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ABSTRACT. 

In zero field NMR, the spectra are characterized purely by the 

quadrupolar or dipolar interactions, which are sensitive to molecular 

motion. An analytical theory is presented which describes the effect of 

two-site flips of a deuteron on its zero field NMR spectrum and demonstrates 

the potential of this novel technique in the investigation of molecular 

dynamics . 

3. 



INTRODUCTION. 

With conventional NMR of polycrystalline solids, broad and often 

featureless spectra are frequently obtained and the effects of some 

molecular motions are not readily observed. 1 The resolution and sensitivity 

of Nuclear Quadrupole Resonance (NQR) and broadline NMR is often so low that 

only the rigid and rapid motional regimes can be studied. · In the 

intermediate region, where the exchange rate is comparable to the quadrupole 

interaction, the lines broaden appreciably and can not be detected. 2 Zero 

field NMR represents an attractive approach to overcome these difficulties. 3 

In this paper, a theory is presented which deals with two-site motions 

of single deuterons, or pairs of dipolar coupled spin-1/2 nuclei. In 

previous work, Hennel et al. have developed analytical expressions for 

axially symmetric tensors. 4 The work described here differs in that a 

spherical tensor basis set is used and there is no assumption of axial 

symmmetry. Two-site exchange forms a good model for illustrating the 

effects of motion on zero field NMR spectra. It features in a number of 

chemical systems including: crystalline water; two-fold flips of aromatic 

rings irt liquid crystals, polymers and proteins; chai~ motions in polymers 

and solids. There are several assumptions made in this calculation: 

(1) the motional model is a stationary Markov process; 

(2) the duration of the jump is neglible; 

(3) there are no couplings between the sites; 

(4) only the spatial part: of the Ham.iltonian changes when a jump occurs. 

Assumption (3) may not always .be satisfied in zero field NMR since dipolar 

coupling between deuterons is often observed. 5 However, this interaction is 

small compared to the quadrupole couplings and can lie further reduced by 

4. 
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using partially deuterated samples. The effects of multi-site exchange, as 

well as coupling between sites, will be examined in the following paper. 9 

TWO SITE EXCHANGE IN ZERO FIELD . 

Typically in NMR, molecular dynamics are modeled in NMR by solving the 

stochastic Liouville equation. The multilinear spherical tensor operators 

in this equation are treated as the k-th rank tensors irreducible under the 

rotation group. This choice of basis set proves to be very suitable for 

spin dynamic calculations. 6 For the quadrupolar or dipolar Hamil toni an, 

there are nine such operators, but as the trace of these interactions is 

zero only eight of them are required. The motion we shall consider is a 

flip of the molecule by an arbitrary angle around some axis. 

(a) Zero Field Hamiltonian. 

The diagonal zero field quadrupolar Hamiltonian is usually written: 

(1) 

where PAS denotes the principal axis system, and can be described in a 

spherical tensor basis set, Tkq• as: 

(2) 

where the quadrupole frequency A-e2qQJ4 (for I-1) and the asymmetry 

5. 



(b) Zero Field Frames of Reference. 

Typically, four coordinate systems are required to describe molecular 

motions in zero field. They are: (a) the principal axis system, PAS, (XYZ) 

representing the diagonal interaction; (b) the tilt frame, which 

characterises the molecular motion axis (~YTZT); (c) the molecular frame 

(XMYMZM) which is fixed on the molecule; (d) the laboratory frame, with the 

z-axis along the applied magnetic field (XLYLZL). R(a'P'~') is the 

rotation operator relating the tilt frame to the PAS; R(O) is the 

transformation that rotates the tilt frame into a common molecular frame; 

R(ap~) then transforms each molecular frame into the laboratory frame. 

These reference frames, coordinate systems and rotation operators can be 

found in Table I. The R's are represented by the Wigner rotation matrices 

D. It is most convenient to ana~yze the effec~s of motion in the molecular 

frame where the zero field Hamiltonian is homogeneous, i.e. the same for all 

molecules. The results are then transformed into the laboratory frame by 

R(ap~). As a consequence, only one diagonalisation is required since the 

molecular frame is common to all the possible molecular orientations. The 

relationship between the PAS, tilt and molecular frames is depicted 

pictorially in Fig. 1. 

(c) Spin-operators. 

The irreducible spherical tensor spin-operators pertaining to this 

calculation are defined as: 

6. 
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... 

TlO 
- 2-l/2I 

z 

Tl±l - +I±/2 

2-l/2(3I2-I2) 
T20 z 

(3) 

T2±1 - +(I I++I+I )/2 
z - - z 

T2±2 I±I~2 

Too - 0 

Each of the above irreducible spherical tensors Tk of rank k, with the 

components Tkq• transforms according to the irreducible representation Dk of 

the rotation group. Therefore, upon transformation from the PAS to the tilt 

frame, the T~~S should be replaced by the components in the tilt frame 

according to: 

PAS T -1 
T - R(a'~'7')T R (a'~'7') kq . kq (4) 

k where the Dq'q represents an element of the k-th rank Wigner rotation matrix 

D~~~(a'~'7')- e-ia'q'd~~~(~')e-i7'q, where d~~~(~') are the reduced Wigner 

rotation matrices. 

The normalised components of the magnetisation in the molecular frame 

are defined as: 

(5) 

where p(t) is the spin density operator. In a sudden ~ersion of the zero 
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field experiment, the evolution period in zero field starts with the z

component of the magnetisation, I~. Hence, the correlation function of 

interest is which can be transformed into the molecular frame 

according to a similar transformation as shown in Eqn. (4). 

(d) Equations of Motion in Zero Field NMR. 

M 
g

1
_
1

(t))cosasinp 

(6) 

In the two-site exchange problem, the nucleus jumps between e and -8 

about YT which is chosen to coincide with YM (see Fig. 1). The stochastic 

Liouville equation, in the molecular frame, reads: 

~ ~;~, (t) 
+2 +k (1) (1) "~1) (2) 

-1 1: 1: Ok•q'kq~ - + ~~:gk'q' 
k-1 

, q' 
dt q--k (7) 

(2) 
+2 +k (2) (2) (2) (1) 

d gk, ,(t) -i 1: 1: Ok•q'kq~q - ~~:gk'q' + ~~:gk'q' 
dt q k-1 q--k 

where the effects of motion appear in the last two terms. 0 is a 8x8 

coupling frequency matrix; " is the exchange rate of a particular site. 

Ok'q'kq are defined as: · 

8. 
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'\•q'kq -

I~ (8) 

where ~qk'q'~'q'kq and d~~~(8) We define another 

frequency w where: 

(9) 

Thew's are presented in Table II where non-zero frequencies occur only for 

k'-1 and k-2 or k'-2 and k-1. Restricting ourselves to the case where X,Y,Z 

coincides with ~·YT•Zr• i.e.· a' ,p' .~·-o, Eqn. (8) can be simplified to: 

0 -lq'2q 
- d(l) ,(8)d( 2)(8)) 

-lq -lq 

- d(l) (8)d( 2)(8)) 
-lq' lq 

+2112Ar,{d(l) (8)d( 2) (8) - d(l) (8)d( 2) (8)) 
Oq' -2q Oq' 2q 

(10) 

... these frequencies are presented in Table IIi. 0 can be transformed into a 

block-diagonal form by the following transformations: 

.... 
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gl+ - gll + gl-1 

gl- - gll - gl-1 
(11) 

g2+ - g21 + g2-1 

gz_ - g21 - g2-1 -..! 

g22+ -g22 + g2-2 

g22- -g22 - g2-2 

then: 

(12) 

The basis vector set would change according to the above transformations as: 

glO glO 
21/2 

. glO gl 

gl-1 gl+ g2+ g2 

gll gl- g22- g3 

g20 
Eqn. 

g20 
Eqn. 

gl- g4 (11) (12) - - - (13) 
g2-1 g2+ gl+ gs 

g21 g2-
21/2 

g6 g20 
~· 

g2-2 g22+ g2- g7 

g22 g22- g22+ g8 

where the last transformation represents only the renaming of the 
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correlation functions. The block-diagonal matrix and the initial frequency 

matrix can be found in the appendix (Eqns. A.2 and A.l respectively). 

The stochastic Liouville equation, for two-site exchange, can then be 

written in a compact form: 

(14) 

The o(l), o< 2) are the 8x8 frequency matrices of a particular site, 1 is the 

8x8 unit matrix, 1t is the jump rate. The dimension of the matrix is now 

raised to 16. It can be decoupled into two subspaces of dimension 8, where 

the components of the vector g are: (g£1>, g~l), g~1), g41), g£2), g~2), 

g~2 ), g42)) for the first subspace and (g~l), g£1), g}1), g~l), g~2), g£2), 

g} 2), g~2 )) for the second. These two matrices can be found in the appendix 

(see Eqn. A.3). The frequencies of Eqn. (10) in these two subspaces are 

either even or odd functions of 8 with respect to sites 1 and 2. This 

property can be utilised in another transformation involving the correlation 

functions of both sites. This transformation can be represented by the 

following: 

- g(l)+ g(2) 
gns n n 

(1) (2) 
gna • gn - gn 

(15) 

where n-1, 2, 3 ... 8. Thus four subspaces of dimension 4 are obtained. The 

11. 
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- relevant equations of motion in each of the subspaces are: 

gls 0 ia
1 ia2 

0 gls gls 

g2a ia
1 -2"' 0 -ia g2a g2a · 

.. 
5 

-M (16a) 1 
g3s ia2 

0 0 -ia g3s g3s 1 v 

g4a 0 -ia 5 -ia
1 -2"' g4a glta 

g4s 0 -ia1 -ia 5 0 g4s g4s 

g3a -ia -2"' 0 ia2 g3a g3a 1 
- M (16b) 

2 
g2s -ia 0 0 ia1 g2s g2s 5 

gla 0 ia
2 ia

1 -:2"' gla gla 

0 
'lt. 

ia6 -ia1 g5s 3 ia
1 gss g5s 

'':z. 
-2"' 0 0 g6a 3 ia

1 g6a g6a 
- M (16c) 

ia6 0 0 0 
3 

g7s g7s g7s 

gsa -ia1 
0 0 -2" gsa gsa 

gSa -2" ·~ 3 ia1 ia6 -ia 
1 gsa gsa 

g6s J'l.ia
1 

0 0 0 g6s g6s 
-M (16d) 

ia6 0 -2"' 0 4 
g7a g7a g7a 

g8s -ia 
1 

0 0 0 gSs gSs 

At this stage it becomes c9nvenient to focus attention on the initial 

condition vectors, g(t-0) in the molecular frame. As was stated earlier, in 

the sudden version of the zero field experiment, one starts with the 

magnetisation along the laboratory z-axis, 1 



·~· 

Since the transformed correlation 

functions from the laboratory frame in the molecular frame are: 

~0(t-O)> 

~l(t-0)> 

L 
- cosp<T

10
(t-0)> 

ia -1/2 . L 
- (-e 2 )s1nP<T

10
(t-0)> (17) 

Thus, the non-zero initial conditions in the molecular frame, which appear 

in Eqn. (16), are: 

- cosp 

M M 
g4s(t-O)- g11 (t-O) + g

1
_1 (t-O)- -cosasinP (18) 

M M 
g 5s(t-O)- g

11
(t-0) - g

1
_
1
(t-Q)- -isinasinP 

(e) Zero Field NMR Spectrum. 

NMR spectra are usually presented in the frequency domain. This 

transformation is performed conveniently by the Laplace transformation: 

-1 
g(iw) - (iwl - M) g(t-Q) (19) 

where 1 is a 4x4 unit matrix. By substituting Eqn. (18) into Eqn. (6) and 

then into Eqn. (19), the following expression is obtained for the frequency 

13. 



domain: 

21/2 L (" ) a (i ) · ... a (" ) • • · a (" ) g10 1w - cos~gls w - cosas1.~g4s 1w + 1s1nas1n~gSs 1w 

The correlation functions gls(iw), g4s(iw), gss(iw) are: 

• 

-i~3sinasinfJ 
~3 

(20) 

(21) 

where the ~i's are the determinants of the respective Hi 4x4 matrices of 

Eqn. (16), the ~1 •s are the respective cofacto.rs c"rresponding to the non-

zero initial condition vector components: gls(t-0); g4s(t-O); gs 5 (t-0). 

Substitution of Eqn. (21) into Eqn. (20) gives the following: 

(22) 

The spectrum is obtained by taking the real part of Eqn. (22). For a 

polycrystalline or powdered sample, an average is taken over a and {J, and 

the spectrum is then given by: 

14. 



, .. 

1/2 L · 
I(w) - Rel<2 g10 (iw)>l - Rei_![ ~l + ~2 + ~3 ] I 

3 ~\ t.2 t.3 

(23) 

Natural linewidths can be taken into account by adding a real term, a-1/Tz, 

onto the leading diagonal elements of Eqn. (16). Such a natural linewidth 

arises from EFG inhomogeneities caused by lattice defects, an inhomogenous 

zero-field, or spin-lattice relaxation. The expressions of theN's and t::.'s, 

for the sudden zero field experiment, are given in the appendi~. with this 

broadening parameter included. 

(f) Simulations of Zero Field NMR Spectra. 

Spectral simulations for various 8' s are presented in Figs. (2-5). 

In the extreme limits, the results agree with those as observed by 

conventional NQR experiments. 7 However, in the intermediate region, when 

the exchange rate is comparable to the interaction frequency, the linewidths 

are very large. Typically, NQR spectroscopy has not detected signals in 

this regime. 2 The simulations shown in Figs. (2-5) are for jump angles of 

28- 20°, 70°, 90°, 109.4° respectively. Examples of some of these jumps are 

relevant to amide deuterons in porphyrins, 8 the 180° flip of crystalline 

bound water7 and of aromatic rings in polymers and proteins. 

Eqn. (14) can also be solved numerically. The spectrum using this 

method, which is also applicable to larger site problems and will be the 

subject of a future publication, 9 is given by:lO,ll 

15. 
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I(w) - Re (24) 

• 

where s and s- 1 are the eigen- arid inverse eigen-vector matrices 

respectively of the diagonalised frequency-exchange matrix of Eqn. (14), ~ 

are the eigen-values of the frequency-exchange matrix and 1 is the unit 

vector. 

SUMMARY. • 

'We have presented an analytical theory which predicts the zero field 

NMR spectra of a deuteron undergoing two-fold flips for a variety of 

exchange rates. Of considerable interest is the intermediate regime where, 

in some cases, the lines are shown to be extremely broad. The width, shape 

and position of these lines should provide accurate information concerning 

the exchange rate and jump angle of a particular deuteron. This 

demonstrates the great potential of zero. field NMR for studying slow 

molecular dynamics in amorphous or polycrystalline materials, biopolymers 

and liquid crystals. 

.. 
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APPENDIX. 

(i) Frequency Matrices and Basis Transformations. 

The frequency matrix of Eqn. (10), in the basis set. (glO, g1-l, 

0 0 0 0 -a -a ~2 -a -1 -1 -,2 

{~}\1 
2''7... 2'12.. 2''7... 2":l.. 

0 0 0 a3 -a4 a1 0 

0 0 0 {~j~a1 a4 -a3 0 a1 

-~)~1 
~ 

0 1~}~1 0 0 0 0 0 

0 - -a a3 a4 0 0 0 0 0 (A.1) 
~1 
2 
-a -a4 -a3 0 0 0 0 0 
'i1 
2 

....!2 a1 0 0 0 0 0 0 
''l. 2 

-a 0 a1 0 0 0 0 0 
-2 

"':... 2 

After the transformations depicted in Eqn. (11), Eqn. (12) and Eqn. 

(13), the block diagonal frequency matrix is: 
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0 -al -a2 0 0 0 0 0 

-al 0 0 as 0 0 0 0 

-a2 0 0 al 0 0 0 0 

0 as al 0 0 0 0 0 

0 - 0 0 0 0 0 "'l.. -3 a 1 -a6 al (A.2) 

• \. 
0 0 0 0 -3 a1 0 0 0 

0 0 0 0 -a6 0 0 0 

0 0 0 0 al 0 0 0 

.. 



(ii) Frequency-Exchange Matrix. 

The frequency-exchange matrix of Eqn. (14) can, by ~nspection, be 

reduced to two subspaces of dimension 8. These two matrices are: 

-It 

0 

0 

0 

0 

0 

0 

0 

-It 

0 

. (1) 
1.82 

0 

-It 

0 

. (1) 
-l.as 

-ia( 1 ) 
1 

. (1) . (1) 
-l.as -l.a1 -It 

0 

0 

0 

0 

0 

0 

0 0 

0 0 

0 

0 

i 
(1) . (1) 

a6 -l.a1 

0 0 

-It 0 

0 -It 

0 0 

0 0 

0 

0 

0 0 

0 0 

0 0 

0 0 0 

-It 
. (2) . (2) 1.a1 1a2 

-It 0 

0 -It 

0 
. (2) . (2) 

-1as -1a1 

0 

0 

0 0 

0 0 

3~. (2) 
-It 1.a

1 

3~. (2) 1a
1 

-It 

ia~2 ) 0 

- ia ( 2) 0 
1 

0 

0 

0 

i 
(2) 

a6 

0 

-It 

0 

0 

0 

0 

0 

. (2) 
-las 

. (2) 
-1a1 

0 

0 

0 

. (2) 
-l.a1 

0 

0 

-It 

where the components of the vector g are: (gfl), · g~ 1 ), 

gf) • gF) • gF), gi2)) for Eqn. (A. 3a); (gp), g~ 1 ), 

(A. 3a) 

(A.3b) 

g~2), g~2), g~2), g~2)) for Eqn. (A.3b). The transformation described 
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in Eqn. (15) then produces the four subspaces of Eqn. (16). 

(iii) Spectral Simulation of the Sudden Zero Field NMR Experiment. 

The expressions of Ni and ~i of Eqn. (23), including the effect 

of a natural linewidth (a-l/T2), are: 

2 2 2 2 2 N1 - -w (4~+3a) + a(4~ +a1+a5+4a~+a ) 

3 2 2 2 2 -iw + iw(4~ +a1+a5+8a~+3a ) 

4 2 2 2 2 2 2 2 2 2 
~l - w w (2a1+a2+a5+4~ -6a -12a~) + a(4~(a1+a2+a )+ 

2 2 2 2 2 4 2 2 2 2 2 
a(2a1+a2+a5+4~ +a )) + a

1 
- 2a

1
a

2
a

5 
+ a

2
a

5 
+ 4~ a

2 
. 3 . 3 2 2 2 2 2 2 2 -41w (~+a) + 21w(2a +a(2a1+a2+a5+4~ )+2~(3~ +a1+a2)) 

2 2 2 2 2 
N2 - -w (4~+3a) + a(4~ +a1+a2+4a~+a ) 

3 2 2 2 2 -iw + iw(4~ +a1+a2+8a~+3a ) 

4 2 2 2 2 2 2 2 2 2 
~2 - w w (2a1+a2+a5+4~ -6a -12a~) + a(4~(a1+a5+a )+ 

2 2 2 2 2 4 2 2 2 2 2 
a(2a1+a2+a5+4~ +a )) + a

1 
- 2a

1
a

2
a 5 + a 2a 5 + 4~ a 5 

3 2 2 2 2 2 2 2 
-4iw(~+a) + 2iw(2a +a(2a1+a2+a5+4~ )+2~(3a +a1+a5)) 

2 2 2 N3 - -w (4~+3a) + a(4~ +4a~+a ) 

3 2 2 -iw + iw(4~ +8a~+3a ) 

4 2 2 2 2 2 2 2 2 
~3 - w w (4a1+a6+4~ -6a -12a~) + a(4~(2a1+a6+a )+ 

2 2 2 2 2 2 
a(4a1+a6+4~ +a )) + 4a6~ 

3 3 2 2 2 2 2 2 -4iw (~+a) + 2iw(2a +a(4a1+a6+4~ +2~(3a +2a1+a6)) 
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TABLES. 

Table I. Zero Field Frames of Reference. 

Reference Frame Coordinate axes Tensor Rotation 
Operator 

Principal axis X,Y,Z TPAS 

System R(a'/3'-y') 
Tilt ~.YT'~ 

TT 

rt 
R(8) 

Molecular ~'YM'~ 
TL 

R(a{3-y) 
Laboratory ~.YL'~ 



f., .. / 

Table II. Reduced Zero Field Coupling Frequencies, w 
k'qlkq2 

Frequencies/ [v] 

3A AfJ. 21/2A'J. 

wll21 wll2-1 wl02-2 

w2111 w2-lll w2-210 
-w 

1-12-1 -wl-121 -wl022 
-w 

2-11-1 -w211-l -w2210 

Table III. Zero Field Coupling Frequencie~. ~'q'kq" 
Matrix 

k' q' k q Frequency Notation 

1 0 2 0 0 0 

1 1 2 -2 0 0 

1 -1 2 2 0 0 

1 0 2 ±1 -1/2 2 A(q-3)sin8cos8 -1/2 -2 a1 

1 0 2 2 -1/2 2 2 -2 A[(3+q)sin 8-2qcos 8] -1/2 -2 a 2 

1 0 2 -2 -1/2 2 2 2 A[(3+q)sin 8-2qcos 8] -1/2 2 a 2 

1 1 2 2 A(3-q)sin8cos8 a1 

1 -1 2 -2 A(3-q)sin8cos8 al 

1 1 2 1 2 2 (3A/2)(3cos 8-l+qsin 8) -a3 

1 -1 2 -1 2 2 -(3A/2)(3cos 8-l+qsin 8) a3 

1 1 2 -1 2 2 (A/2)(3sin 8+q(2-sin 8) a4 

1 -1 2 1 2 2 -(A/2)(3sin 8+q(2-sin 8) -a4 

1 ±1 2 0 1/2 -(3/2) 112a -(3/2) A(3-q)sin8cos8 1 

25. 



FIGURE CAPTIONS. 

Figure 1. 

The zero field reference frames for a deuteron undergoing rotational 

flips about a two-fold axis. This model is identical to that of Barnes. 7 

Figure 2. 

Simulated spectra for 26-20°. Only the positive half of the spectra 

are shown. tc/A is the ratio of the exchange rate and the quadrupolar 

frequency. It is shown to vary from the rigid regime (bottom) to the rapid 

motional limit (top). The ratio of the residual linebroadening (l/T2 ) to 

the quadrupolar frequency is a/A-0.02. Note the lines are sharp at the 

extreme limits but are broad in the intermediate regime (~e/A:::::l). 

Figure 3. 

Simulated spectra for 26-70°. The spectral param~ters are as for Fig . 

. 2. For this jump angle, an asymmetry parameter close to unity is obtained 

in the extreme line narrowing limit. 

Figure 4. 

Simulated spectra for 26-90°: (a) ,-o, . these spectra are identical to 

that of Hennel et a1.; 4 (b) ,-0.2. ,.11 the other spectral parameters are as 

for r::ig. 2. 
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Figure 5. 

Simulated spectra for 29-109.4°; ~-0.1. The other parameters are as 

for the previous simulations. The spectra here are those predicted for a 

water molecule undergoing a two-fold rotation about its c2 axis in 

crystalline hydrates. 2 
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