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ABSTRACT 
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The eikonal theory of wave propagation is developed by means of a 
Lorentz-covariant variational principle, involving functions defined on 
the natural eight-dimensional phase space of rays. The wave field is a 
four- 'lector representing the electromagnetic potential, while the medium 
is represented by an anisotropic, dispersive nonuniform dielectric tensor 
D~V(k,x). The eikonal expansion yields, to lowest order, the 
Hamiltonian ray equations, which define the Lagrangian manifold k(x), and 
the wave· action conservation law, which determines the wave amplitude 
transport along the rays. The first-order contribution to the variational 
principle yields a concise expression for the transport of the 
polarization phase. The symmetry between k-· space and x-space allows for a 
simple implementation of the Haslov transform, which avoids the 
difficulties of caustic singularities. 

Wave propagation in various media is often well represented by the eikonal 
theory, also known as ray optics, geometrical optics, and WKB [1] _ In this paper, 
we pre~ent a variational approach, leading to some new results, as well as concise 
expressions for old results_ While our immediate motivation is electt'omagnetic 
wave propagation in magnetiz~d plasma [2], we expect that our methods are 
applicable to other media as well, such as elastic waves [3]-

Our emphasis here is on the vector character of the wave field, which 
pt'opagates tht'ough an anisotropic medium. We also emphasize the phase-space 
concept, as a way of avoiding the singularities of caustics. 

In addition, it is convenient to utilize a covariant formulation [4], tt'eating 
space and time on an equal footing; . this is the key to conciseness. We represent 
the electromagnetic wave field by the four-potential A~(x), with AIJ 
(~,-~), and x = (~.t). (We set c '" 1). 

The wave equation for linear dissipationless propagation can be cxpt'essed as an 
integral equation of the form 

- (1) 

Here DIJV(x' ,x") represents the (in general) anisotropic dispersion tensor of 
the medium, as a two-point kernal. We consider it as given; methods for its 
deirvation are discussed in our previous work. The variational equation below 
requires that it be symmetric: 
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D).IV(x' ,x") = DV).I(x" ,x'); (2) 
asymmett·y represents dissipation, which must be treated by other methods. 
Nonlinearity can also be included, by allowing thp. medium to respond 
"ponderomotively" to the wave. 

We introduce the quadratic action functional: 

(3) 

The requirement t.hat S be stationat·y with respect t.o arbitrary variations of t.he 
four-potential field is equivalent t.o Eq. (1), since t.he functional derivative 
&S/&A).I(x') is just t.he left side of that equation. 

It is advantageous to introduce the phase- space concept as early as poss ible. 
We define the dispersion-tensor as a function on phase space (k,x): 

D).IV(k,x) = Id4s D).IV(x'.=x+s/2, x"=x-s/2)exp(-ikos) (4) 

It is thus the Fourier transform of D).IV(x' ,x") with respect t.o the two-point 
separation s=x' -x". The wave four vector k = (~,-·w), together with x '" (~, t), 
coordinatizes the eight-dimensional phase space (k,x) of the rays. 

Analogously, we introduce the bilinear Wigner tensor: 

(5) 

which likewise lives on the phase space. In terms of t.hese, the action functional 
reads 

where 

SeA) = ~II O).IV(k,x) AV).I(k,x), 

II = II d4xd4k/(2~)4. 

We see that k-space and x-space enter (6) on an equal footing. 
(k,x) in this space, we represent the tensor 0).1 V in terms 
(orthonormal) eigenvectors ea and (real) eigenvalues Da : 

D).IV(k,x) = taOa(k,x)e~(k.x)e~*(k,x), 

where 
O).IV(k.x)e~(k,x) = Oa(k.x)e~(k.x) 

and 

(6) 

At each point 
of its local 

(7) 

(8) 

(We assume that t.he eigenvalues are non-degenerate.) Substituting (7) into (6), we 
obtain 

SeA) ~t II Oa(k,x)~(k,x), ( 10) 
a 

where 
( 11) 

is the projection of the Wigner tensor on the local polarization ea(k,x), and 
Oa(k,x) is the scalar dispersion function. 

We now assume that the wave field ~(x) can be expressed in eikonal form: 

(12 ) 

where the phase 6(x) is real and has slowly varying first-derivative 
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k~(x) = ae(x)/ax~, while the amplitude a~(x) is complex and is 
slowly varying. The eikonal assumption introduces an implicit small parameter, 
representing aa~/axu and ak~/axu. 

When we substitute (12) into (5), we obtain, to lowest order in the eikonal 
parameter, 

(13) 

where we have discarded rapidly oscillating terms - exp2i6(x), which vanish 
upon x-integration in (6). 

substituting (13) into (11), and performing the k-integration of (10), we 
obtain the action functional 

S(A) = !d4x L(x) (14) 

in terms of a Lagrangian density: 

where 

L(x) = L Da (k=a6/ax, x)laa I2(x), 
a 

( 15) 

(16 ) 

is the scalar projection of the amplitude on the polarization direction ea' 

The variation of the action (14) is now taken with respect to the amplitude 
a~(x) and the phase 6(x). The former variation yields 

( 17) 

for each a. For a non-·trivial solution, we require Da=O for one polariza
tion, denoted I, and allow aa = 0 for the other polarizations a 1 I. 

Thus we obtain the eikonal equation 

Dr(k=a6/aX, x) = 0, (18) 

with the amplitude expressed as 
(19 ) 

The polarization 
e~(x) = e~(1(=a6/ax, x) (20) 

can absorb the complex phase of the amplitude vector field a~(~), allowing the 
scalar amplitude aI(x) to be real and positive. 

The eikonal equation ( 18) is solved by Hami lton' s method. In eight-
dimensional phase space, the ray equations are 

dx~ aDI dk aDr ~ +- (21) 
do ak do ax~ ~ 

These Hamiltonian equations yield the family of ray orbits [k(o), x(o) 1. With 
appropriate initial conditions, the rays generate a four-dimensional "Lagrangian 
submanifold". k(x). The phase 6(x) is then obtained by integrating along a ray: 

o 
6(x(0» = f do' k~(o·)dx~(o')/do'. 

0 0 
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On varying s with respect to the phase e(x), we obtain a conservation law [5]: 

aJ}J(x)/ax}J = 0, 

for the wave--action four-flux J}J(x) , defined as 

J}J(x) - aL/ak}J 

[ aD1(k,x)/ak}J](x) at(x). 

(dx}J/da) at(x). 

By (21), the temporal component of J}J(x) is the familiar wave-action density: 

(23) 

(24) 

(25) 

while the spatial part of J}J(x) is the wave-action flux density (a~/a~)J. 

Thus (23) reads 
aJ(~,t)/at = - V • (J a~/a~); (26 ) 

this conservation law reflects the invariance of the action functional under a 
uniform phase shift e(x) ~ 6(x) + C. 

On substituting the expression (24) for J}J(x) into the conservation law 
(23), we obtain the amplitude transport equation: 

a2
D a2e(x) + __ 1_ 

ak ak axllaxU 
}J U 

(27) 

The first term on the right r-epresents the medium nonuniformity, while the second 
term represents the divergence (or convergence) of a ray bundle. 

The latter quantity is determined, in turn, by its tr-ansport r-elation: 

a2
D a2e a2D a2e 

+ __ 1_ + 
__ 1 _ 

ax}Jak a~axu axuak a~axll 
p p 

a2e a2e 
x }J ax ax 

(28) 

obtained by differentiating (18) twice with respect to x. This nonlinear- equation 
for the ray divergence leads in gener-al to a singularity in a finite distance, 
i.e., to a caustic. To avoid that singularity, we may use the Haslov tr-ansform. 

Inserting (19) into (12), we now have, for the field, 

~(x) = e~(x) aI(x) exp ie(x) + c.c., (29) 

with e(x) determined by (22) and (21), a1(x) determined by (27), and e}J(x) 
determined by (20) up to a complex phase factor. That is, the replacement 
e~(k,x) ~ e~(k,x)exp i~(x) leaves (7) invariant, so that the pol-
arization phase is not as yet determined. 

For the polarization phase, it is necessary to expand the action functional to 
first order in the eikonal parameter. After some algebra, and using the zero-order 
equations, we find the fir-st order Lagrangian to be 
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(30) 

where (,J represents the canonical Poisson bracket: 

(31) 

On taking the variation of the action functional with respect to the amplitude, 
we now obtain the additional equation L' ~ 0, which yields the desired polarization 
phase transport: 

(32) 

It is interesting to note that this transport relation lives in phase space; 
i . e., it is not necessary to proj ec tonto x- space. On the other hand, the ray 
divergence equation (28) definitely refers to x-space. 

We now proceed to the elimination of caustic singularities. Let us again 
substitute the Wigner tensor (13) into (11), obtaining the scalar field: 

Integrating over an element of phase space volume [see (10)]. we have 

(34) 

We see that At(k,x) is the wave density in phase space, while a~(x) 
is the density in x-space. From (33), we see that At is supported on the 
Lagrangian manifold k = k(x) = ae(x)/ax, i.e., kl = ae(x)/ax1 , and so 
on. At a caustic, k(x) becomes double--valued, so that the x-representation of the 
eikonal breaks down. 

The Maslov procedure [6] is a simple way to avoid the caustic singUlarity. One 
Fourier transforms the field A~(x) from (Xl, X2, Xl, X4)_ space, to (k" X2, Xl, x4 ) 

space, where the (x1,k1) pair is chosen to represent. the singular direc
tion' in a2e/ax~ axv. One now can make the eikonal assumption (12) 
in the new space, and the whole procedure outlined above carries through in the 
same way. Space does not permit ·a fuller discussion here. 

The Maslov transform is a special case of a more sophisticated approach, 
recently developed by Littlejohn [7-9]. His method involves a continuous 
transformat ion of coordinates in phase space, and is based on the wave packet 
approximation., 

The variational method discussed here allows for a treatment of wave angular 
momentum [10] transport, and its consequences. This work is in progress. 

Applications of the present formalism are now under way. 
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