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Recent developments in positron emission 
tomography (PET) instrumentation * 

Stephen E. Derenzo and Thomas F. Budinger 

Lawrence Berkeley Laboratory and Donner Laboratory, Mail Stop 55-121 
University of California, Berkeley, California 94720 

Abstract 

1 

This paper presents recent detector developments and perspectives for positron 
emission tomography (PET) instrumentation used for medical research, as well as 
the physical processes in positron annihilation, photon scattering and detection, 
tomograph design considerations, and the potentials for new advances in detectors. 

*Presented at the International Workshop on Physics and Engineering in Com
puterized Multidimensional Imaging and Processing, Irvine, California, April 4, 
1986. To be published in the Proceedings of Photo-Optical Instrumentation Engi
neers, 1986 
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Introduction 

Positron emission tomography (PET) serves a unique and important role in 
medical research because it permits the non-invasive, quantitative study of biological 
processes as they occur using minute quantities of tracer material. Table 1 illustrates 
how biological processes in different organs are studied using a variety of labeled 
compounds. 

Table 1- Positron tracers and the processes they measure 

Heart: 

ionic 82Rb 
lle palmitate 
lle or IsN amino acids 

Brain: 

ionic 82Rb 
18F deoxyglucose 
1221 iodoamphetamines 
150 2 
150 water 
lleo hemoglobin 

myocardial perfusion 
fatty acid transport, oxidation 
protein synthesis, tissue anabolism 

blood brain barrier breakdown 
glucose transport, phosphorylation 
blood flow 
oxygen utilization 
blood flow 
blood volume 

In the following sections, we review the physical processes involved in PET, the 
primary design considerations in PET instrumentation, recent detector develop
ments, and potential areas for new development. 

Physical Processes in PET 

The ability of PET instrumentation to measure dynamically tracer concentra
tions is strongly influenced by the physical processes involved in positron emission 
(Figure 1), the detection of the annihilation photons, and the tomographic recon
struction, which we summarize below: 
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Positron annihilation photons 

XB L 853·8057 

Figure 1: A positron emitted by nuclear decay stops in tissue and annihilates with 
a nearby electron, producing two 511 ke V photons that fiy off in nearly opposite 
directions. 

(1) Positron emission: Positron emitting isotopes decay by transforming a 
proton in the nucleus into a neutron, a positron., and a neutrino. 

(2) Positron stops in tissue: The positrons are emitted with a variety of 
energies, with a maximum energy that depends on the isotope. For example, 18F, 
HC, 68Ga, and 82Rb have maximum positron energies of 0.64 MeV, 0.96 MeV, 1.90 
MeV, and 3.35 MeV, respectively. The resulting positron range varies from a small 
fraction of a mm for 18F to several mm for 82Rb.1-4 

(3) Positron-electron annihilation: The positron annihilates with an elec
tron to produce two 511 keY photons. If the positron were able to loose all of 
its kinetic energy before annihilation, the two 511 ke V annihilation photons would 
be emitted in exactly opposite directions. However, the positron has a residual 
energy of typically 10 e V at annihilation, and the emission angle has a Gaussian 
distribution with a full-width at half-maximum (fwhm) of 0.500

•
5 

(4) Scatter in tissue: A 511 keV photon will travel an average of 10 cm in 
water before interacting by Compton scattering. This process reduces its energy and 
randomly changes its direction, effectively losing all image information. The human 
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head or chest is approximately two interaction lengths thick, and the probability 
that both annihilation photons leave the body unscattered is only about 20%.6 This 
represents a significant loss of events and requires large correction factors. Also, 
a small but significant fraction of the annihilation photons scatter "in the plane" 
of the tomograph and are detected as prompt (non-random) coincidences. These 
result in a heterogeneous background that extends beyond the subject over the 
entire imaging field. 

(5) Interaction with the detectors: The annihilation photons that reach 
the scintillators can interact in two ways- (i) by photoelectric effect, whereby the 
entire 511 keY is given to a recoil electron, or (ii) by Compton scattering, where 
only a portion of the photon energy is given to a recoil electron and the photon is 
reduced in energy and scattered into a new (random) angle. For BGO the prob
ability of a photoelectric event is about 50% for the first interaction. For BaF2 
this probability is about 25%. A successful event requires that both annihilation 
photons pass the pulse height requirements in the opposing detectors.7,8 The detec
tion efficiency is the fraction of annihilation photons reaching the scintillator that 
produce an acceptable pulse. 

(6) Scintillation: The recoil electrons produce ionization and excited atomic 
electrons in the scintillation crystal. Some of the excited electrons return to their 
ground states by the emission of scintillation light. The luminous efficiency (number 
of scintillation photons per keY loss) and the speed of emission vary from crystal 
to crystal. 9 

(7) Light Transfer to Photodetector: Light in the scintillator can be 
trapped by total internal reflection, scattered or absorbed by internal impurities 
and imperfections, scattered or absorbed by external reflectors, or collected by the 
photodetector. The light collection efficiency is the fraction of light that reaches 
the photodetector .10 

(8) Production of an electrical pulse: The photo detector converts col
lected scintillation light to a useful electrical pulse. The quantum efficiency is the 
probability that an incident photon will produce a photoelectron in the photode
tector. The photomultiplier tube has an internal gain of typically 1 million and a 
single photoelectron produces a pulse several nsec wide and many m V high. 

(9) Electronics: Electronic circuits determine whenever two opposing crystals 
have detected photons within a short time interval (5 to 20 nsec, depending on 
the detector material) and store the addresses of the crystals involved.u,12 For the 
time-of-flight mode, the differential time of arrival is also recorded.1s,14 

(10) Attenuation correction:,: Before the administration of any radioactive 
isotope, the patient or animal is placed in the tomograph and positioned at the 
slice to be imaged. An external positron source (usually 275-day 68Ge) encircles the 
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patient, and the tomograph measures the annihilation photons that pass through 
the patient unscattered. These measurements are used to correct the emission data 
for attenuation through the patient. 

(11) Additional data corrections: Before tomographic reconstruction, the 
data must also be corrected for (i) accidental background events (random coinci
dent detections of unrelated annihilation photons), (ii) scattered background events 
(coincident detections of photon pairs from the same positron but one or both 
have scattered), and (iii) the loss of events due to deadtime in the detectors and 
electronics. 

(12) Reconstruction: The tomographic reconstruction usually involves filter
ing the parallel-ray projections either by convolution or frequency filtering and then 
back-projecting to form the image array. Alternate procedures involve iterative 
methods of estimating the true distribution such as maximum likelihood or least 
squares techniques.I5 

Note that 4 different efficiencies appear above: detection efficiency, luminous 
efficiency, light collection efficiency, and quantum efficiency. 

Tomograph design factors 

The goal of most tomograph designs is the accurate and rapid measurement of 
tracer concentration in sharply-defined tissue volume elements.1S- 19 This requires 
temporal resolution, spatial resolution, and the quantitative measurement of activ
ity concentration, as discussed below: 

Quantitative accuracy-statistical factors 

Statistical accuracy in the reconstructed image depends on the number of coinci
dent events that can be collected within the available time. This is determined both 
by the available positron activity and the sensitivity of the tomograph, which is usu
ally expressed as the number of coincident events detected per sec per J.LCi/ cm3 in a 
20 cm diam cylinder of water. In addition, some detector materials provide time-of
flight information, which reduces statistical fluctuations in the reconstructed image. 
The system sensitivity depends on the following factors: 

(1) Solid angle coverage: Multiple rings of detectors that encircle the patient 
provide the best acceptance solid angle for the annihilation photons. Utilization of 
the cross-ring coincidences is very important in realizing the full available solid 
angle. 
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(2) Axial coverage: Multiple detector rings also serve to cover a larger volume 
of tissue, thus providing a higher event rate for a given amount of administered 
tracer activity. 

(3) Detector Material: (Table 2) Except for applications requiring very high 
light output, BGO has replaced NaI(TI) in non-time-of-flight PET instrumentation. 
BGOhas the highest density and the highest atomic number of any detector ma
terial, and as a result is best able to totally absorb 511 ke V photons efficiently in 
small crystals. BaF2 has replaced CsF for time-of-flight positron instrumentation. 
In 1982 a very fast (800 psec) scintillation component was discovered, making BaF2 

the highest speed inorganic scintillator known.2o BaF2 is not hygroscopic (unlike 
CsF) and the crystals do not have to be sealed in bulky cans, which improves the 
detection efficiency. For any detector material, the detection efficiency depends on 
the detector material, size, and pulse height thresholds used.7,8 

Table 2. Detector materials for PET 

Material NaI(TI) CsF BGoa GSOb BaF2 

Density (gm/ cmS) 3.67 4.61 7.13 6.71 4.8 
Atomic Numbers 11,53 55,9 83,32,8 64,16,8 56,9 
Emission wavelength (nm) 410 390 480 430 310j225 
Index of refraction 1.85 1.48 2.15 1.9 1.56 
Hygroscopic YES VERY NO NO NO 
Photoelectrons per 511 ke V 3,000 200 400 600 800j200 
Scintillation decay time (nsec) 230 2.5 300 60 620jO.8 
Photoelectrons/ns (peak rate) 13 60 1.3 11 1.3j250 

Gbismuth germanate, Bi4GeS012 
bgadolinium orthosilicate (Cerium activated), Gd2SiOs(Ce) 

(4) Single vs multiple crystal detections: Multicrystal detector designs 
fall into two categories. Those in the first category measure the amount of energy 
deposited in each crystal and can reject multiple crystal interactions to preserve the 
full spatial resolution of the detector crystals. Those in the second category esti
mate the center of energy deposition without determining how many crystals are 
involved. The multiple crystal events thus included appear to enhance the detection 
efficiency, but they also degrade the position resolution. 

(5) Time-of-flight information: Modern BaF2 detectors have excellent tim
ing resolution (typically 400 psec fwhm) and are able to measure the arrival time 
difference between the two photons and determine the annihilation point with an 
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uncertainty of 6 cm fwhm. In conventional tomography, the annihilation point is 
only known to lie somewhere along the line between the two coincident detectors. 
The time-of-flight information is able to reduce the rms statistical uncertainty in 
the reconstructed image by the ratio of the distance across the emitting region to 
the time-of-flight uncertainty times twice the speed of light (15 cm per nsec).21-28 
For example, for a time-of-flight uncertainty of 6 cm and a 24 cm diam emission re
gion, the time-of-flight information reduces the statistical uncertainty by a factor of 
2 which corresponds to a four-fold decrease in the imaging time. 29,30 The detection 
efficiency e and the timing resolution T can be combined in the figure of merit e2 I T 

where e2 is proportional to the number of events detected and liT is proportional 
to the statistical value of each event.8 

Quantitative Accuracy-systematic factors 

PET data are subject to the following systematic errors: 

1) Attenuation of the annihilation photons in the tissue31,32 

2) Partial volume effects due to limited axial resolution33 

3) In-plane smearing due to limited in-plane resolution34 

4) Background events due to accidental coincidences (unrelated annihilation pho
tons detected in coincidence by chance)3S-38 and prompt scattered events (annihi
lation pairs from the same positron where one or both have scattered) .37,39-42 

5) Deadtime losses in the detectors and electronic circuits.43,44 

Temporal resolution 

The ability to measure the tracer concentration with good temporal resolution 
(i.e. in a series of rapid time sequence images) requires the collection of a large 
number of events during the study, which requires good detection efficiency, low 
deadtime, high maximum data rates, and a minimum of detector motion. Note the 
ability to fit compartment model rate constants to PET data depends primarily on 
the total number of events collected in the study and the temporal resolution. The 
number of events in each time sequence image is of lesser importance. 

Spatial resolution factors 

Quantitation within regions of size D requires an overall system spatial resolution 
with fwhm ~ D 12. Principal components of the system resolution are discussed 
below: 
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(1) Positron range: Accurate measurements of the positron annihilation dis
tributions show a distribution with a bright center and extensive tails.1- 3 The re
sulting full-width at half-maxima are very small « 1 mm) and 90% of the annihi
lations lie beyond this distance. For a summary of these results, and a method for 
mathematically removing this blurring factor, see ref 4. 

(2) Deviations from 180° emission: Measurements of the angular distribu
tion of annihilation photons in water at 20° show a nearly Gaussian distribution 
with a fwhm of l:l. = 8.7 mrad (0.50°).5 The corresponding spatial distribution fwhm 
r at the center of a detector ring of diameter D is given by r = (l:l./4)(D) = 0.0022D 
This blurring factor is not easily removed mathematically and represents the most 
fundamental limit to spatial resolution in PET. 

(3) Detector aperture: For discrete crystals of exposed width W, the geo
metrical component of the detector resolution (at the center of the imaging port) 
is approximately equal to W /2.45- 47 

(4) Linear sampling: For detectors of width W, the geometrical resolution of 
W /2 discussed in part (3) above will not be realized in the reconstructed image 
unless the tomographic sampling distance is W / 4 or finer throughout the image 
region. A stationary circular array has a sampling distance of W /2. The most 
frequently employed method of improving the sampling is by the "wobble" motion
rotating the detector array about a small circle centered at the system axis48- 53 

Other sampling schemes include irregularly spaced crystals54,55 and selective rota
tion of crystal groups around the tomograph axis.56 A sampling distance of W /4 can 
also be achieved with only two mechanical positions by using the "clam" motion 57 

(5) Multiple crystal interactions: Compton scattering of the annihilation 
photons in the detectors can result in a mis-identification of the detector of first 
interaction. This can be reduced by (i) coupling each scintillator to its individ
ual photo detector and requiring single detector interactions only58 or (ii) placing 
shielding material between the detectors, but this reduces the detection efficiency, 
especially for off-angle rays.7,46,47 

(6) Off-axis penetration: Annihilation photons from off-axis sources can pen
etrate one or more detectors before interacting and the uncertainty of the depth of 
interaction results in a radial elongation of the PSF at the edge of the field.59- 61 

Wedge-shaped crystals appear to have little benefit when the crystals are narrower 
than about 8 mm.62 

(7) Reconstruction filter: For the best estimation of the tracer activity 
within regions of interest, the reconstruction filter upper frequency roll-off should 
be determined by the system resolution, not by statistical fluctuations. 
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(8) Organ motion: The effects of organ and tracer motion are reduced by 
gating for cardiac imaging and rapid sequence imaging for fast dynamic studies. 

Recent detector developments 

Small PMTs 

The development of smaller photomultiplier tubes (PMTs) (especially the 14 mm 
and 10 mm diameter types) have permitted the construction of positron tomographs 
with 3 mm crystals,63 4 mm crystals,64,65 and 5.6 mm crystals66- 68 where each crystal 
is coupled to one PMT. 

Light division coding 

In this class of detector design, each PMT is coupled to 2 or more crystals and 
the ratio (or difference) of the PMT signals is used to determine the crystal of inter
action. This includes the MGH positron camera69 built in the late 1960's, as well as 
the "analog coding" tomograph developed and built by the same group.70-74 This 
is an area of active current interest, and numerous variations have been proposed 
and tested.55,75-78 

Anger-type coding 

In this scheme, a single large scintillation crystal is coupled to many PMTs and 
the ratio of outputs is used to determine the center of intensity. This design is basic 
to the Anger Scintillation Camera79 and has been adapted for PET in the form of 
a hexagonal array of NaI(TI) bars80- 82 for single slice imaging and in the form of 
larger crystals for multi-slice imaging.83 

Wire chambers: 

Considerable advances have been made over the years in the development of wire 
chamber-converter combinations for PET.84- 86 However, the detection efficiency 
and timing resolution are significantly poorer than the more conventional (although 
possibly more costly) scintillator-PMT approach. 

A more recent development uses an efficient scintillation detector such as BaF 2 
to produce UV emissions and a wire proportional chamber with a special liquid 
photocathode that can convert the UV into an electron avalanche.87,88 
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Focussed PMT with mesh dynodes and anode array 

Figure 2: Design for a multi
anode PMT incorporating electron 
focussing and mesh dynodes 

Position-sensing PMTs: 

Photocathode 

Focussing cone 

Photocathode, 
Focussing cone, 

and Dynode leads 
Anode 
array 

~DynOde 
leads 

Electron paths 

Mesh Dynodes 

XBL 859-' 1694 

The JLchannel PMT has been under development for several years89- 91 and has 
very high speed, but is limited by low packing density, high price, and relatively 
short useful lifetime. 

A special PMT with two 12 mm x 24 mm phototubes in a single glass envelope 
was developed by Hamamatsu Corp. for a positron tomograph built by the National 
Radiological Institute of Japan.92 

Recently, Hamamatsu Corp. has developed a mesh-dynode PMT that has a 
position sensing anode.93- 95 A recognized limitation of this approach is the dead 
space taken up by the support structures for the mesh dynodes and the anode. In 
order to couple this PMT to a close-packed crystal array, the workers at Hamamatsu 
have suggested a special lightpipe that matches the area of the crystals and tapers 
to a smaller area at the PMT window. 

Figure 2 shows our suggestion for another solution to this packing problem, 
where a focussing cone is used to demagnifying the photocathode onto the first 
mesh dynode., The photocathode would be as large as the crystal array and the 
photoelectrons efficiently transported to the smaller first mesh dynode without los
ing position information. A tapered lightpipe would be less efficient. 
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Time-or-Flight 

See references (21-28) for descriptions of positron tomographs using time-of-flight 
information for improved randoms rejection, high maximum data rates, and reduced 
statistical noise. 

Avalanche Photo diode- BGO detectors 

One approach for the eventual elimination of the glass PMT is the use of "solid 
state PMTs" in which electrons are multiplied in high field regions within the pho
todiode material.96-101 At the present time, these devices are considerably more 
expensive than glass PMTs and have poorer timing resolution. 

Lightpipes and external PMTS 

For several years, an ambitious and novel high resolution positron tomograph 
design using plastic scintillators and a coded optical fiber readout has been inves
tigated at Texas A&M University. A full tomograph would have 8 detector layers 
each consisting of 16 concentric rings of 1024 scintillators per ring (a total of 131,072 
independent scintillators), and 356,352 optical fibers would couple the scintillators 
to 576 PMTs.102 

Combined Phototube- solid state readout 

This approach combines the excellent timing resolution of the PMT with the 
small size of solid state photodetectors (Figure 3). A group of crystals is cou
pled to a relatively large photomultiplier tube which determines the timing for the 
group. The solid-state photo detectors are coupled individually to each crystal to 
determine the identity of the scintillating crystal. Candidates for the photodetec
tor include HgI2,103-106 silicon photodiodes,45,lo7-109 GaAs photodiodes, no silicon 
avalanche photodiodes,97-1oo and small low-gain PMTs.93 This method is good for 
very small crystals, since the noise of solid state photo detectors decreases with de
creasing area, and the signal is nearly independent of crystal size. In addition, it 
permits the rejection of multiple-crystal interactions that degrade spatial resolution. 

The feasibility of this concept has been demonstrated using a 3 mm wide BGO 
crystal in coincidence with two 3 mm wide BGO crystals coupled to a common 14 
mm PMT and individually coupled to low-noise- silicon photodiodes. The signal to 
noise ratio was adequate for the identification of the individual crystals on an event
by-event basis and the measured detector pair resolution was 2.0 mm fwhm. 45,lo8 
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Wiring not shown for darlty 

3 mm X 10 
X 30 mm deep 
BGO crystal 
(8 per layer, 

32 total) 

lst Stage of 
charge amplifier 

12 

Figure 3: Schematic of 32 BGO crystals, 4 phototubes in 2 glass envelopes, 32 
silicon photodiodes, and charge amplifiers. The phototubes provide group timing 
information and the silicon photo diodes and charge amplifiers determine (i) when
ever an annihilation photon interacts in more than one crystal, (ii) the crystal of_ 
interaction, and (iii) the depth of interaction in the crystal. This approach provides 
the best possible spatial resolution for a given crystal array. 

f 

Figure 4: Low-noise 
position-sensitive sil
icon photodiode for 
the determination of 
energy deposited in 
the crystal and the 
depth of interaction. 

Contact (8) 

XBL 859·11692 
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Moreover, by using position-sensitive solid-state photo detectors to measure the 
depth of interaction in the crystal, off-axis penetration effects can be nearly elimi
nated (Figure 4). 

Scintillators with different decay times 

By coupling scintillation crystals with significantly different light decay times such 
as BGD (300 nsec) and GSD (60 nsec),lll or CsF (2.5 nsec) and BaF2 (80% at 620 
nsec and 20% at 0.8 nsec),26 it is possible to determine the crystal ofinteraction by 
an analysis of the PMT pulse shape. However, multiple crystal interactions cause 
the slower detector to be chosen, even if both are involved. 

To provide depth of interaction information as well as finer linear sampling, it 
has been recently proposed to use concentric rings of scintillation crystals having 
different light decay time.1l2 

Advanced tomographs 

Table 3 describes some advanced positron tomographs with an image resolution 
finer than 7 mm. 

Table 3. ComparisonG of positron tomographs with spatial resolutions finer than 7 mm fwhm 

Institution MGH NIRS CTI LBL Univ 
Boston Japan Knoxville Berkeley Penn 

References 71-74 65,64 66 63 81,82 

Detector Material BGD BGD BGD BGD NaI(TI) 
Number of Rings 1 1 1-4 1 1 
Number of Crystals 360 128 512" 600 6 
Detector Ring Diam (cm) 46 26.5 100 60 85e: 
Patient Port Diam (cm) 28 13.5 65 30 50 
Crystal Width (mm) 4 4 5.6 3 
Crystal C-C Spacing (mm) 4.0 6.5 6.1 3.15 
In-plane Resolution (mm)d 4.8 3 5 2.66 6.5 
Axial Resolution (mm) 10 5 18 5 13 

G Count rate capabilities are not available and cannot be compared. 
bper ring 
Chexagonal 
dFWHM of reconstructed point spread function near center of system 
6 A resolution of 2.4 mm is expected for the complete system. 

Table 4 lists the three major contributions to spatial resolution at the center of 
a 60 cm diameter detector ring comprised of 3 mm wide BGD crystals, assuming 
that multiple crystal interactions are rejected. For positron emitters of low emission 
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energy such as 18F, the contributions from detector size (1.5 mm fwhm) and angu
lation error (1.3 mm fwhm) are the primary factors. This analysis is in excellent 
agreement with the measurements of References 45 and 63. In reference 63, the 
measured point spread function (PSF) had 2.6 mm fwhm at the center of the ring 
and crystal penetration increased the radial component of the PSF to 4.2 mm fwhm 
at a distance of 8 cm from the center. 

f 

Table 4. Contributions to spatial resolution using 3 mm wide BGO crystals 

Detector size 1.5 mm (triangular) 
Angulation error 1.3 mm (Gaussian) 
Positron Range (18F) 0.5 mmG (sharply peaked) 
Combined detector pair resolution 2.0 mmb 

Image resolution at system center 2.6 mmc 

Gcalculated as 2.35 times the measured rms deviation 
babove 3 contributions added in quadrature and in agreement with the measure
ments of Ref. 45 
c25% increase due to reconstruction filter and in agreement with the measurements 
of Ref. 63 

Areas for future development 

Design factors 

In future tomograph designs, the detector resolution will be improved to the 
point where (1) positron range, (2) deviations from 1800 emission, (3) multiple 
crystal interactions, and (4) off-axis penetration become increasingly important. 

The peaked nature of the positron range blurring function permits its mathe
matical removal. This reduces the systematic error due to blurring from one region 
to another and improves the estimation of the activity in each region.4 The supres
sion of positron range blurring by strong magnetic fields appears difficult, as fields 
higher than 5 Tesla would be required.u3 

It would also appear possible to remove the smearing effects of multiple-crystal 
interactions and off-axis crystal penetration by mathematical processing of the pro
jection data before reconstruction. However, it is statistically preferable to eliminate 
these factors on an event-by-event basis by using detector designs that tan reject 
multiple-crystal interactions and measure the depth of interaction in the detector. 
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The potential for new scintillators 

Table 1 lists properties of the scintillation crystals most commonly used in 
positron tomographs. Of these, N al(TI) has the best photon yield and pulse height 
resolution, BaF 2 has the best timing resolution, and BGO has the best detection 
efficiency. An "ideal detector" with the best properties of all three has not yet been 
found. However, the scintillation properties of three of these crystals have been 
discovered rather recently: BaF2 in 1971,114 BGO in 1973,115 the fast component of 
BaF 2 in 1982,20,116 and GSO in 1982117. Further efforts in this direction are essential 
if the potentials of PET are to be fully realized. 

The ultimate scintillator for PET would have the high atomic number and density 
of BGO, the high light output of Nal(TI), and the ultra-fast decay of BaF2 to 
combine high detection efficiency, good spatial resolution, high data rates, and the 
increased sensitivity provided by time-of-flight information. 
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