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In recent years much experimental as well as theoretical effort has been devoted to under­

standing properties of nuclei under extreme conditions, such as high angular momentum and/or 

high excitation energy.! On the experimental side several new phenomena have been discovered. 

Some examples are the observed irregularities in the yrast band of a cold nucleus and the 

existence of Giant Resonances built on excited states2• The quasi continuum is now the object of 

;,) intensive study by several groups. The Self-consistent Cranking Model3 has been successfully used 

'. 

for the description of the yrast line of a cold heavy nucleus. For moderately higher excitation 

energy one still has to consider the pairing degree of freedom as well as the temperature depen­

dence, which complicates the use of realistic forces in calculations of Hartree-Fock-Bogoliubov 

type. Consequently only the semiclassical method of Strutinsky generalized to finite temperature 

and superfluid nuclei has been used4 as an approximation. Recently the Finite Temperature 

Hartree-Fock-Bogoliubov (FTHFB) has been proposed5 and solveds for separable forces with the 

Baranger-Kumar Hamiltonian and configuration space. A systematic study of the deformation 

parameters, as a function of temperature, has also been mades in the FTHFB which as a mean 

field theory neglects contributions stemming from departures from the mean values. 

In all the above calculations no attention has been paid to the fluctuations due to the finite 

temperature. However, simple models,7.8 as well as more realistic calculations,g have shown that 

the effect of such fluctuations can be very important for quantities such as the pairing gap even at 

low temperatures . .The motivation of this work was to extend such investigations to other degrees 

of freedom such as the deformation parameters ao and a
2 

ao = /3 cos I 

a2 = /3 sin I 

which for a deformed nucleus are related to the experimentaly observed quadrupole moments. 

(1) 

If one considers ao and a
2 

as collective coordinates, it is possible to derive!O at finite tem­

perature a classical Hamiltonian function in the Adiabatic Time-Dependent Hartree-Fock Theory 

given by 
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(2) 

V( a
O
,a2) is given by the temperature-dependent mean-field energy, and the mass parameters Bij 

are given by 

" /I 
1 q'k q'k I I I 

B II /I = 2" f1 I E, _ Ek I 3 I k - , (3) 

where q" is the supermatrix! 

corresponding to the multi pole operators ~y 20 or ~ (r 2y 22 + r 2y 2-2)· The quantities Ek are the 

quasiparticle energies, 

(
Ek 0) 
o -Ek 

and C
k 

the occupation Cactors oC the Fermi-Dirac distribution at temperature T, in matrix Corm, 

(
Ii. 0) 
o . I-Ii. 

The probability Cor the nucleus having the deCormation ao'~ is givenll,Q by 

F(aO,a2) is the Cree energy obtained Crom V(a
O
,a2), varying a

O
,a2 independently. In principle, one 

should also consider the pairing degree oC Creed om as an independent variable, but then the calcu-

lations becox:ne very time consuming, so we approximate these calculations by solving the gap 

equations Cor each point oC the plane a
O
,a

2 
to find the selC-consistent gap Cor this deCormation. 

The chemical potentials AZ,AN' were adjusted to get the right particle numbers. In our calcula- .. ' 
tions Cor the deCormed nucleus 16~r we use Cor V(a

O
,a

2
) the pairing plus quadrupole Hamiltonian 

oC Baranger-Kumar12, we also use their configuration space. 
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For each couple (30
0

,30
2

) we selfconsistently determine the gap parameter for protons and neu-

trons for different temperatures. In Fig. 1 contour plots of these quantities are depicted* in the 

/3,"Y plane for protons (upper part) and neutrons (lower part). For protons a.t T=0.2 MeV there are 

strong correlations in the whole /3,"Y plane; at T=O.4 MeV they vanish only for /3 larger than 0.5. 

At T=0.6 Mev they disappear for /3 > 0.3 and for T=0.8 only very weak pairing correlations 

remain (maximum gap is 0.7 MeV for the spherical shape) for /3 < 0.2. For T > 0.8 MeV no 

significant pairing was found. For the neutron gap, see the lower part of the figure; a similar trend 

is observed, the only difference being that the quenching of the correlations is much faster. It is 

interesting the fact that the gap parameters show almost no dependence with the "Y degree of free-

dom. 

In calculating probabilities P, the mass dependence has been usually neglected 7·8 under the 

implicit assumption that the mass parameters do riot depend strongly on the parameters involved 

(in our case 3.0 and 302), Only recently, in Ref. [9] the probability (4) was calculated ,with and 

without mass dependence, taking the gap parameter as a coordinate. The results for the average 

gap value were, qualitatively, not very different in both approximations; only a small reduction in 

the first calculation with respect to the second was observed. 

We again would like to do both kind of calculation for the deformations parameters. How-

ever, it is well known 13 that the Cranking formula (3) has some inherent difficulties for the mass 

parameter in the region of a level crossing or pseudocrossing, since the denominators become very 

small. This difficulty increases at higher temperatures, where the gap has vanished and the 

particle-hole configurations give a finite contribution. In this letter it is not our intention to go 

beyond the approximation (3) to include further correlations which could wash out the sharpness 

of levels crossing. On the other hand, if one wants to have some information on the effect of the 

mass parameter on the probability P, some kind of modification has to be done in expression (3) 

to avoid the possible divergences in the level crossings. We adopt the pragmatic point of view of 

·One has to distinguish between the coordinates a o, a2 and 8. 0 = X . <r 2y 20>, 8. 2 = X . _1_ <r2y 22 + Y 2-2> 
v2 

where X is the strengh of the quadrupole-quadrupole interaction 12, they are equal only in the minimum. All results as well 
as the plots are calculated with -ao and 8. 2 (in some cases the corresponding ~,7). We have omitted the tildes just for 
simpler notation. 
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introducing a minimum level separation e, stemming from the neglected residual interaction, and 

replace IEk-E,1 by IEk-E,I+e in (3). We have done calculations within the range e=0.2-3.0 MeV 

and the results are qualitatively independent of e. We shall later on come back on this point. In 

the fina( results we choose e=l MeV. In the following we denote by P(aO,a
2

) the probability 

without mass dependence and by P M(aO,a
2

) the probability with mass dependence. 

In Fig. 2a-f we show the probability distribution PCB,,) without mass dependence for the 
I, 
'>I 

nucleus 168Er at zero angular momentum for the temperatures T=.2, .8,1.0, 1.2, 1.4 and 2.0 MeV. 

P(.8,,) is normalized ~ such a way that the maximum value for a given temperature is unity. 

Each line in the contour plots differs by ±.1 from the adjacent lines. For T=.2 MeV we have a 

strongly peaked distribution around the axially symmetric minimum at ,8=0.23. At T=.8 the 

distribution softens in all directions. At T=1.0 the minimum is still on the prolate side, but on 

the oblate side at f3-.1 there is an appreciable part of the probability density. At T=1.2 the 

shifting towards the oblate side continues, while at T=1.4 the maximum of the distribution is 

already at .8=0. At T=2.0 MeV the distribution is essentially that of a spherical vibrator. 

The full probability distribution P M(aO,a
2
) ,i.e., including the mass dependence, is shown in 

Fig. 3. For T=0.2 MeV the exponential dependence in eq.(4) is too strong to be changed by the 

mass dependence on ao, a2• For T=O.8 MeV we already notice some diff~rence with respect to 

Fig. 2 ,namely it softens faster toward the oblate shape. At temperature 1 MeV a second max-

imum appears at the oblate edge with equal probability to the prolate one. At T=1.2 and 1.4 

MeV the probability maximum appears for the oblate shape only. For T= 2 MeV the maximum 

extends around the spherical shape. The different behavior between P(aO,a
2

) and P M(aO,a
Z

) can be 

understood classically : for an axially symmetric spheroid the irrotational mass is given 14 by 

1 1 4 2 

- (1+- - )B , where c is the semiaxis along the symmetry axis and a the transverse. Clearly 
S 2 c 2 

since the oblate shape has a larger mass parameter the broad distribution which appears in Fig. 2 

can be easily driven to the oblate shape. 
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In the upper part of Fig. 4 we show a 0 I. , the self-consistent value of ao' which corresponds 

to the value of ao in the free energy minimum' in the plane aO,a2' for a given T. Since we are at 

zero angular momentum, the shape parameter "'f is 0 0 and therefore a~· =0, (a a· =(3) for all tem­

peratures. Also represented are the corresponding values of ao and a2 but taking into account the 

,', temperature fluctuations, i.e. 

",,' 
K =0,2 (5) 

the scale of a a· and a 0 is on the left, and that of a 2 is on the right. Corresponding ~hape param­

eters aOM and a2M are average values calculated taking into account the mass dependence of the 

probability, i.e. using P M(aO,a2) ineq. (5). 

The integration in eq. 5 ru~ over the area 0 ~ {J < 00, 0 $ "'f $ 60· in the (3)"'f plane. 

This area includes all possible quadrupole deformations and each of them is counted only once. 

The average values a 0 and a 2 have to be considered with some care. A finite a 2, for example, 

may arise from fluctuation away axial symmetry and not necessarily mean a most probable asym­

metric shape. In order to understand the full picture, we have always to keep in mind the entire 

distributions as given in Figs. 2 and 3. At temperatures 0 < T < 0.5 parameter a ~.( or fJ) 

slightly rises, mainly because of the reduction of pairing correlations with growing temperature. 

Between T=.6 and 1.1 MeV the temperature destroys the shell effects and we observe a diminu­

tion of the deformation. For T > 1.1 MeV the fluctuations are so large that the mean field 

approach breaks down, and the deformation drops dramatically from.16 at T -- 1.1 MeV to zero 

at T -- 1.4 MeV. 

The averl1ge values a 0 behave qualitatively in a similar manner to a a· for temperatures T 

< 1.1 MeV, but for T larger than 1.1 MeV, ao does not decrease but approaches the value --.10, 

as can be unders~od from the probability distribution P({J,"'f) in Fig. 2; The parameter a ~c , as 

mentioned above, is always zero because of axial symmetry ; a 2 rises with a rather steep slope 

from 0 to .045 at T -- 1.1, then remains almost constant around this value. This behavior can 

also be understood from Fig. 2. Parameter a 2M is rather similar to a 2 for all temperatures. 

Parameter a OM looks like a 0 for t~mperatures lower than 0.4 Me V but for higher t~mperatures 
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exhibits smaller values due to the fact' that the maximum on the oblate side has a smaller f3 value. 

In both cases the sharp collapse of the deformation is smeared out by the temperature fluctua-

tions. The neglect of the mass dependence overemphasizes this effect. 

In Fig. 4b the quantities 0'( a 0 ) and 0'( a 2 ) are represented. The variance is defined by 

, K =0,2 (6) 

Again the left hand scale is for ao and the right hand scale for a
2

• Both of them behave in a simi-

lar way. They rise quickly from T=O to T -- 1.1 MeV and then stabilize ,or slightly decrease, 

for higher temperatures. Finally to have some feeling about the dependence of the different quan-

tities on the parameter f introduced to avoid the possible singularities of the mass parameters, we 

show in Fig. 4c the average deformations a OM and a 2M for some values of f. The dashed lines 

correspond to f = .5, the dashed-dotted to f = 1.0 and the dotted to f = 1.5 MeV, the bold ones 

are for a 0 and a 2, i.e., when the mass dependence is neglected. From this figure one can con-

elude that the dependence on f is rather smooth in a broad range. For very large values of E the 

possible structure is washed out and we expect the limiting value of a 0 and a 2 respectively. 

In summary, we have for the first time self-consistently takE!n into account the temperature 

fluctuation in the calculation of the deformation parameter for losEr in realistic calculations. The 

effects on ao are large for T ~ 1.1 MeV; on a2 they become appreciable already for small tempera-

tures. 
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Fig. 1. Contour plots of the selfconsistent gap parameter for fixed (aO,a2) in the {3" plane 

for different temperatures (in MeV) for the nucleus losEr. In the upper part the protons gap. The 

contour near the origin has the value: in (a) 1.7 MeV, in (b) 1.5 MeV, in (c) 1.35 MeV, and in (d) 

0.7 MeV. The other contours decrease outwards with a stepsize of 0.150 MeV. In the lower part 

the same for neutrons. The contour near the origin has the value: in (a) 1.35 MeV, in (b) 1.2 

MeV, in (c) 1.0 MeV. Further details as for the protons. 

Fig. 2, The probability distribution P(aO,a
2
), without mass dependence for different tem­

peratures for the nucleus 158Er. The outer contour corresponds to 0.1 it increases inwards with a 

stepsize of 0.1, the maximum value is 1.0. 

Fig. 3. The probability distribution P M(aO,a
2
), with mass dependence for different tempera­

tures for the nucleus I 58Er. The outer contour corresponds to 0.1, the stepsize of 0.1, the max­

imum value is 1.0. See text for further details 

Fig. 4. In the upper part are shown the parameters ao and a
2 

in different approximations 

(see text) versus the temperature. In the middle part are shown the quantities C1(ao), C1(a2)' In 

both cases the left scale applies for ao' whereas the right hand one is for a
2

. In the lower part of 

the figure the parameters a OM and a 2M are depicted for different values of the parameter e. 

j, 
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