
LBL-2l623

UNIVERSITY OF CALIFORNIA JUL 2 1986

Computing Division LIBRARY AND
DOCUMENTS SECTION

To be presented at the 3rd International
Workshop on Statistical and Scientific Database
Management, Luxembourg, Grand-duchy of Luxemburg,
July 22-24, 1986

SCIENTIFIC AND STATISTICAL DATA
MANAGEMENT RESEARCH AT LBL

F. Olken, D. Rotem, A. Shoshani, and H. Wong

June 1986

TWO-WEEK LOAN COpy

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

("-~

-

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBL-21623

Scientific and Statistical Data Management Research at LBL

F.Olken
D. Rotem

A. Shoshani
H.Wong

Computer Science Research Department
University of California

Lawrence Berkeley Laboratory
Berkeley, California 94720

June, 1986

This research was supported by the Applied Mathematics Sciences Research
Program of the Office of Energy Research, U.S. Department of Energy under
contract DE-AC03-76SF00098.

Scientific and Statistical
Data Management
Research at LBL *

Frank Oiken
Doron Rotem t
Arie Shoshani

Harry K.T. Wong

Computer Science Research Deptartment
Lawrence Berkeley Laboratory

Berkeley, CA 94720

Abstract

This paper is a review of scientific and statistical
data management research at LBL in recent years
in the areas of: logical modeling and user interfaces,
database operators, and physical organization and
access methods. In the area of logical modeling and
user interfaces we discuss: SUBJECT, a system for
organizing multi-dimensional data, GUIDE, a graph
ical query system, and logical modeling of tempo
ral data. In database operators we dicuss sampling
from relational databases, and transposition of com
pressed data. In the area of physical DB organization
and access methods we discuss: header data com
pression, rearrangement of data arrays to enhance
data compression, batched interpolation search, bit
transposed file organization, techniques for control
ling overflow from multi-dimensionsal data structures
(e.g. grid files), and data structures for temporal
data.

I Introduction

This paper is intended as a review of the re
search in scientific and statistical data management
at Lawrence Berkeley Laboratory (LBL) in recent
years. In an earlier paper [SW85J we have identi-

-Issued as LBL technical report LBL-21623. This work was
supported by the Director, Office of Energy Research, Office
of Basic Research Sciences, Division of Engineering, Mathe
matical and Geoeciences of the U.S. Department of Energy
under Contract DE-AC03·76SF00098.

tOn leave from Univ. of Waterloo, Canada. Partially sup
ported by Canadian NSERC Grant A3055.

1

fied the research issues in scientific and statistical
databases (SSDBs). The research areas have been
organized into three major groups: logical modeling
and user interfaces, database operators, and physical
organization and access methods. In this paper we
follow this organization. We discuss here in some de
tail our more recent research results, and some older
results which bear on our more recent work. Our
other work in SSDBs in also cited for completeness.

In the area of logical modeling and user interfaces
we commence with a discussion on modeling, brows
ing, and querying of multi-dimensional data in the
SUBJECT system. We then review a graphical user
interface (GUIDE) which employs graphical search
ing ond browsing over entity-relationship schemas
and subject directories. Next, we discuss the logi
cal modeling of temporal data which are commonly
found in SSDBs, and operators for the manipulation
of such data.

In the area of database operators, we discuss
first the implementation of sampling from relational
databases, and then algorithms for the transposition
of compressed data.

In physical organization and access methods we be
gin with a review header data compression and the
rearrangement of data arrays to enhance data com
pression efficiency. Next we examine batched inter
polation searching. We then review our work on a file
structure which is an extreme version of the trans
posed file organization, called bit, transposed files.
Then we have a discussion on reorganizing multi
dimensional data structures (such a multi-paging, or
grid files) to minimize page overflows. We conclude
this section with a discussion of physical structures

and access methods for temporal data.
We have published several papers which describe

and analyze the characteristics of SSDBs. The fol
lowing two papers explain the motivation of our re
search program. In [ShoB2J we analyzed several sta
tistical applications, reviewed the existing literature,
and discussed some known solutions. In [SOWB4J
we studied in detail ten scientific database appli
cations and we identified common characteristics
among them. Other papers discussing various SSDB
issues include: [SMB2J and [DNSSB3J.

II Logical Modeling and User
Interfaces

The first two sections below represent two differ
ent approaches to user interfaces, but both are de
signed to alleviate the burden from the user of having
to remember names, acronyms, formats, and com
plex syntax rules. The first section describes a sys
tem (SUBJECT) which is based on the modeling of
multi-dimensional data in SSDBs as logical graphs.
The second section discusses our work on a graphi
cal user interface for data exploration (GUIDE). The
third section discusses temporal data in SSDBs, and
proposes a logical model and operators for such data.

In addition to the topics discussed in this section,
we have published several other papers that deal with
logical aspects of SSDBs. They include: the model
ing of summary data [JohBlb,JohBlaJ, spatial data
analysis [MerB2J, metadata management [McCB2J, a
semantic model for SSDBs [KreB2J, and micro/macro
statistical DB management [WonB4J.

1 SUB.JECT: modeling multi-dimen
sional data

1.1 Motivation

One of the motivations for the SUBJECT system
is the modeling of multi-dimensional structures that
commonly exist in SSDBs. While in business appli
cations the concept of an "entity" (e.g. employee,
department, bank account) is common, it is more
convenient in SSDBs to think about "cases," which
are instances of an experiment, a simulation, or a sur
vey. While cases can be given unique identification
numbers (so that they can be thought of as instances
of entities), they are commonly characterized by a
set of parameters or categories. For example, trade
data can be identified in terms of the exporting coun
try, importing country, commodity, year, and month.
Similarly, a corrosion experiment can be described in

2

terms of the temperature, acidity, salinity, length of
exposure, and the material used. In all such exam
ples there exists naturally a multi-dimensional space
for which measured data are collected.

The difficulty of dealing with multi-dimensional
spaces is further compounded by the fact that each
dimension can itself have a complex (usually hierar
chical) structure. For example, a trade commodity
can be broken into categories of food, energy, cloth
ing, etc. Each category can be further broken into
sub-categories, such as energy into the sub-categories
of oil, coal, and gas. This sub-categorization of a
single dimension can contmue into many levels, and
sometimes overlaps may exist. Representing such
complexity requires special facilities at the logical
and user interface level.

Another goal of the SUBJECT system is to provide
a simple user interface that can be used by novice
users with very little training. We wanted to avoid
imposing on the user the burden of learning a syn
tax for expressing queries, and having to remember
names, acronyms and formats of data elements before
specifying a query. Also, a novice user should be able
to browse through descriptive information about the
databases (meta-data), select a database to explore,
and continue on to express queries using a single uni
form interface. At the same time, experienced users
should be provided with efficient ways (shortcuts) to
~cessing the data. In addition, we wanted to avoid
the problem of incondstency of names given to ele
ments that are used in several files by providing some
means of sharing the logical description of such ele
ments.

1.2 Approach and solution

The main idea in the SUBJECT system is the use
of an directed acyclic graph (DAG) with special node
types to represent thE logical structure of both the
data and the meta-data. The graph structure uses
two types of nodes that are called cluster nodes and
croS8 product nodes. Cluster nodes are used to rep
resent the concept of a collection of items. Thus, a
cluster node may represent a "state" , whose subordi
nate nodes are a collection of cities. Similarly, cluster
nodes can represent a collection of data values (e.g.
years), or a collection of files. Cross product nodes
are used to represent multi-dimensional structures,
usually parameters or categories of the data. For ex
ample, to model oil production by state by year by oil
type, we would use a cross product node to represent
the combination of state by year by oil type.

In Figure 1 we illustrate the use of cross product
nodes (marked with an X) and cluster nodes (marked

on.. PRODUCTION
8£ CONSUMPTION

-"~

. PRODUCTION CONSUMPTION

cln 1 CITY 2 1963 1983 JAN DEC

Figure 1: An example of a SUBJECT graph

with a C). Starting from the top, "energy" is a (meta..
data) cluster node of the files relating to energy data.
"Oil production and conlumption" is a crOll prod
uct node representing a file made of several param
eters and measurements. The multi-dimensionality
of the parameters are represented as a cross product
node of "oil type", "state/city", and "year/month".
Note that "state/city" is a cluster of clusters, while
"year/month" is a cross product of clusters. In gen
eral, if a combination of elements are needed to make
up an item in the next level, a cross product node
is used; if a single element in sufficient to represent
an item in the next level, a cluster node is used.
The system uses this semantic information in order
to perform the aggregation of items correctly (when
the user issues a query to extract summaries of the
database). However the user need not be aware of
node types when browsing through the graph.

A novice user can enter the SUBJECT system at
the root node of the directed graph to find the sub
ject categories that exist in the system. By selecting
a subject category, the user is provided with more de
tailed descriptions. The user can continue to browse
the meta.-data in order to become familiar with the
databases available in the system, and eventually se
lect a data file. At this point, the user is allowed to
explore the attributes and parameters of the file, and

3

express a query by selecting the desired nodes of the
graph. This is where SUBJECT differs from conven
tional approaches, where users are required to access
the met~data first, remember names and formats of
attributes, and then express a query using the syntax
of the query language.

An alternative to the browsing capability is pro
vided for experienced users, where they can search for
the data file using keys. Thus, they may quickly lo
cate a desired data file, and proceed to express query
conditions by moving around the directed graph of
that file. The system is also designed to provide doc
umentation associated with nodes in the graph.

Another important concept of the graph represen
tation is that of "node sharing", which permits more
than one arc to point to the same node, thus form
ing directed acyclic graphs. Node sharing allows at
tribute domains to be shared between different file,
providing several advantages: eliminating duplica
tion of data values; achieving consistency of naming,
where items that are the same, but reside in different
files, are forced to have the same name; and allowing
the specification of join domains between files, per
mitting multiple physical files or fractions of these
files to be viewed jointly as a single logical entity.

A detailed description of the SUBJECT system
and the advantages it provides are given in [CS81].

To summarize, the most important advantages are:
modeling met~data and data in the same graph
structure, supporting both novice and experienced
users, eliminating the need to remember names, val
ues and formats of data elements as a prerequisite to
query specification, providing a mechanism for avoid
ing duplication of data and using multiple names
across data files, and expressing queries without the
need to learn a query language.

2 GUIDE: A Graphical User Inter
face

2.1 Introduction and Motivation

The main motivation of our work comes from ex
periences in using query languages of commercial
Database Management Systems (DBMSs) and St~
tistical Packages. Even people with a computer sci
ence background often have difficulty using the so
called "high level user friendly languages." Non
expert users may not have the patience, ability, or
desire to learn and use these languages correctly. By
non-expert users (as opposed to casual users), we
mean non-computer science professionals such as so
cial analysts, statisticians or accountants who have to
deal with data regularly. The problem becomes much
worse in an environment with very large databases
that have very large and complex database defini
tions (schemas). Large statistical databases such as
the Census database and energy database are exam
ples of such an environment.

We believe that the following factors are the major
reasons for the difficulty in using and understanding
query languages.

• The user has to remember too many things.

• Semantically poor data models.

• No feedback during the query process.

• Lack of levels of detail in schemas.

• Lack of meta-data browsing facility.

• Limited and difficult-to-use aggregation facility.

• Lack of integrated, easy-to-use data display.

2.2 Approach

Our goal is to put together a set of facilities into
an integrated system that address some of the above
mentioned problems.

4

First, there are facilities in the system that remove
the memory burden from the user. The facilities pro
vide menus, examples, illustrations, and help mes
sages at any stage of query formulation.

Second, a version of the Entity-Relationship (E-R)
model is used to represent relationships between enc

tities explicitly. This capability helps the user view
the semantics of the DB schema. For experimental
purposes, the graphics user facility interfaces to a
subset of the query language CABLE [Sho78] which
is implemented on top of the database system DATA
TRIEVE, a DEC VAX/VMS product.

Third, we chose to use a graphics user interface for
the following reasons: .

1. The E-R model schema can be displayed as a
network of objects, each object representing an
entity or relationship type. This gives the user
an overall view of the schema at all times.

2. Queries can be expressed as a traversal along
the network of entities. Colors can be used to
indicate the paths of the queries, and hence, pic
torially indicate the scope and meaning of the
queries.

3. Parts of the schema can be selectively made vis
ible or invisible and thus provide the basis to the
implementation of multiple levels of detail to aid
in the understanding and use of the schema.

Fourth, the user can build the query in a piece
meal fashion and have intermediate results of partial
queries available at all times.

Fifth, to handle the problem of meta-data and
the large number of the entities and their attributes,
two kinds of directories are provided. The first is
called a "hierarchical subject directory" (similar to
that in SUBJECT which can be used to organize
the entities into logical groups hierarchically. The
user is guided by the system through this directory
to locate the relevant part of the sch~ma for which
queries can be expressed. This is also a useful facil
ity to browse and explore the subject matters of the
database. The second kind of directories are called
"hierarchical attribute directories," and are used to
organize attributes of entities (or relationships) into
groups similar to the subject directory, Each entity
or relationship type has an attribute directory. Both
kinds of directories are implemented as menus.

Sixth, a facility is made available to "rank" ob
jects according to their "relevancy" to a particular
group of users. The entity and relationship types
are ordered and classified into groups according to
the users' interests and the frequency of access in

queries. Different groups of users may have different
classifications. The first group of objects (with rank
1) is included the most important objects or focal
points of the schema. The second group (with rank
2) of objects provides (together with objects from
the first group) the next, more detailed, level of the
schema. As the rank of groups goes higher, we see
more details. "Focus" can be specified in the schema
so that a selected object will be placed in the center
of the screen. Also,there are commands to move the
picture around the screen, to zoom-in and zoom-out
on the selected part of the picture. The idea is to
present the right level of detail and the right part of
the schema.

Seventh, an interactive aggregation facility is avail
able in which the user is allowed to select those at
tributes from any entities as "parameter" attributes
of the aggregation (called category attributes). Also,
the user can select a set of "measured" attributes
from any entities (called summary attributes), and
for each such attribute, a simple descriptive statistics
function such as sum, average, etc. can be applied.

Eighth, a graphical data display facility is made
available for the display of the aggregation result.
Data display formats such as tabular, pie, bar, and
plot are implemented. The important property is
that the interface is completely menu-driven, and in
tegrated with the rest of the GUIDE system in that
it can be invoked from any point in GUIDE without
having to get off GUIDE itself.

All facilities are offered to the user through graph
ics menu •.

2.3 Results

An implementation of a prototype system based
on the approach mentioned before was completed.
There are five stages of query formulation in GUIDE:
schema definition, schema exploration, query expres
sion, aggregation, and graphics output display.

Data definition stage The Data Base Adminis
trator (DBA) provides information about the schema
during the definition stage. In addition to informa
tion on entities, relationships, and their attributes,
there are examples and explanations of these objects.
The graphical layout of the schema is fed into the sys
tem in this stage. Facilities are provided to the DBA
to do the following:

• specify a graphical layout of the schema;

• build a hierarchical attribute directory for each
entity and relationship type;

• specify the "importance ranking" of entity and
relationship in the schema. Every object is given
a rank (currently from 1 to 5).

Schema exploration stage During this stage,
the user can use the hierarchical subject directory
to reach the most relevant part of the schema. From
there the schema can be graphically examined at sev
eral levels of abstraction and only objects above a
specified importance ranking are made visible. The
user can also graphically edit the schema so that irrel
evant objects can be removed from the screen. With
the relevant part of the schema selected and displayed
at the desired level of detail the user is now ready to
express queries.

Query expression stage In the query stage, the
user can build up a query in a piecemeal fashion. The
database retrieval results of a partial query can be
shown if so desired. Examples and explanations on
any object on the screen can be requested. Graphi
cally, the user will be traversing a network of objects.
The query is a path selected by the user and shown
in different colors for each partial query. The user is
also encouraged to experiment with different condi
tions on the schema objects by adding or subtracting
conditions and the result of these experimentations
are available at any time. Piecemeal formulation of a
query is an important facility. It is achieved through
the formulation of "local queries." The user can con
centrateon several parts of the schema being shown
on the screen and can formulate a "local query" on
each part so that each local query is completely in
dependent of another. The idea is to allow the user
to have a focused vision of small parts of the schema
so that local results can be obtained and understood
without having to compose a complex query covering
a large schema space at the same time. The user can
then link local queries to form a complex query. This
complex query can then be treated as a local query
when the user expresses additional local queries. All
the local queries can be linked to form yet another
more complex query, etc. This process continues un
til the final query is formulated. The retrieval results
of each local query are always available for display.
The result of linking several local queries is also dis
playable at any time .

Aggregation stage During this stage, the user
• build a hierarchical subject directory for the can select graphically the category and summary at-

schema objects; tributes from entities for aggregation. Facilities are

5

available for the user to examine any entity included
in a previous query by displaying the available at
tributes within that entity, to find out the description
on the entity and its attributes, and select aggregate
functions for the summary attributes.

Graphics data display stage In this stage, the
aggregation result can be displayed in various forms
such as graphs, bar charts, pie charts, etc., with a
set of optional graphics enhancements. A graphics
package has been interfaced to GUIDE for graphical
displays.

2.4 Summary

A prototype of GUIDE became operational in sum
mer of 1983. A real database of Current PopUlation
Survey from the Bureau of Labor Statistics was in
stalled. From the experience of using the system, we
learned that the concepts motivated in GUIDE are
justified, and the approach we took is a reasonable
first step. But we also learned that the software and
hardware environment in which GUIDE was built are
not really powerful enough to provide the kind of in
teraction speed needed for a powerful interface such
as GUIDE. With the advent of powerful and inex
pensive graphics hardware and much better graphics
software, a more efficient implementation of GUIDE
can be obtained. This work was reported in IWK82].

3 Modeling Temporal Data

3.1 Problem description

Our interest in managing temporal data stems
from the needs of SSDBs, where physical exper
iments, measurements, simulations, and collected
statistics are often in the time domain. Such applica
tions are inherently time dependent and the ability
to manage data in the time domain is essential. The
time aspect may not be as important in other appli
cations (such as business databases) since such appli
cations can often be satisfied with the most updated
information only. Historical data would typically be
archived, but not available on-line.

Currently, there are no commercial systems that
explicitly model or support temporal data. Even in
the case that historical information is kept in com
mercial applications, they are not typically accessed
across the time dimension; rather one slice of the
data for a certain point in time is accessed. Recently,
there is renewed interest and new research in mod
eling and managing time for business applications.
Perhaps one of the reasons is that we can now afford
to store on line historical information since memory

6

a) Detector data: irregular, discrete.

b) Magnetic field: regular, continuous.

I II
c) Corrected detector data.

Figure 2: Examples of Time Sequences

and magnetic disk storage costs are rapidly decreas
ing, as well as the advent of optical disks.

Temporal data have special semantic features.
There may be many interpretations to the time do
main that could be confusing unless precise models
and operations in that domain exist. To illustrate
such semantic features we contrast below two se
quences (in the time domain) of measurements taken
in a typical high energy physics experiment: the se
quence of detector measurements and the sequence
of magnetic field measurements. In this experiment
high energy particles are collided and the paths of
the resulting sub-particles are recorded by detec
tors. Each detector "fires" as the sub-particle goes
by it. The sub-particles are subject to a magnetic
field which causes them to curve according to their
electric charge. The magnetic field tends to drift, and
therefore it is measured at regular intervals. These
magnetic field measurements are later used (during
analysis) to correct the detector measurements.

There are several other aspects to such an ex
periment, but for simplicity we c(;>Dsider here only
the measurements of the detectors and the magnetic
field. The typical pattern of these measurements is
shown in parts a) and b) of Figure 2.

Note the differences between these two sequences

..

of measurements. The first difference is that in the
detector data the sequence of measurements appear
in irregular positions over the time domain, while in
the magnetic field data the measurements exist at
regular intervals. This difference is important when
we use both sequences to generate the corrected de
tector data shown in part c) of Figure 2. For each
detector measurement we need to find the corre
sponding magnetic field value. Since magnetic field
measurements do not always exist for the times that
detector measurements are taken, the corresponding
magnetic field values have to be interpolated from ex
isting ones. This leads us to the second difference. In
the detector data, measurements have the semantic
interpretation of being discrete; that is values exist
only at the points of measurements. In contrast, the
magnetic field sequence is interpreted as a continu
ous sequence in that values exist for any time point
(and are interpolated if necessary.)

The current practice of dealing with applications
involving temporal data such as the example above,
is to develop special purpose programs for each appli
cation. Our goal is to provide data management tools
that deal with temporal data as well defined data el
ements that can be manipulated using system sup
ported operators. Such tools should be useful across
applications, and greatly simplify the development of
applications involving temporal data. Furthermore,
applications that use such tools could be modified
or adapted if experimental conditions change with
out having to rewrite new application programs. In
general, our purpose is to model the various types of
temporal data, so that their semantics are clear to
the user. It is also necessary to provide query facil
ities that permit users to specify conditions in the
time dimension, as well as correlate temporal data
sequences that may be varying at different rates.

3.2 Approach and solution

Our approach to modeling temporal data is to
introduce a temporal data element called a time
sequence (TS) which can assume different proper
ties. Structurally, a TS consists only of the series
of {time, value) pairs. The interpretation of the time
sequences is determined by their properties. Thus, in
the example above, both the detector data and the
magnetic field data are conceptually represented as a
sequence of (time,value) pairs, but the detector data
is a "regular" TS of type "discrete" , and the magnetic
field data is an "irregular" TS of type "continuous"
which has an interpolation routine associated with
it. The result is that both of these time sequences
can be treated uniformly from a syntactic point of

7

view. Thus, operations over and between time se
quences can be specified even though they have dif
ferent semantic properties. In the example above,
the value of the magnetic field that corresponds to a
given detector value could then be retrieved or calcu
lated by a system that supports time sequences. The
system would know to use the interpolation routine
(if needed) to produce the correct value, because the
magnetic field TS is of type "continuous".

In a paper describing this work [SK86j we have
identified four properties that should be associated
with time sequences. These properties are sufficient
to capture the semantics of temporal data found in
scientific applications that we have observed. These
properties specify the "regularity" of the TS, its type
(discrete, continuous, step-wise constant, and inter
val), whether it is "static" (i.e. no new values are
expected to be added) or "dynamic" (i.e. data val
ues can be added dynamically), and the time do
main description (start time, end time (for the static
case), and time units). Distinguishing between reg
ular and irregular TSs is clearly useful to a user as
part of describing the behavior (semantics) of TSs.
However, there are two other reasons for this distinc
tion. The first is that there exist special statistical
analysis methods (called "time series analysis") that
can be applied only to regular TSs. The second rea
son is that regular TSs can be stored and accessed
more efficiently that irregular TSs. This aspect is
discussed in some detail in the subsection describing
temporal data structures (in the Physical Organiza
tion section.).

In general, we would like to specify the retrieval
or manipulation of any subset of values of a TS in
a single operation. For example, we may want to
perform some arithmetic over the values of a certain
detector's TS, and generate a new TS as a result. In
addition, we may want to apply the same operation
to a set of TSs, such as a subset of desired detectors.
We refer to a collection of TSs as a time sequence ar·
ray (TSA), where rows correspond to individual TSs,
and the columns represent points in time. We have
identified classes of operations that can be applied
to TSAs. As is discussed in more detail in [SK86],
these operators are designed to specify restrictions on
TSAs in both dimensions (i.e. making selections in
the time domain as well as selecting the desired TSs),
and to specify operations over one or more TSAs to
produce a new TSA. Thus, for example, they would
permit the selection of a subset of detectors and a
certain time range, and specify some operation to be
applied to the set of time sequences of these detectors
using a few concise commands.

This work is still in progress, and the precise syn-

tax of operators over TSAs will be developed in the
future. However, the framework of defining the pre
cise semantics of TSs and operators over TSAs seem
fundamental to clear and concise definition, retrieval
and manipulation of temporal data.

III DB Operators

In this section of the paper we briefly review our
work on sampling from relational databases and on
transposition algorithms for compressed data.

In another paper, we discuss the question of which
operators should be included in a SSDB management
system [0Ik83j.

1 Sampling

1.1 Introduction

This section is concerned with the question of how
to efficiently extract random samples of relational
queries from a relational data management system.
Our goal is to obtain the samples without first com
puting the entire query result which is to be sampled.
This work was reported in [OR86bj.

Why sample?

Random sampling is used on th08l occasions when
processing the entire dataset is not necessary and is
considered too expensive in terms of reponse time
or resource usage. The savings generated by sam
pling may be due to reductions in the cost (in reponse
time or resources, CPU and I/O time) in retrieving
the data from the DBMS. Retrieval costs are signif
icant when dealing with large statistical or scientific
databases.

In addition, savings may result from reductions in
the cost of subsequent "post processing" of the sam
ple. Such "post processing" of the sample may in
volve expensive statistical computations, or further
physical examination of the real world entities de
scribed by the sample. Examples of the latter in
clude physical inspection and/or testing of compo
nents for quality control, physical audits of financial
records, and medical examinations of sampled pa
tients for epidemiological studies.

Clearly for sampling to be useful, the application
must not require the complete answer to the query.
Thus random sampling is typically used to support
statistical analysis of a dataset, either to estimate pa
rameters of interest or for hypothesis testing. Appli
cations include scientific investigations such as high
energy particle physics experiments, quality control,

8

and policy analyses. For example, one might sample
a join of welfare recipient records with tax returns
or social security records in order to estimate welfare
fraud rates.

Why put sampling in DBMS?

Given that one wants to perform sampling, is it
worthwhile to put the sampling operator into the
DBMS?

We believe that one should put sampling operators
into the DBMS for reasons of efficiency. By embed
ding the sampling within the query evaluation, we
can reduce the amount of data which must be re
trieved in order to answer sampling queries, and can
exploit indices created by the DBMS.

Sampling can also be used in the DBMS to pro
vide estimates of the answers of aggregate queries, in
applications where such estimates may be adequate
(e.g. policy analysis), and where the cost in time or
money to fully evaluate the query may be excessive.

Sampling may also be used to estimate database
parameters used by the query optimizer to choose
query evaluation plans.

1.2 Sampling from Relations

In the technical report [OR86cj we discuss how to
apply classical sampling methods to sampling from
entire database relations resident on disk. We ex
amine sampling from variably blocked files, grid files
and B+ -tree indexed files.

One basic tactic employed is acceptance/rejection
sampling to accommodate the variable numbers of
records stored on pages.

We also discuss the use of sequential sampling al
gorithms for sampling from relations as they are gen
erated.

1.3 Sampling from Relational Operators

In the VLDB paper [OR86bj we show how to sam
ple the output of individual relational operators such
as selection, projeCtion, intersection, union, differ
ence, and join. Our sampling algorithms avoid the
need to first compute the entire result of the rela
tional operator. These sampling techniques fOrin the
basic building blocks for sampling from more com
plex composite queries. The techniques entail a syn
thesis of the basic file sampling techniques and al
gorithms for implementing relational operators. We
discuss only simple random sampling.

The fundamental problem with sampling from re
lational operators is that most of the relational oper
ators (except selection and intersection) modify the

inclusion probabilities of records in a non-uniform
fashion. Hence it is not generally possible to simply
interchange sampling and relational operators.

Our basic strategy for dealing with this problem is
the use of acceptance/rejection sampling techniques
to adjust the inclusion probabilities so as to produce
a uniform random sample.

Typically these methods require information on
the cardinality of the sampled domain values in the
target relations. This information can be readily ob
tained only if the target relations are either indexed
or hashed.

Given the necessary indices, the sampling algo
rithms attain computational complexity which are
proportional to the sample sizes. However, the con
stant factor is usually the inverse of the ratio of aver
age cardinality of domain values to maximum cardi
nality. If this ratio is large, these sampling algorithms
may be quite expensive.

2 Transposition

2.1 Motivation

Material
Steel
Steel

"
"
"
"
" ..
..
"
"
" ..
"
"
"
"

copper ..
"

Temp.
1000
1000

"
"
"
"
"
"
"
"
"
"
"
" ,,-

"
" ..

Cor-
Acidity Salinity Time rosion

100 1 10 0.7
100 1 20 0.9
" " 1.2
" " 1.5

" .. 1.7

" " 100 2.3

" 2 10 0.8

" 2 20 1.0

" " 1.2

" " 1.5 .. " 1.8

" " 100 2.4

"
"

200

The most common operations over summary databases
(besides searching) are transposition and aggrega-

Table 1: Multi-factor parametric experiment

tion. The former requires a re-ordering of the cat- support of data analysis. Since many large summary
egory attributes for the purpose of presentation and SSDBs are typically compressed, efficient transpo
analysis. An example is to transpose the database sition and aggregation methods directly over com
in Table 1 so that temperature and acidity appear pressed data without first decompressing are impor
after material, salinity and time. Transposition op- tanto
erations are required to obtain the popular file struc- Note that transposition and aggregation opera
ture called transposed file. Transposed files are the tions are closely related. An aggregation operation
most efficient file structure for many SSDB applica- on attribute A can be realized by first transposing A
tions. The motivation of transposed files is that the from its original position to the right of the rightmost
typical access of SSDBs is to fetch a long sequence category attribute in the database, then the corre
of individual records and extract a small number of sponding summary attribute values are aggregated
attributes. By storing the records as a collection of (typically by a simple arithmetic operations such as
contiguous attribute columns, i.e., all of the data for sum, weighted average, etc.). For example, collaps
a field (attribute) are stored together, only those at- ing the temperature dimension from the database in
tribute columns which are needed for a query need volves transposing the attribute to the right of the
be retrieved. time attribute, then the corrosion values are aggre-

Aggregation operations are used to "collapse" gated.
away some category attributes to obtain a more con- Our approach to transposition and aggregation
cise database to facilitate more efficient analysis. An is to design new algorithms that can operate di
example of aggregation is a request such as: "what is rectly on compressed data without first decompress
the average corrosion level of steel by temperature, ing them. In [WL86bJ several algorithms are devel
acidity, and salinity?" Since the dimension time is oped and described in detail. Most commercial sta
ignored in the request, the corrosion values are ag- tistical DBMSs decompress the data first.
gregated on the time dimension. The answer to the
above request is obtained by averaging the corrosion
level values over all time values for each combination
of the other category attributes.

Efficient methods of performing transposition and
aggregation are the keys to efficient SSDB system

9

2.2 Results

Below the main idea and the applicability of each
algorithm will be briefly highlighted. A detailed de
scription can be found in [WL86b].

The first algorithm is a "general" algorithm in the
sense that it can be used in all situations. First, the
physical database is read, and for each data item, a
"tag" is computed and stored with the data item on
disk. A ta.g is the logical sequence number for the
data item in the transposed space. The second step
involves sorting the tag and data item pairs in as
cending order of the tags. After the sorting is done,
the tags associated with the data item are discarded.
As the tags are stripped, the necessary headers for
the data items are generated and these headers and
the data items represent the result of the transposi
tion.

The second algorithm performs the operation in
main memory in one pass. This is feasible in the
event when the transposed subspace is small enough
to fit into main memory. The main idea of the algo
rithm involves scanning the physical database once,
and employing the reverse array linearization to find
the proper slot for each data item in the memory
buffer. A compression algorithm then runs over the
data in memory and the result is stored in com
pressed form on disk.

For the case that the transposed subspace is too·
large to fit in main memory, a third algorithm can be
used: The algorithm takes advantage of the situation
when there are a small number of large fragments of
transposed subspace that are already in the right po
sition. The algorithm involves the merging of these
fragments, and compressing of the result. This al
gorithm is used instead of the first algorithm if the
number of fragments is small.

A fourth algorithm takes advantage of the situa
tion when the cross-product of the cardinalities of the
transposed attributes are relatively small and they
can be moved as a group. In this situation, N buffers
are used to store the temporary result of transpo
sition where N is equal to the product of cardinali
ties of the transposed attributes. 'rhis algorithm is
slower but not as memory intensive as the second
algorithm. But when applicable, it offers better per
formance than the first and third algorithms.

These transposition algorithms have been ana
lyzed and implemented. They operate directly on
compressed data without the need to first decom
press them. The methods proposed are applicable
to databases that are compressed using the general
method of run-length encoding. A decision proce
dure is also given to select the most efficient algo
rithm based on the transposition request, available
memory, as well as the database parameters. Formu
las have been developed which identify the required
memory space,

All four algorithms are implemented using C. The

algorithms have the same order of I/O performance
as that of other published algorithms for transpos
ing uncompressed data. Since aggregation operations
can be developed on top of transposition operations,
the result of this work can be applied directly to ef
ficient aggregation algorithms on compressed data.

In conclusion, direct manipulation of compressed
data can yield great efficiency. Algorithms need to be
developed and analyzed for other operators on com
pressed data. Transposition is just one (and impor
tant) such operation. We are now researching other
operators which can be applied to compressed data.

IV Physical Organization and
Access Methods

Much of our work has been done in physical organi
zation and access methods (including compression),
because SSDBs exhibit unique data and query char
acteristics. The large size of SSDBs and the inade
quacies of commercial data structures has compelled
attention to specialized methods of compressing, or
ganizing and accessing SSDBs.

In addition to the topics discussed in detail be
low we have published several papers on: database
machine design for SSDBs [Haw82], main memory
database techniques !DKO*S4], and a survey of phys
ical database support te-.hniques for SSDBs IOlkS6].

1 Header Compression

1.1 Problem

The problem addressed by header compression is
the design of data compression methods for statis
tical data which permit fast random access to the
compressed data.

Many statistical databases include large tables of
summary statistics (e.g., contingency tables, census
tables, etc.). Such tables often contain many miss
ing and/or zero values. Furthermore, the counts in
such tables are often highly skewed in distribution,
with many small counts (which could be stored in
a few bytes) and fewer large counts (requiring sev
eral bytes). Such tables are often stored by sorting
them in lexicographic order of the keys. This leads
to clustering of data values, especially of nulls and
zeros.

10

Data compression offers savings in disk space re
quirements. Furthermore, for large accesses of con
tiguous blocks of data often found in SSDB queries,
data compression can yield significant savings in disk
transfer time. While data compression is normally

.

thought to increase the CPU time needed to access
data (because of the required decompression) directly
processing the compressed data (e.g., for transposi
tion and aggregation operations) can yield significant
savings in CPU time. This topic is discussed else
where in this paper.

1.2 Approach

The header compression technique is composed of
four basic ideas:

1. run length compression of strings of nulls,

2. segregating the run length information from the
compressed data,

3. organizing the cumulative run lengths as a B
tree index,

4. r~presenting cumulative run lengths via partial
sums trees.

1.3 Run length encoding

Run length encoding is a classic ad hoc compres
sion technique, which is especially well suited to the
compression of statistical data which often displays
clustering of null(zero) and non-null elements into
lengthy runs.

T!:'e basic idea is to replace consecutive sequences
(runa) of null (Iero) elements with a count of the
run length. Runs of nonzero elements must also be
prefaced with a count (run length).

1.4 Segregation

In applications where sequential decoding of the
compressed data is sufficient (e.g., communications
and tape based applications) the run length infor
mation is interleaved with the compressed (nonzero)
data.

However, this implies that the time to access some
element is proportional to its location in the com
pressed dataset. If, instead, we segregate the run
lengths from the compressed data, then we find an
element in time proportional to its location in the list
of runs. If the runs are long, this can be an appre
ciable savings.

1.5 B-tree Index

·Once we have segregated the run lengths, we can
accumulate them to form an index. A simple arrary
of cumulative run lengths could be searched via bi
nary searching, in time O(log2(n». A B-tree index

is clearly faster, offering access times of O(log,(n),
where f is the average node fanout.

11

The use of interpolation search of cumulative runs
to achieve access times of o (log log n) is described
elsewhere in this paper.

1.6 Partial sum trees

Storing cumulative sums of run lengths presents
two problems. One problem is that the sums become
large and require several bytes to store, whereas run
lengths usually require only one or two bytes. The
second problem is that updating them requires time
linear is the location of the update (in terms ofruns).

Both problems can be ameliorated by represent
ing the cumulative counts (run lengths) via partial
sum trees, a well known technique of encoding rank
information in trees. Basically, the idea is to store
in each internal node of a binary tree the sum of the
counts of its leaves. In our case the leaves contain the
lengths of the individual runs. By adding and sub
tracting the counts stored in the internal. nodes as
we traverse the tree during a search, we can compute
the cumulative count for any leaf.

It is easy to adapt the partial sum trees to B-trees,
we merely promote the partial sum of a subtree up
one level in the B-tree (so that additional disk ac
cesses are not needed when searching within a B-tree
node).

The result of all this is that we can attain loga
rithmic access and updating to the compressed data ..
Constructing the B-tree (from the bottom up) can
be done in time linear with the number of runs.

A detailed description of this work is to be found
in IES80,EOS81j. The second paper also discusses
a generalization which permits encodings of variable
length numbers.

2 Re~rrangement of data to achieve
efficient compression

2.1 Overview

Data compression provides several useful benefits
for large databases. The most obvious advantage is
the reduction in storage costs. Such costs comprise
a large portion of the total cost for large archival
databases (e.g., scientific, statistical, temporal) for
which the average activity rate is often low. Data
compression reduces the amount of I/O time required
for long sequential data transfers which are common
place in scientific and statistical database (SSDB)
applications. In distributed DBMSs compression can
yield significant reductions in communications costs
of inter-site transfers of large files. As described in an

earlier section of this paper, it is possible to perloi'm.
database operations (e.g., transposition) directly on
compressed data, thereby potentially reducing CPU
time requirements.

2.2 Approach

It is often possible to improve the amount of data
compression by rearranging the data. This approach
was taken in many other applications. A simple ex
ample consists of sorting a file, so as to bring together
data with similar prefixes, thus improving the possi
bilities for prefix compression (also called front com
pression). Another example consists of using special
space filling curve rasterization techniques for image
data to improve data compression. Of course it is
necessary to store a specification of how the data
was rearranged.

Our work arose from problems of choosing the stor
age structures for large sparse multi-dimensional ar
rays in scientific and statistical databases. Typically
such arrays are defined over the cross product of cer
tain category attributes (i.e., attributes defined over
discrete categories such as material, corrosive agent,
fabrication technique). The concatenation of the cat
egory attributes constitutes a key for the data values
in the array.

The category attributes need not be stored in the
database. Instead array linearization is used to imc
plicitly store the category attributes. The values of
the category attributes for each data value can be
calculated from its location in the linearized array,
assuming a specific ordering for the array lineariza
tion. Only the measured attribute (e.g., sub-particle
count) need be stored in the database. These ar
rays are often sparse, with many zero counts. Ex
amples include reliability data, spectra, mortality
and census databases. Stich databases are frequently
retrieved but infrequently modified (often append
only). Hence the effort required to reorder and com
press the data can be amortized over many retrievals.

The compression method we discuss here is run
length encoding. It has long been a popular method
of data compression. The basic technique consists
of replacing runs (consecutive sequences) of identical
values (usually zeros or nulls) by a repetition count
and a single copy of the repeated value. A variety of
methods have been proposed· to encode the counts.
In all of these methods the size of the compressed
data is proportional to the number of nonzero ele
ments plus the number of runs. Hence, we use the
number of runs as our measure of the efficiency with
which a particular dataset is encoded.

12

2.3 Results

Many data compression methods are unsuitable for
database applications because they require sequenc
tial decoding. However, in previous work (described
in the previous section on header compression), it
was shown that run length encoding can be com
bined with a B-tree index so as to provide random
access to the data in time O(log(n)), where n is the
number of runs of consecutive zero (or nonzero) ele
ments. Again the size of the B-tree index is propor
tional to the number of runs. There are two possible
directions to proceed, we can either model the data
deterministically or probabilistic ally. We use a deter
ministic model if all of the data is in hand. We have
proved that finding an arrangement with less than a
specified number of runs is NP-complete for data ar
ray having two or more dimensions (attributes). The
proof uses a reduction to a variant of the .travelling
salesman problem. We also showed that the same
heuristic algorithms which are used for the travelling
salesman problem can be applied in our case. One
such heuristic runs in polynomial time and achieves
a solution which is at most 50 percent more costly
than the optimum.

Alternatively, we can use a concise probabilistic
model of the data which predicts the location of the
nonzero data elements. We can then search for the
average optimal category ordering for the probabilis
tic model. This approach is more tractable and can
be used when an estimate of the probability distri
bution of values in the array can be obtained. Such
estimates may be calculated by sampling a given ar
ray or by knowledge of the scientific process which
generates the data. Our. main result for this model
is that the optimal way in which to arrange the cat
egories is a Double Pipe Organ arrangement on each
dimension of the multi-dimensional file. An example
of this arrangement is shown in Figure 3. This ar
rangement is a generalization of the well-known Pipe
Organ arrangement which was proved to be optimal
for minimizing disk arm movement in sequential files.
We also devised efficient algorithms that achieve this
optimal rearrangement, as reported in [OR86a].

This work raises some new problems about other
possible rearrangements that can be made -to a file
to enhance its compression. The problem of order
ing the attributes in the array linearization function
is still open and we plan to try to find an exact so
lution or a good heuristic to solve it. We plan to
apply the idea of rearrangement to other types of file
structures. For example many types of bit-maps can
be rearranged as the order of the attribute values is
flexible. In some cases only partial rearrangement is

1.(

Alloy A Alloy B Alloy C Alloy D Alloy E Alloy F
Part 1 0 1 0 1 0 1
Part 2 1 1 1 1 1 1
Part 3 0 1 0 1 1 0
Part 4 0 1 0 1 0 0

Table 2: Part Failures: Naive Ordering of Columns

Alloy A Alloy C Alloy E Alloy B Alloy D Alloy F
Part 1 0 0 0 1 1 1
Part 2 1 1 1 1 1 1
Part 3 0 0 1 1 1 0
Part 4 0 0 0 1 1 0

Table 3: Part Failures: Better Ordering of Columns

Figure 3: A Double Pipe Organ for 13 elements. Bars
are proportional to probabilities of nonzero elements.

allowed or only one dimension may be permuted as
order must be preserved on other dimensions. We
expect to show that our methods are applicable to
a wide range of file designs as well as different com
pression methods. For example we plan to look at
whether Huffman encoding of a file may be improved
by some preliminary rearrangement of the attributes.

3 Interpolation Search

3.1 Introduction

Our interest in batched interpolation search comes
from three separate search problems in statistical
and scientific databases. The first problem involves
the searching of data items in a file which has been
compressed with the header compression technique
[ES80,EOS81J. The second problem is related to the

13

searching of hierarchical relationship implemented
in a file structure called hierarchical transposed file
[WL86aJ. The third problem is the searching of data
items in a sparse multi-dimensional data structures.
All three of these search problems can be reduced to
batched interpolation search over ordered files.

The Interpolation Search Algorithm has received
extensive attention. The major result is the loglog(N)
1 (where N is the number of keys in the table) com
plexity behavior of a single search. However, the ef
fect of batching search queries is not taken into con
sideration.

The research on interpolation search to date con
centrates mainly on main-memory data structure
and ignores the secondary memory consideration.
We are interested in adding block accesses as well
as providing block access approximation expressions
to the basic Interpolation Search algorithm. These
algorithms are described next.

3.2 Results

An Algorithm for Batched Interpolation Search
(BIS)

Let B = (al,a2, ... ,a,.) be an ordered collection
of search keys to be applied to file X. The idea be
hind algorithm BIS is that in searching file X for each
element ai in B, one can take advantage of the pre
vious search for element at-I, Since both B and X
are ordered, BIS can start the search for O:i at the
place of X where O:i-l was found. The savings of
batched searching are achieved because the size of
file X is monotonically decreasing. The behavior of

'"log" designates base 2 logarithm.

-(/)

"0
0
(J

~
(/)

Cl
c: .S;
It!

en

12

10

7

'5"
4

2

5 10 15 2025 30 35 40 4S 50

Number of records searched

Figure 4: Savings from batch searching.

BIS is still O(loglog(N)), but n is reduced by a term
proportional to N. The savings gained in practice are
discussed in the next section.

To experiment with BIS, we generated 6 sorted
files of uniformly distributed random integers be

. tween ° and 231 • 1,000 sets of batched records are
also generated with integers uniformly distributed
hetween ° and 231 with size Ie for Ie = 1 to 20.

Figure 4 shows the results of executing batched
and unbatched interpolation search algorithms on a
file of 400,000 uniformly distributed integers. The
savings due to the batching of queries over the un
batched interpolation search are roughly 50%.

An Algorithm for Blocked Batched Interpo
lation Search (BBIS)

In this section, algorithm BIS is modified to take
blocking into consideration. The idea is to decide
whether we need to bring a new block into memory
for each search item in the batch. The block access
approximation for BBIS is performed by assuming
that the chances of requiring a new block are propor
tional to the distance between two consecutive search
steps. The analysis of BBIS has been experimentally
validated.

3.3 Experimental Results

In this experiment, five sorted files of 400,000 in
tegers unifomly distributed between 0 and 231 were
generated, each with a different blocking factor. A
1,000 sets of sorted records were also generated with
size Ie for Ie = 1 to 20.

-(/) ...l<:
(J
0

e.
en
Cl
c: .S;
ell

r.J)

30

26
23

19

15

11
8
5
3
1

5 10 15 20 25 30 35 40 45 50

Number of records searched

Figure 5: Savings from batch searching with blocking
factor of 100.

14

Figure 5 shows the savings of batched block ac
cesses over unbatched block accesses in a file of
400,000 records with blocking factor of 100. Again,
there is roughly 50% savings.

3.4 Summary

The basic Interpolation Search algorithm was ex
tended to provide batched searching over blocked and
non-blocked database environments. In [LW85] an
alytic expressions for the behavior of these exten
sions were developed. All expressions are validated
by extensive experiments. In addition, algorithms
for batched interpolation search over non-uniformly
distributed ordered files are also developed and anal
ysed.

4 Bit Transposed Files

4.1 Introduction and Motivation

Scientific and Statistical Databases (SSDBs) ex
hibit many specialized data usage and characteris
tics. Despite the development of many advanced ac
cess methods, the dominant file structure for very
large SSDBs is still the simple sequential file. The
major reason is a "mismatch" between conventional
access methods such as inverted files, B-trees, hash
ing, etc. and the characteristics of SSDBs. First,
since the cardinality of SSDBs attributes is typi
cally small, most access methods simply partition the
database into a small number of still very large files,

..

..

with prohibitively expensive overhead for the point
ers, structures, tables, etc., with only limited selec
tive power added. Second, since SSDBs are largely
static, the expensive overhead associated with the
dynamic facilities of most access methods is not jus
tified. Thh-d, the values of SSDBs attributes tend
to cluster, and current access methods often do not
take advantage of this opportunity for compression.
Fourth, the access to SSDBs is typically long "sweep"
Le., a long sequence of individual records is fetched
and a small number of attributes extracted. This
kind of range access is not supported well by most
access methods.

The search for an appropriate file structure begins
with the fourth point mentioned above, which is the
motivation for the well-known attribute transposed
files. Conventional files store the data as a collec
tion of contiguous records, i.e., all the fields for a
single record are stored together on a disk page. At
tribute transposed files store the data as a collection
of contiguous attribute columns, i.e., all of the data
for a field (attribute) is stored together. Bit trans
posed files (BTF) store the data as a collection of bit
columns, i.e., all of the data for a single bit position
of an attribute encoding is stored together. Thus
,the file structure we propose can be seen to be an
extreme form of the attribute transposed file.

The basic advantage of attribute transposed files is
that only those attribute columns which are needed
for a query need be retrieved. In many statistical
applications only a small fraction of the attributes
are needed for a query. Bit transposed files offer three
advantages:

1: Clever data encodings will permit us to retrieve
only a fraction of the bit vectors used to encode
an attribute in order to perform a selection.

2. The bit vectors are amenable to data compres
sion via run length encoding, especially if the
data records have been sorted.

3. Selection criteria can be formulated as boolean
expressions on the bit vectors, facilitating fast
evaluation and specialized hardware.

In summary, the bit transposed file system offers
an efficient means of performing selections.

4.2 Overview

The BTF system has three major components: an
index encoder, transposed bit vector loader, and a
query processor on bit vectors. .

The index encoder translates each field in each
record in the database into a series of bits based on

15

several encoding schemes. The result is that each
record of the database is translated into a bit pat
tern.

The second component, called the transposer,
stores the bit patterns in a transposed manner so
that for each bit position of the bit pattern, a file
is produced which contains the bit value of that bit
position from all the records in the database. The
result is n BTFs where n is equal to the number of
bit columns that result after encoding. Because val
ues in large statistical databases tend to cluster, we
have developed a compression method to compress
the BTFs so that long runs of O's and l's can be
stored more efficiently.

The third component of this file structure is the
query processor on BTFs. The processor trans
lates the retrieval requests on the database into a
boolean expression on the BTFs. The translation
algorithm takes as input the encoding schemes for
the attributes and the query type of the query. The
resultant boolean expression is evaluated by using
the primitive boolean operators AND, OR, and NOT
that can operate directly on compressed BTFs.

4.3 Results

A prototype system was implemented, which in
cludes a bit compression package, a query language
parser and evaluator, and an index encoding opti
mizer. There are four basic index encoding schemes
and a composite scheme that allows designers of
BTFs to combine the other encoding scheme. The
index encoding optimizer accepts as input the usage
statistics of the attributes and total size for the BTFs
and generates the optimal index encoding schemes
for each attribute. A dynamic programming tech
nique is used to find successively larger subset of the
attributes. The system was prototyped using a real
database of 110,000 records. The result is a ten
fold improvement of both time and space over typical
commercial DBMSs such as Datatrieve.

There are several extensions to the BTF structure
that are added since the publication of the BTF pa
per [WLO*85J. First, hierarchies (l-to-many rela
tionships) are introduced between BTFs to better
model the SSDB environment. An example of hier
archy in SSDBs is the hierarchical relationship be
tween cities, counties, and states. An efficient file
structure (called an association file) to support these
kinds of hierarchical relationships has been designed
and coupled with the bit transposed file structure.
An user interface facility has also been built to make
the BTF and association files into a self-contained
system [WL86aJ.

Another extension to BTF is the idea we called
"common subexpression removal". This idea uses
compressed bit maps as efficient temporary storage
for partial results. This approach saves the subset of
data which is of interest to users. In turn this col
lection of bit maps can be used by other queries as
an efficient access path. An algorithm has been de
veloped that automatically incorporates these com
mon subexpressions into the incoming queries to
reduce the length of the boolean expressions and
hence improve the efficiency of evaluating the queries
[WLR86J.

Another extension is the retrieval optimization.
The problem here is that there could be a signifi
cant performance difference depending on the order
of evaluating the boolean expression. The general
solution of finding the optimal order has been shown
to be NP-complete. Our approach is use heuristics
that have been proven to find near optimal order for
similar problems in order to evaluate the boolean ex
pression on bit maps. The algorithm takes advantage
of the different compression rates associated with the
compressed bit maps as a guideline of choosing the
order [LW86J.

5 Multidimensional Partitioning Al
gorithms

5.1 Overview

The problem of multidimensional partitioning
arises in many database applications where it is re
quired to store files which are indexed by one or more
search attributes on disk pages such that the map
ping from the key space to the physical address space
is order preserving. Many scientific applications
which make use of spatial or temporal data require
such files. Examples include results of hydrodynam
ics calculations and particle track data from high en
ergy physics experiments. File structures which sup
port such requirements are the Grid Files of different
types and other order preserving file structures. In
all of these methods the possible range of values for
each attribute is partitioned into segments, the inter
section of these segments define hyper-rectangles or
cells. Each record is associated with a cell based on
the segments to which its attribute values belong. In
formation about the partitioning is stored in a direc
tory which is stored on disk or in fast storage depend
ing on its size. Similar to multidimensional hashing
methods, these methods allow retrieval of records in a
fixed number of disk accesses. The advantage of this
type of file organization over multidimensional hash
ing is that range queries can be processed efficiently

16

as tuples with similar values on a search attribute
tend to cluster together on the same page. Also pe
riodic reports and tabulations which require that the
data is sorted by one of the attributes can be read
ily obtained from the file without the need to sort
the output. Such capabilities are very important in
scientific and statistical data base management sys
tems.

The performance of different partitioning algo
rithms can be measured in terms of retrieval time
for different types of queries, the directory size, and
the storage utilization. In this work, we study par
titioning algorithms which associate every cell of the
partitioning with a disk page of fixed capacity. There
is a constraint on the total number of pages available
for storing the database. In case the algorithm as
signs to a cell more records than its capacity, over
flow occurs and the overflow records are stored in a
separate area. Therefore overflow records introduce
additional retrieval cost and our goal is to find parti
tionings which minimize the amount of total overflow
generated by the mapping.

5.2 Approach

The approach in grid file type organization, is to
change the partitioning dynamically as the file grows
while guaranteeing zero overflow. The insertion (or
removal) of new partitioning lines, in order to re
fine the segmentation, can be quite costly in terms of
pointer updates and other directory maintenance op
erations. In the case that the file is reiatively static
or that the growth structure is predictable, it may
be beneficial to determine a "good" partitioning in
advance in order to avoid frequent changes in the
directory. This approach can also be used when con
verting an existing file into a dynamic grid file where
a good initial partitioning is required, or when peri
odically reorganizing a grid file.

An example of this problem is shown in Figures 6
and 7, where a file with two attributes, each attribute
having 5 possible values is given. The numbers in
each cell indicate the number of records with speci
fied attribute values. It is required to partition this
file into 16 pages, where the capacity of each page
is 3 records. As can be seen, the partitioning shown
in Figure 7 has less total overflow records than the
partitioning shown in Figure 6.

5.3 Results

We have developed dynamic programming algo
rithms for finding the optimal partitioning of a given
multidimensional file. Our objective is to minimize

1 2* 4* 0 0
1 1 1 1 0

2 1 1 1 4*

1 1 1 1 2

1 1 2 1 1

Figure 6: Example of partitioning with c=3 and
K=16. Total overflow is 5. Asterisks indicate cells
with overflow.

1 2 4* 0 0

1 1 1 1· 0
2 1 1 1 4*

1 1 1 1 2

1 l' 2 1 1

Figure 7: Another example of partitioning with c=3
and K=16. Total overflow is 3. Asterisks indicate
cells with overflow.

the total overflow subject to constraints on page ca
pacity, storage utilization and total number of pages
available to accommodate the file. This approach is
practical for small problelil.8 and it was tested exten
sively on inputs generated under different assump
tions on the distribution of values in the file. We
then tested three different heuristics with relatively
fast running times for obtaining sub-optimal solu
tions. The idea behind the heuristics is to solve the
partitioning problem separately on each dimension
in an optimal way and then combine these solutions
to yield an overall solution to the problem. The de
cision as to how many segments to allocate to each
dimension is made in a different way in each one of
the heuristics.

Extensive testing for large problems and compar
isons with the optimal solution for smaller problerils
were made. The heuristics were shown experimen
tally to provide much better solutions than existing
known heuristics. The results of this work were re
ported in [RS85].

In the future, we plan to look at flexible parti
tioning algorithms which divide the space of possible
attribute values into rectangular regions not neces
sarily forming a grid. Initial experiments with such
designs indicate that the total overflow can be re
duced significantly by removing the grid restriction
at the expense of having to store more information
a.bout the structure to allow efficient retrieval.

We plan to study other related optimization prob
lems such as minimizing the maximum overflow from
a page instead of the total overflow. The maximum
overflow represents a worst case situation whereas
the total overflow is a measure of average perfor
mance.

We also plan to investigate probabilistic algo
rithms which attempt to minimize the expected
amount of overflow when some assumptions can be
made about the distribution of attribute values. We
think that this approach can lead to interesting re
sults because such algorithms were successfully em
ployed previously on related problems such as bin
packing. In that case, the expected performance
of the probabilistic algorithm was shown to be very
close to that of the optimal algorithm.

6 Temporal Data Structures

6.1 Problem description

In a previous section entitled Modeling Temporal
Data we discussed the motivation for paying special
attention to temporal data in scientific applications.
In the following, we describe physical data structures
and access methods that are needed to support the
requirements of temporal data.

We use here the concepts of a time sequence (TS)
and a time sequence array (TSA) as described in the
section on modeling temporal data. Briefly, a TS is a
sequence of data values in the time domain that are
associated with a certain entity (e.g., a detector). We
assume that each such entity has a unique identifier
that we refer to as a surrogate. As was pointed out
before, it is convenient to view the collection of TSs
for all surrogates as a two dimensional array, called a
TSA, where each row represents a TS. Our problem
is to design data. structures and access methods for
the TSAs that are efficient for the expected access
of such data. Obviously the two major concerns are
efficient storage and efficient access time.

6.2 Approach and results

Our approach to the design of efficient physical
support for temporal data is to take advantage,
whenever possible, of the properties of temporal data
so' as to minimize the amount of storage used while
maintaining reasonable access time. There are three
such properties.

. The first property that can be exploited is that
temporal data are essentially "append only". Once

. they are collected, no updates or deletions are made,
except to correct mistakes. Thus, the physical orga
nization should mainly support retrieval operations

17

well; update and delete operations need not be sup
ported efficiently. This property suggests that we can
store values consecutively in storage without concern
to the reorganization that insert and delete opera
tions could cause.

the second property is that TSs are often regular;
i.e. the time points of the TS are equally spaced,
and there exists a value associated with each time
point. In such a case, it is not necessary to store the
times associated with each value explicitly; rather
it is sufficient to keep a description of the time se
quence (start time, interval, end time). Regularity is
a very important property for efficient storage utiliza
tion and access methods. The most storage efficient
physical structure that can be hoped for is a struc
ture that stores the surrogate values and the time
values only once, rather than with each data value,
i.e. both the surrogate and time values are "factored
out". It is eaay to see that when TSs are regular, the
two dimensional array representation of a TSA can
provide the desired storage efficiency since we can
store the identifiers of the rows (i.e. the surrogates)
and columns (Le. the time points) only once.

The third property that can be taken advantage of
is that temporal data is often static. By "static" we
mean a dataset that haa been fully collected, and
no more additions over the time dimension are ex
pected. In many SSOB applications, such as running
a physics experiment or collecting statistics on gaso
line production, the entire set of time sequences are
collected ahead of time, and then are subject to anal
ysis. More efficient data structures can be designed
for static TSAs because the data can be analyzed
ahead of time for better storage utilization.

In addition to taking advantage of the properties
of temporal data, we need to characterize the access
patterns to the data to ensure that the physical struc
t ures are appropriate for the applications. We make
several assumptions.

First, we assume that operations in the time do
main often involve time ranges. Thus, storing the
data values according to their time sequence order
would cause physical clustering of the values, and
minimize the number of pages (blocks) read from sec
ondary storage for range queries in the time domain.
Obviously, the order of values in TSs should be pre
served.

Second, we assume that random access in the time
domain is necessary since we want to support effi
ciently queries that select any time point (or time
segment) of TSAs.

Third, we assume that random access of the sur
rogates is necessary since we want to support queries
that request only a subset of the surrogates.

Fourth, we wish to provide the option that the sur
rogate domain is ordered. This assumption implies
that physical clustering along the surrogate domain
may be desirable for some applications.

In [SK86], we have designed several models for
data structures and access methods of temporal
data. The variations of the models depend on the
properties discussed above, and on expectations of
different access patterns. The three parameters
that determine the most desirable design are: regu
lar/irregular, static/dynamic, and random access re
quirements. All models use the basic structure of
a two dimensional array representing the TSA, with
variation to accommodate the parameters mentioned
above. In general, the models for regular TSAs are
more efficient than irregular TSAs (in terms of stor
age and access time). Some of these designs directly
benefit from our work on multi-dimensional parti
tioning algorithms, and rearrangement for efficient
compression discussed in other sections of this pa
per.

18

7 Current Work

The research on several of the topics discussed in
this paper is still in progress. In temporal data mod
eling we are developing a syntax for operators over
temporal data. Our res--arch in sampling continues
into weighted sampling and sampling from queries
involving multiple relational operators. Our research
into multi-dimensional data partitioning algorithms
continues with investigations of non-grid partition
ings, alternative optimization criteria (e.g. mIDI
max overBow, average overBow). Our work on bit
transposed files continues on optimal index encod
ing methods, and retrieval query optimization. Our
research into data structures for temporal data still
requires detailed analyses of the proposed data struc
tures.

Acknow ledgements

Some of the work described in this paper was a
result of the efforts of persons no longer with the
LBL data management research group: Paul Chan,
Susan Eggers, Paula Hawthorn, Rowland Johnson,
and Peter Kreps, and some of the work was done
by other members of our department, e.g., John Mc
Carthy. The authors also wish to thank Ann-Marie
Soulsberg, for her efforts in typing portions of the
bibliography.

..

References

[CS81] P. Chan and A. Shoshani. A direc
tory driven system for organizing and
accessing large statistical databases. In
Proceedings of the International Confer-
ence on Very Large Data Base (VLDB),
pages 553-563, 1981.

[DKO*84] David J. DeWitt, Randy H. Katz, Frank
Olken, Leonard Shapiro, Michael R. Stone-
braker, and David Wood. Implementa-

[LW85]

[LW86]

tion techniques for main memory databases.
In ACM SIGMOD International Con- [McC82]
ference on the Management of Data,
pages 1-8, ACM, Boston, 1984.

[DNSS83] D. Denning, W. Nicholson, G. Sande,
and A. Shoshani. Research topics in
statistical database management. In
Proceeding' of the Second International
Workshop on Statistical Database Man-
agement, pages 46-51, September 1983.

[EOS81j S. J. Eggers, F. Olken, and A. Shoshani.
A compression technique for large sta
tistical databases. In Proceedings of the
International Conference on Very Large
Databases (VLDB), pages 424-434, 198!.

[ES80) S. J. Eggers and A. Shoshani. Effi
cient access of compressed data. In Pro-
ceedings of the 6th International Confer-
ence on Very Large Databases (VLDB),
pages 205-211, 1980.

[Haw82] P. Hawthorn. Microprocessor assisted
tuple access, decompression and assem
bly for statistical database systems. In
Proceedings of the International Con/er-
ence on Very Large Data Bases, (VLDB),
pages 223-233, September 1982.

[Mer82]

[Olk83]

[Olk86]

[OR86a]

[Joh81a] R.R. Johnson. A data model for integrat- [OR86b]
ing statistical interpretations. In Proceed-
ings 0/ the First LBL Workshop on Sta-
tistical Database Management, pages 176-
189, December 1981.

[Joh81b] R.R. Johnson. Modelling summary data.
In Proceedings 0/ the ACM SIGMOD In- [OR86c]
ternational Conference on Management
0/ D~ta, pages 93-97, 1981.

[Kre82] P. Kreps. A semantic core model/or sta-
tistical and scientific databases. Techni- [RS85]
cal Report LBL-15393, Lawrence Berke-

19

ley Laboratory, 1982. (in LBL perspec
tive on statistical database management).

J. Li and H. Wong. Further Results
on Interpolation Searching 0/ Database.
Technical Report LBL-20708, Lawrence
Berkeley Laboratory, December 1985.

J.Z. Li and H.K.T. Wong. On For
mal Properties of Bit Transposed Files.
Technical Report LBL-21281, Lawrence
Berkeley Laboratory, 1986.

J. McCarthy. Meta-data management for
large statistical databases. In Proceedings
0/ the International Conference on Very
Large Data Base (VLDB), 1982.

D. Merrill. Problems in spatial data
analysis. In Proceedings 0/ the Seventh.
Annual SAS Users Group International
Conference, February 1982.

F.Olken. How baroque should a statisti
cal database management system be? In
Procee.dings of th.e Second International
Workshop on Statistical Database Man
agement, September 1983.

F. Olken. Physical database support for
scientific and statistical database man
agement. In Proceeding' 0/ the Third In
ternational Workshop on Statistical and
Scientific Data Management, July 1986.
(also issued as LBL-19940rev.).

F. Olken and D. Rotem. Rearranging
data to maximize the efficiency of com
pression. In Proceedings 0/ the ACM
SIGACT-SIGMOD Symposium on Prin
ciples 0/ Database Systems (PODS), March
1986.

F. Olken and D. Rotem. Simple random
sampling from relational databases. In
Proceedings 0/ the International Con/er
ence on Very Large Databases, VLDB En
dowment, August 1986. condensed ver
sion of LBL-20707.

F. Olken and D. Rotem. Simple Ran
dom Sampling from Relational Databases.
Technical Report LBL-20707, Lawrence
Berkeley Laboratory, February 1986.

D. Rotem and A. Segev. Optimal and
Heuristic Algorithms for Multi-Dimensional

[Sho78j

[Sho82j

[SK86j

Partitioning. Technical Report LBL-
20676, Lawrence Berkeley Laboratory,
December 1985.

. A. Shoshani. CABLE: A Language
Based on the Entity-Relationship Model.
Technical Report UCID-8005, Lawrence
Berkeley Laboratory, 1978.

A. Shoshani. Statistical databases: char
acteristics, problems, and some solutions.
In Proceedings of the 8th International
Conference on Very Large Data Bases
(VLDBJ, pages 208-222, 1982.

A. Shoshani and K. Kawagoe. Temporal
data management. In Proceedings of the
International Conference on Very Large
Databases, VLDB Endowment, August
1986. (condensed version of LBL-21143).

[SM82J A. Shoshani and J. McCarthy. Physical
database research at the lawrence berke
ley laboratory. In IEEE Database Engi
neering Newsletter, March 1982.

[SOW84j A. Shoshani, F. OIken, and H.K.T. Wong.
Characteristics of scientific databases.
In Proceedings of the 10th International
Conference on Very Large Data Bases
(VLDBJ, pages 147-160, 1984.

[SW85J A. Shoshani and H.K. T. Wong. Statisti
cal and scientific database issues. IEEE
Tran"action" on Softwa.re Engineering,
SE-11(1O):1040-1047, October 1985.

[WK82j H.K.T. Wong and I. Kuo. Guide: graph
ical user interface for database explo
ration. In Proceedings of the Interna
tional Conference on Very Large Data
Bases, (VLDBJ, pages 22-32, September
1982.

[WL86aj H.K.T. Wong and J.Z. Li. Hierarchi
cal Bit Transposed Files. Technical Re
port LBL-21284, Lawrence Berkeley Lab
oratory, 1986.

[WL86bJ H.K.T. Wong and J.Z. Li. 'transpo
sition algorithms for very large com
pressed databases. In Proceedings of
the International Conference on Very
Large Databases, VLDB Endowment, Au
gust 1986. (condensed version of LBL-
21157D).

20

[WLO*85j H.K.T. Wong, F. Liu, F. OIken, D.
Rotem, and Wong L. Bit transposed
files. In Proceedings of the International
Conference on Very Large Databases,
pages 448-457, August 1985.

[WLR86j H.K.T. Wong, J.Z. Li, and D. Rotem.
Common Subexpression Removal for for
Bit Transposed Files. Technical Re
port LBL-21283, Lawrence Berkeley Lab
oratory, 1986.

[Won84J H.K.T. Wong. Micro/macro statistical
database management. In' The First
International Conference on Data Engi
neering, March 1984.

. ~

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable .

~-:

LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT

UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

~+-'-'

