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We describe a method to compute invariant tori in phase space for classical non-integrable 
Hamiltonian systems. Our procedure is to solve the Hamilton-Jacobi equation stated as a system 
of equations for Fourier coefficients of the generating function. The system is truncated to a finite 
number of Fourier modes and solved numerically by Newton's method. The resulting canonical 
transformation serves to reduce greatly the non-integrable part of the Hamiltonian. Further 
transformations computed on progressively larger mode sets would lead to exact invariant tori, 
according to the argument of Kolmogorov, Arnold, and Moser (KAM) 1 • Our technique accelerates 
the original KAM algorithm, since each truncated Hamilton-Jacobi equation is solved accurately, 
rather than in lowest order. In examples studied to date the convergence properties of the method 
are excellent, even near chaotic regions and on the separatrices of isolated broad resonances. 
One can include enough modes at the first step to get accurate results with only one canonical 
transformation. A second transformation gives an estimate of error. We propose a criterion 
for breakup of a KAM torus, which arises naturally in the Hamiltonian-Jacobi formalism. We 
verify its utility in an example with I! degrees of freedom and anticipate that it will be useful 
in systems of higher dimension as well. 

We present results for a system with one degree of freedom having a periodic time-dependent 
Hamiltonian. In angle-action variables the Hamiltonian is 

H(<fJ,J,O) = Ho(J) + V(<fJ,J,O), (1) 

where V has period 211" in the time variable 8. We seek a canonical transformation (<P, J) 1-+ (1/J, K) 
in the form 

(2) 

t/J = <P + Gx(</J,K,O) , (3) 

such that the new Hamiltonian becomes a function of K alone. The Hamilton-Jacobi equation to 
determine the generator G is the requirement that the new Hamiltonian H indeed depend only 
on K; namely 

(4) 

We seek periodic solutions of (4) with the Fourier development 

G(<fJ,K,O) = L9mn(K)ei(m~-nB). (5) 
m,n 

We rearrange (4) by adding and subtracting terms so as to isolate terms linear in G~ and Gg. 
We then take the Fourier transform for m f. 0 to cast Eq. (4) in the form 

g = A(g) ' 
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where g = [gmn] is a vector of Fourier coefficients and 

211" 271" 

Amn(g) = ( i ) ( 
1

)2 I I d¢>dOe-i(m~P-nB) [H(¢>, K + GIP, 0)- Ho(K) - woG~P] 
wom- n 21r 

, m#O, 
0 0 

(7) 
where wo(K) = 8Hoi8K. To truncate the system (6) for numerical solution we restrict (m,n) .to 
some bounded set B of integers, with m # 0, and put 

GIP = L imgmn(K)ei(miP-n8) . 
(m,n)EB 

(8) 

The set B is selected so that the only modes included are fairly close to resonance and are driven 
by the perturbation V (directly or through harmonics). 

We show results from solving (6) by Newton's iteration, starting from g = 0. The action 
variable K is changed at each iteration in such a way as to make the final frequency w = 8H118K 
have a preassigned value. This is accomplished automatically by augmenting (6) with another 
equation to be iterated. 

The example chosen is the non-integrable two-resonance Hamiltonian 

(9) 

where v, a, e1. e2 are constants. For small e1. e2 we compute a KAM curve at a frequency equal 
to the golden mean w. = (VS- 1)12, which is between the two resonances, and explore its 
breakup as e1 and e2 increase to critical values. With v = 0.5, a = 0.1, we find an appar
ently solid KAM curve for e1 = 2e2 = 6 x 10-5 , for which case the resonance widths are 
A.J1 = 0.049, A.J2 = 0.054, as compared to the resonance separation Jr1 - J,2 = 0.25. The 
curve J(¢>, () = 0) shown in Fig. 1 was computed in 4 Newton iterations with 40 modes in the set 
B. It agrees well with results from direct integration of Hamilton's ordinary differential equa
tions, and the corresponding canonical transformation leaves a very small residual perturbation. 
The average of the absolute value of the residual perturbation divided by a similar average of 
the original perturbation is 1.1 x 10-5 • Expanding the mode set to 77 modes and doing further 
iterations, we reduce this ratio to 6.4 x 10-8• 

To identify the breakup of the KAM curve ("transition to chaos") as the e1s are increased, 
we propose the criterion that the Jacobian of Eq. (3) vanish at some (¢>,0): . 

8t/JI8¢> = 1 + GKIP = 8JI8K = 0. (10) 

At such a point it may be impossible to solve uniquely for¢> in terms of 1/J. Fig. 2 shows 8t/JI8¢> 
corresponding to the case of Fig. 1. When e1 = 2e2 is increased to 1.4 X 10-4, we get J and 
8t/J I 8¢> as shown in Figures 3 and 4, respectively. The anticipated zeros of 81/J I 8¢> appear in Fig. 
4; however, the behavior of 8t/J I 8¢> near transition is rather sensitive to the number of modes 
included. Judging from numerical integration of Hamilton's equations, we believe that the case 
of e1 = 2e2 = 1.4 x 10-4 is actually a little beyond transition. 

As the transition to chaos is approached, it becomes more difficult to expand the mode set. If 
too many modes are included, convergence of the Newton iteration suffers, and there is little if any 
reduction in the residual perturbation beyond that obtained with about 100 modes. Nevertheless, 
with 100 modes the ratio of residual to original perturbation is small; even at e1 = 2e2 = 1.2 x 10-4 

this ratio is 1.5 x 10-4 • This suggests that further canonical transformations, computed on 
progressively larger mode sets, would in fact yield an exact invariant torus. To date we have 
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computed the second canonical transformation only in lowest order. The average absolute value 
of the torus distortion from the second transformation, divided by that from the first, varies from 
2.8 X 10-6 at e1 = 2e2 = 6 X 10-5 to 4.1 X 10-3 at e1 = 2E:2 = 1.2 X 10-4 • 

We conclude that the method provides a promising alternative to canonical perturbation 
theory and its modern variants. Unlike perturbation theory, its algebraic complexity does not 
increase as more accuracy is demanded, and the required computer progr_ams are quite simple. 
The fact that the method is effective near chaotic regions is of great interest for applications. 
The generalization of (10) to higher dimensions, namely det(1 + GK~) = 0, may provide a useful 
criterion for the breakup of KAM surfaces in complicated systems of interest. We give an extended 
account of this work in Ref. 2. 
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