inversion or 
reflection perpendicular to the rotation axis. The 
crystal therefore cannot have this symmetry ei­
ther. The point symmetry of this crystal is the 
set of elements common to the lattice Go 

la) 

FIG. 5. Stereographic representation of point symme-
try. The general point in (a) is taken to all its equiva-
lent positions by the symmetry elements of the point 
group 21m (b). Open circles are in upper hemisphere. 
solid dots in lower hemisphere. 
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FIG. 6. Stereographic representation of the 32 crystallographic point groups. The order of a group is the multiplic-
ity of a general point. . 

{I, i. 2. In} and the motif G I = {I. ~. In}. also 
known as the intersection group H = Go n G I = 
{I. 2} which is the lowest symmetry monoclinic 
group: 2. Note that the mirrors m of the lattice 
and the motif are not parallel and are therefore 
not part of the intersection group H. This is an 
important point: the orientation of the symmetry 
elements is essential in forming the intersection 
group. For example two cubic point groups 
share only the identity {I} or inversion {I, i} if 
their symmetry axes are not aligned. The point 
symmetry of a crystal depends therefore on the 

o o 

b 
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FIG. 7. Projection of monoclinic unit cell as in Fig. 4c 
illustrating ahsence of mirror due to two dissimilar at­
OIllS in the motif. 

space lattice, that is, the dimensions and angles 
of the unit cell, and on the motif, that is, the 
atomic arrangement about each lattice point. 

E. TENSOR REPRESENTATION 

The point symmetry elements. 2, m. T etc. can 
be represented more explicitly by transforma­
tion tensors. Consecutive application of two 
symmetry operations is equivalent to matrix 
multiplication of the corresponding tensors. As 
an example a reflection in a plane perpendicular 
to the z axis of an orthogonal coordinate system 
is simply written as the tensor 

m = (~ : ~) 
Such symmetry elements R represent proper 
(det R = I) or improper (det R ::;: -I) rotations. 
Improper rotations change the handedness of a 
crystal. They are unitary operators. hence RT = 
R-'. (the transpose RT is equal to the inverse 
R-'). In addition. as shown before. only certain 



rotations are compatible with translational sym­
metry. Some simple point symmetry elements 
are listed in Table IV. Under a symmetry opera­
tion R, vectors r and tensors M transform as 

r' = Rr and M' = RMR-I 

F. SPECIAL POINTS 

The intersections of symmetry elements, for 
example the line where two mirror planes meet, 
are special positions in a lattice. When symme­
try elements intersect in a point this becomes a 
special point. As shown later the special points 
of a lattice are of fundamental importance in the 
theory of phase transitions. The lattice points at 
the comers of the monoclinic cell shown in Fig. 
4 are special points since they lie at the intersec­
tion of a diad with the mirror plane. The coordi­
nates of these special points are characterized 
by the coordinates ofthe origin, (000), since the 
others can be derived from it by simple lattice 
translations t. However, there are other special 
points, for example at (! 0 0), (! ! 0), and (! ! !), 
that do not coincide with lattice points of the 
primitive Bravais lattice. It is possible to place 

TABLE IV. Tensors R for Some Point Symmetry 
Elements 

I ~ (~ 
0 

;) Idenl;Iy 

0 

i = (~ 
0 

~) Inm,;o, I 
0 

m, = (~ 
0 

~) M;rror perpendkular 10, ax;, I 

0 

2, ~ (~ 
0 

;) D;ad alon, , ax;, I 
0 

3 = (; 0 ~) Triad alon, cube body d;a,onal 

0 

4 ~ (! 0 ;) T<lmd alon, ,ax;, 

0 
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lattice points on special points without altering 
the point symmetry of the lattice. A lattice point 
at (! ! 0), for example, will change the primitive 
(symbol P) monoclinic Bravais lattice into a 
base-centered one (symbol C) without changing 
the number or location of point symmetry opera­
tions. The only change is an additional transla­
tion symmetry, the (! I 0) base centering transla­
tion. Centering translations are denoted A, B. C 
for base. F for face, and I for body centering. If 
all such centering translations are added tothe 7 
primitive space lattices, a total of 14 different 
Bravais lattices is formed. 

G. SPACE GROUP 

As we have seen, the point group is concerned 
with macroscopic symmetry, that is, the equiva­
lence of directions in an object. Directions are 
not changed by translations, although transla­
tions do limit the number of crystallographic 
point groups to 32 through the requirement of 
compatibility with translational symmetry. The 
space group is concerned with microscopic sym­
metry, including translations as well as direc­
tions. If a motif of lower symmetry is placed on 
a lattice of higher symmetry the space group is 
the set of operations that leaves this pattern (or 
crystal) invariant. In a unit cell of the monoclinic 
lattice, outlined in Fig. 8, it is apparent that the 
motif or group of atoms at the center of the cell 
cannot be obtained by a centering translation, 
but by reflection across the dashed mirror line 
followed by a fractional (1" = H translation paral­
lel to the line. This is the operation of a glide 
mirror. Alternatively the same arrangement can 
be obtained by the 2-fold screw axes indicated 
by half arrows. However, this is no longer the 
case if the symmetry of the motif is lowered fur­
ther by differentiating between its two atoms. 
The crystal structure then either has a screw 

o 

o 
o 

o 

FIG. 8. Projection of monoclinic unit cell perpendicu­
lar to b axis with four-atom motif illustrating a-glide 
mirror perpendicular to b axis (dashed lines) and screw 
axis parallel to b axis (half arrows). 



326 

axis or a glide mirror but not both. By taking 
into account these small translations -r important 
in microscopic symmetry, the 32 point groups 
are further differentiated into 230 space groups. 

In a manner similar to point symmetry ele­
ments, space group operations such as 21 , n, 4) 
etc. (see Table II) may be represented by an 
operator (R/-r) that denotes a point symmetry 
operation R followed by a translation T, For ex­
ample a 2-fold screw axis along the z direction 
would be 

2, (: ~ ~ ~) 
that is. a 2-fold rotation followed by a trans­
lation of ~ along the rotation axis. Some transfor­
mation and multiplication rules for such tensors 
are 

(RIT)r = Rr + T 

. (RI T)(Qle) = RQ + Re + T 

(RIT)-I = (R-11-R-I T) 

H. NOTATION' 

The International (Hermann-Mauguin) nota­
tion used to describe space groups consists of 
two parts: (I) a letter (A. B, C. F, I. P) indicating 
the centering type of the unit cell, and (2) a set of 
characters giving symmetry elements along one. 
two, or three principal symmetry directions in 
·the crystal. Table II lists the space group sym­
bols along with their graphic representation. For 
example, the space group symbol P2 1/c repre­
sents the primitive monoclinic crystal structure 
in Fig. 8 with the characters 21 (2-fold screw 
axis) and c (c-glide mirror) referring to the same 
principal symmetry direction in the crystal. The 
two symbols are therefore separated by an 
oblique line. On the other hand, the symbol 
Im3m, representing a body-centered cubic 
structure, has 'three characters referring to the 
cube edge, cube diagonal. and face diagonal, re­
spectively. By convention the first character af­
ter the letter indicating the centering type de­
scribes the characteristic symmetry direction in 
each crystal system. for example, [00 IJ in the 
tetragonal and hexagonal systems and [I 1 I] in 
the rhombohedral system. 

To summarize: crystals are a periodic ar­
rangement of atoms on a space lattice that has 
translational and rotational symmetries. Only 
five rotational symmetries are compatible with 

translation, the 1-, 2-, 3-, 4-, and 6-fold axes. 
When combined in space, these give rise 
to 7 crystal systems, triclinic, monoclinic, 
orthorhombic, tetragonal, rhombohedral, hex­
agonal, and cubic, each with a characteristic 
shape of its unit cell as prescribed by symmetry 
and shown in the 7 primitive Bravais lattices. 
Without being occupied by atoms, these 7 sim­
ple space lattices have a number of point sym­
metry operations (rotation, inversion, mirror) in 
addition to the ones required for the crystal sys­
tem. The set of these operations is called the 
point group of the system. Each of these seven 
holosymmetric point groups has a limited num­
ber of subgroups with lower symmetry but still 
compatible with the shape of its characteristic 
unit cell. This leads to a total of32 possible point 
groups. 

In addition to the primitive lattice transla­
tions, centering translations within the unit cell 
such as At B, C. F, I are possible without chang­
ing the point group symmetry. When these cen­
tering translations are combined with the 7 prim­
itive space lattices, the 14 different Bravais 
lattices result. Translations within the unit cell, 
which are either pure or combined with mirror 
or rotation symmetry, are registered in the space 
group. Due to these microscopic symmetries the 
32 point groups are further differentiated into 
the 230 space groups. 

Translation groups are characterized by sym­
metry operations t, point groups by R, and space 
groups by (RIT). 

I. SYMMETRY PRINCIPLES 

The physical properties of crystals depend on 
their crystal structure and are often anisotropic. 
that is, different for different directions of the 
crystal. Any macroscopic physical property of a 
crystal must have at least the point symmetry of 
the crystal itself. Stated differently. this is 
known as Neumann's principle: "The symmetry 
elements of any physical property of a crystal 
must include the symmetry elements of its point 
group ... Thus some physical property, for exam­
ple, thermal expansion. of a crystal can be iso­
tropic while the crystal itself is not. However. 
the converse is not true: if a physical property is 
anisotropic, the crystal structure must have the 
same anisotropy. For example. the spontaneous 
polarization in ferroelectric crystals has polar 
symmetry (oom). According to Neumann's prin­
ciple. the crystal point group must share the 
same polar symmetry, that is. it must be a sub-



group of (oem). This allows only point groups 
with a unique rotor and any mirrors parallel to it. 
Of the 32 crystallographic point groups only 10 
(I, 2, 3.4. 6. m, 2mm. 3m, 4m. 6mm) are com­
patible with ferroelectricity. 

As a result of Neumann's principle a proper 
description of the physical properties of a crys­
tal must be invariant under the operation of its 
symmetry group. Physical properties can be de­
scribed by matter tensors that give the response 
of the crystal to an external stimulus such as 
temperature or a stress field. The type and rank 
of the tensor depend on the property it de­
scribes. For example the tensor of thermal ex­
pansion is of rank two. It describes the strain 
field of a crystal when the stimulus temperature 
is applied. Other matter tensors of order two 
relate a vector stimulus to a vector response, for 
example, the tensors of electrical or thermal 
conductivity, diffusivity, permittivity, etc. 
Others relate a pair of vectors to a third as in the 
third-order tensor of the Hall constants. The 
elastic behavior of crystals is described by 
fourth-order tensors relating two second-order 
tensors, the stress field, and the strain field. Any 
of these matter tensors must remain, invariant 
under all the symmetry operations R of the point 
group of the crystal. A tensor of rank two trans­
forms as M' = RMR-I. Since a matter tensor M 
must be invariant under the symmetry opera­
tions R of the point group, M' = M for all sym­
metry operations R of the crystal. Using the 
rules of matrix multiplication, it can be shown, 
for example, that any second-order matter ten­
sor in a tetragonal system must have the form 

M=C M, J 
and for a cubic system must be isotropic 

M=C M, J 
This means that diffusion, thermal expansion, or 
any physical property described by a second­
order tensor is isotropic in cubic crystals. These 
results can be derived directly from Neumann's 
principle. A more general statement of this prin­
ciple was given earlier by Curie: "When definite 
causes produce definite effects the elements of 
symmetry of the causes should be apparent in 
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the effects." In this form the principle is applica­
ble not just to crystallography but to any physi­
cal phenomena. If the cause is the crystal struc­
ture and the effect the physical properties we 
recover Neumann's principle. If, in the case of a 
phase transformation, the cause is a decrease in 
temperature and the effect is an arrangement of 
ordered domains due to the loss of symmetry in 
the phase transition, then the symmetry of the 
cause (isotropic) should be apparent in the sym­
metry of the effect. that is, all possible domains 
should appear at random. On the other hand, if 
the cause has a lower symmetry. such as a tem­
perature gradient, uniaxial stress, or magnetic 
field then this symmetry should be apparent in 
the distribution of domains formed under the in­
fluence of this field. In order to predict and de­
tect such effects we must answer the question of 
how many different domains can form in a given 
phase transition. 

II. Modulated Structures 

A. CHARACTERISTICS 

A large class of phase transformations can be 
described by a modulation of some physical 
quantity (e.g., composition, magnetization, dis­
placement) associated with a crystal. In such 
transformations, the crystal lattice is modified 
with the periodicity of a static plane wave. For 
example, a sinusoidal composition modulation 
with wave length).. can be written as the (static) 
concentration wave 

nCr) = c + Q sin 27Tkr (1) 

where k is the wave vector <Ikl = 11)..), and nCr) 
the probability that the lattice site at position r is 
occupied by an atom whose concentration in the 
alloy is c. The amplitUde Q of the modulation is 
proportional to the order parameter 'T/ which var­
ies between zero for the disordered structure 
and unity for the fully ordered structure. An ex­
ample iji seen in Fig. 9 which illustrates the ais­
ordered and ordered state of a binary alloy with 
a simple cubic lattice. The ordered structure is 
tetragonal with the c axis parallel to the wave 
vector k. When applied to an fcc lattice this de­
scribes the type of ordering found in equiatomic 
Cu-Au alloys. The wavelength A = na is an inte­
ger mUltiple n of the lattice periodicity a (in this 
particular case A = (I) and the wave is commen­
surate with the crystal lattice. The correspond-
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FIG. 9. Illustration of modulated structures: disordered solid solution (a), composition 
modulation (b), transverse displacement modulation (c), and longitudinal displacement 
modulation (d). 

ing wave vector k = (I 0 0) is on the Brillouin 
zone boundary, that is, the wavelength A is on 
the order of the lattice parameter, a characteris­
tic of an ordering modulation. A concentration 
wave with wave vector near the origin (A ~ a) 
describes a clustering modulation. Continuous 
phase transitions that proceed by the gradual 
amplification of certain composition fluctuations 
are called spinodal ordering (A = a) and spinodal 
clustering or spinodal decomposition (A ~ a). 

When the wavelength is not an integral multi­
ple of a lattice spacing the modulation is incom­
mensurate. In the direction of the wave vector, 
the crystal then loses its true translational sym­
metry. Most ordering modulations are commen­
surate. Although incommensurate structures ex­
ist incommensurations are often found to be a 
mixture of two commensurate phases. If the 
quantity that is modulated is not a scalar such as 
concentration but a vector such as displacement 
or magnetization, the wave description of the 
position u(r) of an atom originally at r becomes 

u(r) = r + p sin 27Tkr (2) 

where p is the polarization vector and k the 
wave vector. Since p is a vector quantity we 
now have to distinguish between transverse 
(p .1 k) and longitudinal (p II k) modulations. 
illustrated in Fig. 9c and d. Short wavelength 
(A = il) commensurate displacement waves de­
scribe shuffles whereas long wavelength (A ~ il) 

modulations describe lattice distortions such as 
the premartensitic "tweed" effect. A simple ex­
ample of a short wavelength longitudinal dis­
placement wave is the w-transformation found 
in Ti and Zr base alloys. It can be described as 
the local collapse of every other pair of {Ill} 
planes of the bcc lattice. or a wave with k = 
! (I I I) and p = ~ (I 1 1). 

Due to their periodic nature modulated struc­
tures give rise to diffraction peaks. Long wave­
length modulations lead to satellite reflections 
near the main Bragg peaks while their short 
wavelength counterparts cause extra reflections 
at rational positions between Bragg peaks of the 
unmodulated structure. As an example. the or­
dered structure of Fig. 9b would give rise to ex­
tra reflections at the positions of the wave vector 
(k = (! 00» halfway between the Bragg peaks of 
the disordered structure. The wave vector k can 
thus be read directly from a diffraction pattern 
as the position of the extra reflections in the first 
Brillouin zone (superlattice reflections). This is 
shown in Fig. lOa for a short wavelength compo­
sition modulation (ordering). The equivalent for 
a long wavelength (clustering) modulation is 
shown in Fig. lOb where satellites are seen 
around each Bragg peak as well as the origin. 

In a displacement modulation not all satellite 
reflections are allowed due to the directional na­
ture of the polarization p. Satellite reflections 
are forbidden near all Bragg peaks g for which 
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FIG. 10. Schematic diffraction patterns from modu­
lated structures: short wavelength composition modu­
lation (ordering) (a), long wavelength composition 
modulation (clustering) (b), and long wavelength trans­
verse (c) and longitudinal (d) displacement modula­
tion. 

gp = O. Long wavelength modulated transverse 
and longitudinal displacements would thus give 
rise to the diffraction patterns shown in Fig. 10c 
and d. The short wavelength equivalent can lead 
to either extra reflections or extinctions depend­
ing on the magnitude and direction p of the mod­
ulation, that is, the nature of the shuffle. 

The structures considered so far were simple 
modulations by a single plane wave. More com­
plex structures are obtained from combinations 
of several waves. For composition modulations 
this is expressed' as a sum of concentration 
waves 

n(r) = c + L Qj exp(21Tikj r) + c.c. (3) 
j 

where Qj is the amplitude of the jth wave with 
wave vector kj defined in the first Brillouin zone, 
c.c. is the complex conjugate, and n(r) is the 
probability of site r to be occupied by a particu­
lar species whose concentration in the alloy is c. 

Due to crystal symmetry some of the wave 
vectors kj are crystallographically equivalent, 
for example [00 I) and [I (0) in cubic systems. 
Such vectors are said to belong to the same star. 
The star of a wave vector k is the set of vectors 
obtained by applying all the symmetry elements 
of the point group of the crystal. If the summa­
tion is rewritten as the sum over different stars s 
it becomes 

lI(r) = C + L ..", L 'Y,(j) exp(21Tikj r) + c.e. 
j 

(4) 

Here the summation j is carried out over the 
equivalent vectors in a star and the summation s 
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runs over the different stars. The YsU) are coeffi­
cients determining the relative contribution of 
each of the equivalent waves in a star and the ""s 
are the long-range order parameters . 

B. SPECIAL POINT ORDERING 

Whether or not an ordered structure is ther­
modynamically favorable depends on the spe­
cific interaction between the different atoms. 
Generally the wave vector k of a stable ordered 
phase will change continuously with the form of 
this interaction. However, there are some spe­
cial wave vectors, determined by the crystal 
symmetry alone, whose positions are indepen­
dent of atomic interactions. It can be shown that 
at such special points any function with the peri­
odicity of the lattice must have a symmetry-dic­
tated extremum. that is a minimum, saddle 
point. or maximum. Not surprisingly, ordered 
structures with special point wave vectors are 
often found to be the most stable phases over a 
wide range of composition and temperature. 
Special point wave vectors are the reciprocal 
space equivalent of special points in a unit cell 
(see Section I,F) and are thus easily determined. 
For each 4isordered structure it is therefore pos­
sible to enumerate all possible special point or­
dered structures simply by summing over all 
compatible combinations or special wave vec­
tors. This leads to an elegant derivation of the 
most commonly found ordered structures. Ex­
amples for phases based on the fcc lattice (spe­
cial points are the stars of (000). (I (0). 0 ~ D, 
(1 ! 0» and the bcc lattice (special points are the 
stars of (000). (1 I I). 0 ~ !), (~ ~ 0» together 
with some alloys forming such phases and the 
operating special point wave vectors are listed in 
Table V. Some of these structures are shown in 
Fig. II. Note that the method applies to substi­
tutional and interstitial phases alike since it is 
based entirely on symmetry and not on the kind 
of atomic interaction. 

C. FIRST- AND SECOND-ORDER 

TRANSFORMATIONS 

First-order transformations are accompanied 
by drastic changes in macroscopic properties of 
the material and the coexistence of two phases 
at the transformation temperature. Typical ex­
amples of such transitions are melting, evapora­
tion, precipitation, or polymorphic changes. In 
second-order transformations the thermody­
namic properties of a material change continu­
ously but their second derivatives such as spe-
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TABLE V. Wave Vectors of Some Common Special-Point Ordered 
Structures 

fcc based 
(00 II 

k 

(I 00), (0 I 01. (00 I) 
(112 1/2 1/21 
(0001. (1/2 1/2 1/21. (1/2 1/2 1/21 
(00 II. (101/21 
(1001. [0 I 01. [00 II. 

(1/2 1/2 1/21. [1/2 1/2 1/21 
(112 112 1/21. [1/2 112 1/21 

bcc based 
[I I I J 
[1/2 1/201 
(1/2 1/2 1/21 
[I I II. [1/2 1/2 1/21 
[I I II. [1/2 1/2 OJ. [1/2 '1/2 OJ 
[I I IJ. [1/2 1/2 OJ. 

(0 1/2 1/21. [1/20 1/21. 
[1/201/21. [1/2 112 01 

CuAu 

CuZn 
FeAI 

Fe~ 

Substitutional 

CuAul 
Cu~Au 
CuPt 
CuPt~ 

AI~Ti 

CuPt7 

CuZn 

NaTI 
Fe~AI 

Interstitial 

CuPt 

Pt,Cu 

FIG. 11. Unit cells of some special point ordered structures. 



cific heat undergo a discontinuous change. 
Second-order transformations arise from insta­
bility to small fluctuations such as, for example, 
static concentration waves in order-disorder re­
actions. The two phases involved in the transi­
tion cannot coexist at any temperature. [See 
CHEMICAL THERMODYNAMICS.] 

Landau and Lifshitz in a symmetry-based the­
ory have derived criteria necessary for a second­
order transition: 

1. The symmetry of the product phase must 
be a subgroup of that of the parent phase. 

2. The transition must be generated by spe­
cial point wave vectors. 

3. The sum of any three wave vectors k of 
the star generating the transition must not be 
equal to a reciprocal lattice vector g of the par­
ent structure, that is 

kJ + k2 + k3 4= g 

This third criterion is a simplified version of the 
original Landau criterion. 

All group-subgroup transitions fulfill the first 
condition. This includes, for example, order­
disorder, ferroelectric, ferroelastic, or magnetic 
transitions. CuAu and CU3Au for instance (see 
Fig. 11) are both subgroups of the fcc structure 
and are generated by the wave vectors of the 
(I 0 0) star. The second criterion predicts this 
transition to be of first order since kJ + k2 + 
k3 = (I 1 1) = g. On the other hand for structures 
generated by the (! ! !) star, such as CuPt, a 
second-order transition is allowed by symmetry. 

D. LONG PERIOD SUPERLATIICES 

In addition to special point structures many 
other ordered structures can form and have been 
observed. These can be enumerated by consid­
ering all the possibilities of distributing different 
atomic species on a given lattice , and their sta­
bility can be evaluated theoretically. A large 
class of such structures arises from a long period 
modulation of the stacking order in the basic 
structure, that is, periodic stacking faults . In the 
basic structure of SiC many periodic arrange­
ments of stacking faults, termed polytypes, have 
been found . If the change in stacking alters only 
the modulated, or ordered, structure the stack­
ing faults are called antiphase boundaries and 
the resulting structure is a long period superlat­
tice . An example of a one-dimensional long pe­
riod superlattice is that found in Cu-Au alloys . 
As illustrated in Fig. 12, an antiphase boundary 
in every fifth unit cell changes the tetragonal 
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FIG. 12. CuAu II long perio'd superlattice due to peri­
odic stacking shifts. 

structure of CuAu I to the orthorhombic struc­
ture of CuAu II. Similar one-dimensional long 
period superlattices are found in Cu-AI alloys. 
Au-Mn alloys exhibit both one- and two-dimen­
sional examples of these structures. In semicon­
ductors long period superlattices have been pro­
duced artificially to form mUltiple quantum well 
structures with unique properties. 

III. Domain Structures 

A. GROUP-SUBGROUP TRANSITIONS 

In an order-disorder reaction a composi­
tionally disordered crystal transforms to an or­
dered one on crossing the critical ordering tem­
perature during cooling. The low-temperature 
product phase has lower symmetry than the 
high-temperature parent phase. A single crystal 
of the parent phase can therefore transform to 
several orientations of the product phase and the 
resulting regions of different orientation are 
called domains. The simplest case, that of anti­
phase domains, is illustrated below using the (3-
brass order-disorder transition based on the 
body-centered cubic (bcc) lattice. In a solid solu­
tion of Cu and Zn in a ratio of 1 : 1 each lattice 
site is occupied at random by Cu and Zn atoms 
with a probability of n(r) = 0.5 [see Eq. (1)]. 
Upon crossing the critical ordering temperature 
the ordered structure shown in Fig. II forms. 
Due to the ordering the corner sites are no 
longer equivalent to the body-centered sites and 
thus two different domains are possible depend­
ing on whether the Cu atoms occupy one or the 
other sites . Both possibilities are equally likely 
and do in fact occur. Where two such domains 
meet they form an antiphase domain boundary 
such as the ones shown schematically in Fig. 
13a. These can be made visible in electron mi­
crographs and an example is shown in Fig. 13b. 
The boundaries mark the impingement of do­
mains nucleated out of phase in different regions 
(thermal boundaries). 

The order-disorder reaction in Cu-Zn is a 
simple example of the more general class of 
group-subgroup transitions. It illustrates an im-
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FIG. 13. Antiphase domain boundaries: schematic 
representation (a) and TEM micrograph of antiphase 
boundaries in Ni-AI alloy (b) . (Courtesy K . H. West­
macott.) 

portant point : domains are due to broken sym­
metries. Generally, every symmetry element 
lost in a transition will give rise to a possible 
domain boundary. For CuZn, only one symme­
try element is lost , the ~(l I l) body-centering 
translation. Hence only one type of domain 
boundary can be formed (either thermally or by 
glide). In general the loss of translation elements 
gives rise to antiphase domains, the loss of in­
version symmetry causes inversion (enantio­
morphic) domains, the loss of a mirror symme­
try results in twin domains, and the loss of a 
rotation axis leads to orientation domains. 

It was shown earlier that the symmetry lower­
ing in a group-subgroup transition may be de­
scribed as a commensurate modulation of a 
physical quantity associated with the lattice, 
such as concentration, magnetization , or dis­
placement. Extra spots (superlattice reflections) 
will appear in a diffraction pattern at the posi­
tions of the wave vectors k generating the or­
dered structure, (such as k = (l I l) in CuZn). 
Domain boundaries can be made visible in elec­
tron microscopy when one of these wave vec­
tors fulfills the Bragg condition (see Fig. 13b). 
Thus a (I I I) superlattice reflection could be 

used to image antiphase domains in CuZn and a 
(I 00) reflection in CuAu. 

Since each symmetry element lost in a transi­
tion gives rise to a domain, the number of possi­
ble boundaries is equal to the index 1/ of the 
space group symmetry G I of the product crystal 
in the group Go of the parent crystal, that is. the 
ratio of the orders of the two groups: 

n = order of G%rder of G I (5) 

When changes in the unit cell size are taken into 
account, this number is mUltiplied by the ratio of 
the primitive unit cell volumes: VI and Vo: 

n = (VI/Vo)(order of G%rder of G1) (6) 

For example in the Cu)Au ordering transforma­
tion (see Fig. II) the pa~ent phase is Fm3m and 
the product phase Pm3m, n = 192/48 = 4. 
These are the four possible antiphase domains, 
separated by the three possible domain bound­
aries, each of which is characterized by a lost 
translation of the type <~ ~ 0). Note that for n 
domains there are only n - I boundaries. 

Each boundary is characterized not only by 
one but by a whole set of symmetry elements, 
the coset of the boundary. For example if a sym­
metry element (RIT) generates a boundary be­
tween domains , then (RIT)g, describes the same 
boundary if R, is an element of the symmetry 
group G, of the product phase. This is true for all 
elements of G" and the set (RIT)G, contains all 
the symmetry elements generating this bound­
ary . Each boundary has its own unique coset. 
Two co sets have either no elements in common 
or are identical. If two symmetry elements be­
long to the same coset they generate the same 
boundary. The parent symmetry group Go can 
be decomposed into a sum of cosets characteris­
tic for the domains formed in the transition to 
G,: 

Go = G, + 2:;(R;lT;)G, 

where (R;l T;) are the lost symmetry elements . As 
an example, in CU3Au ordering, the coset de­
composition becomes 

Fm3m = Pm3m + {(II! ~ 0) 

+ (11~ O~) + (110 ~ mPm3m 

B. THE EFFECT OF STRAIN 

The change of symmetry in a transition is usu­
ally associated with a distortion of the unit cell. 
In most group-subgroup transitions this trans-



formation strain is small (::S I %) and it is usually 
neglected in determining the possible domain 
boundaries. However, larger transformation 
strains have a significant effect on the possible 
domain configurations and the orientation of the 
domains themselves. Even for small strains, do­
main boundaries are not arbitrary in their orien­
tation but tend to assume positions of minimum 
strain . The location u of such boundaries IS 

given by 

u(s - s')u = 0 (7) 

where 5 and 5' are the small strain transforma­
tion tensors for the two domains meeting at the 
boundary. Since det Is - 5'1 = 0, the solutions u 
describe invariant planes and Eq. (7) is the small 
strain equivalent of the invariant plane condition 
in martensite theory, as described later. Conse­
quently domains usually meet along planar inter­
faces, a condition that becomes more stringent 
for larger strains . 

In the case of the cubic to tetragonal transfor­
mation the strain tensors have the form 

(e -2e J 
Equation (7) has solutions u = (h k k), hence the 
invariant plane interfaces are of the {OIl} type . 
Figure 14 illustrates that two domains meeting at 
a boundary undergo a slight rotation toward 
each other. The rotation angle a = (3/2)e is on 
the order of one degree if the strain e is on the 
order of 1 %. Since the domains will rotate in 
opposite directions when they meet along two 
different {OIl} planes (see Fig. 14a and b) they 
strictly become four different domains. The total 
transformation that leads to only 3 orientation 
domains if the small strains are neglected will 
form 12 orientation domains if the rotations re-
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suIting from the strain are taken into account. 
The number of domains (also called variants) is 
thus no longer given by the index n of G 1 in Go, 
since due to the small rotation the 4-fold axes of 
the parent and product phase are no longer ex­
actly parallel. 

C. VARIANTS 

Even though it does not change the symmetry 
of the low-temperature phase itself, the rotation 
due to strain causes the loss of symmetry ele­
ments common to parent and product phases. 
The set of remaining common symmetry ele­
ments is given by the intersection H of the par­
ent group Go and product group G 1 in its slightly 
rotated orientation , H = G 1 n Go. The number 
of domains is then the index of H in Go: 

n = order of Golorder of H (8) 

If the product phase coexists with the parent 
phase as in any first-order transformation, iso­
lated domains or inclusions form in the matrix 
crystal. Different crystallographically equiva­
lent inclusions are called variants . Their rotation 
from a symmetrical orientation determines the 
orientation relationship and their number is 
given by Eq. (8) with Go and G 1 being the point 
groups rather than space groups since the trans­
formation strain usually destroys all common 
translations . The generation of variants is again 
due to those symmetry elements of the parent 
phase that are not shared by the product phase , 
that is, the broken symmetries. Figure 15 illus­
trates this process in a hypothetical cutting and 
welding operation similar to the ones used to 
find the strain energy of an inclusion (see Fig. 
32) or the dislocation network in a grain bound­
ary (see Fig. 20) . A spherical volume of the ma­
trix containing the inclusion is cut out, rotated, 
inverted, or reflected , and rewelded in the ma-

b f2-------
" ... 

0'·· . 
. . I 

I 
I , , , , , 
, 

-------.1 

FIG. 14. Two tetragonal domains I and 2 meeting on (0 I I) rlane (a) and (0 IT) rlane 
(b) . A slight rotation of the domains toward their common boundary leads to relative 
changes in orientation . 
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FIG. 15. Hypothetical sequence of operations illus­
trating the generation of precipitate variants . 

trix . The matrix crystal is undisturbed by this 
operation because by definition it is invariant 
under a symmetry operation. However, the in­
clusion is in a new orientation, that is, it has 
become a different variant. Symmetry elements 
that are common to matrix and inclusion will not 
generate new variants. These elements form the 
intersection group H = G 1 n Go and an example 
of one such element is the 2-fold rotation about 
the plane normal in Fig. 15. 

The electron micrograph in Fig. 16 shows a 
distribution of many variants of Cr precipitate 
needles along (65 I) directions in a Cu matrix. 
The intersection group of the matrix Go = "!..3m 
and the precipitate G 1 = m3m is only H = I of 
order 2 because of the low-symmetry orientation 
relationship adopted by the precipitate lattice . 
The number of variants is therefore n = 48/2. 
The distribution of the 24 variants can be visual­
ized as poles on a stereogram showing a general 
direction (see Fig. 6) and can be enumerated by 
permutation of the indices (6 5 I). Notice that 
both the product and parent lattices are cubic 
but are misoriented so that they have only an 
inversion center in common. The orientation re­
lationship is one of low symmetry since it is dic­
tated by the invariant line or invariant plane cri­
terion discussed in Sections V and VI. The sym­
metry of the orientation relationship is given by 
the intersection group H. 

D. EQUILIBRIUM INCLUSION SHAPE 

It is easy to see that H is also the symmetry 
group of the equilibrium inclusion shape: the 
structure and energy of a given interface plane 
are identical for two planes related by a symme­
try operation of H and hence a ll equivalent faces 

, ... 

-
FIG. 16. TEM micrograph with (00 1) beam direction 
showing needle-shaped precipitates along (6 5 1) direc­
tions in Cu-Cr alloy. 

are expected to be found bounding a particle. 
The needles shown in Fig. 16 have a low-sym­
metry equilibrium shape, that of a pinacoid (H = 
1\ Particles with higher intersection symmetries 
H are shown in cross section in Fig. 17a-c. In all 
three cases the germanium particle and the alu­
minum matrix share a mirror parallel to the im­
age plane and a 2-fold axis perpendicular to it. 
When there are no other common elements (see 
Fig . 17a) the intersection group is monoclinic, H 
= 21m. Higher symmetry intersection groups are 
seen in Fig. 17b (H = mmm, orthorhombic) and 

a 

FIG. 17. TEM micrographs of Ge needle precipitates 
in AI with different common symme tries, seen In 

cross-section; monoclinic (a), orthorhombic (b), and 
tetragona l (c). Note corresponding shapes. 



Fig. I7c (H = 4/mmm, tetragonal). Note that the 
overall particle shapes conform to the expected 
symmetries, that is, they are close to their equi­
librium shape. 

Usually the more symmetrical groups H 
(higher order) are preferred over those of low 
symmetry . When H is such that any misorienta­
tion would lower its symmetry it is said to be at a 
symmetry-dictated extremum. 

IV. Grain Boundaries 
Grain boundaries are interfaces separating 

two crystals identical in structure but different 
in orientation. The misorientation between two 
grains is described by the axis I and angle () of 
misorientation (axis/angle pair) or alternatively 
by a rotation tensor R. If in addition to the mis­
orientation there is also a shift 'T between the 
grains the interface operation is (RI'T) . Most geo­
metrical properties can be derived from this op­
eration. However, a boundary is completely de­
scribed only if the boundary plane is specified as 
well. Thus nine parameters are necessary for a 
complete description of a grain boundary, three 
for the axis and angle of rotation, three for the 
direction and magnitude of the translation, and 
three for the position of the boundary plane. 

Existing grain boundary models are based ei­
ther on geometric or energetic criteria. The lat­
ter usually require large computer programs and 
the results depend strongly on the interatomic 
potential chosen. The former generally have 
simpler, analytical solutions but are not directly 
related to the energy. However, experience has 
shown boundaries with optimum geometry are 
usually low-energy boundaries. Some geometri­
cal models of grain boundaries are described 
below. 

A. Low-ANGLE BOUNDARIES 

If the misorientation between two grains is 
less than -10° their boundary is usually consid­
ered a low-angle boundary. The dislocation ar­
ray shown in Fig. 18a is a simple example of a 
low-angle boundary and a high-resolution image 
of such a boundary in molybdenum is shown in 
Fig. I8b. The misorientation () is related to the 
dislocation spacing d as 

tan () = h/d (9) 

where h is the Burgers vector of the dislocation. 
At 10° misorientation the dislocations would 
thus be spaced d == 6h apart, causing consider-
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FIG.18. Low-angle tilt boundaries: schematic of sym­
metrical boundary (a) and TEM micrograph of non­
symmetrical boundary in Mo (b) . (Courtesy of J . M. 
Pcnisson and R. Gronsky.) 

able overlap between their strain fields. It would 
therefore be physically meaningless to describe 
larger misorientations as arrays of individual 
dislocations , and other constructions become 
important. These will be discussed under high­
angle boundaries. Some further principles can 
be illustrated using low-angle boundaries. The 
example shown in Fig . 18 is a symmetrical tilt 
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boundary; it is located on the plane of symmetry 
between the two crystals and it contains the axis 
of misorientation. Because of their simplicity, 
symmetrical tilt boundaries figure prominently 
in the modeling of grain boundaries. 

Another high-symmetry configuration is the 
pure twist boundary shown in Fig. 19. Such 
boundaries are normal to the axis of misorienta­
tion and require, not a single but at least two sets 
(a network) of dislocations. As for a symmetri­
cal tilt boundary, the angle of misorientation is 
related to the spacing of each array in the net­
work by Eq. (9) . 

For the same axis/angle pair, the boundary 
can take arbitrary orientations which then of 
course lack the special symmetry of pure twist 
or tilt boundaries . One way to visualize all the 
possible boundary orientations is to treat one 
grain as an inclusion in the other. The grain 
boundary is then a closed surface and the dislo­
cation network a set of closed loops on that sur­
face. To obtain their spacing and orientation, 
consider the misorientation of the enclosed grain 
to be the result of a phase transformation whose 
sole effect is a small change in orientation of the 
lattice without changing the volume, shape, or 
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crystal structure of the "new phase." In order 
to accommodate this change in orientation it is 
necessary to deform the grain by slip, resulting 
in a dislocation network in the interface. This is 
best seen in the schematic sequence in Fig. 20. 
From a single crystal cut a region (a), remove 
and rotate it (b), deform it plastically such that it 
will fit into its previous space (c) and (d), and 
insert and reweld it in the original crystal (e). 
The slip steps formed in (c) and (d) now become 
dislocation loops as shown in the perspective 
drawing (0. By extension it is easy to see from 
this description how a small-angle grain bound­
ary of any axis/angle pair and on any plane could 
be constructed. In particular, notice that the 
same misorientation could be achieved with a 
different set of dislocations, depending on the 
slip systems operating in steps (c) and (d). Also 
note that in the particular example shown the 
planes of the dislocation loops intersect in a line 
parallel to the rotation axis. The rotation axis is 
an invariant line of the "transformation" and 
must be unaffected by the dislocations . Not 
every rotation axis conveniently lies at the inter­
section of two crystallographic slip planes. More 
than two sets of dislocation loops are then nec­
essary to accommodate a rotation around an ir­
rational axis but again the total set must leave 
the rotation axis unchanged. 

Since the rotations involved are small, the ro­
tation matrix can be written as 

R = I + w (10) 

where I is the identity matrix and w is an anti­
symmetrical tensor, that is, Wij = -Wji . This 
"rotational strain" tensor w must be countered 
by an equal and opposite plastic strain -w, 
made up of dislocation arrays. Each array of 
dislocation loops of given orientation, spacing, 
and Burgers vector has a characteristic strain 
tensor. For example , an array of shear loops on 

FIG. 20. Sequence of hypothetical operations illus­
trating the formation of an arbitrary grain boundary, 



(0 0 I) planes with Burgers vector b in the 
[I 0 0] direction is written as the simple shear 
strain: 

(

0 0 h/d) 
s = 0 0 0 

o 0 0 

By adding appropriate arrays to form an anti­
symmetrical tensor w any small angle boundary 
can be described. This addition applies only for 
small strains since the superposition principle 
(strains are additive) holds only when products 
of strains are negligible. 

B. O-LATTICE 

Another method to determine the Burgers 
vector content B along a vector p in a boundary 
is by Frank's formula: 

0(1 x p) = B 

where (I, 0) is the axis/angle pair. Frank's for­
mula is valid only for small rotation angles O. 
The concept of measuring the misfit B in an arbi­
trary direction p in the boundary is very useful 
and is central to the more general theory of sur­
face dislocations. By decomposing the misfit B 
into a sum of lattice translations it becomes pos­
sible to devise a corresponding set of dislocation 
lines that must be traversed by the vector p. If P 
is selected so that the misfit along it is equal to a 
Burgers vector b then p becomes an O-Iattice 
vector xO, a basic concept in O-Iattice theory. 
For low-angle boundaries 

wp = L; b; ( Ila) 

or 

(II b) 

where w is the antisymmetrical tensor describ­
ing the "rotational strain." For misorientations 
greater than -10°, the small-angle approxima­
tion is no longer valid and Eqs. (\ la,b) become 

1 - I '" ( - R )p = "'; b; ( 12a) 

( 12b) 

A dislocation is necessary in the boundary every 
time the rotational mismatch (I - R) measured 
along a vector XO equals a Burgers vector b. Per­
haps this is most apparent for coincidence site 
lattices (CSL) for which both band XO are lattice 
translation vectors . 
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C. COINCIDENCE SITE LATTICE 

When two identical interpenetrating lattices 
are rotated from initial coincidence around a lat­
tice point, there are certain discrete rotation an­
gles for which lattice points other than the origin 
coincide. An example is shown in Fig. 21a 
where a black lattice and a white lattice are out­
lined by a dashed and a solid square. The coinci­
dent points (solid dots) form a lattice them­
selves, termed the CSL, shown in Fig. 21 b. The 
CSL is characterized by the inverse density of 
coincidence sites, L. For the example illustrated 
in Fig. 21, L = 5. The rotation angle 0 is 36.9° 
(tan 0/2 = 1/3) due to the coincidenc~ of the 
[3 1 0] vector in one lattice with the [3 I 0] vec­
tor in the other lattice. Any rational (II k I) lat­
tice vector can be used to generate a CSL char­
acterized by L = h~ + k~ + I~. If h~ + k~ + I~ is 
even, L is its largest odd divisor. For example a 
(3 I 0) vector L = 10 and a (2 I 0) vector L = 5 
generate the same L5 CSL shown in Fig. 21. In 
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FIG. 21. I5 coincidence site lattice (CSL); dichro­
matic pattern of two interpenetrating square lattices of 
black and white atoms with solid dots showing coinci­
dence points (a), CSL outlined (b) . structural units 
along possible boundary plane (c). O-Iattice outlined 
(d). DSC lattice outlined (e) , and effect of DSC shift on 
CSL (0 . I From H. F , Fischmeister. 1. Phy.\'. Co/loqut! 
C4-3 (19!l3) . ] 
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Fig. 2 I c a boundary plane has been chosen and 
the black (white) lattice discarded from below 
(above) the plane of the boundary. Structural 
units typical of this boundary are outlined. The 
density r of coincidence sites in a boundary 
plane depends on its position. Special grain 
boundaries have high values of r and low values 
OfL. 

Any lattice vectors of the CSL are solutions ,,0 
of the O-Iattice equation (I 2b) since at each co­
incidence site the rotational displacements be­
tween the two lattices amount to a lattice trans­
lation b. However, not all O-Iattice vectors ,,0 

are CSL vectors. The complete O-lattice for the 
L5 boundary is shown in Fig. 21d. When the 
misorientation between the lattices is not ex­
actly equal to one necessary for a CSL, all the 
coincidence sites (except the center of rotation) 
are lost. However the O-Iattice is still main­
tained with lattice vectors ,,0 which are now irra­
tional although close to the rational CSL vec­
tors. Thus the O-Iattice changes continuously 
between the discrete CSLs. 

In order to find the geometrically necessary 
network of dislocations in an interface from the 
solution of Eq. (I2b) one constructs cell walls 
midway between any two O-Iattice points. 
These represent the positions of worst match 
since the O-Iattice points are the positions of 

FIG. 22. Hexagonal O-Iattice due to misorientation of 
two grains around a common 3-fold axis . Heavy out­
lines show predicted dislocation network where the 
boundary plane intersects the O-Iattice cell wall s. 

best match. An example is shown in Fig. 22 in 
which the O-Iattice is a hexagonal set of parallel 
lines and the cell walls are shown as hexagonal 
prisms. The vectors ,,0 corresponding to three 
coplanar Burgers vectors b lie in the basal plane. 
The predicted dislocation network lies at the in­
tersection of the chosen boundary plane with the 
cell walls (heavy outline) . Notice that the 
boundary could also be curved or even a closed 
surface as considered earlier. The same disloca­
tion network as shown for example in Fig. 20 
would be predicted. However, in this view, the 
physical origin of the dislocations is not consid­
ered since they arise only as a geometrical ne­
cessity. 

Even though the equations are valid for any 
angle of misorientation this construction is phys­
ically meaningful only for low-angle boundaries 
since, as shown earlier, for misorientations 
> 100

, their cores are too close to each other. 

D. HIGH-ANGLE BOUNDARIES 

High-angle boundaries are best treated as 
small deviations from the nearest CSL. They are 
then similar to low-angle boundaries that are a 
small deviation from the L I CSL, that is, a sin­
gle crystal. Each CSL. in particular L I. may be 
considered a low-energy configuration . Usually 
the lower L is, the lower the energy . Any devia­
tion from a CSL is accommodated by disloca­
tions, lines of high local distortion in favor of 
relaxed or undistorted regions of the CSL in be­
tween. In the case of low-angle boundaries the 
dislocations are primary dislocations and the 
boundary between them perfect crystal (L 1). 
This is shown in Fig. 18. In the case of high­
angle boundaries the dislocations are secondary 
dislocations and the boundary between them per­
fect CSL. These secondary dislocations have 
small Burgers vectors given by the smallest dif­
ference vectors between lattices I and 2 in the 
exact CSL orientation. A dislocation with such a 
Burgers vector will translate the complete CSL 
and is part of the so-called DSC (displacement 
shift complete) lattice. The example of the L5 
DSC lattice is shown in Fig. 2Ie and the effect of 
a DSC lattice translation is illustrated in Fig. 21 f. 
Any misorientation from the perfect L5 orienta­
tion can be accommodated by these dislocations 
with areas of perfect L5 boundary in between. 

When a boundary is between two adjacent 
low-energy CSL orientations it could approxi­
mate one or the other with an appropriate set of 
dislocations. In fact. experience has shown that 



it does both. By mixing well-matched structural 
units characteristic for each of the neighboring 
CSLs in the right proportion the boundary en­
ergy is minimized. Any degree of misorientation 
can be accommodated in this manner and a 
change in misorientation is similar to a change in 
the structural "composition" of the boundary. 
Rearrangement of structural units in a bound­
ary. by separation or mixing, may in a sense be 
considered a phase transformation. This must be 
acc9mpanied by a local change in boundary ori­
entation. Structural units are a refinement of the 
purely geometrical CSL concept since local 
atomic relaxations and relative translations be­
tween the two lattices are taken into account. 
This can be done by computer simulation assum­
ing an interatomic potential, or more simply by 
geometrical criteria based on rigid sphere pack­
ing. The latter model is successful. at least in fcc 
metals where the hard sphere model is a good 
approximation. 

E. GRAIN BOUNDARY CRYSTALLOGRAPHY 

In the wider context of interphase boundaries 
the ,concepts of CSL. DSC, and O-lattice can be 
derived alternatively as follows . A general inter­
phase boundary described by a transformation A 
followed by a translation T is called a he­
terophase boundary. characterized by the oper­
ation (AI-r). If A leaves the crystal structure in­
variant (A = R) it describes a homophase 
boundary. This can be a domain boundary if 
(RI-r) is a symmetry operation of the parent 
phase. or a grain boundary if (RI-r) is a general 
rotation/translation. The translation may be irra­
tional, for example. if due to relaxation at a grain 
boundary. or a rational lattice translation t. for 
example. at an antiphase domain boundary. 

Due to crystal symmetry (crystal space group 
G) the description of a boundary by a single op­
erator (RI-r) is ambiguous because any symmetri­
cally equivalent orientation of either crystal will 
give a different but equivalent boundary opera­
tion, The boundary is completely described by 
the set of all such operations (RI-r)G. called the 
coset of the boundary , Of this set. often the op­
eration with the smallest rotation angle is used 
to characterize the boundary. 

If(RI-r) is a symmetry operation of the crystal, 
that is. an element of the space group G. it 
leaves the entire lattice invariant. Each lattice 
rmint is hrought to an equivalent position . For a 
general houndary. (RI-r) is not a symmetry ele­
ment of the crystal. Thus formation of a bound-
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ary is a symmetry-breaking transItIon and the 
boundary operation (RI-r) brings lattice points to 
nonequivalent positions. However. there may 
still be geometrical locations r in the lattice 
which remain invariant: 

(RI-r)r = r ( 13) 

Such locations r exist if (RI-r) is a reducible 
operator. For these positions. the effect of the 
rotation (Rr) equals the effect of the translation. 
(r - 1'). This is shown schematically in Fig. 23a. 

If l' (but not r) is a lattice translation t. one of 
the elements of the translation group TI of lattice 
I (for example a Burgers vector b = -t). then Rr 
becomes an O-Iattice vector XO (see Fig. 23b) 
and Eq. (13) becomes 

(R- llb)xO = XO 

This is identical to Eq . (12b) and the solutions XO 
to these equations describe points. lines. or 
planes that remain invariant in the transition 
(Rlt) . Finally. if both rand T in Eq. (13) are 
members tl and t of the translation group T. then 
r becomes a CSL vector tl: 

(Rlt)t l = tl 

(a) 

(b) 

(e) 
o 
I t 

t o 
FIG. 23. Schematic illustration of rotation / transla­
tion operation: general operation (a). generation of 0-
lattice (b). and generation of CSL (c) . 
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as shown schematically in Fig. 23c. If this is 
rewritten as 

Rtl = tl - t 

the left-hand side is a translation in crystal 2 
while the right-hand side is a translation in crys­
tal I. The CSL is thus the group of those vectors 
tl which are translations in both crystals. that is. 
the intersection of the translation groups 

CSL = TI n RTI (14) 

The DSC lattice is simply the corresponding 
union of the translation groups 

DSC = TI U RTI (15) 

It was shown that the operation (RI'T). if it is 
reducible. leaves a set of locations r invariant. 
that is (RI'T) is a symmetry operation of the bi­
crystal. The entire set of bicrystal symmetries is 
the union of the symmetry elements common to 
both crystals G 1 n G2 , with those operations 
(RI'T)G1 that transform crystal I into crystal 2 
while simultaneously transforming crystal 2 into 
crystal t: G.(RI'T)-I. Thus the bicrystal symme­
try is 

(G. n G 2) u HRI'T)G. n G.(RI'T)-·] 

Operations that interchange the two crystals are 
also called colored symmetry operations, refer­
ring to the colors, that is, black and white, as­
signed to the two identical but misoriented crys­
tals shown for example in Fig. 21. The 
corresponding pattern is called the dichromatic 
pattern. Its symmetry is described by the Shub­
nikov groups, and it is interesting to note that it 
can have symmetries not present in either lat­
tice. If. for example, (RI'T) is the twinning opera­
tion in an fcc crystal where R is a {I I I} mirror 
m and 'T = O. the bicrystal symmetry of the re­
sulting L3 CSL is 

(3m) U (mfo) = 6fmmm 

v. Martensite 

A. CHARACTERISTICS . 
Martensite transformations are characterized 

by a surface relief that indicates that a shape 
change is associated with the transformation. 
The surface relief can be measured from the dis­
placement of scratches placed on a flat polished 
surface before transformation (see Fig. 24). The 
interface plane between the martensite inclusion 
and the matrix (habit plane) remains macroscop-

FIG. 24. Schematic of surface relief where a marten­
site plate intersects the surface. 

ically undistorted (invariant plane) and the total 
deformation is an invariant plane strain (IPS). 
Due to the constraint from the solid matrix, mar­
tensite inclusions take the form of plates , laths , 
or needles , with an internal structure resulting 
from slip or twinning. The transformation is dif­
fusionless and fast, proceeding at rates near the 
speed of sound. This implies that large numbers 
of atoms transfer rapidly and in an orderly fash­
ion from the high-temperature structure (austen­
ite) to the low-temperature structure (marten­
site). Nearest neighbors remain nearest 
neighbors. 

The best-known and technologically most im­
portant martensite transformation after which 
the whole class of transformations is named is 
that in steel. It occurs on rapid cooling below the 
transformation temperature Ms which depends 
on carbon concentration. The volume fraction of 
martensite formed is determined by an equilib­
rium between the temperature-dependent chem­
ical driving force and the strain energy of ac­
commodating the shape change. In the case of 
steel the parent austenite is fcc and the product 
martensite bct. A characteristic orientation rela­
tionship between austenite and martensite is 
usually observed which is generally nonrational 
and of low symmetry. This leads to a large num­
ber of crystallographically equivalent orienta­
tion variants and complex morphologies . The 
semicoherent habit plane. usually also irra­
tional. must be glissile . a condition that imposes 
restrictions on the interface dislocations . 

Not all of these characteristics are typical for 
martensite transformations alone . Orientation 
relationships. habit planes. surface relief. and 
geometrically glissile interfaces are often also 
observed in diffusion-controlled precipitation 



reactions. For example the Bainite reaction in 
steel bears all of these marks but is not marten­
sitic because interstitial carbon diffuses during 
the reaction, sweeping ahead of the interface 
and eventually stopping the reaction front. 
Other transformations that exhibit a surface re­
lief while allowing some diffusion are sometimes 
classified as bainitic. Diffusionless rapid trans­
formations that do not show surface relief are 
termed massive transformations . 

B. IPS GEOMETRY 

The phenomenological theory of martensite 
transformations is based on the observation of 
an IPS deformation, and well-defined orienta­
tion relationship. Since the habit plane is undis­
torted and unrotated it can be modeled geomet­
rically rather than on some energetic criterion 
but it can be shown that an IPS is favored also 
by strain energy considerations. This is similar 
to the structure of grain boundaries where opti­
mized geometry usually coincides with mini­
mum energy configurations. 

An exceptionally simple example of a marten­
sitic transformation is that from fcc to hcp co­
balt. As shown in Fig. 25a the only strain is due 
to a change in stacking of the close-packed 
planes. The close packed plane is undistorted 
and naturally becomes the habit plane. In this 
case the transformation strain itself is an IPS of 
the form 

where s is the shear due to the change in stack­
ing sequence. For the two-dimensional case il­
lustrated in Fig . 25a this reduces to 

The habit plane and orientation relationship 
both have simple rational form. However, this is 
not generally the case , and usually there is no 
lattice plane that remains unstretched and unro­
tated in the transformation. If, for example, the 
close packed plane in Fig. 25a were stretched by 
a factor (J in the transformation it could no 
longer be an undistorted habit plane, and a 
slightly rotated, irrational habit plane would 
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have to be adopted. The transformation tensor 
would be 

and the invariant plane (or here in two dimen­
sions the invariant line), given by the condition 
Bu = D, hence u (IS_a)' This is shown in Fig. 25b 
where the perfect match along the direction u is 
apparent. At an angle 

tan () = (1 - a)/s (16) 

to the x axis, this habit plane is irrational but the 
orientation relationship is still rational with the 
close-packed planes exactly parallel. 

If we further allow the spacing of the close­
packed planes to change by a factor c the trans­
formation 

no longer has an invariant interface . However, if 
there were a direction that was undistorted but 
not unrotated, it could simply be rotated back by 
a rigid body rotation R so that RHu = u. In the 
present e~ample , this requires that 

detlB2 - II = 0 ( 17) 

that is, the factors a. C. and s must follow the 
relations (a2 - I) (c2 - 1) = s2. If this relation­
ship happens to be fulfilled by the transforma­
tion matrix, the coherent interface along the in­
variant line u shown in Fig. 25c is obtained at an 
angle 

tan () = (1 - (12)/ as (18) 

However, usually this relationship will not hold 
and must be fulfilled by adding a lattice-invariant 
deformation. This can be achieved by either 
twinning or slip in a number of ways . For exam­
ple, an array of edge dislocation loops with 
Burgers vector h and spacing" would add a lat­
tice-invariant deformation 

or an array of shear loops with the same Burgers 
vector and spacing h would be 

S = (I hi") 
() 1 

Considering the requirement of a glissile inter­
face the array of shear loops is more realistic. 

The combined transformation 

A = RBS (19) 

now has an invariant interface if the dislocation 
spacing h in the lattice-invariant shear S is ad­
justed so that RBSu = u. This requires that 

detl(BS)2 - II = 0 (20) 

or explicitly (a 2 - I) (c2 - 1) = (s + ab/h)2 . This 
leads to the semicoherent interface shown sche­
matically in Fig. 25d with the same angle of incli­
nation as for the corresponding coherent inter­
face in Fig. 25c, now given by 

Ig-a2 

tan () = - -1 --2 
a - c 

(21) 

Figure 25d is the two-dimensional analog of the 
crystallography of a general martensite transfor­
mation . It shows the shape strain A, the lattice · 
invariant shear S in the form of a shear disloca­
tion array, and the lattice rotation R. 

To illustrate schematically the same situation 
in three dimensions becomes more difficult. 
However. the same principles apply and the 
phenomenological theory of martensite transfor­
mations theory provides an algorithm to deter­
mine the habit plane and orientation relationship 
for a given transformation and slip system. 

C. THE PHENOMENOLOGICAL THEORY 

In order to find the transformation strain B. a 
plausible correspondence between the austenite 
and martensite lattices must first be established . 
In some cases the choice is obvious, especially 
when the distortions are small and the relation 
between the two lattices is easily recognized . 
The fcc to bct transformation in steel is not so 
obvious because the transformation strains are 
large. The most widely used lattice correspon­
dence for this case is the Bain correspondence 
shown in Fig. 26. The bct cell shown in heavy 
outline within the fcc lattice must be deformed 
along three orthogonal axes to the correct di­
mensions of the martensite (cia = 1.08). B is the 
matrix of distortions along these principal axes 

B= C ~, J (22) 

In most martensite transformations, the volume 
change (given by det lB/) is small compared to 
the shape change, and B causes almost a pure 
shear deformation. The transformation B alone 
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FIG. 26. Bain correspondence between fcc and bct 
lattices. The bct lattice can be deformed into a bcc 
lattice by three orthogonal strains. 

leaves no direction or plane invariant although it 
leaves all directions u unextended for which 

(23) 

In general, 

detlB2 - II =1= 0 

and the solutions u of this equation lie on a cone 
of unextended lines. If, as shown above for the 
two-dimensi9nal case, we add a lattice-invariant 
shear S of appropriate magnitude such that 

detl(BS)2 - II = 0 

the unextended lines u given by the equation 

(BS U)2 = u2 (24) 

lie in a plane. By adding the appropriate rotation 
R, this undistorted plane becomes an invariant 
plane, and 

A = RBS 

is an invariant plane strain. The normal to the 
invariant or habit plane can be found from the 
eigenvectors e of the symmetrical transforma­
tion matrix A2 = (BS)2, that is, the solutions of 

(25) 

Since A2 is a symmetrical matrix it has orthogo­
nal eigenvectors, and since detlA2 - II = 0 one 
eigenvalue, say ,\ ~ is equal to one, that is, the 
corresponding eigenvector is an invariant line. 
If the other two eigenvalues are ,\ i < I and 
'A ~ > I, a second unextended line can be found 
between el and e) at an angle (J to the eigenvec­
tor el, given in a form similar to Eq. (21): 

M-,\2 
tan (J = I ,\2 _ I 

) 

(26) 

An explicit normalized expression for the nor-
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mal n to the habit plane can be written 

(27) 

D. SPECIAL SOLUTIONS 

This equation still requires the solution of the 
eigenvector equation, Eq. (25), but for two spe­
cial cases of high symmetry, analytical solutions 
are available for the fcc -+ bct transformation in 
terms of the principal strains 1)1 and 1)). For fcc 
slip on (I 0 I) (I 0 j], or bcc twinning. the solu­
tion is n = (h k I] with 

where 

and 

I 
h = - (M - N) 

21)1 

k=~~ 
1)1 I - 1)~ 

I 
1 = - (M + N) 

21)1 

M= 
2 2 2 2 2 

1)1 + 1)3 - 1)11)3 

l-~r-

N = ~2 - 1)7 - 1)5 

I - 1)5 

and for simultaneous slip on the two conjugate 
bcc slip systems (0 I I) [0 j I] and (0 i I) [0 I I] 
the solution is n = [h k I] with 

h = ~1)7 (1)7 - I) 
2C 

422 where C = 1) I - 1):1 (21)1 - I) . 

E. ORIENTATION RELATIONSHIP 

The orientation relationship R can be de­
scribed by the rotation axis wand rotation angle 
a : 

- f:Uk IVk Sin a 

where eUk is the permutation symbol. Since A, B, 
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and S are known, R may be back-calculated as 

R = AS-IB-I 

A simpler, more direct way of finding the orien­
tation relationship is based on the fact that the 
lattice-variant part of the transformation RB and 
its inverse B-IRT are invariant line strains as is 
apparent from 

RB = AS - ' (28) 

Both A and S- I are IPS tensors and the two 
invariant planes must intersect along an invari­
ant line. The invariant line i must therefore lie 
where the slip plane q of S- I intersects the cone 
of unextended lines of B: 

and iq = 0 (29) 

A conjugated relation may be written for the in­
verse transformation valid for plane normals . 
The unextended normal m is given by 

and mp = 0 (30) 

where p is the slip direction . Using Euler's theo­
rem the rotation axis w is then simply the cross­
product of the rotational strains 

w = (B - l)i(B-I - I)mlD 

where 

D = (B + 1)i(B-' - I)m 

The rotation angle a is 

a = 2 arc tan Iwl 
This procedure is illustrated stereographically 

in Fig. 27 where the cone of unextended lines of 
B (initial cone), solution of Eq . (23) is shown as a 
solid circle. The transformation B moves direc­
tions u from the initial to the final cone and plane 
normals h in the opposite sense. The trace·s of 
the slip plane q and of the plane perpendicular to 
the slip direction p are shown as great circles. 
The possible solutions for the invariant lines i 
[Eq . (29)1 and invariant normals m [Eq . (30)1 are 
marked as solid and open circles . There are four 
combinations of invariant lines and normals, 
each giving a different orientation relationship 
R . The four corresponding habit planes and 
magnitudes of the lattice-invariant shear sand 
the shape shear R are also different. The inter­
face energy is related to.\' through the density of 
dislocations necessary to produce an invariant 
plane whereas the strain energy is related to R. 

the shape change that remains to be accommo­
dated hy the matrix . This is how the geometrical 
solutions arc related to energetic niteria. and 

FIG. 27. Stereogram showing invariant lines (solid 
dots) at intersection of slip plane with initial cone of 
unextended lines and invariant normals (open circles) 
at intersection of plane normal to the slip direction 
with final cone of unextended lines . 

the solutions with the smallest values of R and s 
are physically most realistic . 

Refinements of the basic theory have included 
a uniform dilatation {) of the habit plane and mul­
tiple lattice invariant shear systems 

A = RBS,S2S) .. . 

These have improved the match with experi­
mental results in some cases but have done so at 
the sacrifice of the clarity and relative simplicity 
of the basic theory. 

Electron microscope observations of the in­
terface structure can identify the slip plane(s) of 
the lattice-invariant shear S. This is easily seen 
by considering the lattice-invariant part RB of 
the transformation. As shown above this must 
be an invariant line strain since RB = AS - ' , with 
the invariant line at the intersection of the habit 
plane (interface) with the slip plane. All the dis­
locations in the interface must lie along this di­
rection so that the shear S does not interfere 
with the invariant line. The density of these dis­
locations can be measured provided they are not 
too closely spaced. a condition identical to low­
angle grain boundaries . 

F. TWINNED MARTENSITE 

It has heen assumed in the theory outlined 
above the lattice invariant shear S is accom­
plished by slip . Twinning is an alternative defor­
mation mode . A schematic comparison of slip-



(i, 

FIG. 28. Lattice-variant deformation (b) of crystal (a) 
with equal and opposite lattice-invariant deformation 
by slip (c) and twinning (d). 

and twinning-produced lattice-invariant shear is 
shown in Fig. 28. If two twin-related regions of 
martensite form simultaneously, their relative 
volume fraction x determines the net amount of 
shear produced this way. Algebraically this is 
written as 

(31) 

where 8, and 82 are different variants of the Bain 
strain . One eigenvector of A2 is made an invari­
ant line by adjusting the volume fraction x ap­
propriately. The remainder of the procedure is 
as before. Slip and twinning are equivalent 
modes of deformation and the resulting habit 
planes and orientation relationships are iden­
tical . 

The line of reasoning applied in the crystallo­
graphic theory of martensite transformations is 
most apparent for small strains. The decomposi­
tion of the macroscopic IPS A = R8S where R is 
a rigid body rotation, 8 the Bain strain (approxi­
mately a pure shear), and S a simple shear be­
comes 

A = (I + w)(1 + e)(1 + 5) 

where w is the anti symmetrical matrix of a small 
rotational strain, e the symmetrical matrix of a 
pure shear strain , and 5 the strain associated 
with a simple shear. Neglecting products of 
small strains we have 

A - I=w+e + s (32) 

the rotation, strain, and shear are additive and 
their order is unimportant (superposition princi­
ple) . The shear strain 5 is chosen so as to reduce 
one principal strain to zero [equivalent to Eq. 
(20)], and a second invariant line is found be­
tween the other two principal strains by adjust­
ing the orientation relationship w accordingly 
[equivalent to Eq. (28)]. If twinning is the defor­
mation mode, Eq. (31) for small strains reduces 
to 

A-I = w + xe, + (l - x)e2 (33) 

The procedure is as before: (l) choose the vol­
ume fraction x to make one invariant line, and 
(2) use w to produce a second invariant line . 
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An example of a small-strain martensite trans­

formation with twinning as the lattice-invariant 
shear is the transformation in In-TI alloys. The 
lattice correspondence is obvious since the 
transformation involves only small distortions. 
The transformation strain tensor is 

e, = 8, _ 1 = (-e -e ) 
2(' 

and for the twin 

e2 = 82 - 1 = (-e 2e -e) 
and therefore 

A-I = w + xe, + (l - x)e2 

= w + (-e (2 _ 3x) e ) 

(3x - \)e 

With x = 2/3, the transformation strain becomes 

(

-e ) 
A-I=w+ 0 e 

It is apparent that another unextended line can 
be found midway between the remaining two 
strains at an angle tan €-) = \ from the principal 
axes . This becomes an invariant line by addition 
of a small rotation 

which turns the pure shear into a simple shear 
and which determines the orientation relation­
ship. This geometry is illustrated in Fig. 29a. 
Note that in this case the shape strain A-I is a 
simple shear parallel to the habit plane . Another 
twinned martensite plate can be found with the 
same habit plane but opposite shear direction: 

and 
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(0) cubic: 

(b) 

FIG. 29. Twinned martensite: habit plane of a single 
twinned plate in contact with matrix showing shape 
strain (a) and four self-accommodating twinned vari­
ants with no net shape strain (b) . [From A. Kelly and 
G. W. Groves, "Crystallography and Crystal De­
fects." Copyright 1970, with permission of Addison­
Wesley.] 

Adding equal amounts of both variants leads to a 
vanishing total shape strain. Thus when formed 
in groups of four variants in the manner shown 
in Fig. 29b a self-accommodating configuration 
is achieved of the kind of that is commonly 
found in shape-memory alloys. 

VI. Precipitation 

A. CHARACTERISTICS 

Precipitation reactions are first -order phase 
transformations in which the parent and product 
phase (matrix and precipitate) coexist at the 
transformation temperature. Usually the precip­
itate is different from the matrix in composition , 
crystal structure, orientation , and atomic vol­
ume, causing a barrier to its nucleation and 
growth . Uniform distributions of fine precipi­
tates are used in precipitation hardening alloys 
such as the AI - eu alloy shown in the electron 
micrograph in Fig. 30. During nucleation and in 
the early stages of growth precipitates tend to be 
coherent. They lose coherency during continued 
growth, a process that is lIsually accompanied 
by a loss in alloy strength. The shape and distri-

FIG. 30. TEM micrograph of homogeneous distribu­
tion of 8" precipitates in AI-Cu alloy. 

bution of precipitates depend strongly on such 
crystallographic factors as the relationship be­
tween parent and product lattices, elastic anisot­
ropy, and the mode and mechanisms of accom­
modation of the new phase in the old. It is 
difficult to predict exact precipitate shapes with 
any accuracy and for most purposes it is suffic­
ient to distinguish among three basic shapes: 
spheres, plates, and needles. The most widely 
encountered precipitate shape is that of a flat 
plate such as the particles seen in Fig. 30. The 
reasons why plates are preferred will become 
clear in the course of this section . Semicoherent 
precipitates are derived from coherent ones by 
introducing dislocations in the interface to re­
lieve the elastic distortions. All three types of 
precipitates (schematic examples for each type 
are shown in Fig. 31), coherent, semicoherent, 
and incoherent, are subject to crystallographic 
constraints . 

In this section we will first examine the factors 
that determine the optimum shape of a coherent 
precipitate (also called inclusion), and then de­
scribe a simple physical model for the loss of 
coherency in plates. It is possible to make a 
qualitative prediction of the shape of an inclu­
sion and a quantitative prediction of its orienta­
tion . Examples of applications to real alloys will 
be given. 

B. ELASTIC INCLUSIONS 

The theory of coherent elastic inclusions has 
been worked out in some detail and in this sec­
tion some of its results are presented along with 
the underlying physical reasoning . 

The strain energy of coherent inclusions in an 
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FIG. 31. Coherent (a). semicoherent (b). and incoher­
ent (c) inclusion. 

elastic solid is a function of inclusion shape and 
orientation. To find the optimum shape and ori­
entation of an inclusion transforming under elas­
tic constraint from a solid matrix is the main 
objective of the strain energy approach. Without 
constraint the inclusion would undergo the 
stress-free transformation strain eij. On the 
other hand. if the matrix were infinitely rigid it 
would constrain the inclusion completely back 
to the shape it had before transforming, revers­
ing the transformation strain elastically and set­
ting up a stress (Ii}. The work W (per unit vol­
ume) done in this process is 

W = lU'ijeij 

(Throughout Einstein' s summation convention 
is implied for repeated indices.) Using Hooke's 
law: 

where ("ijlcl are the elastic constants of the inclu­
sion. the strain energy becomes 

Note that at this stage the matrix is strain free 
and all the strain energy is contained in the in-
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clusion. However, since in real materials the 
matrix is not rigid it will not constrain the inclu­
sion completely. Instead, part of the transforma­
tion strain will be accommodated by elastic de­
formation of the matrix. As a result the strain 
energy is no longer contained entirely in the pre­
cipitate but is divided between the work done in 
constraining the precipitate partially and the 
work necessary to accommodate part of the 
transformation strain in the matrix. The hypo­
thetical sequence of cutting, straining, and weld­
ing operations shown in Fig. 32 illustrates this 
point. 

1. Make a cut around a volume within the 
matrix (a), remove it (b), and transform it stress 
free (c) (eij is the transformation strain, (Iij = 0). 

2. Apply a stress (Iij that results in an elastic 
strain - eij, reversing the transformation strain 
elastically (d). 

3. Replace and reweld the inclusion (e) and 
relax the applied stress (0. The first step corre­
sponds to the extreme case of a transformation 
in an infinitely soft matrix; since (Iij = 0 it causes 
no strain energy. The second step corresponds 
to the opposite extreme of transformation in an 
infinitely rigid matrix. The strain energy is W = 
!CTijeij. In the third step the matrix is given more 
realistic elastic properties resulting in a total 
strain energy between zero and !CTijeij. If the 
matrix is elastically identical to the precipitate, 
the inclusion is called homogeneous. If the elas­
tic constants of matrix and precipitate are differ­
ent, the inclusion is called heterogeneous. 

The degree to which the inclusion is accom­
modated in the matrix depends on its shape and 
orientation. This is physically most apparent for 
an incoherent inclusion that, by definition. ex­
erts only a hydrostatic pressure (no shear 
stresses), for example, an amorphous precipi-

1. 1 Ihl le i 

B 
u,' • 0 

~ 0 
Idl ,., I II 

' " 0 § -C=>-
I 

FIG. 32. Hypothetical sequence of operations in the 
formation of an clastic inclusion. 
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tate or a gas bubble. Hence, we will first con­
sider the simplest case of an incoherent inclu­
sion. 

C. INCOHERENT PRECIPITATES 

For an incoherent inclusion no atomic corre­
spondence is maintained across the interface. 
The strain energy is thus caused only by the 
volume difference between the inclusion and the 
hole it occupies. This energy depends on the 
shape of the hole. In an elastically isotropic ma­
terial a spherical hole will yield uniformly in all 
directions. A disk-shaped hole on the other hand 
will yield unevenly. The flat faces are displaced 
easily under the internal pressure set up by the 
volume difference while the radial displacement 
is small. When the disk is very thin the entire 
volume change is accommodated by yielding of 
the flat faces. As a result a very thin incoherent 
precipitate is essentially stress free and there­
fore causes essentially no strain energy. To a 
good approximation the strain energy per unit 
volume of an incoherent plate is proportional to 
its aspect ratio cia. 

Thus of the three main possible shapes 
(spheres, plates, and needles), plates will always 
be preferred because they are easily accommo­
dated. The smaller the aspect ratio the smaller is 
the strain energy and the flattening of a given 
incoherent precipitate is limited only by the in­
creasing surface energy. A typical example of an 
incoherent inclusion is amorphous Si02 forming 
in Si. 

D. COHERENT PRECIPITATES 

Most applications of the strain energy ap­
proach deal with coherent rather than incoher­
ent inclusions. Under constraint, incoherent in­
clusions are always in a state of hydrostatic 
stress whereas coherent inclusions can support 
shear stresses. This makes it necessary to distin­
guish between different types of stress-free 
transformation strains for coherent precipitates. 
These are best characterized by their principal 
strains el . e2. and e3. For many transformations 
this is self-evident. A cubic to tetragonal distor­
tion. for example. is completely described by 
elongations or contractions along the three or­
thogonal cube axes. The strain tensor is thus 
automatically given in the diagonal form . 

Other transformations are described by a gen­
eral (nondiagona\) strain tensor ('ij which can al­
ways be decomposed into an antisymmetrical 

part wij = l<eij - eji) and a symmetrical part £ij = 

!(eij + eji) . For small strains wij represents a rigid 
body rotation and does not contribute to the 
strain energy. The symmetrical part £ij (the pure 
strain) can always be referred to three orthogo­
nal principal axes (its eigenvectors). In this co­
ordinate frame £ij is diagonal with the principal 
strains el , e2, and e3 (the eigenvalues) as the 
diagonal elements: 

The three principal strains are all different in 
the general (orthorhombic) strain tensor. If two 
strains are equal, the strain tensor is cylindri­
cally symmetric (sometimes called tetragonal), 
and if all three strains are equal the spherically 
symmetric strain tensor represents a pure dilata­
tion. In addition, the strains can be all of the 
same sign or of mixed sign. This yields six cases 
that will be considered individually below. 

The solution to the inclusion problem would 
be simple if the strain energy caused by a coher­
ent inclusion were a simple analytical function 
of the principal strains and the variables 
"shape" and "orientation." Unfortunately no 
such function exists for the general case. How­
ever, for the special case of an oblate spheroidal 
inclusion (a flat ellipsoid of revolution) undergo­
ing a stress-free strain (e I , e2, e3) along its axes 
a, a , and c, an analytical expression that in­
cludes the shape effect explicitly through the as­
pect ratio cia has been derived . The three 
shapes of plate, sphere , and needle can be ap­
proximated by cia < t. cia = 1, and cia> t. 
respectively. The inclusion orientation in this 
case is fixed through the assumption that the 
axes of the spheroid are aligned with the princi­
pal axes of the strain. For this case . the strain 
energy takes the form W = fkl . e~) + Rkl . e~. 
e3)cla . 

It can be shown that for a pure dilatation (el = 
e2 = e3) the total strain energy is independent of 
the shape : R(el, e2, e3) = O. For a plate, the 
contribution of the strain e3 normal to the plate 
disappears as the aspect ratio cia approaches 
zero. Physically this means that the strain e3 
normal to the plane of the plate is accommo­
dated well. as in the incoherent case . and a very 
thin plate is essentially free to expand in thick­
ness without setting up a stress. An example of 
this is an interstitial dislocation loop that may be 
regarded as an inclusion plate undergoing an ex-



pansion e3 with el = e2 = O. The extra plane is 
incorporated with the same plane spacing as the 
equivalent planes in the matrix, that is , accom­
modation is essentially complete. 

On the other hand, the strains el and e2 in the 
plane of the plate are constrained by the matrix, 
setting up large stresses and as the aspect ratio 
cia goes to zero, the shape-independent term of 
the strain energy f(el , e2) remains finite. 

These results may be summarized as follows: 
a plate-shaped inclusion with very small aspect 
ratio is stressed in its plane and essentially stress 
free normal to its plane (a state of plane stress). 
The strain energy in this situation is caused only 
by the principal strains el and e2 in the plane, as 
indicated by the 2 x 2 block in the upper left of 
the strain tensor 

This corresponds to the case of the inclusion 
axes parallel to the principal strains. 

Consider the more general situation with the 
inclusion not parallel to the principal strains. Re­
ferred to the inclusion frame the strain then 
takes the form of a general symmetrical tensor 

C 
f; 11 

''') e ij = f;11 f:2:! e~~ 

e~1 e .1~ e~~ 

The same reasoning used before to illustrate 
easy accommodation of the expansion en = e3 

for incoherent and coherent plates implies that 
the shears el3 and e23 are also easily accommo­
dated by the matrix and thus contribute little to 
the strain energy of a plate. A shear dislocation 
loop is perhaps the best example to illustrate 
that almost all the strain (and hence strain en­
ergy) is located in the matrix outside the loop (or 
inclusion) . Therefore the strain components ell ' 

en, and the shear el2 in the plane of the plate 
(indicated by a block in the tensor eij) dominate 
the strain energy . The approach used in the fol­
lowing sections seeks to minimize only the dom­
inant part of the strain energy. 

As seen above the strain energy of a homoge­
neous inclusion in the case of a pure dilatation is 
independent of the inclusion shape. For a 
spherical precipitate (c l II = I) the total strain 
energy is only approximately one-third of the 
work that would be necessary to compress the 
particle elastically as in a rigid matrix. Thus the 
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fact that the transformation strain in the particle 
is partially accommodated by elastic distortion 
of the matrix reduces the total strain energy by 
approximately two-thirds. Of this total strain en­
ergy one-third resides in the spherical particle 
and two-thirds in the matrix. This distribution of 
the strain energy between matrix and precipitate 
is reversed as the inclusion becomes flattened 
(cia -- 0). Hence, as shown in the previous sec­
tion, most of the strain energy resides in the 
inclusion, for a thin plate. Consider now an in­
clusion with elastic constants different from 
those of the matrix, that is, a heterogeneous in­
clusion. Having established that in the homoge­
neous case a spherical inclusion contains one­
third of the strain energy, let one phase become 
slightly softer than the other. Clearly the energy 
savings are greater if the matrix softens since it 
carries two-thirds of the total strain energy . This 
is reversed for plates in which the strain energy 
reduction is larger if the particle softens rather 
than the matrix. Therefore the total strain en­
ergy of a heterogeneous inclusion is minimized if 
its major fraction in the corresponding homoge­
neous case is located in the softer phase: if the 
precipitate is elastically softer than the matrix it 
should be a plate, but if it is harder than the 
matrix a sphere would be preferred. 

Extending this analysis to the case of aniso­
tropic elasticity is also straightforward. As 
shown above, a thin plate is in a state of plane 
stress which causes the major fraction of the 
total strain energy . If the plane of the stress is 
parallel to an "elastically soft plane" of the 
crystal the strain energy is smaller than for any 
other orientation. It can be shown that the strain 
energy of an elastically anisotropic plate inclu­
sion on a plane {h k I} depends on a term (\ -
A)("~k~ + k~/~ + I~"~), where A = 2c44/(c" - CI~) 
is the Zener anisotropy ratio. The strain energy 
is then minimized for {I 0 O} plates if A is larger 
than unity. as, for example, in all fcc metals. 
Conversely {I I I} plates are preferred if A < I. 
Since a very thin plate leaves the matrix essen­
tially unstressed the strain energy is indepen­
dent of the matrix elastic constants. 

A heterogeneous anisotropic inclusion should 
form a plate if it is softer than the matrix. The 
only difference to the case of isotropic elasticity 
is that now two elastic shear moduli must be 
compared with that of the matrix. Thus an aniso­
tropic inclusion with shear moduli !(cll - cd 
and ('44 in an isotropic matrix with shear modu­
lus JJ. will form a plate if min I(kll - CI~)' ('441 < 
JJ.. Otherwise a sphere is preferred . 
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In the previous section it was shown how the 
elastic strain energy of a coherent precipitate 
undergoing a pure dilatation can be minimized 
through an inclusion shape and orientation that 
concentrates the major part of the strain energy 
in the softer phase. The high symmetry of the 
dilatational transformation strain allows a de­
gree of freedom in the orientation of the precipi­
tate which is lost in the case of a cylindrical 
strain (e, = e2 "* e3). The precipitate will be a 
plate in the plane containing the two equal 
strains e" if e, < e3 and a needle if e, > e3. 

Consider a cylindral strain with mixed signs 
(e)/e, < 0), for example, an expansion e3 and a 
contraction e" in the plane normal to it. The 
strain energy of a thin plate on the plane normal 
to e3 is dominated by the uniform strain e, in this 
plane. However, another orientation can be 
found in which the strain energy is still lower. if 
the plate is inclined to contain a direction in the 
interface in which the transformation strain is 
zero. Such a direction must exist since the strain 
changes sign between e, and e3. The angle () of 
the unextended line with the (0 0 I) plane is 
given by 

(34) 

If a thin disk takes this orientation it is elasti­
cally distorted in its plane only by a unaxial ex­
tension -e, constraining the transformation 
strain e, , while the direction normal to it is free 
of transformation strain (unextended line). This 
is the geometrical condition of an invariant (un­
extended and unrotated) line in the interface as 
it is used for instance in martensite theory [Eqs. 
(21) and (26)]. 

In an isotropic crystal the uniaxial tension 
constraining the plate could be in any direction 
in the (0 0 I) plane containing the uniform strain 
e,. In an anisotropic cubic crystal this stress 
would be expected to lie in a soft direction in the 
(0 0 I) plane. Thus the elastic distortion of the 
plate causes minimum strain energy if it occurs 
in the (I 0 0) direction for A > I and the (I I 0) 
direction for A < I. The resulting habit plane 
will contain this "tensile axis" and lie at an an­
gie () to the (0 0 I) plane . This leads to {O k I} 
habits for A > I and {Ir Ir I} habits for A < I. 

Orthorhombic strains (£', "* e~ +- £13) with un­
mixed strains will lead to precipitates whose di­
mensions tend to be inverse to the transforma­
tion signs . The elastic hehavior plays only a 
secondary role in determining the shape . and the 
orientation is entirely given by the principal 
strains . 

In the case of orthorhombic strains with 
mixed signs the same principles as for the cylin­
drical strain apply. A plate should be inclined to 
have a stress-free line in the interface and most 
of the strain energy is caused by the uniaxial 
stress in the plane of the plate . Thus the smaller 
one of the two principal strains with equal sign 
will lie in the plate being elastically constrained 
and the stress-free line is formed between the 
remaining two principal strains . This determines 
the orientation uniquely and elastic anisotropy 
plays only a secondary role . The angle () of incli­
nation is given by Eq. (34) . 

E. Loss OF COHERENCY 

Beyond a critical size it becomes energetically 
favorable for a coherent particle to lose coher­
ency. This size depends on the difference be­
tween the interface energy of a semicoherent 
inclusion (proportional to the surface area) and 
the strain energy of a coherent inclusion (pro­
portional to the volume). At the critical size the 
accommodation of the transformation strains 
switches from an elastic to a plastic mode. A 
simple example of this transition is the punching 
out of prismatic dislocation loops. Interstitial 
loops are punched into the matrix leaving behind 
vacancy loops in the interface (or vice versa) . A 
TEM micrograph of rows of punched loops 
around a He gas bubble in Nb-Zr alloy is shown 
in Fig. 33a. The corresponding schematic (Fig . 
33b) emphasizes the fact that a spherical inclu­
sion will punch out loops in all crystallographi­
cally equivalent directions, for example . in the 
case of Nb-Zr in all (I I I) directions . Such rows 
of punched prismatic loops will leave behind an 
equal number of opposite dislocation loops in 
the interface and render the particle semico­
herent while accommodating the volume com­
ponent of the transformation strain. 

In order to accommodate the shear compo­
nent of the transformation strain. shear loops 
are more efficient since they need not be gener­
ated in pairs. As a result the shape change is 
easier to accommodate than the volume change. 
Martensite plates and many semicoherent pre­
cipitates can be modeled successfully on the as­
sumption that an array of shear dislocations ac­
commodates part of the transformation strain. A 
schematic of a precipitate plate containing shear 
loops in its interface is shown in Fig . 34 . The 
crystallographic constraints in this case are less 
apparent than in the case of a spherical inclusion 
under a pure dilatation (Fig. 33) . One such con-
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FIG. 33. Punched-out di slocation loops due to vol­
ume strain: TEM micrograph (a) and schematic (b) of 
punched loops around a helium bubble in Nb-Zr alloy. 
(Micrograph C. Echer.) 

straint is that the loop plane must be a slip plane 
and contain the Burgers vector; but it is not im­
mediately clear which of the crystallographically 
equivalent loop arrays are preferred for a given 
plate and what will be its habit plane. 

FIG. 34. Schematic of lens-shaped precipitate with 
array of shear loops in the interface . 
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An answer to these questions is provided by 
the theory of martensite transformations which 
gives an algebraic solution for the habit plane 
and orientation relationship if the slip plane and 
direction and of course the transformation strain 
are known. A more physical description on the 
loss of coherency and resulting interface struc­
ture based of the analogy with slip in a tensile 
test is summarized below . 

Consider a thin coherent plate with mixed 
principal strains. As outlined above it will be in a 
state of uniaxial stress if it is oriented for mini­
mum strain energy, that is , such that it contains 
an invariant line in the interface . 

If it deforms plastically it is most likely to do 
so on the slip system with the highest resolved 
shear stress. This depends on the relative posi­
tion of the tensile axis and the slip system; and 
the resolved shear stress is a maximum if both 
the slip plane and the slip direction make an 
angle of 45° with the tensile axis. The problem in 
the elastic case of finding a direction with a low 
Young's modulus in the plane of unmixed 
strains now translates to finding the tensile di­
rection in this plane with the highest Schmid fac­
tor R = cos cf> cos A for a crystallographic slip 
system (where cf> and A are the angles of the 
tensile axis with the slip direction and the slip 
plane normal , respectively) . As a first approxi­
mation it may be assumed that the Schmid factor 
is maximized when the tensile axis makes an 
angle of A = 45° with the slip plane . For slip on 
the (l 0 I) plane this direction is [I 0 OJ, as shown 
in the stereogram in Fig. 35a. The invariant line 
(open circle) must be located at the intersection 
of the cone of unextended lines with the slip 
plane so that it remains unaffected by the plastic 
deformation, a condition well known from mar­
tensite theory . The resulting habit plane (pole 
marked by star) contains the tensile axis and the 
invariant line . Applications of these principles to 
coherent and semicoherent precipitates are 
given below. 

F. ApPLICATIONS 

The transformation strain for a" Fel6N2 (bct) 
in Fe (bcc) is cylindrically symmetric and 

" .. = ( - 0.0023 
C' I) - 0.0023 ) 

0.0971 

Since the anisotropy ratio A is greater than unity 
for Fe the habit plane predicted for a" is (0 k I) 

-: 
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FIG. 35. y' precipitate in Fe-N alloy: stereogram il­
lustrating predicted habit plane (a) and corresponding 
TEM image showing inclined y' plate with interface 
striations along invariant line direction (b) . 

with kif = YO.0023/0.971 , a plane that is in­
clined about 8.50 with respect to (0 0 1). This 
inclination is in agreement with experimental 
observations. 

As for ex" Fe16N2, the transformation strain for 
y' Fe4N (fcc iron sublattice) in Fe (bcc) has cy­
lindrical symmetry; with Qbcc = 0.28678 nm, 
Qfcc = 0.3795 nm, we obtain 

co .. = (-0.0643 
~'Ij -0.0643 ) 

0.3233 

These strains are large and the habit plane must 
be determined by the criterion of maximum 
Schmid factor. y' slips on {III} fcc planes de­
rived from the inclined {l 0 I} bcc slip planes as 
shown stereographically in Fig. 35a. The pre­
dicted (0 k I) habit plane defined by the [4 9 4) 
invariant line and the [1 00] tensile axis is (04 9), 
in agreement with the experimental observa­
tions. Figure 35b shows a TEM image of a typi­
cal y' plate. The parallel striations are interfacial 
dislocations along the invariant line direction. 

With the lattice parameters Qbcc = 0.3147 nm, 
Qhcp = 0.3002 nm, ('hep = 0.4724 nm, the trans-

formation strain tensor for M02e (hcp) In Mo 
(bcc) is 

€u = (0.17 0.06 ) 

-0.05 

when referred to [1 1 0], [1 I 0], and [00 I] axes. 
These directions transform to [0 0 0 I], [0 I I 0], 
and [2 I I 0], respectively. Since all these princi­
pal strains are different the cone of unextended 
lines now has an elliptical cross section. Due to 
the crystallography of the hexagonal M02e pre­
cipitate, (000 1) is the slip plane. This is derived 
from the vertical (1 1 0) bcc slip plane. Again, 
the tensile axis in the (0 0 1) plane (the plane of 
unmixed strains) at 450 to the (I 1 0) bcc/(O 0 0 1) 
hcp slip plane is [1 0 0]. The invariant line at the 
intersection of the cone of unextended lines with 
the (l 1 0) slip plane is -[I 1 3]. The resulting 
(0 k l) habit plane containing the [I 0 0] tensile 
axis and the [II 3] invariant line is (0 3 I), again 
in agreement with experimental observations. 

The main results of this section can be sum­
marized as follows: 

1. For principal strains of unmixed sign the 
precipitate dimensions tend to be inverse to the 
strains. 

2. For principal strains of mixed sign the in­
terface is oriented so as to include an invariant 
line . 

3. For coherent precipitates remaining de­
grees of freedom for shape and orientation are 
used to concentrate the major part of the equiva­
lent homogeneous isotropic strain energy in the 
softer phase or orientation. 

4. For plate-shaped inclusions the tensile 
axis must be a soft direction in the plane of un­
mixed strain [in our examples the (00 I) plane]. 
For coherent precipitates the tensile axis must 
be elastically soft, that is, have a low elastic 
modulus, and for semicoherent precipitates it 
must plastically soft, that is, be oriented for the 
maximum Schmid factor on the slip system. 

G. MECHANISMS 

The mechanism of a phase transformation de­
pends upon thermodynamic, kinetic, and struc­
tural parameters . If at a given temperature the 
parent phase is unstable with respect to small 
fluctuations of a physical quantity such as com­
position or atomic displacement then no barrier 
to nucleation exists and the transformation can 
proceed by the gradual amplification of some 



FIG. 36. TEM micrographs showing microstructures 
typ ical for different mechanisms of decomposition : 
spinodal decomposition in Cu-Ni-Fe alloy (a) (micro­
graph K. Kubarych), nucleation and growth in AI-Si 
alloy (h) , and eu tectoid reaction in Fe-C alloy (c) . 
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fluctuations to form a modulated structure. Be­
cause of their barrier-free nucleation such struc­
tures are homogeneous and independent of pre ­
existing microstructures and defects. This is 
illustrated in Fig. 36a with a Cu-Ni-Fe alloy 
which has undergone spinodal decomposition . 
On the other hand, when a barrier to nucleation 
exists the re sulting two-phase microstructure 
depends on the type and distribution of defec ts 
available to help overcome the barrier . This situ­
ation is more commonly encountered than that 
of modulated structures and usually leads to less 
homogeneous microstructures such as the AI-Si 
alloy shown in Fig. 36b. Vacancies are neces­
sary in this alloy to overcome the nucleation 
barrier due to the large volume increase on pre­
cipitation. As a result precipitate-free zones de- _ 
velop in regions depleted of vacancies such as 
grain boundaries, surfaces, or dislocations. De­
fects other than vacancies can also lead to pre­
ferred nucleation . Dislocations, stacking faults, 
grain boundaries, and other defects have all been 
found to provide heterogeneous nucleation 
sites. If the alloy decomposes only along an ad­
vancing interface, usually starting from a grain 
boundary, the reaction is called discontinuous , 
as opposed to the continuous reactions de­
scribed above. Discontinuous reactions lead to 
characteristic cellular morphologies. Similar 
cellular morphologies are also observed in eu­
tectoid decomposition (see Fig . 36c) where both 
reaction products are different in structure from 
the parent phase. If no suitable defects are avail­
able to allow precipitation of the equilibrium 
phase it is often found that intermediate meta­
stable phases form with a structure and compo­
sition approximating that of the stable equilib­
rium phase. In fact the properties of most 
precipitation hardening alloys a re based on such 
metastable phases. Structurally, the mechanism 
of a phase transformation depends, therefore, 
not only on preexisting microstructure and de­
fects but also on available intermediate phases . 
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